
Quantum Computation (CMU 18-859BB, Fall 2015)

Lecture 9: Shor’s Algorithm
October 7, 2015

Lecturer: Ryan O’Donnell Scribe: Sidhanth Mohanty

1 Overview

Let us recall the period finding problem that was set up as a function f : ZN → colors, with
the promise that f was periodic. That is, there exists some s for which f(x + s) = f(x)
(note that addition is done in ZN) for all x ∈ ZN and that colors in a block of size s were
pairwise distinct.

This setup implies that s | N , so that greatly narrows down what s could be. This
problem is not hard to do classically, but can be done better with a quantum computer.
Slight variants of this problem can be solved with a quantum computer too, and we shall
explore such a variant in this lecture.

Here is a sketch of the period finding algorithm that was covered during last lecture (see
the period finding lecture for a deeper treatment).

• We begin by preparing our favorite quantum state

1√
N

N−1∑
x=0

|x〉

We then tensor this state with |0n〉.

• We pass the state (after tensoring) through an oracle for f and obtain the state

1√
N

N−1∑
x=0

|x〉 |f(x)〉

• We then measure the qubits representing |f(x)〉 and obtain a random color c. This
causes the overall state to collapse a superposition of states where |x〉 is in the preimage
of c. √

s

N

N
s
−1∑

k=0

|x0 + ks〉 |c〉

The coefficients can be thought of as fc(x)
√

s
N

where fc(x) = 1 when f(x) = c and 0
otherwise.

1

• We then apply the Quantum Fourier Transform on this state to obtain a quantum state
where the coefficients are f̂c(γ)

√
s
N

where γ is a multiple of N
s

. From the previous

lecture, we know that f̂c has a period of N
s

and hence γ for which f̂c(γ) is nonzero is a
multiple of N

s
.

• Measuring k gives us a random γ in
{

0, N
s
, 2N
s
, · · · , (S−1)N

s

}
.

• Take a constant number of samples and take the GCD of all these samples. With high
probability, you get N

s
, from which we can retrieve s.

2 Review of complexity of algorithms involving num-

bers

In general, an efficient algorithm dealing with numbers must run in time polynomial in n
where n is the number of bits used to represent the number (numbers are of order 2n)

To refresh, let’s go over things we can do in polynomial time with integers.

Say P,Q and R are n bit integers.

• P ·Q can be computed in polynomial time.

• bP
Q
c and P mod Q can be computed in polynomial time.

• PQ is massive, and writing it out itself would cause the time to go exponential.

• But PQ mod R can be done polynomially by computing p, p2, p4, p8, . . . , p2
n

for 2n ≥
Q.

• The GCD of P and Q can be done polynomially with Euclid’s algorithm.

• Now for something more interesting: checking if P is prime. It can be done in Õ(n2)
using a randomized algorithm (Miller-Rabin) and in Õ(n6) using a deterministic algo-
rithm (AKS).

• Now, why not try to factor P? And suddenly we are stuck if we try to approach the

problem classically. The best known deterministic algorithm runs in 2Õ(n
1
3)

3 Shor’s Algorithm

There are three steps to understanding Shor’s algorithm [Sho97].

2

1. Factoring ≤ Order-finding: Factoring reduces to order-finding, which means that if we
have an algorithm to solve order-finding efficiently, we can efficiently solve the factoring
problem as well by a polynomial time reduction from factoring to order-finding. Note
that this reduction can be made classically.

2. Order-finding≈ Period-finding: Vaguely, order-finding is approximately the same prob-
lem as period finding for a quantum computer. This will be expanded in more detail
this lecture.

3. Identifying simple fractions: This part is necessary in the order-finding algorithm that
is crucial for Shor’s algorithm and can be done classically as well.

The second step is the key step in Shor’s algorithm.

3.1 What is order finding?

We are given A,M (n-bit numbers) along with a promise that A and M are coprime. The
objective is to find the least s ≥ 1 (s ≤M) such that As ≡ 1 mod M . s is called the order
of A.

Note that s divides ϕ(M), where ϕ is the Euler Totient function that gives us the number
of elements less than M that are coprime with M . As another remark, ϕ(M) is the order of
the multiplicative group Z∗m and s divides ϕ(M).

3.2 Proof that Factoring ≤ Order-finding

In this section, we shall assume that we have an efficient order-finding algorithm.

Say M is a number that we want to factor. The key to solving the factoring problem
using order-finding lies in finding a nontrivial square root of 1 mod M , that is, a number r
with r2 ≡ 1 mod M and r 6≡ ±1 mod M . Then we know that (r + 1)(r − 1) ≡ 0 mod M
and both r + 1 and r − 1 are nonzero mod M and are factors of some multiple of M . (A
nontrivial square root may not always exist, for instance, when M is a power of an odd
prime, but we’ll see how to handle that case)

Computing the GCD of M and r − 1 would give us a nontrivial factor of M , called c.
We can divide out c from M , check if c or M

c
are prime and for each of c and M

c
, if they are

not prime, we recursively factor them, and if they are prime, we store them as prime factors
and wait until the rest of the terms are factored. We then return the set of all prime factors.
(Recall that we can efficiently test primality.)

Note that the number of recursive calls made is logarithmic in M because there are at
most logM prime factors of M and each recursive call increases how many numbers we have
not split by 1. Hence, after logM −1 recursive calls, there are about logM numbers that we
have not split. Splitting further would force the number of prime factors to exceed logM ,
which is not possible.

3

Now, one might ask how one would go about finding a nontrivial square root of 1 mod M .
We take a random A ∈ Z∗M , and find its order s.

Perhaps, we get lucky and have s be even, so we could set r ≡ A
s
2 mod M (then r2 ≡ As

mod M ≡ 1 mod M). Maybe we could push our luck a bit more and hope r 6≡ −1 mod M .
But turns out, we can actually make these two lucky things happen, thanks to a number
theory lemma!

Lemma 3.1. Suppose M has ≥ 2 distinct odd prime factors. Then if we pick A ∈ Z∗M
uniformly at random, the probability that the order s of A is even and that A

s
2 ∼= 1 is at least

1
2
.

Proof. See Lemma 9.2 and Lemma 9.3 of Vazirani’s course notes [Vaz04]

One can pick a uniformly random A ∈ Z∗M by randomly picking elements A from ZM
and computing GCD(M,A) until it we find A for which the GCD is 1. And with at least
1
2

chance, our ‘lucky conditions’ are satisfied. Repeatedly picking A boosts this probability
further. If we cannot find such a number A after picking randomly many times, then it
means that M is an odd prime power, in which case, we factorize it by binary searching the
k-th root of M where k is guaranteed to be an integer in [1, logM].

3.3 Quantum algorithm for Order-Finding

By establishing that Factoring ≤ Order-Finding, we showed that if we could somehow find
the order of A ∈ Z∗M , we could then classically factorize M .

Now, we shall see how one actually finds the order. Given n bit integers A and M , let
N = 2poly(n) >> M where poly(n) is something ridiculously large like n10. Such a number
N can still be written in poly(n) bits.

Define f : {0, 1, . . . , N − 1} → ZM to be f(x) = Ax mod M . Notice that A0 = As = 1,
all powers in between are distinct and then it repeats. So it is almost s-periodic, but not
quite, because we do not know if s divides N . But we shouldn’t have much trouble modifying
period-finding slightly to solve this variant of the original problem.

Just like in period-finding, we start with our favorite state

1√
N

∑
x∈{0,1}n

|x〉

And then we tensor this state with |0n〉 and pass the overall quantum state through an
oracle for f , Of and end up with the state

1√
N

∑
x∈{0,1}n

|x〉 |f(x)〉

4

And we measure the second register, collapsing the state to a superposition of states that
involve |x〉 where f(x) is a random element c in the subgroup generated by A. This is where
order-finding starts getting different from period finding.

Note that s does not divide N , so we cannot be sure of the exact number of times each
color c appears. Instead, we can say that appears only D times where D is either bN

s
c or

dN
s
e. We will now see how taking a massive N comes in handy.

We apply a Quantum Fourier Transform on our state to obtain the state√
1

ND

N−1∑
γ=0

D−1∑
j=0

ωγ·s·j |γ〉 |c〉

In the above state, ω = e
2πi
N . And sampling γ from this state gives us some fixed γ0 with

probability

Pr[sampling γ0] =
D

N

∣∣∣∣∣ 1

D

D−1∑
j=0

ωγ0·s·j

∣∣∣∣∣
2

The reason we separate 1
D

as D
D2 and move the denominator into the square is that it

is nice to think of the sum being squared as an average. We want γ we select by sampling
to be of the form bkN

s
e (this is notation for nearest integer) for k uniformly distributed in

{0, 1, . . . , s − 1}. The idea is that if γ is of the given form, then γ
N

is a real number that
is extremely close to the simple fraction k

s
where it is known that both k and s are n-bit

integers. More formally, given γ
N

within ± 1
2N

of k
s
, we claim we can find k

s
.

Now, we call upon another lemma to show how such a γ can be sampled.

Lemma 3.2. For each γ of the form bkN
s
c with 0 ≤ k < s, there is ≥ 0.4

s
probability of

sampling γ.

Proof. A proof can be found in lemma 9.4 of Vazirani’s course notes [Vaz04].

We will now show how one can get k
s

when they have N
γ

. Continued fractions are a way
to approximately describe real numbers in terms of integers. A real number r would look
something like

a0 +
1

a1 + 1
a2+

1

...+ 1
aM

We will use a method involving continued fractions and go over a rough sketch of this
method in lecture to use continued fractions to obtain k

s
from γ

N
.

First, let us illustrate with an example how one can obtain the expansion of some number
with continued fractions.

5

Consider the fraction 42
23

. We first split the fraction into its integer part and fractional
part and express it as the sum of both.

42

23
= 1 +

19

23

We then express the fraction as an inversion of its reciprocal.

1 +
19

23
= 1 +

1
23
19

Now, split the denominator of the second term into its integer part and fractional part
and repeat.

1 +
1

1 + 1
4+ 1

1+1
3

Now we will see how one could use continued fractions to compute k
s
. The idea is to use

Euclid’s algorithm on N and γ and stop when we get some value close to 0 rather than when
we get exactly 0, and keep track of quotients of the form ba

b
c whenever we compute a value

of the form a mod b. We will illustrate the method with another example.

If k
s

is 11
25

, then γ ≈ 11
25
N .

Now, we take N mod γ and get approximately 3
25
N with 2 as the quotient. As the

next step, we take 11
25
N mod 3

25
N and get roughly 2

25
N with 3 as the quotient. Then, we get

approximately 1
25
N as the remainder from 3

25
N mod 2

25
N and get 1 as the quotient. Finally,

in the last step, we get the remainder to be approximately 0 and the quotient to be 2 when
we take recursively apply Euclidean’s algorithm on terms that are approximately 2

25
N and

1
25
N .

The quotients at any given step in the Euclidean algorithm could be thought of as the
integral part, and finding the bigger element modulo the smaller element helps us obtain the
fractional part. Using the quotients we obtained, we get the continued fraction approximation
for γ

N
as

1

2 + 1
3+ 1

1+1
2

=
11

25

To wrap up, we will show how we can eliminate possibilities of failure. If k and s
have a common factor, then the fraction k′

s′
returned by computing the continued fractions

approximation of γ
N

would be one of simplest form, but with k′ 6= k and s′ 6= s. We will
treat this possibility by showing that we can always find k

s
with k and s coprime by running

the algorithm enough times.

We claim that with probability 1
poly(n)

, k and s are coprime.

6

Proof. Note that s has at most log s prime factors. By the prime number theorem, there
are at least s

log s
prime numbers less than s. The order of the number of prime numbers less

than s that are coprime with s is about the same, because log s is asymptotically much less
than s

log s
so excluding those primes without losing many elements. Thus, when k is picked

uniformly at random between 1 and s, there is a 1
log s

chance that it is a prime that is coprime
to s. s is at most n bits long, and hence the probability that k is a coprime to s is at least

1
poly(n)

.

Repeat the algorithm until you get k
s

and k′

s
in lowest terms with GCD(k, k′) = 1.

Once we accomplish this, we can find s, which is the order of element A. And by using
the reduction of factoring to order finding that we proved in the previous section, we can
efficiently solve the factoring problem!

References

[Sho97] Peter Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM journal on computing, 26(5):1484–1509,
1997.

[Vaz04] Umesh Vazirani. Shor’s factoring algorithm. CS 294-2, Fall 2004.
http://www.cs.berkeley.edu/~vazirani/f04quantum/notes/lec9.pdf.

7

http://www.cs.berkeley.edu/~vazirani/f04quantum/notes/lec9.pdf

	Overview
	Review of complexity of algorithms involving numbers
	Shor's Algorithm
	What is order finding?
	Proof that Factoring Order-finding
	Quantum algorithm for Order-Finding

