
Lecture 6

Duality of LPs and Applications∗

Last lecture we introduced duality of linear programs. We saw how to form duals, and proved
both the weak and strong duality theorems. In this lecture we will see a few more theoretical
results and then begin discussion of applications of duality.

6.1 More Duality Results

6.1.1 A Quick Review

Last time we saw that if the primal (P) is

max c>x
s.t. Ax ≤ b

then the dual (D) is

min b>y

s.t. A>y = c

y ≥ 0.

This is just one form of the primal and dual and we saw that the transformation from one
to the other is completely mechanical. The duality theorem tells us that if (P) and (D) are
a primal-dual pair then we have one of the three possibilities

1. Both (P) and (D) are infeasible.

2. One is infeasible and the other is unbounded.

3. Both are feasible and if x∗ and y∗ are optimal solutions to (P) and (D) respectively,
then c>x∗ = b>y∗.

*Lecturer: Anupam Gupta. Scribe: Deepak Bal.
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6.1.2 A Comment about Complexity

Note that the duality theorem (and equivalently, the Farkas Lemma) puts several problems
related to LP feasibility and solvability in NP ∩ co-NP.

E.g., Consider the question of whether the equational form LP Ax = b, x ≥ 0 is feasible.
If the program is feasible, we may efficiently verify this by checking that a “certificate”
point satisfies the equations. By taking this point to be a vertex and appealing to Hwk1
(Problem 4), we see that we may represent this certificate point in size polynomial in the
size of the input. On the other hand, if the LP is infeasible, then Farkas Lemma (Form 1
from Lecture 5) says we can find a y ∈ Rm with y>A ≥ 0 and y>b < 0. Again appealing
to Homework 1, we may find a succinctly represented solution to this set of equations, thus
providing a “certificate” for the infeasibility of the original LP.

We can similarly ask for whether the value of the LP max{c>x | Ax ≤ b} is at least δ or
not. Again, if we have n variables and m equations, we can convert this general-form LP into
an equivalent equational form LP with O(m + n) constraints and variables, and whose size
is not much more. Now, if there is a solution with value at least δ, we can show a BFS x∗ for
this equivalent LP—this will have polynomial size, for the same reasons. And if there is no
such solution of value δ or higher, there is a solution to the dual min{b>y | A>y = c, y ≥ 0}
of value strictly less than δ and we can give this dual solution. (Again this “proof” will
be polynomial-sized.) Hence the decision problem “is the value of this maximization LP at
least δ” is in NP ∩ co-NP.

6.1.3 Duality from Lagrange Multipliers

Suppose we have the problem (P)

max c>x
s.t. Ax ≤ b

where as usual, the constraints are aix ≤ bi for i ∈ [m]. Let K = {x | Ax ≤ b}. Now consider
the situation wher we are allowed to violate the constraints, but we penalize a violation of
the ith constraint at a rate of λi ≥ 0 per unit of violation. Let λ = (λ1 . . . , λm)> and define

g(x, λ) := c>x+
∑
i∈[m]

λi(bi − aix).

Then we see that for each feasible x ∈ K, λ ≥ 0, we get g(x, λ) ≥ c>x. So now letting x be
unconstrained we have that

g(λ) := max
x∈Rn

g(x, λ) ≥ OPT (P).

In other words, for each λ, g(λ) provides an upper bound on the optimal value of the LP.
Naturally, we may ask for the best upper bound acheived in this way, i.e.,

g∗ = min
λ≥0

g(λ).
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Putting together our definitions, we get

g∗ = min
λ≥0

max
x

{
c>x+ λ>(b− Ax)

}
= min

λ≥0

(
b>λ+ max

x

{
(c> − λ>A)x

})
If c> − λ>A has any non-zero entries, then the maximum over all x is ∞ which gives us a
useless upper bound. Hence we really should only consider λ which satisfy A>λ = c. So all
in all, this is

min b>λ

s.t. A>λ = c

λ ≥ 0.

which is the dual! So we see that the technique of Lagrange multipliers in this context is
really just a form of duality. We will return to Lagrange multipliers later when dealing with
more general convex optimization problems.

6.1.4 Complementary Slackness

Often times, the following theorem is very useful.

Theorem 6.1. Suppose we have the primal dual pair (P), (D) from Section 6.1.1. If (P), (D)
are both feasible with x∗, y∗ feasible solutions, then following are equivalent

1. x∗, y∗ are both optimal.

2. c>x∗ = b>y∗.

3. (y∗)>(Ax∗ − b) = 0

In words, property 3 means that at optimality, either a dual variable is 0 or its corre-
sponding inequality is tight (or both). Equivalently, for all constraints i ∈ [m], if y∗i > 0,
then aix = bi. Here we use the non-negativity of y∗ and the fact that x∗ is feasible.

Proof. 1 and 2 are equivalent by the duality theorem. We will prove 2 and 3 are equivalent.
Suppose 2 holds. Then c>x∗ = (y∗)>b and on the other hand c>x∗ = (y∗)>Ax∗ since y∗ is
feasible. This holds if and only if (y∗)>(Ax∗ − b) = 0 which is 3.

6.2 Applications of Duality

In this section we will discuss two applications of duality. First the max-flow/min-cut the-
orem which was discussed in Lecture 3 without mention of duality. Then we will discuss
König’s Theorem on bipartite graphs.
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6.2.1 Max-Flow = Min-Cut

In this problem, we are given a directed graph G = (V,A) with two “special” vertices
s, t ∈ V called the source and sink. We are also given capacities ce for all e ∈ A. The
max-flow problem (or more formally, the max-(s, t)-flow problem) is to find an assignment of
flows on the edges which obeys the capacities and maximizes the total amount of flow from
s to t. For our purposes, we will formulate this differently than in Lecture 3.

Let Pst be the set of all paths from s to t. Note that Pst likely has size large comparaed
to the number of nodes and arcs. Let fp represent the flow assigned to path p ∈ Pst. Then
the max-flow problem, which we will consider our primal problem (P) is formulated as

max
∑
p∈Pst

fp

s.t.
∑
p3e

fp ≤ ce ∀e ∈ A

fp ≥ 0 ∀p ∈ Pst.

Note in this formulation, there may be exponentially many variables, but according to earlier
results, in any BFS there will be at most |A| many non-zero variables. The dual formulation
(D) is then

min
∑
e∈A

cexe

s.t.
∑
e∈p

xe ≥ 1 ∀p ∈ Pst

xe ≥ 0 ∀e ∈ A.

We may think of xe as the length of the edge e. Thus cexe represents the “volume” of the
edge e. So this dual problem is saying, find a “volume-minimizing” assignment of lengths
to the edges so that every s-t path has length at least 1. The duality theorem tells us that
the max flow (optimal value for (P)) is equal to this value. But our goal is to show that
max-flow is equal to the min-(s, t)-cut! So we’d better show that this dual value actually
equals the min-(s, t)-cut (which we call the min-cut in the rest of the discussion, for brevity).

Soon, we will see that this dual actually has 0-1 BFS’s. With this information it is
obvious that (D) will represent a minimum cut. Let us ignore this for now though, and
prove the result with what we have.

For an s-t cut (S, S), let E(S, S) represent the edges crossing the cut and let c(S, S)
represent the sum of capacities of edges crossing the cut. Then for any (s, t)-cut (S, S), we
can let xe = 1 for all e ∈ E(S, S) and xe = 0 for all others. Then this is clearly feasible for
(D). Consequently we have that

OPT (D) ≤ min-(s, t)-cut.

Now we must show the other, less trivial direction.

Theorem 6.2. Suppose x is a solution of (D) of value c>x. Then there exists an (s, t)-cut
(S, S) such that c(S, S) ≤ c>x.
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Proof. As above, we may interpret the xe’s as edge lengths. Let d(v) be the shortest path
distance from s to v for all v ∈ V according to the lengths xe. The xe’s are all non-negative
so this is well defined. Note that d(s) = 0 and d(t) ≥ 1 by the set of constraints in (D).

Consider ρ ∈ [0, 1). Let Sρ = {v ∈ V | d(v) ≤ ρ}. Then (Sρ, Sρ) is a feasible s-t cut in
G. Now suppose ρ is chosen from [0, 1) according to the uniform distribution. Then if we
can show that

E[c(Sρ, Sρ)] ≤ c>x

we will be done since this would imply that there exists a ρ with c(Sρ, Sρ) ≤ c>x. Note that

E[c(Sρ, Sρ)] =
∑
e∈A

ce ·Pr[e ∈ E(Sρ, Sρ)]

by linearilty of expectation. Let e = (u, v) and let ρ∗ be the smallest value so that u ∈ Sρ∗ .
Then ∀ρ ≥ ρ∗ + xe, v ∈ Sρ. So Pr[u ∈ Sρ, v 6∈ Sρ] ≤ xe, so

E[c(Sρ, Sρ)] =
∑
e∈A

ce ·Pr[e ∈ E(Sρ, Sρ)] ≤
∑
e∈A

ce · xe = c>x

So we have min-cut ≤ OPT (D), which proves that indeed max-flow is equal to min-cut by
the duality theorem. In fact, we have proved that the polytope for (D) is integral. Theorem
6.2 says that for any feasible solution x to the min-cut LP, and any cost vector c, there exists
an integer s-t cut (Sα, Sα) with cost at most c>x. Note that this s-t cut corresponds to an
integer vector y ∈ R|A| where ye = 1 ⇐⇒ e ∈ E(Sα, Sα) and ye = 0 otherwise. This y is
also feasible for the cut LP.

To see why the polyhedron K of (D) is integer, consider any vertex x of K. By the
definition of vertex, there is some cost function such that x is the unique minimizer for
min{c>x | x ∈ K}. But since c>y ≤ c>x, and y ∈ K, it follows that x = y and hence x is
integral.

You may want to think about what information you can conclude about optimal flows/cuts
using complementary slackness. E.g., we get that the paths carrying flow are all shortest
paths according to the edge length xe’s: they all must have length 1. Similarly, if an edge
has non-zero length according to the optimal dual solution, then it must be saturated in an
optimal primal solution. (In fact, in every optimal primal solution.)

6.2.2 König’s Theorem for Bipartite Graphs

Given an undirected bipartite graph G = (U, V,E), a matching is a set of edges which do
not intersect at any vertices. A vertex cover is a set of vertices S such that for all e ∈ E,
e∩S 6= ∅. Even though a vertex cover is covering edges, it is called a vertex cover because it
is a set of vertices. To clarify, a vertex cover is a set of vertices: this is how one should keep
from getting confused.

Theorem 6.3 (Kónig’s Theorem). For bipartite graph G = (U, V,E),

max{|M | : M is a matching of G} = min{|S| : S is a vertex cover of G}
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Proof. Let MM and MMLP represent the cardinality of the maximum matching, the optimal
value of the maximum matching LP relaxation. Similarly, let V C and V CLP denote the
cardinality of the minimum vertex cover, and the optimal value of the vertex cover LP
relaxation respectively. So we have that MMLP is given by

max
∑

(i,j)∈E

xij

s.t.
∑

j:(i,j)∈E

xij ≤ 1 ∀i ∈ U

∑
i:(i,j)∈E

xij ≤ 1 ∀j ∈ V

xij ≥ 0 ∀(i, j) ∈ E.

Then the dual is
min

∑
i∈U

yi +
∑
j∈V

zj

s.t. yi + zj ≥ 1 ∀(i, j) ∈ E
yi, zj ≥ 0 ∀(i, j) ∈ E.

Adding in an integrality constraint to this gives us V C, since any vertex cover is feasible for
this LP. Hence we define this dual to be V CLP . So using the notations above to represent
both the problem formulations and the optimum values, we now know, using duality theory
that

MM ≤MMLP = V CLP ≤ V C.

If we can show that the two inequalities are actually equalities, we would be done. In fact
we will show that the BFS’s of MMLP and V CLP are both integral.

Claim 6.4. Any BFS of MMLP is integral. Hence, MM = MMLP for bipartite graphs.

Proof. We essentially did this in Lecture 3, except there we had equality constraints. So in
that case, we always could find a cycle of fractional values. Here, this might not be the case.
Suppose we have a fractional extreme point. If we find a cycle, proceed as in the Lecture 3
proof. We may only find a tree of fractional values. Similarly to the proof in Lecture 3, we
alternately raise and lower the values by ε along a path from a leaf to a leaf on this tree.
Choose ε small enough so that none of the constraints become violated after the adjustment.
We can average these “complementary” solutions to contradict the extremity of the original
point.

Claim 6.5. Any BFS of V CLP is integral. Hence, V C = V CLP for bipartite graphs.

Proof. Let y∗ be an optimal solution to V CLP chosen so that y∗ has a maximum number
of integer components. It does not make sense that y∗ would have any component > 1, so
assume all are ≤ 1. Let F be the set of fractional vertices. If F = ∅, we are done. WLOG,
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suppose F ∩U is larger than or the same size as F ∩ V . Let ε = min{y∗i | i ∈ F ∩U}. Then
subtract ε from all the components in F ∩ U and add ε to all the components in F ∩ V .

U V

F  U F   V
1

2 3

4

+-

Figure 6.1: U and V

As seen in Figure 6.1, we need to check that constraints corresponding to edges of type
1 to 4 are still satisfied. Constraints of type 1 are not affected as epsilon is both added and
subtracted. Constraints of type 4 are no affected at all and constraints of type 3 are trivially
still satisfied. For constraints fo type 2, since the vertex in U was fractional and the vertex
in V was not, the vertex in V must have had value 1! So subtracting ε from the U vertex will
not violate the constraint. So we have a solution with objective function less than or equal
to the original and with one less fractional component. This is a contradiction. Hence V CLP
has integer vertices and so MM = MMLP = V CLP = V C and the theorem is proved.

Putting it all together, we get that on bipartite graphs, the minimum cardinality vertex
cover equals the maximum cardinality maximum matching. Note that this equality is false
for general graphs (e.g., the 3-cycle shows a counterexample).

An important aside: The proofs of Claims 6.4 and 6.5 show that the vertices of those LPs
are integral: this fact is independent of what the objective function was. Indeed, such results
immediately extend to weighted versions of the problems. E.g., we get that the weighted
bipartite matching problem, where the edges have weights we, and the goal is to find the
matching with the highest weight

∑
e∈M we, can be solved on bipartite graphs, just by finding

a basic optimal solution to MMLP with objective function w>x. Similarly, for the minimum
weight vertex cover on bipartite graphs, we can seek to minimize

∑
i∈U wiyi +

∑
j∈V wjzj

subject to the constraints in V CLP , and an optimal BFS gives us this min-weight vertex
cover.

Another connection. Hall’s theorem says that in a bipartite graph G = (U, V,E), there is
a matching M that matches all the vertices on the left (i.e. has cardinality |U |) if and only if
every set S ⊆ U on the left has at least |S| neighbors on the right. König’s theorem (which
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shows that the size of the maximum matching in G is precisely the size of the minimum
vertex cover of G) is equivalent to Hall’s theorem. We leave the proof for the reader.
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