
Quantum Computation CMU 15-859BB, Fall 2015

Homework 2
Due: Tuesday September 22, 11:59pm, email the pdf to pgarriso@andrew.cmu.edu

Solve any 5 out of 7

1. [The square-root of NOT.]

(a) Let X =

(
0 1
1 0

)
, the matrix for a 1-qubit NOT gate. Find a 2 × 2 matrix V (i.e.,

1-qubit gate) such that V 2 = X.

(b) Let CV denote a “Controlled-V ” gate. By this we mean a 2-qubit gate defined by the
following property: if the input is |0〉 ⊗ |ψ〉 then the output is |0〉 ⊗ |ψ〉 and if the input
is |1〉 ⊗ |ψ〉 then the output is |1〉 ⊗ (V |ψ〉). Write the unitary matrix representing CV.

(c) Show how to build a Toffoli (CCNOT) gate using CNOT gates and CV gates.

2. [Linear algebra formulation of randomized circuits.] In Lecture 2 we discussed the
linear-algebraic way to formalize quantum states and circuits: the state of n qubits is repre-
sented by a ket |ψ〉 ∈ C2n with 〈ψ|ψ〉 = 1, a gate operating on k qubits may be any 2k × 2k

unitary matrix, etc. Describe the analogous linear-algebraic way to formalize randomized
states and circuits. Assume for simplicity that all circuits operate on n randomized-bits and
each gate has the same number of inputs as outputs. How does one represent the state of the
bits with a vector? What properties does a legal state vector satisfy? How does one represent
a (possibly randomized) gate with k input/output bits? What properties does a legal such
gate satisfy? If one gate A is applied to the first m randomized-bits and another gate B is
applied to some other m′ randomize-bits, how do we represent the overall transformation on
m+m′ randomized-bits? Give examples to illustrate your explanations.

3. [Tensor products.] Let A and B be matrices (not necessarily square). Suppose A’s rows
and columns are indexed by sets IA and JA, respectively (the most typical case being IA =
{1, 2, . . . ,m} and JA = {1, 2, . . . , n}). Similarly, suppose B’s rows and columns are indexed
by sets IB and JB. Then A⊗B is the matrix whose rows are indexed by pairs from IA × IB
and whose columns are indexed by pairs from JA × JB and whose ((i, i′), (j, j′))-th entry is
Ai,jBi′,j′ . Pictorially, A⊗B is given by the matrix

A1,1B . . . A1,m1B
...

. . .
...

A`1,1B . . . A`1,m1B

 =



A1,1B1,1 . . . A1,1B1,m2

...
. . .

...
A1,1B`2,1 . . . A1,1B`2,m2

. . .

A1,m1B1,1 . . . A1,m1B1,m2

...
. . .

...
A1,m1B`2,1 . . . A1,m1B`2,m2

...
. . .

...
A`1,1B1,1 . . . A`1,1B1,m2

...
. . .

...
A`1,1B`2,1 . . . A`1,1B`2,m2

. . .

A`1,m1B1,1 . . . A`1,m1B1,m2

...
. . .

...
A`1,m1B`2,1 . . . A`1,m1B`2,m2


.

(a) Show that (A⊗B)† = A† ⊗B†.
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(b) Show that (A⊗B)(C ⊗D) = (AC)⊗ (BD). (This assumes of course that JA = IC and
JB = ID.) Note that in the special case of |JC | = |JD| = 1, we see that for any two
unitary operators U1, U2 and quantum states |ψ1〉, |ψ2〉, we have that

(U1 ⊗ U2)(|ψ1〉 ⊗ |ψ2〉) = (U1|ψ1〉)⊗ (U2|ψ2〉).
(c) Show that if A and B are invertible then so is (A⊗B), and (A⊗B)−1 = A−1 ⊗B−1.
(d) Show that if U and V are unitary then so is U ⊗ V .

(e) Show that the state
1√
2
|00〉+ 1√

2
|11〉

is not expressible as the tensor product of two states |ψ1〉, |ψ2〉 ∈ C2. In general, a multi-
qubit state which is not expressible as the tensor product of individual qubit states is
known as an entangled state.

4. [Operations applied to separate systems can be done in any order.]

(a) Show that the following two circuits output the same state, assuming that the (possibly
entangled) 2-qubit system is described by some state |ψ〉.

|q0〉 U1

|q1〉 U2

|q0〉 U1

|q1〉 U2

(b) Show that given a (possibly entangled) 2-qubit system described by some state |ψ〉, the
order in which one decides to measure the two qubits is irrelevant. In other words, show
that the following three circuits output the same distribution on pairs of classical bits.

|q0〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q1〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q0〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q1〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q0〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q1〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

The final circuit measures both qubits simultaneously, as in Lecture 1.

5. [More practice with 1-qubit gates.] As before, let X =

(
0 1
1 0

)
and let Z =

(
1 0
0 −1

)
.

(a) Suppose we have a qubit and we first apply X and then Z. Is this equivalent to first
applying Z and then applying X? In other words, are the following two circuits equiva-
lent?

|q0〉 X Z |q0〉 Z X

Determine your answer by explicitly computing ZX and XZ.

(b) Suppose we have two qubits; we apply X to both, and then we apply Z to both. Is this
equivalent to first applying Z to both and then applying X to both? In other words,
are the following two circuits equivalent?

|q0〉 X Z

|q1〉 X Z

|q0〉 Z X

|q1〉 Z X

Determine your answer by explicitly computing X ⊗X, Z ⊗Z, and their products both
ways.
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6. [Fun with outer products.] (Recall the notation A† for the conjugate transpose of the
matrix A.)

(a) SupposeA ∈ Cn×m has columns |u1〉 , . . . , |um〉 andB ∈ Cn×m has columns |v1〉 , . . . , |vm〉,
i.e.,

A =

 | | |
u1 u2 . . . um
| | |

 , and B =

 | | |
v1 v2 . . . vm
| | |

 .
Show that AB† =

∑m
i=1 |ui〉 〈vi|.

(b) A projection matrix Π ∈ Cn×n is a matrix such that Π2 = Π. Supposing Π is Hermitian
(i.e., Π† = Π), show that Π is a projection matrix if and only if Π =

∑k
i=1 |vi〉 〈vi| for

some orthonormal vectors |v1〉 , . . . , |vk〉 ∈ Cn. What is the effect of applying Π to a
vector |w〉 ∈ Cn?

(c) Suppose |v1〉 , . . . , |vn〉 ∈ Cn form an orthonormal basis. Show that
∑n

i=1 |vi〉 〈vi| is the
identity matrix.

(d) A matrix M is norm-preserving if for every vector |w〉 it holds that M |w〉 has the same
Euclidean length as |w〉. Suppose |v1〉 , . . . , |vn〉 ∈ Cn is an orthonormal basis of Cn.
Determine with proof what condition(s) on the numbers a1, . . . , an ∈ C are necessary
and sufficient for

M =
n∑

i=1

ai |vi〉 〈vi|

to be norm-preserving. Norm-preserving real-valued matrices are known as orthogo-
nal matrices, whereas norm-preserving complex-valued matrices are known as unitary
matrices.

7. [Dan, Mike, and Tony’s game.] This problem is devoted to a scenario similar to the
CHSH Game. Best friends Alice, Bob, and Charlie are several light-seconds apart. Each
of them is together with a referee. At the stroke of midnight, the three referees generate
uniformly random bits x, y, z ∈ {0, 1} subject to the promise that x ⊕ y ⊕ z = 0.1 Alice is
told x, Bob is told y, Charlie is told z. Within less than a millisecond, each of them must
reply — Alice with a bit a, Bob with a bit b, and Charlie with a bit c. Then everybody gets
together and compares notes: if a⊕ b⊕ c = x∨ y∨ z then Alice, Bob, and Charlie collectively
“win”; otherwise, they collectively “lose”.

(a) Assume that Alice, Bob, and Charlie can agree on a strategy beforehand, but during the
game they cannot communicate and must act deterministically. Prove that no matter
their strategy, they can win with probability at most 3

4 .

(b) Now suppose that Alice, Bob, and Charlie initially prepare a 3-qubit system in the state
1√
2
|000〉 + 1√

2
|111〉, and they each take one of the qubits with them before the game

starts. Their idea is that upon receiving their “question” (x, y, or z) they will apply
a certain unitary gate to their qubit, measure it, and respond with the measurement
result. Prove that there is a strategy for Alice, Bob, and Charlie that will allow them to

1Since the referees are also light-seconds apart, there’s no way they can actually do this for sure: if, say, each
referee generates their bit uniformly at random, the probability the promise is satisfied is only 1

2
. So in practice,

what the referees will do is the following. They’ll play this game a few hundred times, once a millisecond, always
generating uniformly random bits, and recording the results. Then once everything is over, the referees meet up,
compare notes, and discard all rounds (approximately half of them) in which the promise wasn’t satisfied.
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win with certainty! (Hint: it’s possible for them to all use the same strategy — i.e., use
the same gate when seeing a 0 and the same gate when seeing a 1.)
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