Quantum Computation (CMU 18-859BB, Fall 2015)

Lecture 7: Quantum Fourier Transform over Zy
September 30, 2015

Lecturer: Ryan O’Donnell Scribe: Chris Jones

1 Overview

Last time, we talked about two main topics:
e The quantum Fourier transform over Z%
e Solving Simon’s problem with the transform over Z7

In this lecture and the next, the theory will be developed again, but over a different group,
Zn. We'll talk about:

e The quantum Fourier transform over Zy (today)
e Solving the period-finding problem with the transform over Zy (next time)

As a side note, for this lecture and in general, one should not stress too much about
maintaining normalized quantum states, that is, states with squared amplitudes that sum
to 1. Carrying around (and computing) the normalizing factor can be a big pain, and it’s
understood that the “true” quantum state has normalized amplitudes. To this end, we agree
that the quantum state

Z g |z)

z€{0,1}m
is in all respects equivalent to the normalized quantum state

-1

Z | |? Z ay |x)

z€{0,1}" ze{0,1}™

This tradition is due to physicists who tend to omit normalizing constants for convenience.

2 Defining the Fourier transform over Zy

2.1 Review of the transform over Zj

For now, we will forget all we know of quantum computing, except for what we learned last
lecture. Let’s think about the Fourier transform over Z7, and see if we can adopt the idea
to ZN.

Consider an arbitrary function g : {0,1}" — C. In the previous lecture, we looked at the
vector space of functions from {0,1}" to €, and thought of g as an element of that vector
space. This vector space is 2"-dimensional, with a “standard” basis being the indicator
functions {0, }yeqo,13n. With respect to this basis, we have the representation

g(0™)
g(0"~'1)

g(1")
We’ll more often see vectors of the form
h(0™)
h=—— :

YN)

i.e. with respect to the basis {V/ Nd,}yc0,13»- This is nicer because the standard dot product
of such vectors is an expectation:

=5 3 g h@)= B o) h()

ze{0,1}n a0 1)

In particular, if g : {0,1}" — {—1,41}, ¢ is a unit vector.

Remember: no stress about the constant \/LN It’s just there to make more things unit
vectors more often.

In this vector space, we found a particular orthonormal basis that made representations
of f particularly nice to work with: the basis of parity functions {X},ezy, defined by

(@) = (-1

where 7 -z is the dot product in Z7. In the vector representation,

+1
(-1
|X7> =

2=

(—1y

We used the notation g(y) to denote the coefficient of x., in the representation of g. All this
notation gave us the final form

g(z) =D G Ixy)

WEZQ

If we endowed the domain with the group structure of Z7, or equivalently, the vector space
5, the)., are nice because they are characters on Zs.

2

Definition 2.1. Let C* denote the nonzero complex numbers.
%, a character on G is a function x : G — C* satisfying

x(g*h) = x(g) - x(h)

In mathematical terms, x is a homomorphism from G into C*.

For a group G with operation

We observed that a couple of properties were true of these characters:

e Yo=1
e E [x,(z)]=0fory=#0.

x~{0,1}"

® Xa(2) = x:(a)

This one is new. Though it’s true, conceptually, it’s generally good to segment the

inputs from the index set of the Fourier coefficients.

o (olg)=_ B (@)g@)]=507)

This is a statement of a more general fact about orthonormal bases: if F is any
orthonormal basis, the coefficient on f € F in the representation of v with respect to

F is given by (f,v).

As a consequence of the above properties, we had one further property:

* X3(@)Xo () = Xyio(2)

In summary, the Fourier transform over Z7 is defined as the unitary transformation that

takes a function into its representation with respect to the x,:
0) 9(0,. ..
1 1 1900,...,0,1) 9(0,...
— Y 9@) = —= : =

g(0,. ..,
.,0

\/N z€{0,1}™ \/N

g(1,....1) g(1,
Example 2.2. Let
_[VYN y=z
9:(y) = { 0 0.w

and

Remark 2.3. Another way to compute the Fourier expansion of |z) is to note that the
Fourier expansion of x, is |y), and that the Fourier transform is an involution (since Hy is
its own inverse).

Representing a function with respect to this basis revealed patterns specific to the Z%
group structure. The main advantage of quantum computing, though, is that the Fourier
transform over 74 is efficiently computable on a quantum computer. The matrix that im-
plements it, Hy, consists of exactly n gates. In comparison to the classical situation, the
fastest known method to compute the Fourier expansion is the fast Walsh-Hadamard trans-
form, which requires O(N log N) time. See [FAT76] for an overview.

All this begs the questions: can we do the same for Zy? What are the characters on
Zy, and do they form an orthonormal basis? If such a unitary transformation exists, can
we implement it efficiently on a quantum computer? As we will now see, the answer is yes.

2.2 An Orthogonal Basis of Characters

Let’s look first at the characters on Zy.
Theorem 2.4. Zy has exactly N characters.

Proof. Let’s try and first deduce what form the characters must have. If y is a character,
for any x € Zx we have

x(z) = x(x +0) = x(x)x(0)

If x(x) # 0 for some z, we can conclude x(0) = 1. We’ll ignore the case where x = 0, as
this is the zero vector in this vector space and won’t be helpful to forming an orthonormal
basis. So let’s conclude x(0) = 1.

We also know
k times

X+ -+) = x(x)

In particular, if we take k = N, then kx = Nx = 0, modulo N. Combining this with the
above, we have, for every x € Zy,

k

That is, x(z) is an N-th root of unity. We also know

k times

x(k) =x(1+---+1)=x(1)"

X is completely determined by its value on 1! Let w = ¢~ be a primitive N-th root of
unity. x(1) is an N-th root of unity, so write

x(1) =w’

for some v € Zy. From all of this we deduce that x must be given by the formula

x(z) = w™®

where 7 - x is regular integer multiplication.
For each v € Zy, define the function x, : Zy — C by xny(z) = w?*. To complete the
theorem we check that every «y creates a distinct character i.e. ., satisfies the homomorphism

property:
X2+ y) = WO = WY = Y = ()X, ()
0

With the set {x-},ez, in hand, we can check that these do indeed form an orthonormal
basis. First we check that the analogous properties from the Fourier basis over ZI carry
over:

.X()El

Proof. xo(z) =w’* =1 O

o E [y ,(2)]=0fory#0.

T~ZN

Proof. This is a happy fact about roots of unity. Geometrically, the powers of w are
equally spaced around the unit circle, and will cancel upon summation. Algebraically,

when 7 # 0,
N-1
1 1w -1
il C I S
N;“ Nw—1

® Xa(2) = x:(a)

-z zZx

Proof. Xa(2) = w** = w** = x.(a) O

As before these can be used to deduce one further property,

* Xo(2)x4(2) = Xoury(7)

There’s also a new, very important property that we wouldn’t have noticed before, when we
were only working over R:

hd X'y(x)* = X—'y(m) = X’y(_af)

Proof.

Xv(x)* = W) =w = w0 = X—v(x)

=W’ = XA(—)

O
From these, the orthonormality of the characters falls right out:
Theorem 2.5. The functions {x-} ez, form an orthonormal basis.
Proof. ¥or o,v € Zy,
Xolxa) = B [xo(#)"x5(2)]
T~IN
= E [xo(2)xy()]
T~LN
— E [r-0(a)]
1 v—-0=0
10 0.W.
We have N orthonormal elements in a space of dimension N, implying they form a basis for
the space. O

As before, we use the notation g(y) to denote the coefficient on x., in the representation
of a function g with respect to this basis. The notation has almost the same form as before:

g(x)=>_ 50 Ixy)

YEZN

The difference is in how we think about the domain of summation: in the first case it
was 275, and now it is Zy.

Also as before, and as a consequence of orthonormality, we have a method of computing
the Fourier coefficients:

9 =oley = B D (2)9(@)

We call the unitary transformation that takes a function to its Fourier representation the
Fourier transform over Z5:

4(0,....0) 30,....0)
0,....0,1 5(0,...,0,1 R

\/LN 3 g(:l:)\x>=\/—1ﬁ 4 o |2) =Y)
et g1, 1) e I B

Example 2.6. Let

w={ yN Vo

0 0.W.

Then the vector representation of g, is |x), and

70 = E 050 =x.(x) |z) \/—wa “Ix4)

~{0,1}n
y~{0,1} Ty

The Fourier transform over Zy will help to solve the Z y-analogue of Simon’s problem,
the period-finding problem, in the next lecture. From there it is an easy step to Shor’s
factorization algorithm.

One thing remains for now: efficient implementation of a circuit to compute the trans-
form. This is what the remainder of the lecture will do.

Remark 2.7. The entire analysis above goes through without assuming that N is a power

of 2. Though for the most part, we will only concern ourselves with cases where N is a power
of 2.

Remark 2.8. Taking N = 2 gives an equivalent formulation as taking n = 1: the characters
are 1, and (—1)*.

3 Implementing the Fourier transform over 7y

The goal of this section is to implement the quantum Fourier transform over Zy efficiently,
that is using only poly(n) 1- or 2-qubit gates. Once we have a circuit computing the Fourier
transform over Zy, it will be a valuable tool for use in quantum algorithms.

A life lesson to take away: if a unitary matrix has easy-to-write-down entries, it can
probably be computed using poly(n) gates.

Theorem 3.1. The quantum Fourier transform over Zy can be implemented with O(n?) 1-
and 2-qubit gates.

Proof. We will build a circuit with exactly ("+1) gates. As usual for a quantum circuit, it
suffices to create a circuit that is correct on each classical input |z), x € {0, 1}"; by linearity
such a circuit is correct on all superpositions.

We want to implement the map

1 e 3 (o)

VEZN

where x,(2)* = w™7?. Consider as example n =4, N =2" = 16

1
[2) = 7 (10000) +w™ J0001) + w™*|0010) +w > [0011) + -+ 4w " [1111))

A key realization is that the above output state is actually unentangled. That is, there are

qubits [tg), Y1), |¥2), |13) such that the above state equals ;) ® |12) @ |13) @ |1y). In
particular, it is equal to

(i g (e iy g (W) ra i) g (vt)

In the case for general n, we want to take

) (|o>+£"w|1>) . <|o>+w7§“x|1>> oo (e)

In order to do so, it suffices to perform the transformation wire-by-wire.
We return to our example. Let’s write the input |z) = |zox;...2,_1) and the output
|7) = [Yn-1---70) and fill in gates as we need them:

|z0) RE:

1) 72

|z2) 71

|z3) 170

As suggested by the notation, it’s actually easier to do this transformation if we take the
least significant bit of x to the most significant bit of the output. To see this, on the most

significant output wire we want \%(|0> +w 8 |1). At first glance it looks like we need all

of z for this. However, since w’¥ = w!® = 1, we only need the least significant bit |z(). A

similar situation occurs for other wires, as we will see. We can finish the circuit by reversing
the order of the output bits, for example implemented by § XOR swaps.

As we just computed, the most significant output bit will be \/LE(](D + (=1)7*0|1)). This
is exactly the Hadamard gate applied to input |x¢). Here’s a circuit that correctly computes
the first wire:

|zo) H =7

|z2) |71

)
1) |72)
)
)

|z3) 170

What about the second wire? We want to perform

22) %um Wt 1))

8

This time, w™** depends only on the two lowest bits of x, and is equal to w™8¥174%0 —

(—1)"®1w 4% We need:

1) = =(0) + (=1) w0 1)

V2

First, apply Hadamard to |x1) to get \%(!0>+(—1)_“70 11)). What we need now is a “controlled

w™ gate”: if zp = 1, multiply the amplitude of |z1) on |1) by w™, else do nothing. Under

the assumption that we can implement 1- and 2-qubit gates, use a gate that implements the
(unitary) matrix

100 O

01 0 0

001 0

000 wt
Adding these two gates to the circuit correctly computes the second wire.
|z0) T s
1) HHo 4 ——1

)
)
|2) 1)
)

|z3) 170

The situation for other wires, and other n, is similar. To finish off the example, we need
to compute

o o (DEZIDY (02 Lt)

g o (DESTIDY (1)) P

We can build controlled w=2 and w™! gates as well. Use the same paradigm: hit each
wire with a Hadamard, then use the controlled w—2" gates on the lower-order bits. The final
circuit looks like this:

|0) ’ ’ ? 1 —1s)
1) . T 7 g —
|22) ? 0w Hw™? 71)
jws) = H Hw t Hw 2 Hw ! 7o)

To generalize this to any n, transform on |x;) by first applying a Hadamard gate, then
applying a controlled w2 gate controlled by |xy), for each k& < i. This works so long as we
first transform wire |z,_;), then |x,_2), and so on down to |zp); no wire depends on wires
that are below it. The circuit looks something like:

‘17[)) e @_ IA’/"'71>
L . R O iy

|z2) [vn—3)

[v1)

7o)

With the aforementioned reversing of the output wires, this completes the circuit to
compute the Fourier transform over Zy. The total number of gates in this part of the circuit
1+2+ - +n=("1") =O(n?). Including the O(n) for swapping gives O(n?) size overall.

m

Remark 3.2. The uncontrolled, 1-qubit version of the controlled w2 is called the “phase
shift gate”, with matrix
1 0
(o &)

This gate does not change the probability of outcome |0) or |1) for this qubit.

Remark 3.3. One can compute the transform to Fourier transform over Zy to accuracy e
using only O(nlog) gates. The idea is simple enough: phase shifts of very small amounts
will change the overall quantum state very little, so if we allow ourselves a little error we can
afford to skip a few. A more exact analysis can be found in [HHO00].

References

[FA76] B.J. Fino and V.R. Algazi. Unified matrix treatment of the fast walsh-hadamard
transform. IEEE Transactions on Computers, 25(11):1142-1146, 1976.

[HHO0] L. Hales and S. Hallgren. An improved quantum fourier transform algorithm and
applications. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 515-525, 2000.

10

