
Invisible Programming

Keynote Speech

Brad A. Myers

School of Computer Science
Camegie Mellon University

Pittsburgh, PA 15213

Abstract
The topic of this conference is Visual languages, but I

want to discuss computer programming using a technique
where there is no apparent language at all; the language
is (mostly) invisible. Here, the user sees the results of the
program aecution and the data the program is operating
on, but the program itself is not shown. The program is
specifcd by demonstrating the operations that should be
performed using example data. Therefore, these system
are called ‘ ‘programming-by -example” or “demonstra-
tional“ interfaces. This paper presents an overview of
this intriguing idea, and presents a survey of existing sys-
tems and an agenda for future research.

Introduction
This paper discusses a new style of user interface

where the user gives an example of the desired operation,
and the system generalizes to construct a general-purpose
procedure. These are called Demonstrational Interfaces,
because the user is demonstrating to the system what
should be done. When a demonstrational interface
provides true programming capabilities, then it is called
Programming by Example.

This paper more formally defines demonstrational in-
terfaces and related terms, and discusses why I think they
are important. Next, a survey of existing uses of this
technology is presented. Finally, some areas for future
work are discussed.

D f d h i t i O n S
Demonstrational user interfaces provide concrete ex-

amples on which the user operates, rather than requiriug
the user to deal with abstractions such as variables and
control struaures.

”bere are two ways that demonstration can be used in
user interfaces. One is that the user provides examples
and the system guesses (or “infers”) how the examples
should be generalized to create something that is more
general-purpose. At one e m m e are systems that try to
generate computer programs from examples of input and
Output [14]. More s~cce~sful programs limit the in-

ferences to a specific domain. For example, Peridot [7] is
a graphical editor that creates user interface components
by generalizing from the specific examples for
parameters. In Peridot, the user can define a menu using
a particular set of strings, but the system creates a proce-
dure that works for any list of strings.

The second kind of demonstrational interface does not
use inferencing. but allows the user to have example
values available while operations are executed. These
operations affect the example values in addition to being
recoded. The EMACS editor [17] uses this technique to
allow the user to create macros simply by going into a
special mode and executing the editor commands nor-
mally. The macros can then be used later with different
text. This use of examples can be diffemntiated from
conventional testing and debugging because the examples
are used during the development of the code, not just after
the code is completed.

Some demonstrational interfaces do not provide full
programming. To be considered programmable, the sys-
tem must include the ability to handle variables, con-
ditionals and iteration, at least implicitly. The EMACS
macros mentioned above do not provide programming,
whereas Peridot does.

Demonstrational interfaces that provide programming
capabilities are called Example-based Programming [lo].
When inferencing is used, these are called
Progru”ing-&-erample. This is often called
“automatic programming” and has generally been an
area of Artificial Intelligence research. Programming-
- with-Example systems, however, require the programmer
to specify everythmg about the program (there is no in-
ferencing involved), but the programmer can WO& out the
program on a specific example. The system executes the
programmer’s commands normally, but remembers them
for later re-use.

Finally, the term Intelligent Interfaces refers to any
user interface that has some “intelligent” or AI com-
ponent. This includes demonstrational interfaces with in-
ferencing, but also other interfaux such as those using
natural language.

203
TH0330-1/90/0000/0203$01 .OO (8 1990 IEEE

(Demonstrational Interfaces 7
Example-based-Programming m v YL(

rrso
TT
3 " - 3

3
5

09

Pascal, etc.

Macro makers I
Intelligent
Interfaces

Natwal langmage

F'igurel: A taxonomy of interfaces. The systems
named in italics are discussed in the text.

Figure 1 shows how these categories create a taxonomy
for classifying systems.

Motivation for Demonstrational Interfaces
It is well known that people are much better at dealing

with specific examples than with abstract ideas. A large
amount of teaching is achieved by presenting important
examples and having the students do specific problems.
This helps them understand the general principles. It is
well know that people make fewer emrs when working
out a problem on an example as compared to performing
the same operation in the abstract, as in conventional pro-
gramming [16]. The programmer does not need to try to
keep in mind the large and complex state of the system at
each point of the computation if it is displayed for him on
the screen [15].

In particular, using demonstrational techniques in user
interfaces has two significant advantages:

It can provide programming capabilities to users with-
Out requiring any special programming knowledge,
and
It can make the user interface more efficient and easier
to use.

These are discussed further in the next sections.

Programming Capabilities
The vast majority of people who use computers do not

know how to write conventional computer programs.
However, special application-specific languages, such as
Lotus 1-2-3 for spreadsheets, are used by large numbers
of people to customize their applications. For other ap-
plications, the= is no natural way to provide program-
ming capabilities. This is especially true for graphical
applications whe~ there is usually no textual represen-
tation of the interactive commands executed with a mouse
or other pointing device.

Demonstrational techniques can be used to provide
these programming capabilities without requiring the user
to leam a programming language. The user performs the
actions in the usual way, and they are "led for later
re-use. Variables, loops, conditionals and other program-
ming Seatures can then be added to the generated scripts
either automatically by the system using inferencing, or
explicitly by the user. This techoique has been success-
fully demonstrated for desktops [4] and for user interface
co"ion[7]. Note that although the user creates a
program, the code may be hidden, so the program itself is
"invisible. ' '
Easier to Use

when the system can infer what the user's intentions
are, it can save the user h m having to perfom a number
of steps. Most direct manipulation systems provide the
user with a small number of simple and direct operations,
out of which the desired high-level effects can be con-
structed. For example, drawing packages allow the user
to change the position and size of individual objects or
groups of objects. However, there are rarely tools that
help with higher-level effects like getting objects to be
evenly spaced. A demonstrational system might watch
the user as the fkst 6ew objects were moved, and
automatically infer this high level p r o m . It could then
move the rest of the objects appropriately so the user
would not have to. Using inferencing in this way has
been successful in limited domains, such as user interface
toolkit construction [7] and creating simple drawings and
animations [6].

In addition to helping the user avoid repetitive actions,
demonstrational techniques can also be used to infer
semantic properties of the objects. For example, in a user
interface, the height of a rectangle might be used as an
Micator for some value. Rather than requiring the user
to type the formulas that connect the rectangle size with
the controlling variable, the user might simply draw the
rectangle in its two sizes, and the system would then
automatically create the code, as in Peridot [7].

For most of these functions, it would be possible to
provide the user with a command that performed the same
action that the system infers from the demonstration. The
advantages of providing inferencing instead of extra com-
mands are that:
0 This might significantly decrease the number of com-

maads and therefare make the system easier to use and
leam.

0 To combine the commands appropriately may q u i r e
knowledge of programming techniques that the users
do not have.

0 The user may not know the comct high level semantic
property that will give the desired result, whereas the

204

system may be able to tell which is appropriate from
the examples.

0 The demonstrational system can be set up to always try
to determine a high level relationship, but with com-
mands, the user might forget to apply the appropriate
command.

Survey
The next sections discuss some systems that have

demonstrational interfaces.

Systems Without Inferencing
Perhaps the simplest demonstrational interfaces are

keyboard macros for text editors such as EMACS [17].
Here, the user goes into program mode, executes a num-
ber of commands, and then leaves program mode. The
commands execute normally, and are also saved so they
can be replayed. This idea has been used in simple
transcript programs for the Macintosh user interface, such
as MacroMaker from Apple. Unfortunately, it is less suc-
cessful here because the transcripting programs are not
tied to a particular application and therefore can only save
raw mouse and keyboard events. Often, macros will not
wok correctly if windows or icons are in different places.
Some programs, such as Tempo II from Affinity
MicroSystems and QuicKeys from CE Software, remem-
ber somewhat higher-level commands, but in general, it is
necessary to have specific high-level knowledge about the
application being m to make transcripting useful [31.

The seminal system that used demonstrational tech-
niques for programming is Pygmalion [15], which sup-
ported programming using icons. Industrial robots have
long been programmed by example. The trainer of the
robot moves the robot’s limbs through the desired mo-
tions, and the robot records these for later re-use.
SmallStar [4] allows the end user to program a prototype
version of the Star office workstation [16]. When pro-
gramming with Smallstar, the user enters program mode,
perfom the operations that are to be remembered and
then leaves program mode. The operations are executed
in the actual user interface of the system, which the user
already knows. A textual repsentation of the actions is
generated, which the user can edit to differentiate con-
stants from variables and explicitly add control structures
such as loops and conditionals.

Systems with Inferencing
The use of inferencing with demonstration to create

Programming-by-Example systems has a long and rather
u~successful history. For instance, one system [14] tried

to generate Lisp programs from examples of input/output
pairs, such as (AB C D) => (D D C C B B A A). This
system is limited to simple list processing programs, and
it is clear that systems such as this one not likely to
generate the correct program. In general, induction of
complex functions from inputjoutput is intractable [l].
Autoprogrammer [2] is typical of a class of PBE systems
that attempt to infer general programs using examples of
truces of the program execution. The user gives all the
steps on one or more passes through the execution of the
procedure on sample data. Then, the program tries to
determine where loops and conditionals should go, as
well as which values should be constants and which
should be variables.

The use of inferencing in user intehces has been more
successful when the domain in which infmncing is per-
formed is significantly smaller than general-purpose pro-
gramming. For example, in “Editing by Example”
(EBE), the domain is limited to simple transformations in
a text editor [13]. The system compares two or more
examples of the inputs and resulting output of a sequence
of editing operations in order to deduce what are variables
and what are constants. The correct programs usually can
be generated given only two or three examples, and there
are heuristics to generate programs from single examples.
The primary inferencing here is differentiating variables
from constants.
There are a number of popular systems that use in-

ferencing in very simple ways. For example, the Macin-
tosh programs Adobe Illustrator and Claris MacDraw
remember the transformations used on graphic objects
after a “Duplicate” operation and guess that the user
wants the same transformations for new objects, so they
are applied automatically. In Microsoft Word 4.0, the
“Renumber” command will look at the first paragmph in
the selection to guess how the number at the beginning of
paragraphs should look.

The NOTECH text formatter[5] allows users to type
documents in plain text, with no formatting commands,
and tries to infer the appropriate formatting from the spac-
ing and contents of the document to produce attractive
laser-printer output. For example, a single line is as-
sumed to be header, a group of short pieces of text
separated by tabs are assumed to be a table, and text that
contains Pascal or C statements is formatted as code.
NOTECH is a pre-processor for TEX and uses a set of rules
to parse the input.

Figure 2: When the user draws the first two elements of a list (a), Peridot infers the llbed for an iteration (see the
prompt window at the bottom). If the user codinns this, the rest of tbe items of the iteration are created
automatically (b). Peridot therefoxe infen tbe Dted for an iteration from two examples.

l'be Peridot system p,11], allows a designer to meate
user interface components such as menus, scroll bars and
buttom with a graphical editor. It successfully uses in-
fcrencing in three ways. First, it infers graphical con-
straints. As the user draws what the M a c e should look
like, the system is always checking to see if there appears
to be a relationship between the newly drawn or edited
object and others in the pichue. Second, Peridot infers
itexations and conditionals automatically. For example, if
the user m a t e s the first two items from a list of cbeck
boxes, the system will create the rest automatically (see
Figure 2). Tbe third way is that Peridot infers how the
graphics should reespood to the mouse. Based on the posi-
tion of nu icon which represents the mouse, the system
infers what objects should change and how.

taface builder [9] allows all application-specific graphi-
cal objects to be created by dunarstration without pro-
gramming. For wsmple, the desigaer can draw examples
of the boxes aIximws that will b e t k nodes and arcs in
a graph editor. Lapidary is part of the Gama systan [12].
MarMOuse [61 is also based on a graphical editor, but

it watch as th user czeates and edits pictures in a 2D
clicl-ddmg drafring paclage, and will try to gmeralizc
from the actions to CICllte a general grrrphical plvcc&m.
If tbe user appears to be performing &e same edits again,
the system will p u f m tbe lest of them rutmatically.
Infamcing is used to identify gcuneaic collstraul ' t s i n

a t h e SUCC~SS of Peridat, tbe Lepidary in-

edihg operations, to detexmine where conditionals a d

loops are appropriate, and to cliffexentiate variables from
constants.

New Application Areas
I believe that demonstrational interfaces can be applied

to many new application axeas in the future. Some that I
have tbought of include:
1. Allowing arbitrary editing of the pictures on business

grapb while still IuBining tfie connection to the data.
2. Customizing the @lay of data structures in a debug-

ger by editing example displays.
3. Specifying the picaues for scientific visualization with-

4. b a t i n g m m witb conditionals and loops in d h c t
manipulation interfaces. sucb as the Macintosh Finder.

5. Cxcating fomatting m a w s in WYSIWYG text editors.
6.Making it easier to get objects aligned conectly in

out reqUiringpr0grp"ing.

graphical editors aIxi CAD p m ~ .
7 . ~ ~ g procedures h m spreadsheet formulas

8. (seating educational software.
9. (3reating aaimatiars.
10. Designing tbe user interface for software.

We me investigating a number of tbese areas at CMU.
For example, we are developing a new text formatter to
investigate number 5 unda a p t from Apple Computer.
Number 2 may be investigated as part of the h4acGnome
projeu[8], which provides p i a o s visualizations for
Pascal data structures. Number 10 is being studied as part
of the Lapidary interEace builder for tbe Gamet user inter-
face development cnyironmcnt [91.

andmacros.

206

General Paradigms and Models
Since the area of demonstrational interfaces is so new,

it is not yet possible to taxonomize the various options
and features that can be used. However, it would be quite
useful for fume projects to have a more formal model of
this domain. As a first attempt, we can identify the fol-
lowing ways that demonstration has been used in inter-
faces. Tbe systems mentioned were described earlier.
Record a sequence of actions to form a macro that can
be used again. This is most useful when some aspects
of the m m can be generalized into parameters. Ex-
amples: EMACS, SmallStar, MacmMaker, Meta-
Mouse.

Given examples of input and output, determine a more
gened program. Examples: U0 Pairs, and Editing by

Infer qetitive actions so the system can perform the
rest of the actions for the user. Examples: Peridot,
MetaMouse.

*Given one or more pictures of an object, detennine
which parts are constant and which should be different.
Create a “prototype” object fnrm which new objects
can be created. Examples: Peridot, Lapidary.

Using application-specific semantic knowledge, deter-
mine high-level propeIties from low-level input. Ex-
amples: Peridot, NOTECH, MeMOuse.
Further paradigms may be discovered in the future, and

Example.

the Ones listedwill be refined.

Researcb Problems
Although some interfaces that use demonstrational

techniques have been built, there has been no systematic
study of this technology, and it has not been used in any
significant way by a commercial system. Some reasons
for this are:
*There are few existing systems using these tech-
niques, so people are not yet convinced that they are
feasible and beneficial. Future research should create
example systems in different application areas and
release these systems so they can be used by many

*It is not obvious how to use demonstrational
techniques. Some aspects of the user interface are best
perfomed by menus, some by direct manipulation, and
some by demonstration, and it is an intemting chal-
lenge to determine which is most appropriate for what.

User interface designers are reticent to use a technology
lhat may make errors. Human factors studies are re-
quired to determine when inferencing is beneficial in
spite of the occasional erros.

It is difficult to provide appropriate feedback. Be-

people.

All inferencing systems will sometimes guess wrong.

cause the system can be wrong, it is impomnt for the
system to show the users what the system is proposing,
so they can veri@ and conect the inferences. It is not
obvious how to provide this feedback. Peridot [7] uses
a question-and-answer style to ask the user if each in-
ference was correct. This can be very tedious, and it is
modal since the user has to answer the questions before
doing other operations. Other systems have simply
perfomed the infenmces without providing the user
with any feedback or opportunity to undo, and there-
fore were seldom used A new style that is user-
friendly and compatible with direct manipulation inter-
faces must be developed.

*Sometimes Demonstrational interfpces will be
hotdcr to ase, because:

The user may h o w exactly the name of the relation-
ship that is desired so it might be easy to specify, and
it might be moE trouble to demonstrate it by ex-
ample. This can be overcome by providing both
specification and demonstrational inkdam to the
same operation.

When the system guesses i n c o d y the user must
perform more wok to detect the e m r and abort or
undo the inference. If the error is undetected by tbe
user, the system will create an erroneous procedure.
This problem cau be partially OverCOme by supply-
ing appropriate prompting and feedback along with
an “Undo” command.

0 Demonstrational systems are difFicult to bdd. All
existing programs have been separately and laboriously
implemented by hand. Toolkits and other support
software are needed for demonstrational interfaces.

COdUsions
Demonstrational techniques can substantially improve

a wide class of user interfaces and applications. Allowing
the system to guess generalizations from the examples
adds significantly to the power and easesf-use of direct
manipulation interfaces. These techniques can also make
the user interfaces of programs more powerful .and excit-
ing without increasing the complexity to the end users.
More research is needed, however, to solve the remahhg
problems and to conclusively show that demonstrational
interfaces are viable and easier to use. You can help
develop this exciting technology, which may be the next
important step beyond the direct manipulation interfaces
of today.

Acknowledgements
’Ihis research was partially funded by Apple Computer,

Inc, and partially by the Defense Advanced Research
Projects Agency OD), ARPA Order No. 4976, Amend-
ment 20, under contract F33615-87-C-1499, monitored by
the Avionics Laboratory, Air Force Wright Aeronautical

Laboratories, Aeronautical Systems Division (AFSC),
Wright-Patterson AFB, Ohio 45433-6543. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of Apple
Computer, the Defense Advanced Research Projects
Agency, or the US Govennnent.

For help with this paper, I want to thank Bemita Myers.

References

1. D. Angluin, and C.H. Smith. "Inductive Infemce:
Theory and Methods". Computing Surveys 3.15 (Sept.

2. Alan W. B i e r " and Ramachandran Krishnaswamy.
"Constructing Programs from Example Computations".
IEEE Trallsactions on Safnvare Engineering SE-2,3

3. Richard Joel C o b Programmable Command Lan-
guages for Window Systems. Tech Rept. CMU-
CS-88-139, Camegie Mellon University Computer
Science Department, June, 1988.

4. Daniel C. Halbert. Programming by Example. PhD.
Th., Computer Science Division, Dept. of EEBtCS,
University of California, Bedceley. CA, 198 1.

5. RJ. Lipton and R. Sedgewick. NOTECH: Typesetting
without Formatting. Princeton University, 1990.

6. David L. Maulsby and Ian H. Witten. Irxiucing
P" in a Direct-Manipulation Environment.

1983). 237-269.

(Sept. 1976). 141-153.

Human Factors in Computing Systems, P" * gs
SIGCHI'89, Austin, TX, April, 1989, p ~ . 57-62.

7. Brad A. Myers. Creating User Interfaces by
Demonstration. Academic Press, Boston., 1988.

8. Brad A. Myers, Ravinder chandhok, and Atul Sareen.
Automatic Data Visualization for Novice Pascal Program-
mers. 1988 IEEE Workshop on Visual Languages, IEEE
Computer Society, Pittsburgh, PA, Oct., 1988, pp.
192- 198.

9. Brad A. Myers, Brad Vander Zanden, and Roger
B. Dannenberg. Creating Graphical Objects by
Demonstration. P" ' gs of the ACM SIGGRAPH
Symposium on User Interface Software and Technology,

10. Brad A. Myers. 'Taxonomies of Visual Program-
ming and Program Visualization". Journal of Visual Lan-
guuges and Computing I, 1 (March 1990), 97-123.

11. Brad A. Myers. "Creating User Interfaces Using
Programming-by-Example, Visual Programming, and
Constraints". ACM Transactions on Programming Lan-
guages andSystems 12.2 (April 1990), 143-177.

12. Brad A. Myers, Dario Giuse, Roger B. Dannenberg,
Brad Vander Zarxlen., David Kosbie, Philippe Marcbal,
and Ed Pervin. "Comprehensive Support for Graphical,
Highly-Interactive User Interfaces: The Gamet User Inter-
face Development Environment". IEEE Computer 23
(199O), To appear.

13. Robert P. Nix. "Editing by Example". ACM Trans-
actions on Programming Languages and Systems 7,4
(Od. 1985), 600-621.

14. David E. Shaw, William R. Swartout, and C. Cordell
Green. Inferring Lisp Programs from Examples. Fourth
International Joint Conference on M c i a l Intelligence,
IJCAI'75, Tbilisi, USSR, Sept., 1975, pp. 260-267.

15. David Canfield Smith. Pygmalion: A Computer
Program to Model and Stimulate Creative Thought.
Birkhauser, Basel, Stuttgart, 1977.

16. David Canfield Smith, Chades Irby, Ralph Kimball,
Bill VeIplank, and Erik Harslem. "Designing the Star
User Interface". Byte (April 1982), 242-282.

17. Richard M. Stallman. Emacs: The Extensible, Cus-
tomizable, Self-Documenting Display Editor. Tech. Rept.
519, MIT Artificial Intelligence Lab, Aug., 1979.

WfimSbUrg, VA, NOV., 1989, p ~ . 95-104.

208

