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Abstract

Designing and implementing efficient, provably
correct parallel machine learning (ML) algo-
rithms is challenging. Existing high-level par-
allel abstractions like MapReduce are insuf-
ficiently expressive while low-level tools like
MPI and Pthreads leave ML experts repeatedly
solving the same design challenges. By tar-
geting common patterns in ML, we developed
GraphLab, which improves upon abstractions
like MapReduce by compactly expressing asyn-
chronous iterative algorithms with sparse com-
putational dependencies while ensuring data con-
sistency and achieving a high degree of parallel
performance. We demonstrate the expressiveness
of the GraphLab framework by designing and
implementing parallel versions of belief propa-
gation, Gibbs sampling, Co-EM, and Lasso. We
show that using GraphLab we can achieve ex-
cellent parallel performance on large scale real-
world problems.

1 INTRODUCTION

Exponential gains in hardware technology have enabled so-
phisticated machine learning (ML) techniques to be applied
to increasingly challenging real-world problems. However,
recent developments in computer architecture have shifted
the focus away from frequency scaling and towards paral-
lel scaling, threatening the future of sequential ML algo-
rithms. In order to benefit from future trends in processor
technology and to be able to apply rich structured models
to rapidly scaling real-world problems, the ML community
must directly confront the challenges of parallelism.

However, designing and implementing efficient and prov-
ably correct parallel algorithms is extremely challenging.
While low level abstractions like MPI and Pthreads pro-
vide powerful, expressive primitives, they force the user
to address hardware issues and the challenges of parallel
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data representation. Consequently, many ML experts have
turned to high-level abstractions, which dramatically sim-
plify the design and implementation of a restricted class of
parallel algorithms. For example, the MapReduce abstrac-
tion [Dean and Ghemawat, 2004] has been successfully ap-
plied to a broad range of ML applications [Chu et al., 2006,
Wolfe et al., 2008, Panda et al., 2009, Ye et al., 2009].

However, by restricting our focus to ML algorithms that
are naturally expressed in MapReduce, we are often forced
to make overly simplifying assumptions. Alternatively, by
coercing efficient sequential ML algorithms to satisfy the
restrictions imposed by MapReduce, we often produce in-
efficient parallel algorithms that require many processors
to be competitive with comparable sequential methods.

In this paper we propose GraphLab, a new parallel frame-
work for ML which exploits the sparse structure and com-
mon computational patterns of ML algorithms. GraphLab
enables ML experts to easily design and implement effi-
cient scalable parallel algorithms by composing problem
specific computation, data-dependencies, and scheduling.
We provide an efficient shared-memory implementation'
of GraphLab and use it to build parallel versions of four
popular ML algorithms. We focus on the shared-memory
multiprocessor setting because it is both ubiquitous and has
few effective high-level abstractions. We evaluate the algo-
rithms on a 16-processor system and demonstrate state-of-
the-art performance. Our main contributions include:

e A graph-based data model which simultaneously rep-
resents data and computational dependencies.

e A set of concurrent access models which provide a
range of sequential-consistency guarantees.

e A sophisticated modular scheduling mechanism.

e An aggregation framework to manage global state.

e GraphLab implementations and experimental evalua-
tions of parameter learning and inference in graphical
models, Gibbs sampling, CoEM, and Lasso on real-
world problems.

!The C++ reference implementation of the GraphLab is avail-
able at http://select.cs.cmu.edu/code.



2 EXISTING FRAMEWORKS

There are several existing frameworks for designing and
implementing parallel ML algorithms. Because GraphLab
generalizes these ideas and addresses several of their criti-
cal limitations we briefly review these frameworks.

2.1 MAP-REDUCE ABSTRACTION

A program implemented in the MapReduce framework
consists of a Map operation and a Reduce operation. The
Map operation is a function which is applied independently
and in parallel to each datum (e.g., webpage) in a large data
set (e.g., computing the word-count). The Reduce oper-
ation is an aggregation function which combines the Map
outputs (e.g., computing the total word count). MapReduce
performs optimally only when the algorithm is embarrass-
ingly parallel and can be decomposed into a large num-
ber of independent computations. The MapReduce frame-
work expresses the class of ML algorithms which fit the
Statistical-Query model [Chu et al., 2006] as well as prob-
lems where feature extraction dominates the run-time.

The MapReduce abstraction fails when there are computa-
tional dependencies in the data. For example, MapReduce
can be used to extract features from a massive collection of
images but cannot represent computation that depends on
small overlapping subsets of images. This critical limita-
tion makes it difficult to represent algorithms that operate
on structured models. As a consequence, when confronted
with large scale problems, we often abandon rich struc-
tured models in favor of overly simplistic methods that are
amenable to the MapReduce abstraction.

Many ML algorithms iteratively transform parameters dur-
ing both learning and inference. For example, algorithms
like Belief Propagation (BP), EM, gradient descent, and
even Gibbs sampling, iteratively refine a set of parameters
until some termination condition is achieved. While the
MapReduce abstraction can be invoked iteratively, it does
not provide a mechanism to directly encode iterative com-
putation. As a consequence, it is not possible to express
sophisticated scheduling, automatically assess termination,
or even leverage basic data persistence.

The popular implementations of the MapReduce abstrac-
tion are targeted at large data-center applications and there-
fore optimized to address node-failure and disk-centric par-
allelism. The overhead associated with the fault-tolerant,
disk-centric approach is unnecessarily costly when applied
to the typical cluster and multi-core settings encountered
in ML research. Nonetheless, MapReduce is used in small
clusters and even multi-core settings [Chu et al., 2006]. The
GraphLab implementation? described in this paper does not
address fault-tolerance or parallel disk access and instead

The GraphLab abstraction is intended for both the multicore
and cluster settings and a distributed, fault-tolerant implementa-
tion is ongoing research.

assumes that processors do not fail and all data is stored in
shared-memory. As a consequence, GraphLab does not in-
cur the unnecessary disk overhead associated with MapRe-
duce in the multi-core setting.

2.2 DAG ABSTRACTION

In the DAG abstraction, parallel computation is represented
as a directed acyclic graph with data flowing along edges
between vertices. Vertices correspond to functions which
receive information on inbound edges and output results
to outbound edges. Implementations of this abstraction in-
clude Dryad [Isard et al., 2007] and Pig Latin [Olston et al.,
2008].

While the DAG abstraction permits rich computational de-
pendencies it does not naturally express iterative algo-
rithms since the structure of the dataflow graph depends on
the number of iterations (which must therefore be known
prior to running the program). The DAG abstraction also
cannot express dynamically prioritized computation.

2.3 SYSTOLIC ABSTRACTION

The Systolic abstraction [Kung and Leiserson, 1980] (and
the closely related Dataflow abstraction) extends the DAG
framework to the iterative setting. Just as in the DAG Ab-
straction, the Systolic abstraction forces the computation to
be decomposed into small atomic components with limited
communication between the components. The Systolic ab-
straction uses a directed graph G = (V, E) which is not
necessarily acyclic) where each vertex represents a proces-
sor, and each edge represents a communication link. In
a single iteration, each processor reads all incoming mes-
sages from the in-edges, performs some computation, and
writes messages to the out-edges. A barrier synchroniza-
tion is performed between each iteration, ensuring all pro-
cessors compute and communicate in lockstep.

While the Systolic framework can express iterative com-
putation, it is unable to express the wide variety of update
schedules used in ML algorithms. For example, while gra-
dient descent may be run within the Systolic abstraction us-
ing a Jacobi schedule it is not possible to implement coor-
dinate descent which requires the more sequential Gauss-
Seidel schedule. The Systolic abstraction also cannot
express the dynamic and specialized structured schedules
which were shown by Gonzalez et al. [2009a,b] to dramat-
ically improve the performance of algorithms like BP.

3 THE GRAPHLAB ABSTRACTION

By targeting common patterns in ML, like sparse data
dependencies and asynchronous iterative computation,
GraphLab achieves a balance between low-level and
high-level abstractions. Unlike many low-level abstrac-
tions (e.g., MPI, PThreads), GraphLab insulates users
from the complexities of synchronization, data races and
deadlocks by providing a high level data representation



through the data graph and automatically maintained data-
consistency guarantees through configurable consistency
models. Unlike many high-level abstractions (i.e., MapRe-
duce), GraphLab can express complex computational de-
pendencies using the data graph and provides sophisti-
cated scheduling primitives which can express iterative
parallel algorithms with dynamic scheduling.

To aid in the presentation of the GraphLab framework we
use Loopy Belief Propagation (BP) [Pearl, 1988] on pair-
wise Markov Random Fields (MRF) as a running example.
A pairwise MRF is an undirected graph over random vari-
ables where edges represent interactions between variables.
Loopy BP is an approximate inference algorithm which es-
timates the marginal distributions by iteratively recomput-
ing parameters (messages) associated with each edge until
some convergence condition is achieved.

3.1 DATA MODEL

The GraphLab data model consists of two parts: a directed
data graph and a shared data table. The data graph
G = (V, E) encodes both the problem specific sparse com-
putational structure and directly modifiable program state.
The user can associate arbitrary blocks of data (or param-
eters) with each vertex and directed edge in G. We denote
the data associated with vertex v by D,,, and the data asso-
ciated with edge (v — v) by Dy—.,. In addition, we use
(u — ) to represent the set of all outbound edges from
u and (*+ — v) for inbound edges at v. To support glob-
ally shared state, GraphLab provides a shared data table
(SDT) which is an associative map, T [Key] — Value, be-
tween keys and arbitrary blocks of data.

In the Loopy BP, the data graph is the pairwise MRE,
with the vertex data D, to storing the node potentials and
the directed edge data D, _,, storing the BP messages.
If the MRF is sparse then the data graph is also sparse
and GraphLab will achieve a high degree of parallelism.
The SDT is used to store shared hyper-parameters and the
global convergence progress.

3.2 USER DEFINED COMPUTATION

Computation in GraphLab can be performed either through
an update function which defines the local computation,
or through the sync mechanism which defines global ag-
gregation. The Update Function is analogous to the Map in
MapReduce, but unlike in MapReduce, update unctions are
permitted to access and modify overlapping contexts in the
graph. The sync mechanism is analogous to the Reduce
operation, but unlike in MapReduce, the sync mechanism
runs concurrently with the update functions.

3.2.1 Update Functions

A GraphLab update function is a stateless user-defined
function which operates on the data associated with small
neighborhoods in the graph and represents the core element

Algorithm 1: Sync Algorithm on k

t— r,(co)
forv € V do
| t <« Foldx(D.,1)

T [k] < Apply, (1)

of computation. For every vertex v, we define S, as the
neighborhood of v which consists of v, its adjacent edges
(both inbound and outbound) and its neighboring vertices
as shown in Fig. 1(a). We define Dg, as the data cor-
responding to the neighborhood &,. In addition to Dg,,
update functions also have read-only access, to the shared
data table T. We define the application of the update func-
tion f to the vertex v as the state mutating computation:

Ds, — f(Ds,,T).

We refer to the neighborhood S, as the scope of v because
S, defines the extent of the graph that can be accessed by
f when applied to v. For notational simplicity, we denote
f(Ds,,T) as f(v). A GraphLab program may consist of
multiple update functions and it is up to the scheduling
model (see Sec. 3.4) to determine which update functions
are applied to which vertices and in which parallel order.

3.2.2 Sync Mechanism

The sync mechanism aggregates data across all vertices in
the graph in a manner analogous to the Fold and Reduce
operations in functional programming. The result of the
sync operation is associated with a particular entry in the
Shared Data Table (SDT). The user provides a key k, a fold
function (Eq. (3.1)), an apply function (Eq. (3.3)) as well
as an initial value r,(CO) to the SDT and an optional merge
function used to construct parallel tree reductions.

P70 Fold, (Dv,r,@) G.1)
rl  Merge, (r;,r;’) (3.2)
T[K «— Apply, (") (3.3)

When the sync mechanism is invoked, the algorithm in
Alg. 1 uses the Foldy, function to sequentially aggregate
data across all vertices. The Foldy, function obeys the same
consistency rules (described in Sec. 3.3) as update func-
tions and is therefore able to modify the vertex data. If
the Merge, function is provided a parallel tree reduction is
used to combine the results of multiple parallel folds. The
Apply,. then finalizes the resulting value (e.g., rescaling)
before it is written back to the SDT with key k.

The sync mechanism can be set to run periodically in the
background while the GraphLab engine is actively apply-
ing update functions or on demand triggered by update
functions or user code. If the sync mechanism is executed



(a) Scope

Full Consistency

(b) Consistency Models

Figure 1: (a) The scope, Sy, of vertex v consists of all the data at
the vertex v, its inbound and outbound edges, and its neighboring
vertices. The update function f when applied to the vertex v can
read and modify any data within S,. (b). We illustrate the 3
data consistency models by drawing their exclusion sets as a ring
where no two update functions may be executed simultaneously
if their exclusions sets (rings) overlap.

in the background, the resulting aggregated value may not
be globally consistent. Nonetheless, many ML applications
are robust to approximate global statistics.

In the context of the Loopy BP example, the update func-
tion is the BP message update in which each vertex recom-
putes its outbound messages by integrating the inbound
messages. The sync mechanism is used to monitor the
global convergence criterion (for instance, average change
or residual in the beliefs). The Fold, function accumulates
the residual at the vertex, and the Apply, function divides
the final answer by the number of vertices. To monitor
progress, we let GraphLab run the sync mechanism as a
periodic background process.

3.3 DATA CONSISTENCY

Since scopes may overlap, the simultaneous execution of
two update functions can lead to race-conditions resulting
in data inconsistency and even corruption. For example,
two function applications to neighboring vertices could si-
multaneously try to modify data on a shared edge resulting
in a corrupted value. Alternatively, a function trying to nor-
malize the parameters on a set of edges may compute the
sum only to find that the edge values have changed.

GraphLab provides a choice of three data consistency mod-
els which enable the user to balance performance and data
consistency. The choice of data consistency model deter-
mines the extent to which overlapping scopes can be exe-
cuted simultaneously. We illustrate each of these models
in Fig. 1(b) by drawing their corresponding exclusion sets.
GraphLab guarantees that update functions never simulta-
neously share overlapping exclusion sets. Therefore larger
exclusion sets lead to reduced parallelism by delaying the
execution of update functions on nearby vertices.

The full consistency model ensures that during the exe-
cution of f(v) no other function will read or modify data
within S,,. Therefore, parallel execution may only occur
on vertices that do not share a common neighbor. The
slightly weaker edge consistency model ensures that dur-
ing the execution of f(v) no other function will modify any
of the data on v or any of the edges adjacent to v. Under
the edge consistency model, parallel execution may only
occur on non-adjacent vertices. Finally, the weakest ver-
tex consistency model only ensures that during the execu-
tion of f(v) no other function will be applied to v. The
vertex consistency model is therefore prone to race condi-
tions and should only be used when reads and writes can be
done safely. However, by permitting update functions to be
applied simultaneously to neighboring vertices, the vertex
consistency model permits maximum parallelism.

Choosing the right consistency model has direct implica-
tions to program correctness. One method to prove correct-
ness of a parallel algorithm is to show that it is equivalent
to a correct sequential algorithm. To capture the relation
between sequential and parallel execution of a program we
introduce the concept of sequential consistency:

Definition 3.1 (Sequential Consistency). A GraphLab pro-
gram is sequentially consistent if for every parallel execu-
tion, there exists a sequential execution of update functions
that produces an equivalent result.

The sequential consistency property is typically a sufficient
condition to extend algorithmic correctness from the se-
quential setting to the parallel setting. In particular, if the
algorithm is correct under any sequential execution of up-
date functions, then the parallel algorithm is also correct if
sequential consistency is satisfied.

Proposition 3.1. GraphLab guarantees sequential consis-
tency under the following three conditions:

1. The full consistency model is used

2. The edge consistency model is used and update func-
tions do not modify data in adjacent vertices.

3. The vertex consistency model is used and update func-
tions only access local vertex data.

In the Loopy BP example the update function only needs to
read and modify data on the adjacent edges. Therefore the
edge consistency model ensures sequential consistency.

3.4 SCHEDULING

The GraphLab update schedule describes the order in
which update functions are applied to vertices and is rep-
resented by a parallel data-structure called the scheduler.
The scheduler abstractly represents a dynamic list of tasks
(vertex-function pairs) which are to be executed by the
GraphLab engine.

Because constructing a scheduler requires reasoning
about the complexities of parallel algorithm design, the



GraphLab framework provides a collection of base sched-
ules. To represent Jacobi style algorithms (e.g., gradi-
ent descent) GraphLab provides a synchronous sched-
uler which ensures that all vertices are updated simulta-
neously. To represent Gauss-Seidel style algorithms (e.g.,
Gibbs sampling, coordinate descent), GraphLab provides a
round-robin scheduler which updates all vertices sequen-
tially using the most recently available data.

Many ML algorithms (e.g., Lasso, CoOEM, Residual BP) re-
quire more control over the tasks that are created and the
order in which they are executed. Therefore, GraphLab
provides a collection of task schedulers which permit up-
date functions to add and reorder tasks. GraphLab pro-
vides two classes of task schedulers. The FIFO sched-
ulers only permit task creation but do not permit task re-
ordering. The prioritized schedules permit task reordering
at the cost of increased overhead. For both types of task
scheduler GraphLab also provide relaxed versions which
increase performance at the expense of reduced control:

[ | Strict Order | Relaxed Order ]
FIFO Single Queue Multi Queue / Partitioned
Prioritized | Priority Queue | Approx. Priority Queue

In addition GraphLab provides the splash scheduler based
on the loopy BP schedule proposed by Gonzalez et al.
[2009a] which executes tasks along spanning trees.

In the Loopy BP example, different choices of scheduling
leads to different BP algorithms. Using the Synchronous
scheduler corresponds to the classical implementation of
BP and using priority scheduler corresponds to Residual
BP [Elidan et al., 2006].

3.4.1 Set Scheduler

Because scheduling is important to parallel algorithm de-
sign, GraphLab provides a scheduler construction frame-
work called the set scheduler which enables users to safely
and easily compose custom update schedules. To use the
set scheduler the user specifies a sequence of vertex set
and update function pairs ((S1,U1), (S2, Uz) - - - (Sk, Ug)).
where S; C V and U, is an update function. This sequence
implies the following execution semantics:

fori=1---kdo
Execute U; on all vertices in S; in parallel.
Wait for all updates to complete

The amount of parallelism depends on the size of each set;
the procedure is highly sequential if the set sizes are small.
Executing the schedule in the manner described above can
lead to the majority of the processors waiting for a few pro-
cessors to complete the current set. However, by leveraging
the causal data dependencies encoded in the graph structure
we are able to construct an execution plan which identifies
tasks in future sets that can be executed early while still
producing an equivalent result.
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Figure 2: A simple example of the set scheduler planning pro-
cess. Given the data graph, and a desired sequence of execution
where v1,v2 and vs are first run in parallel, then followed by v3
and v4. If the edge consistency model is used, we observe that the
execution of v3 depends on the state of v1, v2 and vs, but the v4
only depends on the state of vs. The dependencies are encoded in
the execution plan on the right. The resulting plan allows v4 to be
immediately executed after vs without waiting for v and vs.
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Figure 3: A summary of the GraphLab framework. The user pro-
vides a graph representing the computational data dependencies,
as well as a SDT containing read only data. The user also picks a
scheduling method or defines a custom schedule, which provides
a stream of update tasks in the form of (vertex, function) pairs to
the processors.

The set scheduler compiles an execution plan by rewrit-
ing the execution sequence as a Directed Acyclic Graph
(DAG), where each vertex in the DAG represents an update
task in the execution sequence and edges represent execu-
tion dependencies. Fig. 2 provides an example of this pro-
cess. The DAG imposes a partial ordering over tasks which
can be compiled into a parallel execution schedule using
the greedy algorithm described by Graham [1966].

3.5 TERMINATION ASSESSMENT

Efficient parallel termination assessment can be challeng-
ing. The standard termination conditions used in many it-
erative ML algorithms require reasoning about the global
state. The GraphLab framework provides two methods
for termination assessment. The first method relies on
the scheduler which signals termination when there are no
remaining tasks. This method works for algorithms like
Residual BP, which use task schedulers and stop produc-
ing new tasks when they converge. The second termination
method relies on user provided termination functions which
examine the SDT and signal when the algorithm has con-
verged. Algorithms, like parameter learning, which rely on
global statistics use this method.



3.6 SUMMARY AND IMPLEMENTATION
A GraphLab program is composed of the following parts:

1. A data graph which represents the data and compu-
tational dependencies.

2. Update functions which describe local computation

A Sync mechanism for aggregating global state.

4. A data consistency model (i.e., Fully Consistent,
Edge Consistent or Vertex Consistent), which deter-
mines the extent to which computation can overlap.

5. Scheduling primitives which express the order of
computation and may depend dynamically on the data.

et

We implemented an optimized version of the GraphLab
framework in C++ using PThreads.  The resulting
GraphLab API is available under the LGPL license at
http://select.cs.cmu.edu/code. The data con-
sistency models were implemented using race-free and
deadlock-free ordered locking protocols. To attain max-
imum performance we addressed issues related to paral-
lel memory allocation, concurrent random number gener-
ation, and cache efficiency. Since mutex collisions can be
costly, lock-free data structures and atomic operations were
used whenever possible. To achieve the same level of per-
formance for parallel learning system, the ML community
would have to repeatedly overcome many of the same time
consuming systems challenges needed to build GraphLab.

The GraphLab API has the opportunity to be an interface
between the ML and systems communities. Parallel ML
algorithms built around the GraphLab API automatically
benefit from developments in parallel data structures. As
new locking protocols and parallel scheduling primitives
are incorporated into the GraphLab API, they become im-
mediately available to the ML community. Systems experts
can more easily port ML algorithms to new parallel hard-
ware by porting the GraphLab API.

4 CASE STUDIES

To demonstrate the expressiveness of the GraphLab ab-
straction and illustrate the parallel performance gains it
provides, we implement four popular ML algorithms and
evaluate these algorithms on large real-world problems us-
ing a 16-core computer with 4 AMD Opteron 8384 proces-
sors and 64GB of RAM.

4.1 MRF PARAMETER LEARNING

To demonstrate how the various components of the
GraphLab framework can be assembled to build a com-
plete ML “pipeline,” we use GraphLab to solve a novel
three-dimensional retinal image denoising task. In this task
we begin with raw three-dimensional laser density esti-
mates, then use GraphLab to generate composite statistics,
learn parameters for a large three-dimensional grid pair-
wise MRF, and then finally compute expectations for each
voxel using Loopy BP. Each of these tasks requires both

Algorithm 2: BP update function

BPUpdate(D», Dsx—v, Dy—+ € S,) begin
Compute the local belief b(z,,) using { Dy—,Ds }
foreach (v — t) € (v — x) do
Update m., —¢(x¢) using { D« o, Dy} and Aygis(ort)
from the SDT.
residual «— ||my—¢(21) — mijlit(xt)| |1
if residual > Termination Bound then
| AddTask(t, residual)
end
end

end

Algorithm 3: Parameter Learning Sync

Fold(acc, vertex) begin
| Return acc + image statistics on vertex
end
Apply(acc) begin
| Apply gradient step to A using acc and return A
end

local iterative computation and global aggregation as well
as several different computation schedules.

We begin by using the GraphLab data-graph to build a large
(256x64x64) three dimensional MRF in which each ver-
tex corresponds to a voxel in the original image. We con-
nect neighboring voxels in the 6 axis aligned directions.
We store the density observations and beliefs in the vertex
data and the BP messages in the directed edge data. As
shared data we store three global edge parameters which
determine the smoothing (accomplished using a Laplace
similarity potentials) in each dimension. Prior to learn-
ing the model parameters, we first use the GraphLab sync
mechanism to compute axis-aligned averages as a proxy
for “ground-truth” smoothed images along each dimension.
We then performed simultaneous learning and inference
in GraphLab by using the background sync mechanism
(Alg. 3) to aggregate inferred model statistics and apply a
gradient descent procedure. To the best of our knowledge,
this is the first time graphical model parameter learning and
BP inference have been done concurrently.

Results: In Fig. 4(a) we plot the speedup of the parame-
ter learning algorithm, executing inference and learning se-
quentially. We found that the Splash scheduler outperforms
other scheduling techniques enabling a factor 15 speedup
on 16 cores. We then evaluated simultaneous parameter
learning and inference by allowing the sync mechanism to
run concurrently with inference (Fig. 4(b) and Fig. 4(c)).
By running a background sync at the right frequency, we
found that we can further accelerate parameter learning
while only marginally affecting the learned parameters. In
Fig. 4(d) and Fig. 4(e) we plot examples of noisy and de-
noised cross sections respectively.
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parameters plotted against the time between gradient steps using the Splash schedule on 16 processors. (d,e) A slice of the original noisy
image and the corresponding expected pixel values after parameter learning and denoising.

4.2 GIBBS SAMPLING

The Gibbs sampling algorithm is inherently sequential and
has frustrated efforts to build asymptotically consistent par-
allel samplers. However, a standard result in parallel al-
gorithms [Bertsekas and Tsitsiklis, 1989] is that for any
fixed length Gauss-Seidel schedule there exists an equiv-
alent parallel execution which can be derived from a col-
oring of the dependency graph. We can extract this form
of parallelism using the GraphLab framework. We first use
GraphLab to construct a greedy graph coloring on the MRF
and then to execute an exact parallel Gibbs sampler.

We implement the standard greedy graph coloring algo-
rithm in GraphLab by writing an update function which
examines the colors of the neighboring vertices of v, and
sets v to the first unused color. We use the edge consis-
tency model with the parallel coloring algorithm to ensure
that the parallel execution retains the same guarantees as
the sequential version. The parallel Gauss-Seidel schedule
is then built using the GraphLab set scheduler (Sec. 3.4.1)
and the coloring of the MRF. The resulting schedule con-
sists of a sequence of vertex sets S; to Sc such that S;
contains all the vertices with color ¢. The vertex consis-
tency model is sufficient since the coloring ensures full se-
quential consistency.

To evaluate the GraphLab parallel Gibbs sampler we con-
sider the challenging task of marginal estimation on a fac-
tor graph representing a protein-protein interaction network
obtained from Elidan et al. [2006] by generating 10, 000
samples. The resulting MRF has roughly 100K edges and
14K vertices. As a baseline for comparison we also ran
a GraphLab version of the highly optimized Splash Loopy
BP [Gonzalez et al., 2009b] algorithm.

Results: In Fig. 5 we present the speedup and efficiency
results for Gibbs sampling and Loopy BP. Using the set
schedule in conjunction with the planning optimization en-
ables the Gibbs sampler to achieve a factor of 10 speedup
on 16 processors. The execution plan takes 0.05 seconds
to compute, an immaterial fraction of the 16 processor run-
ning time. Because of the structure of the MRF, a large

number of colors (20) is needed and the vertex distribu-
tion over colors is heavily skewed. Consequently there is
a strong sequential component to running the Gibbs sam-
pler on this model. In contrast the Loopy BP speedup
demonstrates considerably better scaling with factor of 15
speedup on 16 processor. The larger cost per BP update
in conjunction with the ability to run a fully asynchronous
schedule enables Loopy BP to achieve relatively uniform
update efficiency compared to Gibbs sampling.

43 CO-EM

To illustrate how GraphLab scales in settings with large
structured models we designed and implemented a parallel
version of Co-EM [Jones, Nigam and Ghani, 2000], a semi-
supervised learning algorithm for named entity recognition
(NER). Given a list of noun phrases (NP) (e.g., “big ap-
ple”), contexts (CT) (e.g., “citizen of _""), and co-occurence
counts for each NP-CT pair in a training corpus, CoOEM
tries to estimate the probability (belief) that each entity (NP
or CT) belongs to a particular class (e.g., “country” or “per-
son”). The CoEM update function is relatively fast, requir-
ing only a few floating operations, and therefore stresses
the GraphLab implementation by requiring GraphLab to
manage massive amounts of fine-grained parallelism.

The GraphLab graph for the CoEM algorithm is a bipar-
tite graph with each NP and CT represented as a vertex,
connected by edges with weights corresponding to the co-
occurence counts. Each vertex stores the current estimate
of the belief for the corresponding entity. The update func-
tion for CoEM recomputes the local belief by taking a
weighted average of the adjacent vertex beliefs. The adja-
cent vertices are rescheduled if the belief changes by more
than some predefined threshold (10~9).

We experimented with the following two NER datasets ob-
tained from web-crawling data.

Name | Classes | Verts. Edges 1 CPU Runtime
small | 1 0.2 mil. | 20 mil. 40 min
large 135 2 mil. 200 mil. | 8 hours

We plot in Fig. 6(a) and Fig. 6(b) the speedup obtained by
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the Partitioned Scheduler and the MultiQueue FIFO sched-
uler, on both small and large datasets respectively. We ob-
serve that both schedulers perform similarly and achieve
nearly linear scaling. In addition, both schedulers obtain
similar belief estimates suggesting that the update schedule
may not affect convergence.

With 16 parallel processors, we could complete three full
Round-robin iterations on the large dataset in less than
30 minutes. As a comparison, a comparable Hadoop im-
plementation took approximately 7.5 hours to complete
the exact same task, executing on an average of 95 cpus.
[Personal communication with Justin Betteridge and Tom
Mitchell, Mar 12, 2010]. Our large performance gain can
be attributed to data persistence in the GraphLab frame-
work. This allows us to avoid the extensive data copying
and synchronization required by the Hadoop implementa-
tion of MapReduce.

Using the flexibility of the GraphLab framework we were
able to study the benefits of dynamic (Multiqueue FIFO)
scheduling versus a regular round-robin scheduling in
CoEM. Fig. 6(c) compares the number of updates required
by both schedules to obtain a result of comparable quality
on the larger dataset. Here we measure quality by L; pa-
rameter distance to an empirical estimate of the fixed point
x*, obtained by running a large number of synchronous it-
erations. For this application we do not find a substantial
benefit from dynamic scheduling.

We also investigated how GraphLab scales with problem
size. Figure 6(d) shows the maximum speedup on 16
cpus attained with varying graph sizes, generated by sub-
sampling a fraction of vertices from the large dataset. We
find that parallel scaling improves with problem size and
that even on smaller problems GraphLab is still able to
achieve a factor of 12 speedup on 16 cores.

44 LASSO

The Lasso [Tibshirani, 1996] is a popular feature selection
and shrinkage method for linear regression which mini-

mizes the objective L(w) = Z?zl(wT:z:j — )%+ |w]],.

Unfortunately, there does not exist, to the best of our
knowledge, a parallel algorithm for fitting a Lasso model.
In this section we implement 2 different parallel algorithms
for solving the Lasso.

4.4.1 Shooting Algorithm

We use GraphLab to implement the Shooting Algorithm
[Fu, 1998], a popular Lasso solver, and demonstrate that
GraphLab is able to automatically obtain parallelism by
identifying operations that can execute concurrently while
retaining sequential consistency.

The shooting algorithm works by iteratively minimizing
the objective with respect to each dimension in w, cor-
responding to coordinate descent. We can formulate the
Shooting Algorithm in the GraphLab framework as a bi-
partite graph with a vertex for each weight w; and a vertex
for each observation 7;. An edge is created between w;
and y; with weight X; ; if and only if X ; is non-zero. We
also define an update function (Alg. 4) which operates only
on the weight vertices, and corresponds exactly to a single
minimization step in the shooting algorithm. A round-robin
scheduling of Alg. 4 on all weight vertices corresponds ex-
actly to the sequential shooting algorithm. We automati-
cally obtain an equivalent parallel algorithm by select the
full consistency model. Hence, by encoding the shooting
algorithm in GraphLab we are able to discover a sequen-
tially consistent automatic parallelization.

We evaluate the performance of the GraphLab implemen-
tation on a financial data set obtained from Kogan et al.
[2009]. The task is to use word counts of a financial report
to predict stock volatility of the issuing company for the
consequent 12 months. Data set consists of word counts
for 30K reports with the related stock volatility metrics.

To demonstrate the scaling properties of the full consis-
tency model, we create two datasets by deleting common
words. The sparser dataset contains 209K features and
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Algorithm 4: Shooting Algorithm

Algorithm 5: Interior point outer loop

ShootingUpdate(D.,; , D«—w; , Dw;—x) begin
Minimize the loss function with respect to w;
if w; changed by > ¢ then
Revise the residuals on all 3’s connected to w; Schedule
all w’s connected to neighboring y’s
end
end
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processor runtime

1.2M non-zero entries, and the denser dataset contains
217K features and 3.5M non-zero entries. The speedup
curves are plotted in Fig. 7. We observed better scaling
(4x at 16 CPUs) on the sparser dataset than on the denser
dataset (2x at 16 CPUs). This demonstrates that ensuring
full consistency on denser graphs inevitably increases con-
tention resulting in reduced performance.

Additionally, we experimented with relaxing the consis-
tency model, and we discovered that the shooting algorithm
still converges under the weakest vertex consistency guar-
antees; obtaining solutions with only 0.5% higher loss on
the same termination criterion. The vertex consistent model
is much more parallel and we can achieve significantly bet-
ter speedup, especially on the denser dataset. It remains an
open question why the Shooting algorithm still functions
under such weak guarantees.

while duality_gap > € do
Update edge and node data of the data graph.
Use GraphLab to run GaBP on the graph
Use Sync to compute duality gap
Take a newton step

end

4.4.2 Interior Point

To show how GraphLab can be used as a subcomponent of
a larger sequential algorithm, we implement a variation of
the Lasso interior point algorithm proposed by [Kim et al.,
2007]. The interior point method is a double loop algo-
rithm where the sequential outer loop implements the New-
ton method and the GraphLab parallel inner loop computes
a single Newton step by solving a sparse linear system.
We used Gaussian BP (GaBP) as a linear solver (Bickson
[2008]) since it has a natural GraphLab representation. The
GaBP GraphLab construction follows closely the BP exam-
ple in Sec. 4.1, but represents potentials and messages an-
alytically as Gaussian distributions. In addition, the outer
loop uses a Sync operation on the data graph to compute
the duality gap and to terminate the algorithm when the
gap falls below a predefined threshold. Because the graph
structure is fixed across iterations, we can leverage data
persistency in GraphLab, avoid both costly set up and tear
down operations and resume from the converged state of
the previous iteration.

We evaluate the performance of this algorithm on a syn-
thetic compressed sensing dataset constructed by apply-
ing a random projection matrix to a wavelet transform of
a 256x256 Lenna image (Fig. 8). The task of recovering
the original image is cast as a Lasso regression problem
and solved using GraphLab implementation of the inte-
rior point algorithm. Experimentally, we achieved a fac-
tor of 8 speedup using 16 processors using the round-robin
scheduling.
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S CONCLUSIONS AND FUTURE WORK

We identified several limitations in applying existing par-
allel abstractions to Machine Learning (ML) problems.
By targeting common patterns in ML, we developed
GraphLab, a new parallel abstraction which achieves a
high level of usability, expressiveness and performance.
Unlike existing parallel abstractions, GraphLab supports
the representation of structured data dependencies, iterative
computation, and flexible scheduling.

The GraphLab abstraction uses a data graph to encode
the computational structure and data dependencies of the
problem. GraphLab represents local computation in the
form of update functions which transform the data on the
data graph. Because update functions can modify overlap-
ping state, the GraphLab framework provides a set of data
consistency models which enable the user to specify the
minimal consistency requirements of their application. To
manage sharing and aggregation of global state, GraphLab
provides a powerful sync mechanism.

Finally, to manage the scheduling of parallel execution, the
GraphLab abstraction provides a rich collection of paral-
lel schedulers encompassing a wide range of ML needs.
GraphLab also provides a scheduler construction frame-
work which can be used to compose custom schedules.

We developed an optimized shared memory implementa-
tion GraphLab and we demonstrated its performance and
flexibility through a series of case studies. In each case
study we designed and implemented a popular ML algo-
rithm and applied it to a large real-world dataset achieving
state-of-the-art performance.

Our ongoing research includes extending the GraphLab
framework to the distributed setting allowing for compu-
tation on even larger datasets. While we believe GraphLab
naturally extend to the distributed setting we face numer-
ous new challenges including efficient graph partitioning,
load balancing, distributed locking, and fault tolerance.
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