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ABSTRACT
The increase in number of vehicles has created problems in many
cities across the globe. Building comprehensive knowledge base
about global city dynamics and traffic distribution is a key step to
provide fundamental solution to the problems. In this paper, we ex-
amine a readily available data source; the existing infrastructure of
traffic cameras around the world. We have collected real time traf-
fic data from 2,700 public online traffic camera distributed across
10 cities in four continents for a duration of six months. Our plat-
form allows us to automatically search public cameras, collect and
process imagery data, remove outliers, and extract traffic density
from those images in a highly scalable way. A time series model
employing a co-integrated vector autoregression model is presented
in which traffic forecasts may be produced and regions of the city
not well observed may be suggested. In addition, a topological
comparison of six of these networks is presented.

Keywords
Urban Infrastructure, Vehicular Traffic, Causality, GIS

Categories and Subject Descriptors
H.2.8 [[Database Management]]: Database Applications-Data min-
ing, Image databases, Spatial databases and GIS.

General Terms
Experimentation, Human Factors, Measurement.

1. INTRODUCTION
The increase in number of vehicles has created a problem of traf-

fic congestion in many world cities. In attempting to solve this
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problem, isolated approaches like improving the design of road
and intersections, and changing the usage patterns have been con-
sidered. Although it has rewarded to some extent, the root cause
for such an aggregation still persist. We believe these approaches
should be augmented with a comprehensive picture of cities’ struc-
tural dynamics and the traffic distribution across its key intersection
in a collective manner, and more global cities should be sampled to
build a rich knowledge base for such studies.

In this paper, we utilize for the first time a readily available
source; the existing global infrastructure of thousands of video cam-
eras, providing a continuous stream of street images from dozens of
cities around the world. We introduce a novel monitoring, analysis
and prediction framework, which consists of a network of planet-
scale public webcams, fast and scalable traffic density estimation
algorithm, and statistical models for traffic forecasting. Our dataset
consists of 125 million images from over 2,700 traffic web cam-
eras in 10 cities/states for six months, with a overall size of 7.5
terabytes. These regions are spread across North America, Europe,
Asia, and Australia. In this paper, we have selected six cities with
similar time granularly for a fair comparison of this study.

Our algorithm to estimate traffic density employes, scalable, and
effective background subtraction technique to process millions of
traffic camera images, and build an extensive library of spatio-
temporal vehicular density data. Based on the mixture of gaus-
sians, this algorithm is robust to outliers (camera errors) and sensi-
tive to frequently changing lighting conditions. A comparison with
ground truth (of number of cars) shows a near linear correlation to
allow analysis at a network level.

Moreover, we have constructed a time series model for the traffic
data using a co-integrated vector autoregression model, to reveal
the extent to which the traffic observed at a point in the network
is explained by that observed at another location. We employ a
Granger network; a network in which causal links are identified; to
provide a sparse representation and also to reveal the major path-
ways in network. A major contribution here is the actual model
itself, which is the building block for understanding city dynamics.

To this end, our contributions are:

• We provide a novel framework to study the cause and effect
relationship of traffic causality in urban streets using thou-
sands of on-line web cameras. In future, we also plan to
release the dataset to the research community,



• we establish that causality on motorways (inter-states) are
far more perceivable than city’s local traffic. This is a distin-
guishing factor that can be used for profiling the cities, and

• we construct an empirical time series model based on real
data that considers the interaction between the traffic ob-
served at different points in a city. The models produce fore-
casts with a typical error (PMSE) of 3-9%. It also reveal
that traffic camera networks tend to be disassortative; many
smaller junctions feeding into larger ones. It is envisaged that
models constructed here will form the basis of future studies
into vehicular traffic dynamics in cities based on real data.

2. MEASUREMENT AND PRE-PROCESSING
Table 1 details the regions used in this study and the extent of

the data and time span of the sample. The snapshots taken at every
camera (intervals ranging from 20-60 secs.) first pass a background
estimation and subtraction phase. These are then used to estimate
thetraffic densityarriving per unit time as opposed to a car count.

While a car count might seem preferable to a traffic density mea-
sure, there are several practical challenges. A car count requiresa
far greater computational cost due to the effort required to isolate
each object. Traffic congestion further complicates matters when
cars occlude each other, making it difficult to segregate cars based
on edge structures. In addition, vehicles at the far end of the road
are small in the image and cannot be detected by these algorithms.
These web cameras are installed at strategic intersections and high-
way segments, which are critical in assessing issues such as traf-
fic jams and evacuation mitigation plans. Deploying such cameras
everywhere is not feasible, so we believe by covering these key
locations, the results from this study will provide substantive un-
derstanding on the causes of causality and traffic prediction.

2.1 Background Subtraction
Background subtraction is a standard method for object localiza-

tion in image sequences with fixed cameras, where the frame rate
is lower than the velocity of the objects to be tracked (i.e. cars
move out of the scene typically at a rate exceeding 1 minute). The
basis for models of background are based on the observation that
backgrounddoes not change significantly (in comparison to fore-
ground/objects) across time. Any part of an image that does fit with
that model is deemed asforeground/object. These foreground re-
gions are then further processed for the detection of desired objects.

The background model used here assumes that the distribution
of background pixel values may be modeled as a weighted sum of
Gaussian distributions. Our approach follows closely that proposed
by [3, 9, 10] because of their reliability and robustness to sensitive
changes in the lighting conditions. In our approach, the observed
pixel value is modeled by a weighted sum of Gaussian kernels. Let
xt represent a pixel value in thetth frame, then the probability of
observing this value is assumed to be:

p(xt) =
K
∑

i=1

w
t
i ∗ N (µi,t,Σi,t) (1)

whereN (µi,t,Σi,t) is the ith kernel with meanµi,t and covari-
ance matrixΣi,t, andwt

i is the weight applied to that kernel such
that

∑

i
wt

i = 1. We assume thatRGB channels are uncorrelated
thus the covariance matrix for each kernel is diagonal. When a new
frame arrives, the pixel values are compared to the kernels to de-
termine if it is likely that this value was drawn from a distribution
with N (µi,t,Σi,t) (using for example a 95% confidence interval).
If so, µi,t, Σi,t andwi are updated using exponential filters; if not

a new kernel is created and the existing kernel with the lowestwi

is eliminated (see [10] for specifics). Short lived kernels and their
associated pixels are deemed to be possibly foreground producing
a binary map. Morphological operations are then applied to this
map to remove noise and any blobs with area smaller than a certain
threshold.

The view of most cameras used in this study is along the direc-
tion of the road and this perspective skews the size of objects on
an image [5]. To counter this effect, we weigh each foreground
pixel with the exponent of it’s distance from the bottom of the im-
age. Thus a pixel in the bottom of the image will be weighted less
(object appear larger at the bottom than on the top) than a pixel at
the top. While this weighting is not exact and does produce some
warping as we shall see in the next section it is not excessive but it
is simple and does not require manual tuning to each camera.

To test the performance of the car density capture, six cameras
were selected at random were examined by hand and labeled to
produce aground truthcount for the number of cars. This ground
truth was then regressed against the measured car density to check
that the relationship is linear. Overall, the analysis shows that while
there are some errors, the relationship between the actual and mea-
sured number of cars is sufficiently clear to allow analysis at a net-
work level.

3. GRANGER NETWORKS
At this point the data has been distilled so that each camera node

has an associated time series. Specifically, defineyi(t) as the time
series associated with theith node at timet. Note,yi(t) is a time
series oftraffic densityat each traffic cam and is linearly related to
the number of vehicles at that traffic camera. However, fromyi(t)
alone, it is not possible to tell the number of cars that have actu-
ally passed through the junction. A composite view of the network
can, however, be formed by looking at all the junctions together by
examining theempiricalbehavior1 of the time series.

There is a strong correlation between all the time series in this
study. Indeed, there is even a strong correlation between the time
series of different cities. However, these arespurious correlations
and are caused by factors such as the traffic increasing in the lead
up to rush hour; regardless of location. Thus standard correlation
analysis is misleading in this case. What is of interest, is the move-
ment of traffic around the city; the flow of one time series into
another. Note that this flow is directional and requires identifying
the causations in the network; the type of network thus described is
known as aGranger Network(GN) [6, 2].

A Granger network is a weighted directed graph asG = (V,E)
whereV is the set of vertices (nodes) andE is the set of edges
(links). The adjacency matrix ofG, A(G), has an entry ifv → u,
and zero otherwise

A(G)(u, v) =

{

wu,v, if v → u|q

0, if v 9 u|q
(2)

wherewu,v is the strength of the connection betweenu andv as
now explained. Given thatv Granger causesu does not mean that
the strength of the causality is strong; it merely means that it is
consistent. The strength of the connection is instead measured by
the coefficient of variance explained [7] by inclusion of a (Granger)
causal variable:

R
2

v→u =
σ̂2

ǫ
u|v,q

− σ̂2

ǫ
u|q

σ̂2
u

(3)

1i.e. no underlying model of physical transport is assumed.



Table 1: Global Webcam Datasets
City # of Cameras Duration Interval Records Database Size

Beaufort 70 30/Nov/10 - 01/Mar/11 30 sec. 24.2 million 1150 GB
Connecticut 120 21/Nov/10- 20/Jan/11 20 sec. 7.2 million 435 GB

London 182 11/Oct/10 - 22/Nov/10 60 sec. 1 million 201 GB
Sydney 67 11/Oct/10 - 05/Dec/10 30 sec. 2.0 million 350 GB
Toronto 89 21/Nov/10 - 20/Jan/11 30 sec. 1.8 million 325 GB

Washington 240 30/Nov/10 - 01/Mar/11 60 sec. 5 million 400 GB
Total 768 - - 41.2 million 2861 GB
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Figure 1: Granger network for Sydney.

whereσ̂2

u is the variance ofu. In addition, the total variance ex-
plained at a node, denotedR2

u, is the increase in variance explained
in u by inclusion ofall the information from its neighbors.

In summary, a Vector Auto-regressive model is constructed and
the Hypothesis is tested. If Hypothesis is rejected then a casual link
is said to exist betweenyi(t) andyj(t) whose strength,wi,j is the
increase inR2

v→u of zi(t) by inclusion ofzj(t).

4. RESULTS

4.1 Network Analysis
Figure 1 shows the Granger network constructed using all the

data from the Sydney traffic system. This figure shows quite a bit
of information and is now explained. TheX andY axis are lo-
calX − Y co-ordinates constructed from GPS co-ordinates using
the Carlson and Clay model [4]. The green nodes are located at
the actual localX − Y co-ordinates for each camera. The size of
the green node is proportional to the total variance explained at that
node (given all the incoming nodes), i.e.R2

u as shown in the legend.
The only edges shown are those for which the alternate hypothesis
is accepted. The weight on an edge fromu to v, i.e. R2

v→u (Equa-
tion 3) is represented by orange circles proportional to the weight
(shown in the legend) and are located at the tail incident onv; that
is, they represent the variance explained flowing into a node from
the source. As can be seen from the figure the network has a sparse
structure with links existing mainly between physically proximate
nodes or in the case of exterior nodes, pointing inward towards the
city centre. Specifically, of a total ofN2 = 4, 356 possible links,
only 119 are found to be significant.

Figure 2 shows the co-integrating factor for the Sydney network

8 9 10 11 12 13 14 15 16 17 18
10

20

30

40

50

60

70

80

90

Time of day

γ(
t)

Figure 2: The co-integrating factor for Sydney. (Blue
smoothed,± 95% conf. intervals in green)

averaged by each 15 minute interval. This may be thought of as
the average state of the network and shows clearly the morning and
evening rush hours. It is interesting to note that just before the
evening rush hour there is a lull in the traffic and in addition quite
a large traffic volume during lunch. In section 4.2 this fact will be
used to disaggregate the data by hour of the day into three regions.

Returning to Figure 1, it can be noted that adjacent nodes tend to
have similar totalR2

u values. This is not surprising; a well observed
location (in the Granger causal sense) is likely to have many neigh-
bors which re-enforce each other. However, it is interesting to ask
if there are regions in which theR2

u values are lower than expected
and at which an extra camera might be beneficial. The analysis
carried out here employs aGaussian Process(GP) to interpolate
theR2

u values. A GP is the appropriate interpolation to use here as
it meets required constraints on the problem; the function should
tend to zero in the absence of cameras and the degree to which one
camera effects another is unknown and needs to be estimated from
the data. This is based on the simplifying assumption that the to-
tal variances’ explained at the nodes are samples from a random
process which is spatially correlated with isotropic correlation2:

Cx1,x2
= E[[R2

x1
− µR2

u
][R2

x2
− µR2

u
]] = f{‖x1, x2‖} (4)

whereCx1,x2
is the covariance between two locationsx1 ∈ ℜ2 and

x2 ∈ ℜ2,E[· ] denotes the expectation operator,µR2
u

is the average
value of the random process (to be estimated),f denotes a function
and‖x1, x2‖ is the physical (Euclidean) distance betweenx1 and
x2. In addition, it is assumed that the process tends to zero; i.e.
that far from a camera no information is known. A Matérn Kernel3

2That is, the correlation between the observedR2

u values at two
points depends on distance alone and not the direction.
3The Matérn Kernel is a commonly used kernel for interpolation
and is similar to a Gaussian kernel in that it dies away monotoni-
cally with a decay rate that can be adjusted using two parameters;
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Figure 3: A GP model for distribution of R2

u. (Sydney all hours;
the Matérn Kernel is shown in the inset,{ν = 0.02, θ = 21})

is used to representf{‖x1, x2‖} and consists of two parameters,θ

andν (to be estimated from the data), withθ controlling the scale
andν the shape of the kernel (see [8] for a description of the effect
of varying these parameters). A full description of a GP is beyond
the scope of this paper; what is important in the current context
is the width and shape of the optimized kernel and of course the
interpolation itself.

Figure 3 shows the interpolation ofR2

u across the sample do-
main. Overall, the interpolated values are quite high in the city cen-
tre and drift towards the process mean (µ̂R2

u
= 0.2)) quite quickly.

In addition the inset in Figure 3 shows the Matérn Kernel which is
estimated from the data ({ν = 0.02, θ = 21}). This kernel is quite
’peaked’ such that the effect that a sample (i.e. anR2

u value) has
on another location is mostly local. However, the kernel is quite
wide at the bottom showing that a weighting of approximately 0.2
- 0.4 is still felt up to approximately ten kilometers away. Figure 4
shows the same information as a contour plot; this is more suited
to identifying interesting regions.

In Figure 4 there are three regions labeled A, B and C, in which
the interpolation appears to be lower than expected (these were
selected subjectively). An inspection of the street map around C
shows its proximity to a major Highway (M7). We suspect that re-
gion C contributes to the traffic observed on the M7. Only three
cameras are deployed throughout the M7 and none of them are in
C’s vicinity. It is possible that inclusion of few cameras around this
region would increase the information available to the network. B
is located in a park area covering 32 km2 called Georges national
park (which explains the low coverage) while A is located in central
Sydney on a major highway, again the M7 that has low coverage.
A similar case is observed in all the networks.

4.2 Disaggregation and forecast analysis
The aim of this section is to demonstrate a set of forecasts from

the eVAR(p) models. The data is first disaggregated into three re-
gions; the morning (7am to 10am), noon (10:15am to 3pm) and the
afternoon (3:15 to 7 pm). In addition, within each dataset 2/3 and
1/3 is kept back as anout of sampletest set. Results are reported as
a prediction mean squared error (PMSE) at various forecast hori-
zons from 1 to 6 steps ahead (1 step=5 minutes). The data is nor-
malized to between 0 and 1, where 1 is the maximum traffic density
seen at a junction. This is to facilitate the reader to easily gauge the
amplitude of the forecast errors.

Figure 5 presents a panel in which a single 6 step-ahead forecast

an excellent description may be found in [8].
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Figure 6: A sample forecast versus the actual for the traffic
density at camera 16. (Sydney morning dataset, 6-step ahead
forecast or 30 minutes).
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Figure 7: The prediction MSE for Sydney morning dataset (6-
steps ahead or 30 minutes).

is shown for the network as whole. The software shows how the
congestion in the future can be identified using the current state of
the network. The regression in the bottom left hand panel however
shows that there is still a significant forecast error in some cases.

Figure 6 shows a sample forecast of the traffic at camera 16
(a city center camera) for Sydney over the entire duration of the
dataset. The forecast horizon here is 6 steps ahead. As can be
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Figure 5: The panels shows the state of the network at 14:34 and 30 minutes later at 15:04. The top row shows actual states (a) and
(b) while (c) shows the change between 14:34 and 15:04. The size and color of the circles reflects the traffic density as a % of the
maximum and are located at the local X-Y coordinates of the junctions. The bottom panels show the forecasts; first the errors against
the actual (d), then forecast itself (e) and then forecast change (f). (Sydney afternoon dataset, 6-step ahead forecast or30 minutes).

seen the forecasts look reasonable but no more can be said without
looking at the residual statistics.

Figure 7 shows the square root of the PMSE for the morning
data set in Sydney. There are 66 camera’s and so 66 values to re-
port which are sorted lexically (i.e. by camera number) and also
in ascending order (bottom panel). These vary from 0.03 to 0.09
meaning that the expected value of an error is about 3-9%.4

As the forecast horizon increases the forecast error is expected to
increase as is shown in Figure 8. There is no discernible difference
between the three times periods.

4.3 Comparison of global city networks
This section compares the topological characteristics of Granger

networks for the six cities involved in this work. As networks are
weighted directed graphs, weighted metrics are required for the
comparison (see [1] for definitions of the metrics used below).

The average weight of a link for each city,̄w, shows a marked
difference in each network. While Beaufort, and to a lesser degree
WDC, and London tend to have links that convey more information
The networks for Sydney, Connecticut, and London exhibit links
do not convey much information suggesting either these networks
can benefit from more cameras or that the information arriving at a
junction is incoming from many directions (a typical case in a dense
city environment). The average weighted clustering coefficient,γ̄k,
which measures the local cohesiveness, confirms this hypothesis

4The standard error and the expected error are not identical.
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Figure 8: The increase in forecast error with forecast horizon
for Sydney (disaggregated by morning, noon and afternoon; av-
eraged across all camera’s).

with Beaufort and WDC again scoring highest.
For the average nearest neighbors degree we find thatk̄w

nn <

k̄nn, indicating that edges with larger weights tend not to point to
neighbors with larger degree; the implication being that on average
the information flowing into a junction need not come from high
degree neighbors. In addition, ask̄w

nn andk̄nn are both positive the
networks are found to be dis-assortative; high degree nodes tend to



Table 2: Summary of topological characteristics for the GN’s.
City w̄ γ̄k k̄nn k̄w

nn

Sydney 0.10 0.0015 23.19 22.18
Beaufort 0.77 0.0132 48.60 42.10

Connecticut 0.02 0.0019 1.37 1.18
GTA 0.08 0.0015 3.46 2.81

London 0.16 0.0013 34.34 28.36
WDC 0.24 0.0033 29.75 16.67
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Figure 9: A comparison of the distributions of R2

u values for
the 6 cities.

be connected to low degree nodes indicating that important junc-
tions tend to be meeting points for many smaller junctions. It is
notable that in the case of GTA and Connecticut this is not sig-
nificant as these networks are composed of mainly motorways in
which each junction is mainly a link in a long chain along the net-
work. Figure 9 compares the distribution ofR2

u values at each
node/junction. Again, it is seen that for WDC and Beaufort that
this distribution is higher with Sydney and Connecticut have a dis-
tribution centered around the lowest means. A detailed technical
report of this work is available here [11].

5. CONCLUSION
Vehicular traffic congestion is becoming a critical problem in

major cities throughout the world. In order to address that prob-
lem, we have proposed a framework for the systematic monitoring,
measurement, analysis and prediction of urban traffic density at a
global scale. The proposed framework is highly scalable and can be
used for any city that utilizes online traffic web cameras for traffic
analysis. So far, we have analyzed five cities and a state to ex-
amine the cause and effect of traffic causality that is contributing to
widespread congestion. The time series analysis in this paper threw
up some compelling results. Firstly, the location of traffic cameras
may not be optimal and there are regions in all the networks we sur-
veyed in which there a lack of camera coverage, which effects the
information in the network as a whole. One possibility is the intro-
duction of new cameras in those areas or possibly the integration
of information from alternative sources such as smart phone data
(or even to alert smart phones to the use of their data at a particular
location). While only three cases were focused on in the analysis in
Section 4.1, further investigation is envisaged. The disaggregated
forecasts produced show that reasonable forecasts of the city traf-
fic may be created up to 30 minutes ahead. The PMSE of these
forecasts varied widely (from 0.03 to 0.09) and this in itself allows
the city operators to see which cameras are not providing adequate
information. We envisage that these forecasts can be improved in

future analysis with the aid of a Bayesian framework especially in
taking into account invalid camera readings that degrade the results.

The Granger networks themselves showed a high degree of infor-
mation exchange between the nodes, while still presenting a sparse
representation of the network as a whole. This sparse representa-
tion is important, as it reveals the main information pathways in the
network, which apart from being statistically important also pro-
vides a succinct summary of the network to traffic managers. While
comparing these networks across the different cities, two types of
cities emerged; those based on mainly motorway based road net-
works, which exhibit a higher degree of cohesion, compared to
those based on a city street type topology. The differing clustering
coefficients in each network present an interesting dilemma; given
finite resources it is best to pool cameras such that they reinforce
each other’s information (as in the case of Beaufort) or spread the
cameras evenly around the city (as in the case of London).
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