
Quantum Computation CMU 15-859BB, Fall 2015

Homework 3
Due: Tuesday, Oct. 6, 11:59pm, email the pdf to pgarriso@andrew.cmu.edu

Solve any 5 out of 6

1. [Swap test.] The CSWAP (controlled-swap) linear operator acts on three registers (“wires”),
the first being a qubit and the second and third being d-dimensional qudits. It is defined by
|0〉 |ψ〉 |ϕ〉 7→ |0〉 |ψ〉 |ϕ〉 and |1〉 |ψ〉 |ϕ〉 7→ |1〉 |ϕ〉 |ψ〉.

(a) Verify that CSWAP is unitary. Sketch the 18× 18 matrix representing it in case d = 3.
Show that if d = 2c and the qudits are represented by c qubits each, then CSWAP can be
implemented with 3c CCNOT gates. (You may appeal to an earlier homework problem,
even if you didn’t solve it.)

(b) To perform the “swap test” on (unentangled) qudits |ψ〉 and |ϕ〉 means to do the fol-
lowing:

i. Initialize the state |0〉 |ψ〉 |ϕ〉.
ii. Apply a Hadamard gate to the first register.

iii. Apply CSWAP to the three registers.

iv. Apply a Hadamard gate to the first register.

v. Measure the first register.

vi. “Accept” if the outcome is |0〉 and “reject” if the outcome is |1〉.
Show that the probability of accepting is 1

2 + 1
2 |〈ϕ|ψ〉|

2. In particular, the probability
is 1 if the qudits are identical and is 1

2 if they are orthogonal.

2. [Reflections.] A reflection (through a subspace) in RN is a linear transformation R satisfying
one of the following equivalent conditions:

(i) R2 = I, where I is the identity transformation. (Math-nerd terminology: “R is an
involution”.)

(ii) There is a subspace, V , such that R = 2ΠV − I, where ΠV denotes projection onto V
(i.e.,

∑d
i=1 |vd〉 〈vd|, where |v1〉 , . . . , |vd〉 are an orthonormal basis of V). Equivalently, R =

I − 2ΠV ⊥ , where V ⊥ is the orthogonal complement of V .

(iii) R is an orthogonal (=real unitary) transformation with all its eigenvalues ±1. (Eigen-
values 1 on the subspace V , eigenvalues −1 on V ⊥.)

(iv) You know, R is a reflection through a subspace V . You know what that means.

You do not have to prove the above equivalences.1

(a) Grover’s algorithm, when applied to f : {0, 1}n → {0, 1}, begins by preparing the
uniform superposition |ψ〉 = 1√

N

∑
x∈{0,1}n |x〉 ∈ RN (where, as usual, N = 2n). It then

repeatedly applies the oracle O±f (which negates all amplitudes on |x〉’s with f(x) = 1)
and the “diffusion” operator D (which flips all amplitudes across the average amplitude).
Show that both O±f and D are reflections. What subspace does D reflect across? What

subspace’s orthogonal complement does O±f reflect across?

1The only real trick is showing R2 = I implies R is diagonalizable. The cute trick for this: any vector u satisfies
u = 1

2
(u + Ru) + 1

2
(u−Ru), and the two summands on the right are easily seen to be eigenvectors. . .

1

(b) Suppose R1 is a reflection across the one-dimensional space spanned by the unit vec-
tor |v1〉, and similarly for R2 and |v2〉. Let S = R2R1. Show that if v ∈ V :=
span(|v1〉 , |v2〉) then Sv ∈ V , and that if v ∈ V ⊥ then Sv = v; i.e., S essentially
acts only in the two-dimensional space V . Draw a picture illustrating the action of S
within V , letting θ denote the angle from |v1〉 to |v2〉. Geometrically, what kind of oper-
ation is S? Give an algebraic proof of this by multiplying two 2× 2 matrices and using
a trig identity.

3. [Grover search with multiple satisfying inputs.] In this problem we will see an alternate
analysis of the Grover search algorithm, and also generalize it to the case when f has more
than one satisfying input. The alternate analysis is more geometric, and follows the “product
of two reflections” ideas from Problem 2.

So suppose we are given an oracle Of for f : {0, 1}n → {0, 1}. Write A = {x : f(x) = 1}
and k = |A|. We will assume k ≥ 1. Also write B = {x : f(x) = 0}, so |B| = N − k, where
N = 2n.

(a) Explain how we can use the oracle to check if a given string y ∈ {0, 1}n has f(y) = 1.
Explain how we can use this to find an x ∈ A with high probability in O(1) queries
whenever k ≥ N/2. (We henceforth assume k < N/2.)

(b) Recall Grover’s algorithm, with t repetitions:

|0〉

HN O±f D

· · ·

O±f D

|0〉 · · ·

n qubits ... · · ·

|0〉 · · ·

|0〉 · · ·

t repetitions of O±f followed by D

Letting |ψ(t)〉 denotes the state of the circuit after t repetitions, show that we can write
it as

|ψ(t)〉 = αt
1√
k

∑
x∈A
|x〉+ βt

1√
N − k

∑
x∈B
|x〉 ,

where αt, βt ∈ R satisfy α2
t + β2t = 1. What are α0 and β0?

(c) Thinking of (βt, αt) as a point on the unit circle in R2, let us write θt for its angle from
the horizontal axis (so that αt = sin θt, βt = cos θt). Show that the transformation
(βt, αt) 7→ (βt+1, αt+1) is precisely rotation around the circle by an angle of 2θ0.

(d) Assume that the algorithm knows k. Briefly, why would the algorithm like to choose

t = 1
2

(
π
2θ0
− 1
)

if it could? Show that if it takes t to be the closest integer to this value,

the circuit has the property that it outputs an element of A with probability at least 1
2 .

(e) Again, assuming the algorithm knows k, show that it can find an element of A with high
probability using O(

√
N/k) queries to the oracle. (You may want to use that sin θ ≤ θ

for all θ ≥ 0.)

2

(f) (Bonus.) Show that if the algorithm does not know k, it can nevertheless find an x ∈ A
with high probability using O(

√
N/k) queries. (Hint: it’s not quite as easy as “try

t = 0, 1, 2, 4, 8, 16, . . . ”, since the basic Grover succeeds only with probability 1
2 . You’ll

want to show that once T is “large enough”, if we pick t ∈ {0, 1, 2, . . . , T} uniformly at
random then there is a constant chance Grover will succeed. Then grow T at a slow
exponential rate. . . .)

4. [The necessity of uncomputing.] Recall the convention that the oracle gate O±f for a

Boolean function f : {0, 1}n → {0, 1} denotes the unitary transformation |x〉 7→ (−1)f(x) |x〉.
When implementing O±f in applications (such as SAT-solving), we have seen that we might

need additional ancilla/garbage bits, in which case O±f actually denotes the unitary transfor-

mation |x〉 |0m〉 → (−1)f(x) |x〉 |g(x)〉, where g(x) is whichever m-bit garbage string produced
on input x. In class, we have insisted that all oracle circuits uncompute their garbage, mean-
ing that g(x) = 0m for all x ∈ {0, 1}n (which is without loss of generality by Problem 4 from
Homework 1).

In this problem, we will justify why it is okay to “pretend” the ancilla bits don’t exist.
Furthermore, we will show why it is important for the circuit to uncompute its garbage. We
will use as our example the Deutsch–Jozsa circuit; including ancilla/garbage bits, it is drawn
as follows.

|x1〉

HN

O±f

HN

|x2〉

...

|xn〉

|0〉

ancillas ...
|0〉

(a) Suppose O±f uncomputes its garbage, i.e. g(x) = 0m for all x. For a given Boolean

function f : {0, 1}n → {0, 1} (which need not be all-0’s or balanced), compute the state
of the system after the O±f gate and after the second HN gate. Show that each of these
states can be written as |ψ1〉⊗ |ψ2〉, where |ψ1〉 is the state of the first n qubits and |ψ2〉
is the state of the last m qubits. Finally, show that the distribution on measurement
outcomes is the same as it would have been if O±f had no ancilla bits.

(b) Suppose O±f does not uncompute its garbage, i.e. g : {0, 1}n → {0, 1}m is allowed to be
arbitrary. For a given Boolean function f : {0, 1}n → {0, 1}, compute the state of the
system after the O±f gate and after the second HN gate. Explain why in general the

distribution on measurement outcomes is not the same as it would have been if O±f had
no ancilla bits.

5. [Connectivity.] Suppose we are given an oracle OG for an undirected simple n-vertex
graph G. We assume its action is |i〉 |j〉 |b〉 7→ |i〉 |j〉 |b⊕Gij〉, where 1 ≤ i, j ≤ n are vertex

3

indices (expressed with dlog2 ne qubits each) and

Gij =

{
1 if edge {i, j} is present in G,

0 if edge {i, j} is absent in G.

(a) Describe a quantum algorithm that correctly decides (with high probability) whether G
is a connected graph, using only O(n3/2) queries to OG. You can and should use Prob-
lem 3f (even if you didn’t solve it). You may also describe your algorithm in a mix of
conventional classical pseudocode-language and circuit language; i.e., you can say things
like, “The algorithm now constructs a reversible classical circuit that does [simple clas-
sical task] and plugs it into a quantum circuit as follows. . . ”. It would be cool if you
also explained why your algorithm: i) returned a spanning tree of G, provided G is
connected; ii) has overall running time Õ(n3/2) (assuming that evaluating OG takes unit
time).2

(b) Prove that any classical (even randomized) query algorithm for deciding connectivity
requires Ω(n2) queries to succeed with high probability. (Hint: imagine an adversary
answering the queries who always pretends that vertices 1, . . . , n/2 and vertices n/2 +
1, . . . , n form cliques, but is cagey about the existence of “cross-edges”. . .)

6. [Multiplication/Fourier transform, iterated.] In this problem we think of {0, 1}n as
F
n
2 ; i.e., length-n vectors of integers under the operation of addition-mod-2. We also write

N = 2n.

(a) Let f, g : Fn2 → F2. Define

Φf,g =
1
√
N

3

∑
x,y∈Fn

2

(−1)f(x)(−1)x·y(−1)g(y),

where x · y is the dot-product,
∑n

i=1 xiyi (mod 2). Show that there is a quantum
query algorithm that outputs YES with probability 1

2 + 1
2Φf,g and NO otherwise. Your

algorithm should make only 1 query; to facilitate this, we assume that instead of separate
oracles O±f and O±g we have a single oracle O±f,g with the following behavior: on input

|0〉 |x〉 it outputs (−1)f(x) |0〉 |x〉 and on input |1〉 |x〉 it outputs (−1)g(x) |1〉 |x〉. Your
algorithm should use at most O(n) other gates.

(b) Show how to modify your algorithm with a little classical (randomized) post-processing
so that it has the following guarantee: it outputs YES with probability at least .6
if Φf,g ≥ 3

5 and outputs NO with probability at least .6 if |Φf,g| ≤ 1
15 . (Remark: it is

known that any classical (randomized) query algorithm satisfying this guarantee requires
Ω(
√
N/ logN) queries. This large gap — 1 quantum query versus Ω̃(

√
N) randomized

queries — is known to be essentially maximal.)

(c) More generally, let f0, . . . , fK−1 : Fn2 → F2 and define Φf0,...,fK−1
to be 1√

N
K+1 times the

sum, over all vectors x0, . . . , xK−1 ∈ Fn2 , of

(−1)f(x0)(−1)x0·x1(−1)f1(x1)(−1)x1·x2(−1)f2(x2) · · · (−1)xK−2·xK−1(−1)fK−1(xK−1).

2The Õ(·) here denotes omission of logn factors. We put that there to avoid excruciatingly boring debates about
the exact cost of transforming between Turing machine code and circuits, whether or not we’re using the Turing
machine model or the word RAM model, etc. etc.

4

Show that there is a quantum query algorithm that outputs YES with probability
1
2 + 1

2Φf0,...,fK−1
, NO otherwise, makes just K/2 queries, and uses O(Kn) other gates.

For simplicity, you may assume K is a power of 2 and that there is one oracle O± that
on input |j〉 |x〉 outputs (−1)fj(x) |j〉 |x〉, where j is a log2K-qubit string and x is an
n-qubit string.

(d) (Bonus.) Let “Task T” mean “output YES with probability at least .6 if Φf0,...,fK−1
≥ 3

5
and output NO with probability at least .6 if |Φf0,...,fK−1

| ≤ 1
15 . Show that the ability

to do Task T when K = poly(n) and f0, . . . , fK−1 are given explicitly as polynomial-
size classical circuits is “complete for quantum computation”. (I.e., any computational
decision problem that can be solved in poly(n) size and error at most .4 by a quantum
circuit can also be solved in poly(n) size by a classical circuit given the ability to do
Task T .)

5

