
Lecture 8

The Ellipsoid Algorithm∗

Recall from Lecture 6 that the duality theorem places the linear programming feasibility
and solvability problems in NP ∩ co-NP. In this class, we will see the ellipsoid algorithm,
which was the first polynomial time algorithm for the LP feasibility problem; this places
the LP solvability problem in P. The “Ellipsoid algorithm” was introduced by N. Shor in
early 1970’s as an iterative method for general convex optimization, and later applied by
Khachiyan (1979) for linear programs.

8.1 Ellipsoids

In this section, we define an ellipsoid and note some of its useful properties for future use.

Definition 8.1. A (closed) ball B(c, r) (in Rn) centered at c ∈ Rn with radius r is the set

B(c, r) := {x ∈ Rn : xTx ≤ r2}.

The set B(0, 1) is called the unit ball.

An ellipsoid is just an affine transformation of a ball.

Definition 8.2. An ellipsoid E centered at the origin is the image L(B(0, 1)) of the unit ball
under an invertible linear transformation L : Rn → Rn. An ellipsoid centered at a general
point c ∈ Rn is just the translate c+ E of some ellipsoid E centered at 0.

We can write the above definition in a more explicit way as follows:

L(B(0, 1)) = {Lx : x ∈ B(0, 1)}
= {y : L−1y ∈ B(0, 1)}
= {y : (L−1y)TL−1y ≤ 1}
= {y : yT (LLT )−1y ≤ 1}
= {y : yTQ−1y ≤ 1}
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where Q = LLT .
What can we say about the matrix Q = LLT ? From basic linear algebra, we recall from

basic linear algebra that it is positive definite. We record this as fact below.

Fact 8.3. For a symmetric matrix Q ∈ Rn×n, the following conditions are equivalent:

1. Q = LLT for some L ∈ Rn×n.

2. All the n eigenvalues of Q are nonnegative.1

We say that Q is positive semi-definite if any of the above conditions hold.

We will add many more equivalent characterizations to this list later in the course. We
will not prove the whole claim in this class; instead we verify just one of the directions to
give a flavor.

Proof. (Of 1. =⇒ 2.) We are given that Q = LLT for some L ∈ Rn×n. Suppose λ is an
eigenvalue of Q with eigenvector x 6= 0; that is, Qx = λx. Then

λ‖x‖2 = λxTx = xT (λx) = xT (Qx) = xTLLTx = (LTx)T (LTx) = ‖LTx‖2 ≥ 0,

which shows that λ is real and nonnegative.

Fact 8.4. For a symmetric matrix Q ∈ Rn×n, the following conditions are equivalent:

1. Q = LLT for some nonsingular2 matrix L.

2. All the n eigenvalues of Q are strictly positive.

We say that Q is positive definite if any of the above conditions hold.

From the above claims, it is clear that an ellipsoid can equivalently be represented in
terms of a positive definite matrix Q.

Definition 8.5. If Q ∈ Rn×n is a positive definite matrix, then the ellipsoid associated with
Q and centered at c ∈ Rn is

E(c,Q) := {c+ y : yTQ−1y ≤ 1} = {y : (y − c)TQ−1(y − c) ≤ 1}.

Remark 8.6. The standard ball B(0, r) is the ellipsoid E(0, r2I). More generally, an “axial

ellipsoid” with semiaxes r1, . . . rn is given by the ellipsoid E

0,


r21

r22 0
0 r23

. . .


 .

1Recall that all eigenvalues of a real symmetric matrix are real.
2Nonsingular matrices are also known as invertible.
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The final ingredient is the following fact about the volume of an ellipsoid. Denote by
vol(A) the volume of a set A ⊆ Rn.

Fact 8.7. If A ⊆ Rn and L is a linear transformation, then

vol(L(A)) = | detL| · vol(A).

In particular, the volume of an ellipsoid E(c,Q) is given by

vol(E(c,Q)) = | detL| · vol(B(0, 1)) =
√

detQ · vol(B(0, 1)).

Thus we have related the volume of any ellipsoid to the volume of the unit ball in n
dimension. Fortunately, the exact value of the constant of the proportionality, the volume
of the unit n-ball, is irrelevant to us.3

8.2 The Ellipsoid Algorithm

The ellipsoid algorithm takes as input a convex set, and returns a point from the set provided
it is nonempty. (If the set is empty, then we return “empty”.) It is clear that this algorithm
is useful for testing LP feasibility. Further, since the LP solvability problem reduces to the
LP feasibility problem in polynomial time, this algorithm can also be used to solve linear
programs as well.

Formally, the ellipsoid algorithm tests if a given convex set K ⊆ Rn is empty.

8.2.1 Requirements

Apart from the input set K, we assume that we are provided two additional parameters:

1. A number R ∈ Q (R > 0) such that K ⊆ B(0, R).

2. A rational r > 0 such that either K = ∅ or K ⊇ B(c, r) for some point c. (Think of this
requirement as basically stating that the feasible solution is not completely contained
in some affine hyperplane.)

Now, how do we satisfy these two requirements while using the ellipsoid algorithm for
solving LPs?

1. The first condition is easily handled. Given a linear program

K = {Ax = b : x ≥ 0},

we can add in constraints of the form −2L ≤ x ≤ 2L for each i ∈ [n] for some
L = poly(〈A〉, 〈b〉, n) (without affecting the feasibility of the LP). Since this region
is fully contained inside the ball of radius

√
n2L, we can provide R = n2L as the

parameter.

3For the curious: the volume of the unit n-ball has the exact expression πn/2

Γ( n
2 +1) , where Γ(·) is the “Gamma

function”. Asymptotically, this volume is Θ̃
(
Cn

nn/2

)
for some absolute constant C > 0 (hiding poly(n) factors).
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2. The second requirement is slightly tricky since the feasible region of the given LP is
contained in the hyperplane Ax = b, and hence, as such, there does not exist r > 0
satisfying the requirements. In this case, suppose the convex set K is empty. Then
the hyperplane Ax = b is separated from the positive “orthant” (i.e., the region x ≥ 0)
by a finite width r > 0 (that is expressible in polynomially many bits). Then the idea
is to draw a small tube around Ax = b, so that the system of equations becomes full
dimensional.

Slightly more precisely, there exists some ε > 0 such that the new convex set K ′ =
{−ε ≤ Ax − b ≤ ε : x ≥ 0} is empty provided K is empty. (See Figure 8.1 for an
illustration.) On the other hand, if K is nonempty and c ∈ K, then the set K ′ contains
a ball B(c, r) for some finite r > 0. (See Figures 8.2.) Finally, we can show that the
numbers ε and r are expressible in polynomially many bits. Thus we may provide r as
the parameter.

Ax = b

x >= 0

Figure 8.1: Handling the second requirement in the infeasible case. Note that there is a finite
width ε > 0 such that the region −ε ≤ Ax − b ≤ ε does not intersect the positive orthant
x ≥ 0.

Ax = b

x >= 0

Figure 8.2: Handling the second requirement in the feasible case. Relaxing the LP to −ε ≤
Ax− b ≤ ε makes the feasible set (the shaded region) full dimensional.
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8.2.2 The algorithm

We now describe the ellipsoid algorithm. From now on, it is convenient to assume that the
input LP has the form Ax ≤ b with x ≥ 0.

If n = 1, then solve the LP directly and terminate; so without loss of generality, as-
sume n > 1. The algorithm maintains an ellipsoid E that completely contains K (if K is
nonempty). We initialize the algorithm with the ellipsoid E(0, R2I) that was promised to
satisfy this requirement.

1. Check if the center c is feasible (i.e., if c ∈ K). If so, then we are done.

2. Else, get a “separating hyperplane” through c; i.e., a hyperplane aTx = aT c through
c such that the set K is completely contained in the half-ellipsoid formed by the
intersection of aTx ≥ aT c with the current ellipsoid. (To implement this step given an
LP, we take a violated constraint aTx ≤ γ; then aTx = aT c is a separating hyperplane
through c.)

3. Take a smallest volume ellipsoid containing the half-ellipsoid which may contain K.
Goto 1.

4. After N = poly(n, 〈R〉, 〈r〉) iterations, stop and say K = ∅.

8.2.3 Analysis of the algorithm

Clearly, Step 1 of the algorithm is correct. Further, at every stage of the algorithm, we
maintain the invariant that the convex set K is completely contained inside the current
ellipsoid. Thus it only remains to show that if we terminate the algorithm after N steps and
find no feasible point, then the set K is indeed empty.

Denote the ellipsoid at the end of iteration k by Ek = E(ck, Qk) (the starting ellipsoid
is E0 = E(0, R2I)). We use the volume of ellipsoids Ek to track the number of iterations of
the algorithm. The main claim is the following:

Theorem 8.8 (Volume reduction). For k ≥ 0, we have4:

Vol(E(ck+1, Qk+1))

Vol(E(ck, Qk))
≤ e−

1
2(n+1) .

We prove this theorem in the next subsection.

Corollary 8.9. 1. After 2(n+ 1) steps, the volume goes down by a factor of 1
e
.

2. Suppose N > 2n(n + 1) ln(R
r
). Then after N iterations, the volume becomes smaller

than Vol(B(0, r)).

4In class, we claimed the slightly stronger upper bound of e−
1
2n with no proof. This only causes a constant

factor increase in the number of iterations.
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Proof. The first part is obvious. To see the second part, the volume of the ellipsoid at the
end of N iterations is

vol(EN) = vol(E0) exp

(
− N

2(n+ 1)

)
< vol(B(0, R)) exp

(
−n ln

(
R

r

))
Rearranging,

vol(EN) < Rnvol(B(0, 1))× rn

Rn
= rnvol(B(0, 1)) = vol(B(0, r)) = vol(B(c, r)).

since all balls of the same radius have the same volume. It follows that K ⊆ EN has a
volume strictly less than vol(B(c, r)). But this contradicts the second requirement of the
algorithm, unless K = ∅.

Thus if we did not find a feasible solution after N iterations, then we can safely termi-
nate. Since N is polynomial in the length of the input, we have shown that this algorithm
terminates in polynomial time.

But we are not done yet! Of course, we still need to prove Theorem 8.8. Also, to com-
plete the description of the algorithm, we need to write down the smallest volume ellipsoid
containing the half-ellipsoid that may have K. We do both of these in the next subsection.

8.2.4 The description of the half-ellipsoid: a simple case

We first deal with the simple case, where E0 = B(0, 1) and the separating hyperplane is
a0 = (−1, 0, 0, . . . , 0). Our goal is to find an ellipsoid E1 that contains the region E0 ∩ {x :
x1 ≥ 0}.

Lemma 8.10. Define c1 = ( 1
n+1

, 0, 0, . . . , 0), and

Q1 =
n2

n2 − 1



1− 2
n+1

1 0
0 1

. . .

1


Then E1 = E(c1, Q1) is the minimum volume ellipsoid containing the half-ball. Moreover,

vol(E1)

vol(E0)
≤ e−

1
2(n+1) .

Proof. In this notes, we only prove that the ellipsoid E1 contains the desired half-ball and
prove the bound on its volume. Although it is true that E1 is the ellipsoid of minimum
volume, we do not show that here. Note that this does not affect our algorithm or our
analysis in any way.
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E0

E1

aT (x-c) = 0

c

K

Figure 8.3: Ellipsoid E1 covering the half-ellipsoid bounded by E0 and the separating hy-
perplane aT (x− c) = 0.

Take any x in the half-ball; i.e., ‖x‖ ≤ 1 and x1 ≥ 0. Suppose x = (x1, x̃) where
x̃ = (x2, x3, . . . , xn). It is easy to verify that

Q−11 =
n2 − 1

n2


n+1
n−1

1 0
0 1

. . .

 .
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Consider

xTQ−1x =
n2 − 1

n2

(
x1 −

1

n+ 1
, x̃

)T


n+1
n−1

1 0
0 1

. . .


(
x1 −

1

n+ 1
, x̃

)

=
n2 − 1

n2

n+ 1

n− 1

(
x1 −

1

n+ 1

)2

+
(n2 − 1)

n2
‖x̃‖2

=
1

n2
((n+ 1)x1 − 1)2 +

(n2 − 1)

n2
‖x̃‖2

(a)

≤ 1

n2
((n+ 1)x1 − 1)2 +

(n2 − 1)

n2
(1− x21)

=
(n+ 1)2

n2
x21 − 2

n+ 1

n2
x1 +

1

n2
+
n2 − 1

n2
− n2 − 1

n2
x21

=
2(n+ 1)

n2
(x21 − x1) + 1

(b)

≤ 1,

where (a) follows from the fact that x21+‖x̃‖2 = ‖x‖2 ≤ 1, and (b) follows from the inequality
0 ≤ x1 ≤ 1. Therefore, the point x is inside the ellipsoid E1.

The ratio of the volumes of the ellipsoids E1 and E0 is given by

vol(E1)

vol(E0)
=
√

detQ1 =

√(
n2

n2 − 1

)n(
n− 1

n+ 1

)
=

√(
n2

n2 − 1

)n−1(
n

n+ 1

)2

,

after some rearrangement. Using the inequality 1 + z ≤ ez valid for all real z, we get

vol(E1)

vol(E0)
≤ exp

(
n− 1

2
· 1

n2 − 1
− 1

n+ 1

)
= exp

(
− 1

2(n+ 1)

)
.

8.2.5 The description of the ellipsoid: the general case

Suppose we have an ellipsoid Ek = E(ck, Qk), and we have a separating hyperplane aTk x =
aTk ck through the center ck. Our goal is to compute the minimum volume ellipsoid Ek+1 that
contains the half-ellipsoid bounded by Ek and aTk x ≥ aTk ck.

By the definition of an ellipsoid, there exists some invertible affine transformation L−1

that takes Ek to B(0, 1) and ak to a = (−1, 0, 0, . . . , 0). Thus we are back to the simple case
in Subsection 8.2.4. Let E ′ be the ellipsoid just analyzed and take Ek+1 = LE ′. This clearly
contains the half-ellipsoid. Further,

vol(Ek+1)

vol(Ek)
=

vol(L(E ′))

vol(L(B(0, 1)))
=

| detL| · vol(E ′)

| detL| · vol(B(0, 1))
=

vol(E ′)

vol(B(0, 1))
≤ e−

1
2(n+1) ,
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by the previous analysis.
For implementation purposes, it is more desirable to describe the ellipsoid Ek+1 more

explicitly by computing the invertible transformation L. We will just state the final result
without proof.

Claim 8.11. The ellipsoid Ek+1 = (ck+1, Qk+1) is given by: ck+1 = ck − 1
n+1

h and

Qk+1 =
n2

n2 − 1

(
Qk −

2

n+ 1
hhT

)
.

where h =
√
aTkQkak.

Proof. Omitted.

One final remark is in order about the correctness of our algorithm and its analysis. Note
that the description of the half-ellipsoid relies on computing square roots. This makes the
preceding analysis valid only for an idealized implementation assuming exact arithmetic. It
is possible to handle this precision issues by keeping a good enough approximation of the
real quantities using rational numbers. However, the full proof then becomes substantially
more complicated. We will deal with this issue (partly) in the next lecture.
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