
Linear Programming and Semidefinite Programming CMU 15-859E, Fall 2011

Homework 2
Due: Thursday, September 29

Ground rules: same as for Homework 1.

1. Unemployment. Consider the assignment problem studied in class; i.e., Maximum-Weight
Perfect Matching in a bipartite graph G = (U, V,E).

(a) Suppose now that there are more people than jobs; i.e., |U | > |V |. We still want every
job done, but some people will not be assigned any job. Formulate the appropriate integer
program and LP relaxation.

(b) Show that the integrality theorem from class still holds: if the LP relaxation is feasible, then
every extreme point is integral.

2. George & Leslie’s Theorem. Recall the LP relaxation for Minimum Vertex-Cover:

min
∑
v∈V

cvxv

s.t. 0 ≤ xv ≤ 1 for all v ∈ V ,
xu + xv ≥ 1 for all (u, v) ∈ E.

(a) Let x̃ be any feasible solution for the LP. Define another solution x+ by

x+
v =


x̃v + ε if 1

2 < x̃v < 1,
x̃v − ε if 0 < x̃v <

1
2 ,

x̃v if x̃v ∈ {0, 1
2 , 1}.

Similarly define the solution x−, replacing ε with −ε. Prove that one can find ε > 0 such that
both x+ and x− are feasible for the LP. (Hint: there are at least four cases.)

(b) Show that every extreme point x∗ of the LP is half-integral, i.e. x∗v ∈ {0, 1
2 , 1} for all v ∈ V .

3. Reductio ad solutionem de feasibility. Consider the computational problem of solving a
general LP min{cTx | Ax ≥ b}; we’ll call it Solve-LP. It takes as input the m× n matrix A, the
vectors b ∈ Rm, c ∈ Rn. The desired output is:

• Infeasible if the LP is infeasible,

• Unbounded if the optimal value is −∞,

• or a vector x ∈ Rn which is an optimal feasible solution to the LP.

Give a reduction from Solve-LP to the decision version of polyhedron feasibility defined in
Hwk1(#1). As always, your reduction should run in time polynomial in the input length. (Hint:
recall Hwk1(#4) and the discussion about binary search in class.)

1

4. A Farkas Lemma.

(a) Show the execution of our LP-feasibility-testing algorithm (“Simplex with the b-rule”) on the
following system:

−x1 + 2x2 + x3 ≤ 3
3x1 − 2x2 + x3 ≤ −17

−x1 − 6x2 − 23x3 ≤ 16
x ≥ 0

This system is infeasible, so execution should end with an “offending equation” (i.e., a basic
variable equated to a negative constant plus a nonpositive linear combination of nonbasic
variables).

(b) Rearrange the offending equation so that the slack variables are on the LHS (with nonnegative
coefficients), a negative constant is on the RHS, and the original variables are on the RHS
(with nonpositive coefficients). Write out all six coefficients explicitly (even if some are 0
or 1).

(c) This offending equation is a unique linear combination of the equations in the initial tableau.
Which linear combination? Why must it be unique?

(d) Take the same linear combination of the original inequalities. Why is the resulting inequality
obviously incompatible with the constraint x ≥ 0?

(e) Let A ∈ Rm×n and b ∈ Rm. Show that exactly one of the following is true:

• ∃x ≥ 0 s.t. Ax ≤ b
• ∃y ≥ 0 s.t. y>A ≥ 0, y>b < 0.

5. Max-Sat. A Sat instance over Boolean variables u1, . . . , un consists of a list of m clauses,
each of which is a disjunction (OR) of literals (a variable ui or its negation ui). Let Opt denote the
maximal number of clauses that can be satisfied by a Boolean assignment to the variables. The Sat
problem is to determine whether or not Opt = m. The Max-Sat problem is to find an assignment
satisfying Opt clauses. We remark that both tasks are NP-hard.

(a) Formulate an integer program (IP) capturing Max-Sat. There should be a 0-1 IP-variable for
each Sat-variable, as well as a 0-1 IP-variable representing the “truth value” of each clause.

(b) Suppose your relax your IP to an LP. Find an instance of Max-Sat with 4 clauses for which
Opt = 3 but LPOpt = 4.

(c) A Horn-Sat instance is a special kind of Sat instance in which each clause has at most one
positive (i.e., unnegated) literal. The Sat problem restricted to Horn-Sat instances is in P
(you might like to convince yourself of that), though the Max-Sat problem remains NP-hard.
Show that your LP relaxation solves the Sat problem for Horn-Sat instances, in the sense
that LPOpt = m if and only if Opt = m.

2

