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Abstract

The beacon chain is the backbone of the Ethereum's evolution towards a proof-of-stake-based

scalable network. Beacon clients are the applications implementing the services required to operate

the beacon chain, namely validators, beacon nodes, and slashers. Security defects in beacon clients

could lead to loss of funds, consensus rules violation, network congestion, and other inconveniences.

We reported more than 35 issues to the beacon client developers, including various security im-

provements, speci�cation inconsistencies, missing security checks, exposure to known vulnerabilities.

None of our �ndings appears to be high-severity. We covered the four main beacon clients, namely

Lighthouse (Rust), Nimbus (Nim), Prysm (Go), and Teku (Java).

We looked for bugs in the logic and implementation of the new security-critical components

(BLS signatures, slashing, networking protocols, and API) over a 3-month project that followed a

preliminary analysis of BLS signatures code. We focused on Lighthouse and Prysm, the most popular

clients, and thus the highest-value targets. Furthermore, we identify protocol-level issues, including

replay attacks and incomplete forward secrecy.

In addition, we reviewed the network fingerprints of beacon clients, discussing the information

obtainable from passive and active searches, and we analyzed the supply chain risk related to third-

party dependencies, providing indicators and recommendations to reduce the risk of backdoors and

unpatchable vulnerabilities.

Our results suggest that despite intense scrutiny by security auditors and independent researchers,

the complexity and constant evolution of a platform like Ethereum requires regular expert review

and thorough SSDLC practices.
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1 Introduction

1.1 Ethereum’s Beacon Chain

The beacon chain is a chain separate from the main Ethereum blockchain that acts as the governance

platform behind \Ethereum 2.0" new mechanisms, including proof-of-stake-based consensus and shard-

ing. Software applications used to manage and interact with the beacon chain, sometimes just called

\Ethereum 2.0 clients", are composed of two main components, as of Phase 0:

• A beacon node service, which maintains a view of the beacon chain from the genesis block, manages

validators, contributes randomness for validator assignment.

• A validator service, which proposes blocks and signs attestations for blocks proposed by other

validators. Validators work with a beacon node to receive chain state information and propagate

changes to other beacon nodes. Running a mainnet validator requires the staking of 32 ETH,

locked via a deposit smart contract.

New security components introduced with the beacon chain notably include:

• BLS signatures, the pairing-based, aggregation-friendly signatures used by validators to sign block

attestations;

• Slashing, the punishing mechanism to prevent malicious behavior, implemented by certain beacon

nodes (\slashers"), which submit slashing evidence to one or more validators for inclusion in an

attested block.

These components and other new Ethereum features are extensively documented by the Ethereum

project1.

1.2 This Project

In March 2021, the Ethereum Foundation (EF) issued a \Beacon chain security+testing RFP"2, calling

for \ proposals that further the security and robustness of Ethereum's beacon chain and the upcoming

merge". Having followed the Ethereum developments, including BLS signatures implementations, we

submitted a grant proposal for further in-depth security review of the beacon chain's critical components,

covering (in rough order of priority)

• BLS signatures

• Slashing

• Peer-to-peer connections

• Beacon chain API

We covered the four clients listed as targets in the EF RFP, namely Lighthouse, Nimbus, Prysm, and

Teku, with as agreed with the EF a greater focus on Lighthouse and Prysm, as these appear to be the

most used clients and the ones on which depend the greater amount of ETH assets (and consequently,

the ones on which attackers are likely to invest the most resources).

We also covered the main implementation of BLS signatures, and its bindings, namely blst. Both blst,

Lighthouse, and Prysm have received intense security scrutiny and testing, from their development teams,

from the Ethereum community, from security auditing �rms, as well as from independent researchers.

For example, a number of bugs were found using a dedicated di�erential fuzzing framework, based on

Vranken's initial work3.

1https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-client-architecture/
2https://notes.ethereum.org/@lsankar/security-rfp
3https://github.com/sigp/beacon-fuzz, https://github.com/guidovranken/eth2.0-fuzzing
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1.3 Our Results

Table 1 lists the GitHub issues that we opened to notify project maintainers of potential security risks,

in beacon clients, BLS back-end, other dependencies, or speci�cations. We excluded issues found to be

invalid but listed some that, although they did not lead to a patch, include interesting discussions about

the design choices. We also included issues in beacon clients other than the four ones that were the focus

of our project.

Furthermore, we report a number of points that from our perspective need more work and/or im-

provement to reduce the risk to an acceptable level. These include cryptographically weak protocols

(in §5.3, §6.4) and risks from vulnerable and outdated dependencies (in §7.4).

Disclaimer. Given the uneven amount of time spent on the respective projects, it makes little sense to

draw conclusions from the relative number of issues in each client|if we found more issues in client A

than on client B, it does not necessarily mean that A is less secure; we may have spent much more time

on A than on B, we might have been more familiar with A's software stack, etc.

2 Beacon Clients

Table 2 shows an overview of the four beacon clients reviewed, and the sections below present further

information about their security, their implementation of BLS and P2P protocols, public open issues,

and previous security audits.

2.1 Lighthouse

Lighthouse's README describes it as \Security-focused. Fuzzing techniques have been continuously

applied and several external security reviews have been performed." Fuzzing is not performed in CI but

\All �nalized crates are to go through a series of extensive fuzzing." [10]. The initial fuzzing setup is

described in a 2019 post [9], notably using libFuzzer via cargo-fuzz. The fact that sigp/beacon-fuzz

has fewer trophies for Lighthouse than for any of the three other clients reviewed here may be seen as

an indicator of Lighthouse's care for security.

The April 2021 Lighthouse Research Report5 contains a good introduction to the Lighthouse client

design and implementation, and considers key challenges, engineering e�orts, major optimizations, de-

velopment process peculiarities, and the roadmap.

BLS. Rust bindings of blst (part blst's distribution).

Networking. Own Rust implementations of libp2p and discv5, in beacon note/eth2 libp2p and the

repository sigp/discv5.

Open Issues. At the time of writing, open GitHub Issues with the security label included low-risk

issues6 open between June and October 2020: \Fork choice timing attack", \Out-of-date dependencies",

\Parasitic voluntary exits ", \Rethink and test fork handling in op pool". Among the other open issues,

the following two are the only ones directly related to security risks: \Zeroize in BLST"7 and \Incorrect

zeroizing of newtype structs"8.

5https://drive.google.com/file/d/12flM_E_A3DldbOUe8EYEN6Bg2bi4Yl6w/view
6https://github.com/sigp/lighthouse/issues?q=is%3Aopen+is%3Aissue+label%3Asecurity
7https://github.com/sigp/lighthouse/issues/1908
8https://github.com/sigp/lighthouse/issues/1789
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Issue Description Component Status

Specifications

Bit security level < 128 BLS specs Fixed
BLS parameters section number �x BLS specs Fixed

supranational/blst

Enforce limitation on IKM length BLS Fixed

sigp/milagro bls

Check that IKM is more than 32B in KeyGen BLS Open

ChainSafe/bls

BLS secret key validation is missing BLS Con�rmed

ChainSafe/blst-ts

Incomplete key validation BLS Fixed
Incorrect result for zero lengths arrays in aggregateVerify BLS Fixed
Detect unsafe coe�cients in verifyMultipleAggregateSignatures BLS Fixed

sigp/lighthouse

Missing check on seed and password length BLS Open
API token can be read from a log �le by any user API Fixed
File permissions for validator client API keys are insecure API Fixed
Possible DoS via /eth/v1/validator/duties/attester API Fixed
VC: Requests may not contain Authorization header with API token API Fixed
VC: Response headers are not signed API Con�rmed

status-im/nimbus-eth2

Insu�cient private key validation (covers nim-blscurve) { also reported in nim-blscurve BLS Fixed
Missing pubkey and signature validation for blsVerify()? BLS Fixed
Possible DoS via beacon node API endpoints if the API exposed to untrusted parties API Open

prysmaticlabs/prysm

Missing input validation in SecretKeyFromBigNum BLS Fixed
Detect unsafe coe�cients in VerifyMultipleSignatures BLS Fixed
No length check in AggregatePublicKeys BLS Fixed
Update go-libp2p-noise to release v0.2.0 Libp2p-noise Fixed
jwt-go library is vulnerable to CVE-2020-26160 RPC Fixed
Use golang-jwt/jwt implementation of JWT RPC Fixed
Possible DoS via beacon node API endpoints if the API exposed to untrusted parties API Fixed
Add certi�cate-based client-side authentication API Open
No TLS client authentication in gRPC API Open
Add HTTP Secure Headers UI Open
Logout endpoint doesn't require a valid JWT token UI Open

ConsenSys/teku

Public key aggregation ambiguous in�nite points handling BLS Fixed
Detect unsafe coe�cients in fast BLS veri�cation BLS Fixed
Incorrect BLS key validation BLS Won't �x
Detect unsafe coe�cients in fast BLS veri�cation BLS Fixed

Libp2p-noise

Static key signature does not depend on a peer's challenge Libp2p-noise spec Con�rmed

ChainSafe/lodestar

No BLS public key validation due to validate parameter missing BLS Open
Improper nonce handling in Noise handshake Libp2p-noise Closed
Improper nonce handling Libp2p-noise Open
Improper nonce handling in Go NoiseExplorer Fixed

ethereum/trinity

Incomplete BLS key validation BLS Won't �x4

Table 1: List of issues reported, including security improvements, speci�cation inconsistencies, missing

security checks, exposure to known vulnerabilities.
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Client & Repository Language Developers Repo Stars Open/Closed Issues

Lighthouse

sigp/lighthouse

Rust Sigma Prime

sigmaprime.io

1.3k 100/846

Nimbus

status-im/nimbus-eth2

Nim Status

status.im

222 152/526

Prysm

prysmaticlabs/prysm/

Go Prysmatic Labs

prysmaticlabs.com

2.2k 114/2016

Teku

ConsenSys/teku

Java ConsenSys

consensys.net

281 82/1251

Table 2: Overview of the beacon clients reviewed, as of 20210913.

Audits. In June 2020 Trail of Bits completed a �rst security audit of Lighthouse, the report does not

seem to have been published. Sigma Prime commented [11] that \no critical issues were found". In

October 2020 Lighthouse cited [12] a second Trail of Bits audit round, as well as audit by NCC. These

covered all the critical features of Lighthouse, such as the p2p protocol, the API, the validation logic,

and deserializations.

2.2 Nimbus

Nimbus targets resource-constrained platforms (citing Raspberry Pis and mobile devices) and is written

in Nim, a language that \provides memory safety by not performing pointer arithmetic, with optional

checks, traced and untraced references and optional non-nullable types."9.

Nimbus o�ers an \Auditors' book" [20], which briey describes its threat model, and provides useful

information for security auditors, but is incomplete, having a number of sections left empty. A \Nimbus

Eth2 Stack" diagram10 describes its architecture and high-level implementation.

BLS. status-im/nim-blscurve, a dedicated Nim interface to BLS implementation back-ends. This uses

blst for x86 64 and ARM64 architectures, and MIRACL11 for other architectures (including ARM Cortex-

M0/M4, ESP32, MIPS32, RISC-V).

Networking. Most of the networking logic is in another repository, status-im/nim-eth, also maintained

by Status.

Open Issues. At the time of writing, open GitHub Issues with the security included 9 improvement

proposals12, such as reduced exposure of private keys, integration of Clang sanitizers, and a discussion

about invalid BLS signatures of more general interest13.

Audits. In May 2020, the Nimbus maintainers (Status) issued an RFP for a security audit [14], and a

short summary was published in September [15], without sharing the report nor the audit team.

2.3 Prysm

Prysm integrates extensive fuzzing14, using the standard Go fuzzing toolchain, with libfuzzer as fuzzing

engine, and notably covering block validation, RPC endpoints, SSZ decoding. Fuzz tests are run in the

9https://nim-lang.org/faq.html
10https://miro.com/app/board/o9J_kvfytDI=/
11https://github.com/miracl/core
12https://github.com/status-im/nimbus-eth2/issues?q=is%3Aopen+is%3Aissue+label%3Asecurity
13https://github.com/status-im/nimbus-eth2/issues/555
14https://github.com/prysmaticlabs/prysm/tree/develop/fuzz
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GitLab CI via fuzzit.

Prysm is the only beacon client to sport a graphical UI, as a web application for local con�guration15.

BLS. Go bindings of blst (part of blst's distribution).

Networking. libp2p/go-libp2p, and its own implementation of the discv5 logic.

Open Issues. The open security-related issues only include two about version updates and a meta-issue

tracking issues reported by the two audits as well as proposed improvements16.

Audits. In October 2020 Trail of Bits completed a �rst security audit of Prysm [54]. The audit found

no critical issues and one high-severity issue related to a failure scenario causing a user's password to be

logged. In October 2020 Quantstamp also published an audit report [47], which contained 4 high risk

issues (3 of them were �xed and 1 was acknowledged).

Both reports noted shortcomings in the SDLC process:

• Many dependencies (including core components like bbolt and libp2p) were outdated and included

known bugs;

• Many pieces of the code lack unit tests.

2.4 Teku

Teku is advertized as \built to meet institutional needs and security requirements"17 and includes basic

fuzz test suites, which notably cover the slashing mechanism.

BLS. Teku uses blst's Java bindings, with an additional wrapper layer in tech/pegasys/teku/bls/impl.

Networking. Own Java implementation in tech/pegasys/teku/networking/.

Open Issues. We did not �nd open issues that appeared directly security-related.

Audits In October 2020, Quantstamp complete an audit of Teku, whose details were published [48],

with documentation of issues' resolution.

3 BLS Signatures

What's known as \BLS signatures" encompasses the original 2001 Boneh-Lynn-Shacham pairing-based

signatures [28] and the 2018 collective signing extensions [25, 26] based on the 2003 work on aggregate

signatures. Under this umbrella term, BLS signatures are:

• Deterministic

• Non-interactive

• Short (one group element)

• Simple, given a pairing operator

• Easily adapted to support collective signing operations:

– Aggregation of signatures and public keys for n-of-n signing

– Threshold signing (t-of-n)

15https://docs.prylabs.network/docs/prysm-usage/web-interface/
16https://github.com/prysmaticlabs/prysm/issues/7514
17https://consensys.net/knowledge-base/ethereum-2/teku/
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– Batch veri�cation

For a similar security level, in the single-signature setting, BLS signing is about as fast as with ECDSA or

Schnorr signatures, but veri�cation is slower because of the two pairings involved18. E�cient aggregation

is the feature that drove Ethereum to choose BLS signatures and was described as \a pragmatic medium-

term solution to the signature veri�cation bottleneck of sharding and Casper" [34]. Note that BLS

signatures are not post-quantum.

We provide a high-level description of BLS signatures, where we tried to use notations close to those

in the IETF draft. We only describe the functional operation and do not include the security checks.

BLS signatures use a non-degenerate bilinear pairing19 e : G1 × G2 → G, where G1 and G2 are

distinct isomorphic groups, thus of same prime order. The pairing satis�es

• e(P +Q,R) = e(P, R)e(Q,R)

• e(P,Q+ R) = e(P,Q)e(P, R)

which implies e(nP,Q) = e(P, nQ) = e(P,Q)n for a scalar n.

A key pair is (scalar SK, point PK = SK× P), where P is a generator of the curve's group, which can

be G1 or G2, but the beacon chain uses G1 so we'll stick to this convention (see details in §3.1).
Signing a message M consists in hashing the message to a curve point, denoted H2C : {0, 1}? → G2

and multiplying it with the secret key:

SK× H2C(M) ∈ G2

Verifying a signature S of a message M then consists in computing two pairings and checking their

equality: e(PK,H2C(M)), and e(P, S), where P is the generator of G1 such that SK× P = PK. Indeed,

e(PK,H2C(M)) = e(SK× P,H2C(M)) = e(P,H2C(M))SK = e(P,SK× H2C(M)).

3.1 Beacon Chain Integration

Ethereum adopted BLS signatures as speci�ed in the IETF BLS signature draft [27, Ap.A], which uses

the BLS12-381 parameters speci�ed in [50, §4.2.1], including the group G1 and G2 de�nition. BLS12-381

is an instance of the Barreto{Lynn{Scott family BLS12 [24] proposed by Zcash [29]20. But this is not

alarming [22].

The hash-to-curve algorithm is the one speci�ed in the v09 of the Internet Draft \Hashing to Elliptic

Curves" [35] (based on [51,58]). Speci�cally, the variant used is BLS SIG BLS12381G2 XMD:SHA-256 SSWU RO POP ,

which uses the \minimal-pubkey-size" parameter, or the convention of using public keys in G1 and sig-

natures in G2.

The IETF draft not only describes the mathematical, functional operations but aims to be an imple-

mentable speci�cation, including:

• Security pre-condition veri�cation (such as checking that points belong to the right subgroup and

are not the identity).

• Encoding and decoding to/from bytes.

• Clear subroutines for each operation.

• Mitigation against rogue-key attacks via proofs of private key possession.

• Cipher suites de�nition.

• Test vectors (to appear in the �nal version).

18See benchmarks in https://www.mintlayer.org/news/2021-05-17-why-mintlayer-adopts-bls-signature/
19Although BLS signatures were proposed in the paper titled \Short Signatures from the Weil Pairing", they now usually

rely on the Ate pairing, discovered after that paper was published, and are more e�cient than Weil's pairing.
20Whereas a 128-bit security level is usually expected of BLS12-381 BLS signatures, it's strictly speaking allegedly lower

than 120, as discussed in [50, §3.2] and [41, p8].
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This is a challenging and commendable e�ort, that will likely contribute to more consistent and safer

implementations. In practice, implementations may di�er a bit, for example when implementing the

following CoreVerify algorithm:

1. R = signature_to_point(signature)

2. If R is INVALID, return INVALID

3. If signature_subgroup_check(R) is INVALID, return INVALID

4. If KeyValidate(PK) is INVALID, return INVALID

5. xP = pubkey_to_point(PK)

6. Q = hash_to_point(message)

7. C1 = pairing(Q, xP)

8. C2 = pairing(R, P)

9. If C1 == C2, return VALID, else return INVALID

This returns the same INVALID for all error types, whereas implementations may return di�erent error

codes and/or messages. We can imagine scenarios where returning the same INVALID error could facilitate

certain attacks (fault injection with inaccurate faults), but in Ethereum's use case it's unlikely to be an

issue.

We reviewed that the security checks mandated by the IETF draft were done correctly in each

implementation (and reported a number of issues):

1. \IKM MUST be infeasible to guess"

2. \IKM MUST be at least 32 bytes long."

3. \Implementations of the underlying pairing-friendly elliptic curve SHOULD run in constant time."

(With respect to the key, not necessarily the message.)

4. The security checks de�ned by pubkey subgroup check(), signature subgroup check(), KeyValidate(),

and PopVerify() are properly implemented, used where they must be, and their return value pro-

cessed correctly processed.

5. hash to point() and hash pubkey to point() functions implemented using a secure hash-to-

curve algorithm.

6. Each implemented signature scheme is protected against rogue-key attacks [49], with the exception,

by design, of FastAggregateVerify()

7. The secret key SK must be \such that 1 ≤ SK < r", and thus enforced at generation and signing.

Note that the second version of the IETF draft did not include the identity check in the key validation,

only the subgroup check. This may be a source of confusion if implementers refer to an older version of

the document.

Depending on the usage of BLS signatures, additional security checks may be needed. For example,

in a use case where distinct signers jointly issue a signature, it may be valuable to check that all public

keys are distinct. Also, \splitting-zero attacks" [46] highlight a property that an attacker can determine

combinations of private keys such that the sum aggregate will be zero21.

3.2 Aggregation and Rogue-Key Attacks

The Aggregate function of the IETF draft adds up signatures into a single point, then AggregateVerify

takes a signature (aggregated) R, n public keys PKi and as many messages Mi and veri�es that all

messages are distinct, and computes the product

n∏
i=1

e(PKi,H2C(Mi)) =

n∏
i=1

e(SKi × P,H2C(Mi)) =

n∏
i

e(P,SKi × H2C(Mi)) = e(P, R)

21See also https://github.com/cryptosubtlety/zero.
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and veri�es that it matches e(P, R).

When the same message is signed by all parties, the sequential computation of pairings can be

replaced by additions and a single pairing. This is done in the FastAggregateVerify function, which must

come with proofs of possession of the public keys' private keys, to thwart rogue-key attacks.

Rogue-key attacks allow an attacker to forge aggregate signatures of the same message given one

or more public keys of other signers. The idea is that given a public key PK1, an attacker can create

PK2 = r× P − PK1, therefore r×H2C(M) = (SK1 + SK2)×H2C(M) will be a valid aggregate signature

of M|with the caveat that the attacker doesn't know SK2 = r− SK1.

This attack works when the aggregation includes duplicate messages. A mitigation is thus to ensure

that all messages signed are distinct, but this eliminates large classes of important use cases. Another

mitigation is to force each user to prove that they know their private key, which is why the IETF

draft includes proofs of possession (the routines PopProve, PopVerify), which are essentially single-signer

signature and veri�cation. However, it may be unclear to readers that the \fast" veri�cation routine

FastAggregateVerify must be accompanied with some assurance, as a previous proof of possession, that

signers know the private key.

Note that [25] describes a trick to create an aggregation mechanism that does not require proofs

of possession to be safe against rogue-key attacks, by multiplying each signature by the hash of its

corresponding public key. However, this variant is not speci�ed in the IETF draft and is not used in

Ethereum clients.

3.3 Fast Batch Verification

To verify multiple aggregate signatures e�ciently, Buterin proposed an e�ciency optimization [31], which

is implemented by all the clients we reviewed in this paper. However, no formal speci�cation or security

analysis is available, and the IETF draft does not describe it. This technique works as follows, given n

aggregate signatures Si, each over mi messages:

e(Si, P) =

mi∏
j=1

e(Pi,j,Mi,j), i = 1, . . . , n

The naive method thus consists in checking these n equalities, which involves n +
∑n

i=1 mi pairing

operations.

One can further aggregate signatures to slightly reduce the number of pairings, as follows: the veri�er

generates n random values 1 ≤ ri < n, and aggregates all aggregate signatures into a single one:

S? = r1S1 + · · · rnSn

the veri�er also \updates" the signed messages (as their hashes to the curve) to integrate the coe�cient

of their batch, de�ning

M ′
i,j = riMi,j, i = 1, . . . , n, j = 1, . . . ,mi

Then veri�cation can be done by checking

e(S?, G) =

n∏
i=1

mi∏
j=1

e(Pi,j,M
′
i,j)

Veri�cation thus saves n− 1 pairing operations, but adds n+
∑n

i=1 mi scalar multiplications. However,

if the veri�cation fails then the veri�er can't tell which (aggregate) signature is invalid.

The security goal of batch veri�cation is that it should succeed if and only if all signatures would

be individually successfully veri�ed, when one or more (possibly all) of the signers may be maliciously

colluding. See [32] for a rigorous treatment of batch veri�cation security.

The post and thread [31] include a basic analysis and discuss variants and optimizations. It is easy

to verify that this rewriting of the veri�cation works, as long as the ri's are in [1, r) and that group
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elements have been properly validated to be non-zero. We noted that several of the beacon clients did

not include this safety check, but they added it after we reported the problem.

As the post describes, random coe�cients are required to prevent a trivial attack:

the randomizing factors are necessary: otherwise, an attacker could make a bad block where

if the correct signatures are C1 and C2, the attacker sets the signatures to C1+D and C2−D

for some deviation D. A full signature check would interpret this as an invalid block, but a

partial check would not.

Furthermore, we note that a generalization of this attack will work regardless of the random coe�cient

size if subgroup validation is not done: if deviations D1 and D2 are chosen as element of an order-p

subgroup, and signatures submitted are S1 = (C1 +D1) and S2 = (C2 +D2), then r1D1 = −r2D2 with

chance 1/p, in which case the weighted deviations will cancel themselves out, and veri�cation will pass.

Details and further analysis appear in a recent post that we contributed to [23].

3.4 Implementations

The main implementation of BLS signatures is the blst project22 (\blast") from Supranational. blst's

BLS logic is written in C, with some x86 64 and ARMv8 assembly for core arithmetic operations, and

the project provides bindings for Go, and Rust, as well as partial support for Python, Java, and Node.js.

blst is described as \focused on performance and security", and indeed shows good attention to

security, with safety checks and a number of comments in the code related to security mitigations and

design choices. For example, the blst team attempts to document how to use its APIs and the users'

responsibilities, as in the following:

The essential point to note is that it's the caller's responsibility to ensure that public keys

are group-checked with blst p1 affine in g1. This is because it's a relatively expensive

operation and it's naturally assumed that the application would cache the check's outcome.

Signatures are group-checked internally.

Di�erent clients have a di�erent approach, but most validate the key upon deserialization of the bytes

object and creation of a public key object (see for example the discussion in https://github.com/

ConsenSys/teku/issues/4025). Worth noting too, blst warns users of confusing aspects of the API,

noting for example that

unlike what your intuition might suggest, blst sign * doesn't sign a message, but rather a

point on the corresponding elliptic curve

and that

Another counter-intuitive aspect is the apparent g1 vs. g2 naming mismatch, in the sense

that blst sign pk in g1 accepts output from blst hash to g2, and blst sign pk in g2

accepts output from blst hash to g1. This is because, as you should recall, public keys and

signatures come from complementary groups.

blst was audited by NCC, covering all the code from the assembly arithmetic up to the Go and Rust

bindings [40], reporting mostly low-severity issues. Third-party bindings exist for Java (ConsenSys/jblst

used in Teku), Nim (status-im/nim-blscurve, used in Nimbus), and TypeScript (ChainSafe/blst-ts).

4 Slashing

The slashing mechanism aims to disincentivize \bad" behavior from the validators by applying penalties

on the validator revenue and eventually excluding it from the network. At the same time, slashing

22https://github.com/supranational/blst
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incentivizes reports of such behavior by o�ering a \whistleblower reward" to the validator that submits

a proof of a validator's misbehavior.

Slashing is part of the Ethereum reward and penalty mechanism, but should not be confused with

the penalty mechanism that punishes a node for being o�ine or for a miscast vote, which are unlikely

to be malicious activities. Instead, slashing punishes behavior that violates the protocol de�nition and

that could potentially jeopardize the consensus' security. Speci�cally, slashing punishes validators that

• As proposers, propose di�erent beacon blocks for the same slot

• As attesters, sign conicting attestations

The high-level workow is then the following:

1. slasher services monitor proposed blocks and attestations for invalid ones

2. When a slasher detects a slashable event among proposed blocks and attestations, it communicates

to a validator (other than the one guilty) a ProposerSlashing or AttesterSlashing object

3. The validator submits the slashing into a block

4. Other validators verify the slashing proposal correctness, and if the block is validated then the

validator that proposed the slashing receives a whistleblower reward

A list of slashing events is available at https://beaconscan.com/slots-slashed.

The logic of Ethereum's slashing actions is de�ned23, in slash validator() and process slashings(),

while processing of slashing objects is de�ned in process proposer slashing() and process attester slashing().

4.1 Protection

Slashing happens when a slasher detect a behavior similar to a potentially malicious one, but in practice

such behavior may occur accidentally rather than maliciously. For example, validators may attempt

to minimize downtime (and associated penalties) by running multiple instances behind a load balancer,

however a faulty setup can lead to two instances proposing conicting blocks. The �rst slashing event al-

legedly happened for such a reason24. Accidental slashing can be in part due to a missing or compromised

attestation history, for example, when migrating a validator's database. The Ethereum speci�cations

include some recommendations, such as25:

before a validator client signs a message it should validate the data, check it against a local

slashing database (do not sign a slashable attestation or block) and update its internal slashing

database with the newly signed object.

EIP-3076 [2] (\Slashing Protection Interchange Format") was created to prevent such accidental slashing,

by de�ning a standard JSON-based record format to migrate validator histories across instances' of a

beacon client. All the beacon clients reviewed support EIP-3076: Lighthouse and Nimbus store data in

an SQLite database, Teku in a YAML �le, and Prysm in the validator's BoltDB instance. Validators then

attempt to prevent accidental slashing by identifying contradictions between new events and previously

recorded events (proposals, attestations) to prevent accidental slashable events. Note that di�erent

clients may implement slightly di�erent policies26.

Such protections work when multiple client instances use the same data directory (datadir) and

database, but are ine�ective if instances run independently with the same key, for example, failover

instances on another infrastructure.

Given EIP-3076-based protection, as users get more experienced, and risks are better documented,

we can expect accidental slashings to vanish on the long run.

23https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md#slash_validator
24https://beaconcha.in/validator/20075
25https://github.com/ethereum/eth2.0-specs/pull/2107/files
26https://ethereum-magicians.org/t/eip-3076-validator-client-interchange-format-slashing-protection/

4883/2
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4.2 Security Model

The security goals of the slashing mechanism are to disincentivize adversarial abuse, and to prevent

circumvention of the detection mechanism:

1. A dishonest validator should not be able to misbehave in such a way that they can't be detected

(and then slashed), or that another (innocent) validator is slashed instead of them. This would

happen if all slashers were ine�ective at a given epoch, for example.

2. A malicious validator should not be capable of enticing another validator into unknowingly com-

mitting a slashable o�ense, so that the malicious validator receives the whistleblower reward. This

may happen if circumstances are such that a validator switches to a failover instance with no

slashing protection.

Examples of attacks on slashing have been described27. However, under the assumptions described, an

attacker can do more damage than just collecting whistleblower rewards or blackmailing the validator.

Additionally, potential issues can come from

• Errors, such as miscalculations of rewards, when receiving multiple slashing attestations, and in-

cluding multiple in a block (note that MAX ATTESTER SLASHINGS=2 and MAX PROPOSER SLASHINGS=16)

• Leverage of invalid slashing attestations for malicious purposes; note that a validator proposing an

invalid slashing attestation is not penalized, let alone slashed.

Failures of slashing can come from:

• Flaws in the slashing logic, as speci�ed,

• Implementation errors of said logic, or

• Via the creation of a state under which slashing is ine�ective.

Our review focused on the second aspect, the implementation, which consists mainly in:

• Detection of slashing conditions, by slasher services. (See [38] for detection methods, and [21, 30]

for fundamental analysis and the concept of weak subjectivity.)

• Processing of slashing attestations, by validators.

4.3 Implementations Review

In all clients' validator implementations, we checked the correct implementation of the speci�cation's

is slashable validator(), is slashable attestation data, slash validator(), process slashings(),

process attester slashing(), process proposer slashing(), as well as use of the correctness of the

constants' values.

We found implementations to be consistent with the speci�cations, and only noted that Nimbus'

implementation can bypass signatures veri�cation in check proposer slashing() (which implements

the logic of the specs' process proposer slashing()) when the skipBlsValidation is set. This ag

seems to only be used for test routines, but otherwise it would allow the slashing of innocent validators

(from the perspective of a Nimbus validator).

We did not �nd aws in Teku's slashing implementation, but it's the implementation we found the

hardest to parse, and the one we are the least con�dent in.

!4 Recommendation: Review the way slasher services detect slashing conditions, and how it could be

abused. (We did not thoroughly review this part.)

27https://ethresear.ch/t/global-slashing-attack-on-eth2/6703
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5 P2P Networking

Ethereum uses [3] the libp2p [8] multi-transport stack for secure transport between peers. Speci�cally,

Ethereum uses the libp2p-noise [17] Noise-based [18] protocol, which superseded the SECIO protocol28.

libp2p-noise uses the Noise XX pattern over the curve Curve25519, with a few twists. libp2p-noise

bootstraps from long-term identity keys, as opposed to Noise static keys, and updates Noise static keys

regularly, signing new keys with the identity key, and including this signature in a handshake payload.

The Ethereum networking speci�cation [3] de�nes the following network security goals:

• Peer authentication

• Con�dentiality

• Integrity

• Non-repudiation

• Non-replayability

• Perfect forward secrecy

Let's review to what extent these are satis�ed.

5.1 libp2p-noise Implementations

At the time of writing, libp2p has 7 native implementations [7] including implementations in Go, Rust,

Nim, TypeScript, and one in Java. There are three ways to implement a Noise pattern:

• Implement a Noise version (called \pattern") from scratch

• Use a reference implementation in the corresponding programming language

• Use the automatically generated template for a target pattern

Prysm, Lighthouse and Teku use libp2p-noise versions based on the corresponding reference imple-

mentations of Noise: ynn/noise29, mcginty/snow30, and rweather/noise-java31, respectively. Nimbus'

libp2p-noise reimplements Noise XX pattern from scratch32, which is arguably riskier than using an

established implementation. Lodestar uses a Noise XX implementation generated from Noise Explorer.

We reviewed the implementations' security and correctness with respect to the Noise XX speci�cation,

using as a baseline the ynn/noise Go package, recently audited33) and the Noise speci�cation document.

We discovered a nonce overow issue in the js-libp2p-noise library34 (used in the Lodestar client) , which

we traced back to a bug in Noise Explorer35, which js-libp2p-noise is using. The problem is the following:

the Noise speci�cation36 says in §5.1 that

n: An 8-byte (64-bit) unsigned integer nonce. The maximum n value (264 − 1) is reserved

for other use. If incrementing n results in 264 − 1, then any further EncryptWithAd() or

DecryptWithAd() calls will signal an error to the caller.

However, the Noise Explorer templates use the following code:

type cipherstate struct {

k [32]byte

n uint32

}

(...)

func encryptWithAd(cs *cipherstate, ad []byte, plaintext []byte) (*cipherstate, []byte) {

28https://blog.ipfs.io/2020-08-07-deprecating-secio/
29https://github.com/flynn/noise
30https://github.com/mcginty/snow
31https://github.com/rweather/noise-java
32https://github.com/status-im/nim-libp2p/blob/master/libp2p/protocols/secure/noise.nim
33https://cure53.de/pentest-report_turbotunnel.pdf
34https://github.com/NodeFactoryIo/js-libp2p-noise
35https://noiseexplorer.com/patterns/XX/
36https://noiseprotocol.org/noise.html#the-cipherstate-object
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e := encrypt(cs.k, cs.n, ad, plaintext)

cs = setNonce(cs, incrementNonce(cs.n))

return cs, e

}

The lack of integer overow check combined with the shorter nonce can cause the session key and

nonce to be reused after multiple messages. Despite the fact that js-libp2p-noise uses the \number" type

instead of real uint32 type, the implementation is still vulnerable since nonces are converted to bytes37

using the �xed number of bytes. Noise Explorer acknowledge the issue and �xed it.

5.2 libp2p-noise Protocol Security

5.2.1 Static Keys Signatures Replay

Libp2p-noise extends the Noise XX pattern by introducing identity keys, or long-term keys, and using

Noise static keys between ephemeral and long-term keys: implementations may generate a new static

keypair for each session or a single static keypair may be generated when libp2p-noise is initialized and

then used for all sessions.

To authenticate the static key used in the Noise XX handshake, libp2p-noise includes in the handshake

protocol NoiseHandshakePayload = (id key, id sig, data)message containing a signature of the static public

key computed with the identity private key: in Noise terms id sig = Sig(id key, data), where id key is the

sender's identity private key and data is the \noise-libp2p-static-key:" string followed by sender's static

public key s pub 38.

The signature is computed over the sender's static public key without any unpredictable challenge

from the corresponding peer. So, the used static key authentication mechanism violates the basic au-

thenticated key agreement protocol design principle: \Ephemeral leakage should not allow for long-term

impersonation" [39]. In this case, the sender proves knowledge of the signature over the static public

key, but not access to the identity private key within the current session. For example, if an attacker

�nds a triple (s pub, s priv,Sig(id key, s pub)) for the identity key id key of the target user then they will

be able to impersonate this user without any limitation in the future. As a result, if an attacker is able

to sign a static public key once then they will be able to impersonate the identity key owner forever.

This may occur if the attacker has temporary access to a signing module, or if the static key and the

signature are leaked to the attacker.

!4 Recommendation: Consider implementing mitigation such as using a peer's ephemeral public key (re)

as an unpredictable challenge in signing data = "noise-libp2p-static-key : " || re || s.

5.2.2 No DoS Countermeasures

Libp2p was designed to support multiple transport protocols (TCP, UDP, QUIC, etc.). All datagram-

based secure transport protocols (e.g., DTLS, IPsec, WireGuard) provide protection against denial-of-

service (DoS) attacks. For instance, WireGuard's Noise IK-based protocol uses cookies to authenticate a

session initiator and has a second message that is smaller than the �rst message to prevent ampli�cation

attacks.

No such defense is implemented in libp2p-noise, thus an attacker could ood the responder with

session initiation messages and force them to compute exponentiations. The initiator could also spoof

its origin address and exploit the data ampli�cation provided by Noise XX, whose �rst is 32-byte and

the second is 192-byte, or a potential 6× ampli�cation factor (without early data).

We believe that at present time this risk is mitigated by TCP mechanisms.

37https://github.com/NodeFactoryIo/js-libp2p-noise/blob/master/src/handshakes/abstract-handshake.ts#L50
38https://github.com/libp2p/specs/tree/master/noise#the-libp2p-handshake-payload
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5.2.3 Early Data Insecurity

The libp2p-noise speci�cation states the following related to early data (payloads): \These payloads

MUST be inserted into the �rst message of the handshake pattern that guarantees secrecy. In practice,

this means that the initiator must not send a payload in their �rst message. Instead, the initiator will

send its payload in message 3 (closing message), whereas the responder will send theirs in message 2

(their only message)"

According to Noise XX security properties [18], the second message with payload provides forward

secrecy, however, the sender has not authenticated the responder, so this payload might be sent to

any party, including an active attacker. So an active attacker can just establish a connection with the

responder host and get the early data.

5.2.4 Identity Hiding

The Ethereum speci�cation doesn't mention identity hiding as a security goal, but we observed that it

inherits identity hiding from Noise XX. many Noise patterns by design including Noise XX. The payload

security and identity-hiding properties of the original Noise XX handshake pattern are as follows:

• The responder's static public key is encrypted with forward secrecy but can be probed by an

anonymous initiator

• The responder's handshake payload is encrypted with forward secrecy, depending on an ephemeral

key, but the payload might be sent to any party

• The initiator's static public key is encrypted with forward secrecy to an authenticated party

• The initiator's third handshake message payload is encrypted with forward secrecy for an authen-

ticated party

The static public keys and handshake payloads in libp2p-noise thus have similar security properties.

Note however that libp2p-noise transmits identity keys in handshake payloads, and uses them instead of

Noise temporal static keys, while statics keys are updated for each session (and are thus not long-term

peer identi�ers). The identity hiding of Noise XX with respect to static keys thus applies as well to

identity keys in libp2p-noise.

5.2.5 No Non-Repudiation

Although non-repudiation is stated as a security goal, libp2p-noise does not provide non-repudiation

for transport messages. This would require digital signatures with the sender's (identity, static, or

ephemeral) key, however only the second and third handshake messages are signed.

5.3 discv5 Handshake

Ethereum consensus nodes [3] discover each other using the Node Discovery Protocol Version 5.1 (discv5) [16].

discv5 is a UDP protocol that works with self-certi�ed, exible Ethereum node records (ENRs) and topic-

based advertisement, both of which are requirements in this context. At the time of writing, the discv5

speci�cation is still a work in progress.

discv5 aims to provide:

• Network tra�c encryption to protect against passive observers

• Authentication, insofar as peers are known and trusted on a TOFU basis

• Network tra�c obfuscation to prevent tra�c mangling, naive blocking of the protocol messages

using hard-coded packet signatures, and trivial sni�ng

Most of the design requirements and security goals of discv5 are devoted to the protocol application

logic (e.g., Kademlia redirection, replay of NODES or PONG response packets, tra�c ampli�cation,

Sybil/eclipse attacks), and don't address secure transport mechanisms. An implicit assumption is that

17



all communications should be encrypted and authenticated, protecting topic searches and record lookups

against passive observers. The discv5 design document states the following:

• The handshake protocol protects against passive observers but is not forward-secure and active

protocol participants can access node information by simply asking for it

• Since the handshake performs cryptographic operations (ECDH, signature veri�cation for di�erent

algorithms) performance of the handshake is a big concern

• discv5 handshake reduces the risk of computational DoS because it costs as much to create as it

costs to verify and cannot be replayed.

5.3.1 Protocol

This is a simpli�ed description of the discv5 handshake from a cryptography perspective, based on its

speci�cation39. The handshake protocol involves the sending of the following discv5 messages, whose

headers include a �xed-length �eld static header de�ned as protocol-id || version || flag ||

nonce || authdata-size, where nonce is a random 96-bit value, used for AES-GCM authenticated

encryption.

In the following, node A (initiator) wishes to communicate with node B (responder). Node A knows

node B's identity (that is, its identity key). In our description, B does not know A and never communi-

cated with A.

1. A sends its identity key and a nonce to B, as a FINDNODE message.

2. B initiates the actual handshake by sending as a challenge a WHOAREYOU packet comprising:

• A random 128-bit id-nonce �eld.

• A sequence number �eld enr-seq set to zero.

3. A then:

• Generates an ephemeral key pair (ephemeral-key, ephemeral-pubkey) (using the specs' no-

tations).

• Uses B's identity key dest-pubkey to derive session keys from DH(ephemeral− key, dest− pubkey)

(using HKDF).

• Computes the signature �eld using its identity private key (and the elliptic-curve signature

scheme used by the instance), signing a message comprising the challenge data (as sent by

B), ephemeral-pubkey, and B's identi�er.

• Sends ephemeral-pubkey, signature, and a payload encrypted with the derived keys.

4. B veri�es signature, derives keys and decrypts the payload, and responds with a NODES message

(encrypted using the derived recipient-key).

5. A veri�es that it can decrypt B's message, and then considers B's identity veri�ed and the session

keys valid.

5.3.2 Security

The discv5 speci�cation claims that protocol messages are secure against \passive observers". However,

the security goals and design rationale are unclear, in particular regarding:

• The authentication asymmetry: a responder uses static Di�e-Hellman, while the initiator uses

signatures.

• The use of static Di�e-Hellman (and no ephemeral-ephemeral combination). An authenticated

key agreement doesn't necessarily require static Di�e-Hellman, a signature and ephemeral Di�e-

Hellman can be used instead.
39https://github.com/ethereum/devp2p/blob/master/discv5/discv5-theory.md
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• If the protocol considers a passive attacker only then the handshake protocol may not use authen-

tication at all, since Di�e-Hellman key agreement is secure against a passive attacker but insecure

against an active attacker.

It follows that forward secrecy holds for sender compromise only: if the responder's static private key is

compromised, the past messages can be decrypted. Moreover, a passive observer can decrypt all future

messages sent by a sender to the responder on the y.

We believe that the protocol's security can be improved without any changes in the current ow or

RTT number and slightly a�ecting performance. As an illustration, we show how the Noise KK pattern

can be used as a basis.

First, note that \Ordinary message packet"40 contains A's identi�er id-nonce corresponding to the

static public key. So, on the step 3, A and B knows identities (static public keys) of each other. So, the

new protocol can be de�ned as follows:

1. A sends its identity key and a nonce to B, as a FINDNODE message

2. B initiates the actual handshake by sending as a challenge a WHOAREYOU packet comprising:

• A random 128-bit id-nonce �eld.

• A sequence number �eld enr-seq set to zero.

3. A then:

• Generates an ephemeral key pair (source-ephemeral-key, source-ephemeral-pubkey).

• Performs DH(source-ephemeral-key, dest-pubkey), DH(source-key, dest-pubkey).

• Mixes the outputs of DH using HKDF and derives session keys.

• Computes signature using its identity private key, signing a message comprising the challenge

data (as sent by B), source-ephemeral-pubkey, and B's identi�er.

• Sends source-ephemeral-pubkey, signature, and a payload encrypted with the derived

keys.

4. B:

• Veri�es signature, performs DH(dest-key, source-ephemeral-pubkey),

DH(dest-key, source-pubkey), derives keys and decrypts the payload.

• Generates an ephemeral key pair (dest-ephemeral-key, dest-ephemeral-pubkey).

• Performs DH(dest-ephemeral-key, source-ephemeral-pubkey),

DH(dest-key, source-ephemeral-pubkey).

• Mixes the outputs of DH using HKDF and derive session keys.

• Responds with dest-ephemeral-pubkey and a NODES message (encrypted using the derived

key).

5. A:

• Receives B's ephemeral public key, performs DH(source-ephemeral-key, dest-ephemeral-pubkey),

DH(source-ephemeral-key, dest-pubkey).

• Verifes that it can decrypt B's message, and then considers B's identity verifed and the session

keys valid.

This pattern seems to provide the highest security guarantees (number 2 and 5) in Noise terms for all

next messages (e.g., FINDNODE, PING, PONG, etc.), but a more thorough analysis is needed if discv5

will consider using it.

Another concern is that \sig-size" (signature size), and \eph-key-size" (ephemeral key size) �elds

of a handshake message's \authdata-head" are not authenticated: the values are not used either in

40https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#ordinary-message-packet-flag--0
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key agreement or signing. At the time of writing, \sig-size" and \eph-key-size" are constants in the

v4 scheme. The traditional approach is to compute the handshake transcript hash, by hashing the

concatenation of all messages sent and received during a handshake. If both sides do not compute the

same transcript hash, the connection must be aborted.

5.4 Gossipsub Peer Scoring

Gossipsub is an extensible publish/subscribe protocol over libp2p. The v1.041 implements a pub-

lish/subscribe model in peer-to-peer networks. The v1.142 is a set of security extensions addressing

protocol attacks. In June 2020, Least Authority completed an audit43 of the Gossipsub v1.1 design and

its implementation built on the libp2p library. The report identi�ed the peer scoring mechanism as high

risk for the following main reasons:

• A node can leak scoring information

• The peer scoring mechanism can adjust the network and increase its centralization

The risk is that the peer scoring mechanism be abused to prevent detection of malicious nodes, or

ag honest nodes as malicious or unreliable. The current mechanism is similar to a linear regression

model: weights (coe�cients) are estimated by an algorithm based on the past behavior of the system.

However, the weights of the score function are theoretically evaluated, the violation thresholds are �xed

heuristically. For instance, the Lighthouse team writes44:

These are initial values based on theoretically expected numbers and are likely to change

during further simulations (...) We theoretically calculated expected scoring parameters

based on reasonable network variables (such as expected delay between packets, expected

duplicates, rate of messages, and topic sizes).

It is hard to determine and empirically evaluate to what extent such weights are \good enough" to

prevent abuse and to adequately model the notion of good behavior in order to maintain a reliable

system. Theoretical estimates risk not representing reality accurately enough, while purely empirical

ones risk \over�tting" by expecting future behavior to reect the past.

Evaluation and simulations validated the soundness of the proposed model, but may not be su�-

cient in an adversarial scenario. We shared our concerns with the authors of the original Gossipsub

research [57].

6 API Implementations

Beacon clients expose the Beacon Node API [4] for querying the beacon node, as API used by validators to

determine their assigned duties, submit block proposals, etc. Each beacon client has its own speci�cities

regarding the API:

• Nimbus uses JSON-RPC 2.045 and HTTP-JSON interfaces, and listed some security recommenda-

tions46.

• Lighthouse implements the standard and non-standard RESTful APIs47 for the beacon node and

the validator client48.

• Prysm implements the API (used only by Prysm) using gRPC49 and also exposes HTTP-JSON

version of the API.
41https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md
42https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.1.md
43https://leastauthority.com/blog/audit-of-gossipsub-v1-1-protocol-design-implementation-for-protocol-labs/
44https://hackmd.io/FxenPiVmT5WR3c7eScR-gA
45https://github.com/status-im/nimbus-eth2/blob/stable/docs/the_nimbus_book/src/api.md
46https://github.com/status-im/nimbus-eth2/issues/1665
47https://lighthouse-book.sigmaprime.io/api-lighthouse.html
48https://lighthouse-book.sigmaprime.io/api-vc.html
49https://docs.prylabs.network/docs/how-prysm-works/ethereum-2-public-api/
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• The both API services of Prysm may be secured by TLS with default cipher suites.

• Teku implements additional API endpoints (e.g., log level, peer scores, etc.).

6.1 Requests Validation

We evaluated the API implementation based on industry-standard best practices, notably relying on the

OWASP lists [43, 44] of security controls50. Applicable controls from this reference include for example

signaling errors with appropriate response statuses, checking Content-Type correctness, and so on. The

Ethereum speci�cations [4,5] says little about the security requirements of the API, but mentions these

aspects: \All requests by default send and receive JSON, and as such should have either or both of the

"Content-Type: application/json" and "Accept: application/json" headers." However, not all clients do

this:

• Teku handles requests with arbitrary Content-Type and Accept headers ignoring them and using

application/json.

• Lighthouse rejects requests with wrong Content-Type header but accepts arbitrary Accept headers

and also uses application/json.

• Prysm ignores those headers.

Another requirement is that \JSON schema validation is in place and veri�ed before accepting input":

• Teku performs JSON validation and responds with \Unrecognized �eld" error message if unknown

�elds are found.

• Lighthouse and Prysm accept requests with unknown �elds and process input ignoring them, at

the same time they do respond with a deserialize error message if a �eld value has a wrong type.

6.2 Exposure

The beacon node API speci�cation [4, 5] does not specify authentication requirements, and claims that

the API is public: \The API is a REST interface, accessed via HTTP, designed for use as a public

communications protocol"51. Exposing the API publicly leaves the service potentially vulnerable to

external attacks and abuse, and is in general not necessary. Some clients thus recommend to only serve

the API locally, or to authorized hosts, for example:

• Teku: \Only trusted parties should access the REST API. Do not directly expose these APIs

publicly on production nodes."52:

• Lighthouse: \the API should only be exposed to localhost or a restricted set of IPs on an internal

network"53, and \Do not expose the beacon node API to the public internet or you will open your

node to denial-of-service (DoS) attacks."54.

We nonetheless identi�ed a few hosts exposing the API publicly, by scanning IPv4 addresses for beacon

API endpoints on the ports known to be used for this API (e.g., 3500, 5051, 5052). We found 20

Lighthouse instances, 0 Nimbus, 5 Prysm, and 5 Teku. See §8 for methodology details.

6.3 Authentication

Prysm protects gRPC connections using TLS55, allowing a validator to authenticate a beacon node (but

not the other way). Otherwise, clients don't provide authentication mechanisms to restrict access to the

beacon node API. At best, they inform users via a warning in the documentation that the API must not

50https://github.com/OWASP/ASVS/blob/master/4.0/en/0x21-V13-API.md
51https://github.com/ethereum/eth2.0-APIs#outline
52https://docs.teku.consensys.net/en/latest/Reference/Rest_API/Rest/
53https://github.com/sigp/lighthouse/issues/2468#issuecomment-882936767
54https://lighthouse-book.sigmaprime.io/api-bn.html#security
55https://docs.prylabs.network/docs/prysm-usage/secure-grpc/
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be exposed to untrusted parties. Note that in some contexts, server-side request forgery (SSRF) could

be exploited to access the beacon node API, if an authorized service is vulnerable to SSRF.

Lighthouse uses logging to deliver authentication tokens (described below) for Web UI, and Prysm

has a feature request 56, suggesting the same approach (\the validator client can generate a random auth

token and log it to stdout + write it to a �le to persist it"). This approach is insecure by design and is

considered known as unsafe practice in web application security.

6.4 Lighthouse Validator Client API

Lighthouse implements a custom API, called Validator Client API [13]. Since the validator client (VC)

can be used to access validator keys, the GUI accessing it must be authenticated. The security protocol

between a VC and a browser-based GUI is described in a GitHub issue57 and in the Lighthouse book [13].

In this protocol, the VC has a key pair and signs its responses (ECDSA-secp256k1), while the public key

is passed by the GUI in the request. Note that these two references di�er slightly: the former requires

a signature over HTTP response headers and body, but the latter for its body only.

A problem with this protocol is that replays of signed responses are possible, because the signed data

does not include an unpredictable challenge or a timestamp. Adding a \Date" header in the HTTP

headers would partially mitigate this.

We also reported some bugs in the implementation of the protocol:

• The implementation doesn't require an API token for POST and PATCH requests58.

• A signature is computed over HTTP response body without headers59.

• API keys60 and tokens61 are stored locally with insu�cient permissions restrictions (644).

6.5 API Denial of Service

The Ethereum networking speci�cation [3] comments on potential DoS vectors and corresponding pro-

tection. For instance, it contains a BeaconBlocksByRange request/message potentially vulnerable to

DoS. All clients have already implemented or are implementing62 rate limiting for P2P network and

RPC mechanisms.

However, we found other endpoints vulnerable to DoS and not protected in clients' implementations:

For example, /eth/v1/validator/duties/attester/fepochg requests the beacon node to provide a set of

attestation duties, which should be performed by validators, for a particular epoch. Its request body

contains an array of the validator indices for which to obtain the duties. So epoch and validator indices

parameters directly a�ect performance and liveness.

We used two tests to assess response time. Tests were performed on clients with default settings.

In the �rst test, we send requests where the payload is a big array of the validator indices for which

to obtain the duties (e.g., an array with n indices [1, 2, ..., n], where n is 300, 600, 1000) and the epoch

is the current epoch. We observed that some client nodes responded with delay (e.g., for 830 indices

payload the delay was 100 seconds), others stopped responding to all requests for a long time.

time curl -i -s -k -X 'POST' \

-H 'accept: application/json'

-H 'Content-Type: application/json'

-d '[$Payload]' \

'http://$BeaconNodeAPIHost:$Port/eth/v1/validator/duties/attester/$CurrentEpoch'

56https://github.com/prysmaticlabs/prysm/issues/9188
57https://github.com/sigp/lighthouse/issues/1269#issuecomment-649879855
58https://github.com/sigp/lighthouse/issues/2512
59https://github.com/sigp/lighthouse/issues/2511
60https://github.com/sigp/lighthouse/issues/2437
61https://github.com/sigp/lighthouse/issues/2438
62https://github.com/status-im/nimbus-eth2/issues/1359
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The second test, where the payload contains one index, but the epoch is a historic epoch. For
instance, we observed requests completed in more than 40 seconds if the distance between epochs is 5
(e.g., the current epoch is 64555, the old epoch is 64550). If the distance between epochs is 155 (e.g., the
current epoch is 64555, the old epoch is 64400) the response time was about 3 minutes. The problem
here is that it is necessary to load historic data from a database.

time curl -i -s -k -X 'POST' \

-H 'accept: application/json'

-H 'Content-Type: application/json'

-d '[1]' \

'http://$BeaconNodeAPIHost:$Port/eth/v1/validator/duties/attester/$OldEpoch'

We reported this issue to Lighthouse63, Nimbus64, and Prysm65. There are beliefs that such attacks

can not be prevented by input validation in the considered application domain. Because of that, the

issue is a good example of why authentication is needed as a mitigation mechanism and what an attacker

can perform if the beacon node API is accessible on the internet.

6.6 BLS Remote Signer HTTP API

This simple API66 allows a validator client to request signatures to a service storing private keys, such

as a key vault or a hardware security module (HSM). In most deployments, such a signing service should

explicitly authenticate the requester, to prevent signing data from any party.

The API has been implemented by Teku67, Prysm68, and Lighthouse69.

Lighthouse does not yet implement security mechanisms, Teku implements mutual authentication

(mTLS), and Prysm's documentation says it also authenticates both parties, however the implementation

only authenticates the services. We reported70 the latter issue.

7 Supply Chain Risk Analysis

Software vulnerabilities can be in the project's own code, or in any component of its \supply chain",

that is, third-party code that the application depends on, down from the CPU microcode, hypervisor,

operating system, language runtime, external APIs, but mainly from explicitly called packages, modules,

libraries, which we'll just call dependencies. In our context, as far as we know, all dependencies are

open-source71.

External dependencies increase the security risk, because of:

• The sheer amount of dependencies (and thus of code) in modern applications; the more code, the

more bugs.

• The automatic download and update from remote hosts which, although authenticated, can break

compatibility, introduce new pre-conditions or security limitations.

• The uneven maturity of dependencies' development lifecycle, and the varying reliability of their

test suites.

• The common open-contribution model, where changes can be proposed by any stranger, with often

little quality assurance or accountability

• The lack of guarantee or liability of any kind, as typically stated in open-source licenses

63https://github.com/sigp/lighthouse/issues/2468
64https://github.com/status-im/nimbus-eth2/issues/2734
65https://github.com/prysmaticlabs/prysm/issues/9247
66https://eips.ethereum.org/EIPS/eip-3030
67https://docs.teku.consensys.net/en/latest/Tutorials/Configure-External-Signer-TLS/
68https://docs.prylabs.network/docs/wallet/remote/
69https://github.com/sigp/lighthouse/tree/stable/remote_signer
70https://github.com/prysmaticlabs/remote-signer/issues/14
71Closed-source dependencies bear di�erent types of risks, which have been discussed at length in multiple articles and

posts.
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• Security audits of an application usually not covering its dependencies

• Application developers' testing framework focused on the application's code

• Many abandoned, deprecated, unmaintained projects

• Version pinning to vulnerable and outdated components [33]

The risk can then materialize as:

• A greater density of bugs in dependencies than in the parent application

• A greater delay between a bug identi�cation/reporting and patching in dependencies

• Active sabotage, such as via \hypocrite commits" [59]

• \Dependency confusion" attacks72

• Software \supply chain" attacks injecting malicious code into a software package to compromise

the dependent systems [42,55]

• Typosquatting and \combosquatting" attacks through package manager ecosystems [53,56]

To better understand this risk, we propose a number of indicators that we considered in our evaluation

of the beacon clients, but that are generally applicable to software projects. We describe how to par-

tially automate the collection of indicators, then discuss the values observed and the limitations of our

approach, �nally, we o�er concrete recommendations for beacon clients developers.

7.1 Related Work

The security assurance level of modern software is scary: \80% or more of most applications' code

comes from dependencies", reported GitHub's 2020 Octoverse study [6]. Synopsys reported [52] that

85% of audited projects contained components that were outdated for over four years or inactive for over

four years. The 2020 Linux Foundation & Harvard FOSS contributor survey revealed that only 32%

of respondents used dependency analysis tools and that security measures (signed commits, 2FA) are

rarely enforced.

Several initiatives were created to raise awareness and reduce the risk associated to dependencies, for

example:

• Google created the Open Source Vulnerabilities (OSV) platform https://osv.dev, which o�ers

an API to query if a given version of a component has known vulnerabilities. Google also cre-

ated the Open Source Insights tool at https://deps.dev, which provides information about the

dependencies, including security advisories, and dependency graphs.

• GitHub maintains the https://github.com/advisories database of security advisories and o�ers

extensive documentation about supply chain security73, including dependency graph and automatic

version update (with Dependatbot).

• The Linux Foundation created http://sigstore.dev, to provide free certi�cates and tools to

automate and verify signatures of software components, to defend software supply chain attacks.

• OWASP provides the Dependency Check platform74, a tool \ tool that attempts to detect publicly

disclosed vulnerabilities contained within a project's dependencies"

In addition to these, there are a lot of commercial and free open-source software composition analysis

tools (such as Synopsys's Black Duck), which will attempt to inventory open-source dependencies and

more generally identify third-party code, in order to match it against databases such as the National

Vulnerability Database75.

72https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
73https://docs.github.com/en/code-security/supply-chain-security
74https://owasp.org/www-project-dependency-check/
75https://nvd.nist.gov/
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7.2 Characterizing Dependencies

In this section, we list the characteristics of a dependency and discuss how they relate to the risk of

failure or sabotage from a beacon client perspective.

As we describe in detail in §7.3, it is in general easy to automatically enumerate all dependencies

via language-speci�c tools, or simple scripts (see Appendix B). To better assess the relative importance

of dependencies for a project, it would be valuable to determine how much of the code and API of

a dependency is used by the parent project. But this requires more complex tools, so we restricted

ourselves to identifying dependencies.

A further limitation is when dependencies are not inventoried by the package manager, but are

directly copied into the code tree as source code or compiled libraries. Speci�c software is then needed

to identify these.

Version. Outdated versions are indisputably an indicator of potential security issues. Indeed, older

versions can contain unpatched vulnerabilities, and also have lower performance and general quality

(although recent versions can also be less stable). However, some projects might refrain from updating

to newer versions unless the older versions create a security risk: newer versions may be less stable and

include performance or stability regressions.

It is generally easy to automatically determine dependencies versions, via the package manager or

simple scripts.

Known Vulnerabilities. Known vulnerabilities include all the unpatched known to exist security issues

in a project, as published via security advisories, online articles, and public issue trackers, for example.

This does not include documented security limitations and design choices.

Of course, relying on a vulnerable component does not mean that the parent project can be exploited

via this vulnerability: the a�ected code in the dependency may not be used, or the parent project may

not provide an attack vector to exploit the vulnerability. As noted in [45]:

The vast majority (81%) of vulnerable dependencies may be �xed by simply updating to a

new version, while 1% of the vulnerable dependencies in our sample are halted, and therefore,

potentially require a costly mitigation strategy.

To automate the detection of known vulnerabilities, language-speci�c platforms can be used (such

as RustSec for Rust, via cargo-audit. However, these won't report bugs for which an o�cial advisory

wasn't created, for example, bugs in the issue tracker.

Degree. The set of actual dependencies of a project is not a at list, but a graph that includes direct

dependencies as well as all dependencies-of-dependencies. We call direct dependencies �rst-degree,

dependencies of a direct dependency second-degree ones, and so on. Note that the same dependency

may occur at di�erent places in the dependency graph, and under di�erent versions (for example, code

auditors will be familiar with multiple versions of the rand in Rust).

As a rule of thumb, a parent project is likely to be dependent on a direct dependency than a higher-

degree one (a greater fraction of the code and API are used than for a high-degree dependency), but this

varies a lot. However, higher-degree dependencies are less visible to developers, less likely to be noticed

by auditors, and thus better targets for backdoors.

Dependency listing tools and scripts usually provide a way to determine the dependencies of a given

degree.

Language. Memory-safe languages are intrinsically safer than (say) C/C++, because memory-safety

(almost) eliminates the whole class of memory corruption bugs, which are arguably the main cause of

exploitable vulnerabilities.
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The beacon clients reviewed are written in memory-safe languages, and so are most of their depen-

dencies, but they may still be exposed to memory corruption bugs via dependencies in other languages

(Prysm has C++ dependencies, for example), language limitations (Go can SIGSEV76, for example), or

\unsafe" components such as Rust's unsafe blocks77.

It is, in general, easy to automatically determine if a project has direct dependencies in other lan-

guages, but it is trickier for dependencies. Indeed, third-party code in a di�erent language may not be

managed via the language's package manager, or might be directly embedded in the code as C (e.g. via

cgo) or assembly.

Criticality. It is tempting to categorize dependencies in categories such as

• Critical: Code that performs cryptographic operations or processes attacker-controlled input (de-

serialization, parsers, etc.).

• Non-critical: The rest.

Indeed, a failure of or bug in such critical components is more likely to have more severe consequences

for users. However, when it comes to sabotage and backdoors, the situation is a bit di�erent. Indeed,

maintainers and code auditors will likely pay less attention to non-critical dependencies, such as a package

to change the color of a button in the UI. On the one hand, ultimately all dependencies execute code at

the same privilege level, and can potentially (for example) access the �lesystem. On the other hand, a

harmful modi�cation in a non-critical component will likely be more visible and obvious than one in a

critical component, where a change of a single line or single character may have a dramatic impact.

Identifying critical components generally requires manual review, and is hard to extend to the whole

dependency graph. In the beacon clients reviewed, critical components include for example BLS signa-

tures logic (blst and wrappers thereof).

Popularity. The more a project is used and established, the more likely bugs are to be detected and �xed.

A simple indicator of an open-source project's popularity is its number of GitHub stars (or equivalent

rating on other platforms). This can be easily collected via GitHub's API.

SSDLC Quality. Does the project have a CI pipeline with extensive testing and code coverage estimates?

Are static analysis tools used? Has the project been audited by external experts? Are reported issues

addressed in a timely manner? These aspects, and others related to secure development lifecycle, are a

major indicator of a project's risk assurance. We discuss some of these points in §2.

7.3 Methodology

This section describes how we collected information about each project's dependencies, providing repro-

ducible instructions and documenting the limitations of our approach.

Lighthouse (Rust). Rust's package manager is Cargo and the dependencies are de�ned in Cargo.toml

�les, wherein the [dependencies] section lists the project's dependencies. The Cargo.lock lock�le is

generated by Cargo to provide a deterministic state of the build, Lighthouse's Cargo.toml looks like

this:

[package]

name = "lighthouse"

version = "1.3.0"

authors = ["Sigma Prime <contact@sigmaprime.io>"]

edition = "2018"

[features]

76https://blog.stalkr.net/2015/04/golang-data-races-to-break-memory-safety.html
77https://shnatsel.medium.com/auditing-popular-rust-crates-how-a-one-line-unsafe-has-nearly-ruined-everything-fab2d837ebb1
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(...)

[dependencies]

beacon_node = { "path" = "../beacon_node" }

tokio = "1.1.0"

slog = { version = "2.5.2", features = ["max_level_trace"] }

sloggers = "1.0.1"

types = { "path" = "../consensus/types" }

bls = { path = "../crypto/bls" }

(...)

Various Cargo extensions help in analyzing dependencies:

• cargo-audit utility78 reviews dependencies for known vulnerabilities recorded in the RustSec

database [19].

• cargo-tree creates a tree view.

• cargo-depgraph79 creates dependency graphs using cargo-metadata and Graphviz.

• cargo-deps80 is another tool to create graphs, requiring though the manifest to not be virtual.

• cargo-real-deps81 lists dependencies for speci�c packages in the workspace and speci�c build

parameters (which proved useful for Lighthouse, as its workspace has a virtual manifest);

• cargo-geiger utility82 reviews the usage of unsafe blocks.

• cargo-udeps �nds which dependencies in Cargo.toml are unused.

• cargo-outdated83 reveals which components have a newer version available.

• cargo vendor can vendor all dependencies in a local directory.

Not all of these proved applicable to our analysis, and we notably used cargo-update to look at the

Cargo.lock lock�le and update all the dependencies that have a higher version than the one de�ned.

Although not exactly the desired functionality, the output can prove useful to �nd and count the outdated

dependencies. Appendix B.1 contains the script we used.

Prysm (Go). Go projects list dependencies in the go.mod �le and the command go list -m all pro-
vides additional information. The -u ag can be used to fetch the latest version available for each module
required is listed. Some projects might include the legacy method with a vendor/, but Prysm uses Go
modules. A project using Go modules can vendor all its dependencies in a local directory using the
command go mod vendor Prysm's go.mod looks like this:

module github.com/prysmaticlabs/prysm

go 1.16

require (

contrib.go.opencensus.io/exporter/jaeger v0.2.1

github.com/StackExchange/wmi v0.0.0-20210224194228-fe8f1750fd46 // indirect

github.com/allegro/bigcache v1.2.1 // indirect

github.com/aristanetworks/goarista v0.0.0-20200521140103-6c3304613b30

github.com/bazelbuild/buildtools v0.0.0-20200528175155-f4e8394f069d

(...)

The go.mod �le includes only the direct dependencies and some indirect (with the su�x // indirect),

when those are not listed in the go.mod �le of the direct dependency or if the direct dependency does

not have a go.mod �le. Also, any dependency that is not imported in the module's source �les is

marked as // indirect. To collect all Prysm dependencies, we also used the go-mod-outdated84 util-

ity, which produces a Markdown table view of the go list -u -m -json all listing all dependencies

78https://github.com/RustSec/rustsec
79https://crates.io/crates/cargo-depgraph/
80https://crates.io/crates/cargo-deps
81https://github.com/Geal/cargo-real-deps
82https://github.com/rust-secure-code/cargo-geiger
83https://crates.io/crates/cargo-outdated
84https://github.com/psampaz/go-mod-outdated
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of a Go project and their available minor and patch updates. Our script to collect information on Prysm

Appendix B.2 uses that tool.

The nancy utility85 by Sonatype can then be used to automatically search for entries in vulnerability

databases, from the output of go list -json -m all.

Furthermore, as noted in DEPENDENCIES.md86, \Prysm is go project with many complicated

dependencies, including some c++ based libraries." The latter are managed via Bazel, including precom-

piled libraries for convenience, for which the source code is not included. Bazel is also used to integrate

local patches to Prysm's dependencies, \to make a small change (...) for ease of use in Prysm".

Teku (Java). The two main package managers in Java are Gradle and Maven. Teku uses Gradle, which

describes the dependencies in the build.gradle con�guration �le. A list of dependencies (direct and

indirect) can be obtained via gradle -q dependencies [37] which provides a good visualization of

the dependency tree. Also, a useful tool is the build scans for the Gradle feature provided in https:

//scans.gradle.com/ as well as developers can �nd information about the artifacts and their versions

in https://mvnrepository.com/. Teku's teku/build.gradle looks like this:

dependencies {

implementation 'com.google.guava:guava'

implementation 'org.apache.commons:commons-lang3'

implementation 'org.apache.logging.log4j:log4j-api'

runtimeOnly 'org.apache.logging.log4j:log4j-core'

runtimeOnly 'org.apache.logging.log4j:log4j-slf4j-impl'

testImplementation 'org.apache.tuweni:tuweni-junit'

testImplementation 'org.assertj:assertj-core'

testImplementation 'org.mockito:mockito-core'

testImplementation 'org.junit.jupiter:junit-jupiter-api'

testImplementation 'org.junit.jupiter:junit-jupiter-params'

testRuntimeOnly testFixtures(project(':infrastructure:logging'))

testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine'

testFixturesImplementation 'org.assertj:assertj-core'

(...)

}

Note that Gradle, unlike Cargo, resolves \version conicts" when two or more components use di�er-

ent versions of the same dependency: Gradle will choose the most recent version of all versions appearing

in the dependency graph, as described in Gradle's documentation87.

Additionally, each dependency is characterized by a Con�guration that de�nes its scope88 (for

example, for runtime, testing, building). Each con�guration has a speci�c con�gurable name, however,

many Gradle plugins have pre-de�ned con�gurations. This is the case for Teku. Based on their scope,

we decided to count only the direct dependencies with implementation con�guration.

Our script in Appendix B.4 �nds the number of direct dependencies, the number of total dependencies

and their maximal degree.

Nimbus (Nim). The Nim language has a package manager called Nimble, which lists dependencies in
.nimble �les 89. However, Nimbus does not use Nimble but instead lists dependencies as git submodules
in a vendor/ directory90. These include:

NimYAML @ ca82b5e

asynctools @ c478bb7

eth2-testnets @ 5b4e327

jswebsockets @ ff0ceec

karax @ 32de202

news @ 002b21b

85https://github.com/sonatype-nexus-community/nancy
86https://github.com/prysmaticlabs/prysm/blob/develop/DEPENDENCIES.md
87https://docs.gradle.org/current/userguide/dependency_resolution.html
88https://docs.gradle.org/current/userguide/dependency_resolution.html
89https://github.com/nim-lang/nimble
90https://github.com/status-im/nimbus-eth2/tree/stable/vendor
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Metric Lighthouse Nimbus Prysm Teku

Language Rust Nim Go Java

GitHub Stars 1.2k 212 2.2k 257

Direct dependencies 121 43 93 48

Total dependencies 440 56 665 230

Max degree of dependencies 15 3 13 13

Outdated versions 59 0 353 N/A

Vulnerable versions 5 0 5 18

CVEs 6 0 11 23

Last commit 10/06/21 05/08/21 10/08/21 06/08/21

Last release 10/06/21 05/08/21 03/08/21 28/07/21

Open issues 100 150 97 81

Closed issues 816 514 1999 1215

Table 3: Overview of the risk metrics, as of 20210810.

nim-bearssl @ 0a7401a

(...)

The vendor folder approach avoids incompatibilities in the case that two projects use a di�erent

version. For most dependencies, the version integrated is not a release but a certain commit, which may

introduce extra risks (non-release versions are likely to be less stable) if it is not frequently updated. In

comparison, the Nimble package manager always fetches and installs the latest release of a repository or

the latest commit if there are no releases or there is the #head as su�x.

Our script in Appendix B.3 lists the direct dependencies of a project through the .nimble �le.

However, this was not used for Nimbus, for which we just listed the content of vendor/. As the direct

dependencies were few and the max degree of them was three, the total dependencies were counted by

inspecting each component's .nimble �le.

7.4 Dependencies Review

This section describes the results of our dependencies review for the four beacon clients.

Table 3 describes the risk indicators to the four beacon clients reviewed. Below we comment further

on these results, and how we observed them evolve over time, which provides insights into the dependency

management of the projects.

Lighthouse (Rust). As of 20210730, Lighthouse had 5 dependencies with vulnerable versions.

• libsecp256k1 v0.3.5 was a�ected by CVE-2021-38195

• prost-types v0.7.0 was a�ected by CVE-2021-38192

• tokio v0.3.7 and v1.5.0 were a�ected by CVE-2021-38191

• crossbeam-deque v0.8.0 is a�ected by CVE-2021-32810

• hyper v0.13.10 and v0.14.7 are a�ected by CVE-2021-32714

• hyper v0.13.10 and v0.14.7 are a�ected by CVE-2021-32715

Except for the vulnerable crates, there were reported 13 unmaintained crates, the 9 of them were merged

to di�erent crates, 3 were totally unmaintained (one for over three years) and one was deprecated.

However, running the same analysis one month later gave di�erent results.

As of 20210824, Lighthouse had only 1 dependency with known vulnerabilities:

• openssl-src version 111.15.0+1.1.1k is a�ected by CVE-2021-3711 and CVE-2021-3712
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Figure 1: Lighthouse dependencies graph (excerpt).

This time, the tool reported only 2 unmaintained crates. Checking only after few days, developers had

patched the vulnerable component the next day of the CVE release in the Rust vulnerability database and

the report of the cargo-audit found no vulnerabilities. This suggests that the maintainers regularly

review their dependencies and upgrade the vulnerable components to their higher versions which �x

the security bugs. After searching several pull requests for Lighthouse, it was found that they make

use of bors bot [1] to run automated CI tasks. For Lighthouse, this includes both cargo-audit and

cargo-udeps.

As of 20210825, after running the cargo-update, Lighthouse was found to have 59 of the total depen-

dencies outdated. Figure 1 depicts a small part of the graph generated by using the cargo depgraph.

The fact that almost nothing is discernible con�rms the complexity of dependencies in such big projects

and how di�cult it is to monitor them and eliminate the attack vectors through them. Finally, the max

degree of the dependencies was 15, which was found by observing the di�erent alignments as printed by

the cargo-tree (see the script in Appendix B.1).

Prysm (Go). Figure 2 shows Prysm's dependency graph. As of 20210731, Prysm had 93 Go direct

dependencies, 45 out of which were outdated. In total, it had 599 dependencies, 332 out of which were

outdated. As of 20210831, a month later, the state was almost the same. 43 out of 91 direct dependencies

were outdated, as well as 369 out of the 658 total dependencies. Most of the outdated components were

the same.

As of 20210811, the nancy sleuth utility reported 2 vulnerable components. As of 20210605,

OWASP's Dependency-Check reported 37 vulnerable dependencies out of the 596 scanned. However,

after careful manual inspection, 32 of the 37 were found to be false positives. We also matched vulnera-

bilities against the Snyk91, and OSV databases. Table 4 reports the CVEs found in those 5 components.

Note that these results were obtained on the latest commit of the development branch at the time of

the test. It is possible that, prior to issuing a new release, the Prysm developers update all dependencies,

but we could not verify it.

91https://snyk.io
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Figure 2: Prysm dependencies graph, generated using https://deps.dev/.

Dependency Version Versions affected CVE

coreos/etcd v3.3.13 prior to v3.3.23 CVE-2020-15114

coreos/etcd v3.3.13 prior to v3.3.23 CVE-2020-15113

coreos/etcd v3.3.13 prior to v3.3.23 CVE-2020-15112

coreos/etcd v3.3.13 prior to v3.3.23 CVE-2020-15106

dgrijalva/jwt-go v3.2.0 prior to v4.0.0-preview1 CVE-2020-26160

hashicorp/consul/api v1.3.0 ≥ v1.2.0 prior to v1.6.6 CVE-2020-13250

hashicorp/consul/api v1.3.0 prior to v1.6.2 CVE-2020-7219

nats-io/nats-server/v2 v2.1.2 prior to v2.2.0 CVE-2020-28466

nats-io/nats-server/v2 v2.1.2 prior to v2.1.9 CVE-2020-26521

nats-io/nats-server/v2 v2.1.2 prior to v2.1.9 CVE-2020-26892

nats-io/nats-server/v2 v2.1.2 prior to v2.2.0 CVE-2021-3127

nats-io/jwt v0.3.2 prior to v2.0.1 CVE-2021-3127

Table 4: Overview of CVEs found in Prysm dependencies.
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Teku (Java). As of 20210727, Teku had 48 direct dependencies, counting only the components with the

con�guration implementation. In total, 230 dependencies are used in the Teku development, of which

18 included known vulnerabilities, as collected from the Snyk database:

• org.webjars:swagger-ui:3.25.2 is a�ected by SNYK-JAVA-ORGWEBJARS-575003

• org.web3j:rlp:4.6.2 is a�ected by SNYK-JAVA-ORGWEB3J-598385

• org.mozilla:rhino:1.7R4 is a�ected by SNYK-JAVA-ORGMOZILLA-1314295

• org.java-websocket:Java-WebSocket:1.3.8 is a�ected by CVE-2020-11050

• org.eclipse.jetty:jetty-webapp:9.4.31.v20200723 is a�ected by CVE-2020-27216

• org.eclipse.jetty:jetty-servlet:9.4.31.v20200723 is a�ected by CVE-2021-28169

• org.eclipse.jetty:jetty-server:9.4.31.v20200723 is a�ected by CVE-2021-34428, CVE-2020-27218

and CVE-2020-27223

• org.eclipse.jetty:jetty-io:9.4.31.v20200723 is a�ected by CVE-2021-28165

• org.bouncycastle:bcprov-jdk15on:1.66 is a�ected by CVE-2020-28052

• org.apache.commons:commons-compress:1.20 is a�ected by CVE-2021-35516, CVE-2021-35517,

CVE-2021-36090 and CVE-2021-35515

• io.vertx:vertx-core:3.9.1 is a�ected by CVE-2019-17640

• io.netty:netty-transport:4.1.56.Final is a�ected by CVE-2021-21290

• io.netty:netty-handler:4.1.51.Final is a�ected by CVE-2021-21290 and an SNYK-JAVA-IONETTY-

1042268

• io.netty:netty-common:4.1.56.Final is a�ected by CVE-2021-21290

• io.netty:netty-codec-http:4.1.51.Final is a�ected by CVE-2021-21290, CVE-2021-21295 and an

SNYK-JAVA-IONETTY-1020439

• io.netty:netty-codec-http2:4.1.51.Final is a�ected by CVE-2021-21295 and CVE-2021-21409

• commons-io:commons-io:2.6 is a�ected by CVE-2021-29425

• com.google.guava:guava:29.0-jre is a�ected by CVE-2020-8908

Nimbus (Nim)). As of 20210802, Nimbus had 43 direct dependencies, as included in the vendor folder.

In total, the project used 56 dependencies. After a manual investigation in the NVD and the Snyk

databases, no known vulnerability was found to a�ect the dependencies. Moreover, no dependency was

found to be outdated. As of 20210902, one month later, the results were the same. Having neither

vulnerable nor outdated dependencies seems ideal for the security of a project. The max dependency

degree was only three.

This lower \vulnerability surface" seems encouraging and a positive aspect of Nimbus. However, the

Nim language is much less established than Go, Java, or Rust, and the security of the language and its

runtime is arguably underanalyzed.

7.5 Discussion and Recommendations

The two main beacon client projects, Lighthouse and Prysm, each depend on hundreds of third-party

projects (cf. Table 3). These projects appear to pay attention to security in their dependencies, as only

5 out of hundreds had known vulnerabilities. Lighthouse seems to be more diligent, with CI checks and

more regular updates.

All projects, as all successful open-source projects, are ooded with issues in their GitHub Issues

tracker, and Prysm seems to be the more e�ective at processing and closing issues. For an attacker, open

issues and the associated discussions can be goldmines of information, especially when projects don't

document how to properly report security issues: Lighthouse and Prysm provide a dedicated contact

and a PGP key; Teku provides a dedicated but no PGP key; Nimbus does not describe any process.

From an attacker's perspective, Prysm appears to be the most attractive target: the most widely

used, the highest number of dependencies, and \lesser" secure SDLC procedures than Lighthouse.

Many direct dependencies of Prysm are from more trustworthy sources (from golang.org/x/, k8s.io/,

github.com/google/, for example), however, it also uses some wallet encryption project with 1 GitHub
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star (wealdtech/go-eth2-wallet-encryptor-keystorev4) among its direct dependencies. That said, as dis-

cussed in §7.2 under \Criticality", planning sabotage of such obviously security-critical projects might

not be the best approach for an attacker.

Beacon clients being critical components of the Ethereum environment, attackers may devote sig-

ni�cant resources to compromising them. Although the larger number of clients|and thus amount of

code|makes for a wider attack surface, and more bugs, we argue that from a risk management perspec-

tive some diversity of beacon clients is bene�cial. As Lighthouse developers argued92, \client diversity"

prevents coordinated failure of a large part of the network, as it happened after a Prysm bug.

Therefore, rather than encouraging the use of only Lighthouse and Prysm, we would more strongly

encourage 1) the deployment of nodes using all four beacon clients, and 2) all beacon clients to adopt

more mature security practices to prevent counterparty risks and supply chain attacks, including:

To reduce the risk of supply chain attacks (via known or maliciously introduced vulnerabilities),

beacon clients and

• Document and enforce a dependency management policy, notably setting criteria on the acceptable

dependencies.

• Integrate automatic checks for dependencies versions and vulnerability as part of the CI pipeline,

using language-speci�c tools and relevant GitHub features (Actions, dependabot93, etc.).

• Keep track of all the dependencies (direct and indirect) in a \software bill of materials", to have

visibility on the project's liabilities, and help in monitoring external projects.

• Minimize the number of third-party dependencies

• When security audits are organized, consider including the most critical external dependencies in

the scope.

• Use multiple sources and databases of vulnerabilities, and don't blindly trust composition tools'

results (check for false positives).

• Encourage or enforce signed commits for all contributors of the project (\hypocrite commits" may

not only be in dependencies).

8 Network Fingerprinting

Although nodes and validators addresses are by de�nition public, it doesn't mean that all client's services

are public too and can be exposed to the internet. For example, the beacon node API, as discussed

in §6. Moreover, exposing metadata such as a client type and version, operating system details, could

be leveraged by an attacker.

In this section, we thus analyze the visibility and discoverability of beacon clients, against internet

scans, and through host the host search engines Censys, FOFA, and Shodan.

8.1 Exposure Overview

Using the methodology from [36], we investigated the resistance of the beacon clients interfaces to

�ngerprinting techniques. Fingerprints may for example be used by an attacker to scan the internet and

look for:

• Clients running a given beacon client software (e.g., Nimbus), or a speci�c version (range) thereof.

• Clients with an insecure con�guration (e.g., the beacon node API exposed to the internet).

• Hosts with a given operating system version.

In general, Ethereum services are not trivially discoverable via search engines or hosts databases, because

Ethereum relies on non-standard protocols and APIs. However, most services will leak some metadata

that will permit their identi�cation. In particular, the Prysm's web interface, which can be identi�ed

92https://lighthouse.sigmaprime.io/switch-to-lighthouse.html
93https://github.blog/2021-04-29-goodbye-dependabot-preview-hello-dependabot/
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via favicon hash, HTML page title, and CSS keywords. Appendix A includes some search engine queries

we determined for all the beacon clients.

We found the most �ngerprinting-friendly components to be:

• /eth/v1/node/version Ethereum API endpoint: Retrieves the beacon node information about

its implementation in a format similar to an HTTP User-Agent header.

• /eth/v1/node/peers Ethereum API endpoint: Retrieves data about the node's network peers,

returning all peers.

• /lighthouse/peers and /lighthouse/peers/connected Lighthouse-speci�c API endpoints94:

Provide agent name and internal IP addresses for each listed peer.

• libp2p agent version: a free-form characteristic string, identifying the implementation of the peer95.

Note that a lot of information is available directly from the nodes: Lighthouse API's endpoint
/lighthouse/peers provides information about a peers' OS and client version retrieved from an agent
version:

"client":{

"kind":"Teku",

"version":"v21.3.2",

"os_version":"linux-x86_64",

"protocol_version":"ipfs/0.1.0",

"agent_string":"teku/teku/v21.3.2/linux-x86_64/oracle_openjdk-java-15"

}

All clients provide di�erent information in that �eld:

• Lighthouse: client name, client version, OS version

• Teku: client name, client version, OS version

• Nimbus: client name

• Prysm: client name, client version

It is unclear whether Nimbus' information is less verbose on purpose.
Also, the /lighthouse/peers/connected endpoint discloses IP-addresses of internal networks, for

example:

"peer_id":"26Uiu2HBmG7bMnsJPWE2t3PQNcgihtrsYr1kXtrtzEfh7QFvCwhEw",

"peer_info":{

"_status":"Healthy",

"client":{

"kind":"Lighthouse",

"version":"v1.4.0-3b600ac",

"os_version":"x86_64-linux",

"protocol_version":"lighthouse/libp2p",

"agent_string":"Lighthouse/v1.4.0-3b600ac/x86_64-linux"

},

"listening_addresses":[

"/ip4/54.169.172.126/tcp/9000",

"/ip4/127.0.0.1/tcp/9000",

"/ip4/10.0.48.248/tcp/9000",

"/ip4/192.168.0.104/tcp/9000"

]

}

Disclosing the private IP addresses does not seem necessary, and can help an attacker, for example

in SSRF-like attacks, as discussed in §6.3.

8.2 Clients Fingerprints Examples

For each client, we give an example of �ngerprint:

94https://lighthouse-book.sigmaprime.io/api-lighthouse.html
95https://github.com/libp2p/specs/blob/master/identify/README.md#agentversion
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Lighthouse. Instances can be found from endpoints served on port 520096, such as /eth/v1/node/version.
Here's an example of a response from a Lighthouse node:

{"data":{"version":"Lighthouse/v1.4.0-3b600ac/x86\_64-linux"}}''

Nimbus. Instances may be found from enpoints served on port 505297, by JSON RPC ports 9190 and

sometimes 909198, and in rare cases also by metrics on port 800899. Note that we couldn't discover

Nimbus nodes with a public REST API. A reason might be that Nimbus' REST API is in beta and

disabled by default, accessible locally only100.

Prysm. Instances can be found from their web interface, served by default on port 7500101. They can

be also identi�ed by the HTTP title "PrysmWebUi".

Teku. Instances can be found from endpoints served on port 5051102. Sometimes, Teku's API can be
found on port 5052. Here's an example of a response from a Teku node:

{"data":{"version":"teku/v20.11.1/windows-x86\_64/oracle-java-15"}}

Moreover, some Teku instances include Prometheus metrics on port 8008, which also exposes version
and other information, for example:

# HELP beacon_teku_version Teku version in use

# TYPE beacon_teku_version counter

beacon_teku_version{version="21.6.1+4-gca9294a",} 1.0

8.3 Nodes Discovery

We used the following base method to discover beacon nodes:

1. Take a list of the nodes found using the search engines

2. For each node from the list, query its API to retrieve the node's peers

3. Add the new nodes into the list

4. Scan potentially exposed network ports of the node

5. If possible, get a client name and version of the node using /eth/v1/node/version endpoint

6. Go to step 1 with a new extended list of nodes and repeat

We discovered about 12 000 nodes, using only the method described above without any P2P mecha-

nisms and libraries. All found nodes are depicted on Figure 3. This map can be seen as an indicator of

regional usage at a given point in time, but should not be seen as reliable evidence of the distribution

of each client's usage, because of the obvious biases (�ngerprints and scans reliability, exposure of the

service).

96https://lighthouse-book.sigmaprime.io/docker.html
97https://github.com/status-im/nimbus-eth2/blob/stable/beacon_chain/spec/network.nim#L33
98https://nimbus.guide/api.html
99https://github.com/status-im/nimbus-eth2/blob/stable/Jenkinsfile#L51
100https://nimbus.guide/rest-api.html
101https://github.com/prysmaticlabs/prysm-web-ui/blob/master/src/environments/environment.ts#L8
102https://docs.teku.consensys.net/en/latest/HowTo/Get-Started/Installation-Options/Run-Docker-Image/
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Figure 3: Geolocation of beacon clients identi�ed through �ngerprinting.
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A Fingerprinting Queries

The target Ethereum consensus clients can be enumerated using popular search engines (Censys, FOFA,

Shodan) and the queries listed below. The employed methodology can be de�ned as follows:

• Research the network interfaces of the clients and identify the unique patterns that can be used

for their recognition at scale.

• De�ne and express the patterns within search engines query languages.

• Discover and enumerate nodes using search engines.

• Analyze the e�ectiveness of this approach for each client.

The full methodology used for �ngerprinting can be found in [36]. For each query, we provide our

estimate of the level of con�dence that an identi�ed host is a target host (as opposed to false positives).

This reects the reliability of the �ngeprints and queries used to identify the host and a number of

possible false positives. Note that �ngerprints of some clients can't be expressed in all search engines

query language, or can be quite ine�ective due to high number of false positive hosts. In that case, we

didn't provide the queries below.

A.1 Lighthouse

Con�dence level: medium.

Censys.

• 443.https.get.headers.server:"Lighthouse/v1.3.0-3a24ca5/x86 64-linux"

• 443.https.get.body sha256:"3179d38cb95e71e83a9fd64d57257c74c52c27a35c7d515f7fa256221c308b3b"

Shodan.

• http.html:"code" http.html:"405" http.html:"METHOD NOT ALLOWED" http.html:"stacktraces"

• "server: Lighthouse" "http/1.1" 405 http.html:"METHOD NOT ALLOWED"

• "server: Lighthouse/v1.3.0-3a24ca5/x86 64-linux"

A.2 Nimbus

Con�dence level: medium.
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Shodan.

• "HTTP/1.1 411 Length Required" "Content-Length: 0" "Date" -"server" -"expires" -"cache"

port:8545

• "HTTP/1.1 411 Length Required" "Content-Length: 0" "Date" -"server" -"expires" -"cache"

port:9190

A.3 Prysm

Con�dence level: high.

Censys.

• 443.https.get.title:"PrysmWebUi"

FOFA.

• "prysmwebui"

Shodan.

• http.favicon.hash:1426715472

• http.title:"PrysmWebUi"

• http.component:"tailwindcss" http.component:"google font api" all:"prysmwebui"

• "Content-Length: 917" all:"eth"

A.4 Teku

Con�dence level: medium.

FOFA.

• header="Content-Length: 131" && header="Server: Javalin" && port="5051"

Shodan.

• "HTTP/1.1 404 Not Found" "Server: Javalin" "Content-Length: 131" "Content-Type: applica-

tion/json" "Date"

B Scripts

This section lists the scripts we used to �nd information about the beacon clients projects and their

dependencies. A large part of these scripts is generally applicable to any project in the same language.

B.1 Lighthouse (Rust)

#!/bin/bash

##### Calculating max degree of dependencies

# on macOS, make sure to use GNU sed (gsed)

# the --prefix option prints the depth value before each line

cargo tree --prefix depth | grep -v '^\s*$' | sed -e 's/[0-9]\+/ & /g' -e 's/^ \| $//'

| cut -d " " -f 1 | sort -u > depth.txt

echo -e "Dependencies max degree: $(cat depth.txt | wc -l)";
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##### Count all dependencies

cargo tree --prefix none | grep -v '^\s*$' | grep -v "(*)" | sort -u > all_dependencies.txt

sed -E 's/v[0-9]+\.[0-9]+.*$/ /g' all_dependencies.txt | sort -u > unversioned_all.txt

echo -e "Total dependencies: $(cat all_dependencies.txt | wc -l)";

echo -e "Total dependencies without version:

$(cat unversioned_all.txt | wc -l)";

##### Count direct dependencies

rm all.txt > /dev/null 2>&1

find . -name Cargo.toml -exec cat {} + >> all.txt

for file in all.txt

do

sed ':a;N;/\n\[.*\]/!s/\n/,/;ta;P;D' $file

| grep '\[dependencies]' | sed 's/,/\n/g'

| tail -n +2 >> direct

done

cat direct | sed '/dependencies]/d' | grep -v "path =" | cut -d " " -f 1 | awk 'NF' | grep -v '"'

| sort -u > direct_dependencies.txt

rm direct

echo -e "Direct dependencies: $(cat direct_dependencies.txt | wc -l)";

##### Generate dependency graph

cargo depgraph > graph.dot

cat graph.dot | dot -Tpng > graph.png

echo -e "Dependency graph of the project was created at the ./graph.png file";

B.2 Prysm (Go)

This script uses the https://github.com/KyleBanks/depth tool to help in visualizing the depth of

dependencies while printing a tree with alignments depending on the degree. We could not run the tool

against the Prysm, so we ran it for each of its dependencies that were GitHub projects. By leveraging

the di�erent alignments of the outputs, we found the max degree. Although it does not include all the

projects, it is a good estimation as the majority of modules are GitHub projects.

#!/bin/bash

##### Count total dependencies

go list -m -u all | sed '1d' > all_dependencies.txt;

echo -e "Total dependencies: $(cat all_dependencies.txt | wc -l)";

##### Count direct dependencies

awk "/require/{y=1;next}y" go.mod | grep -v "indirect" | sed -n '/)/q;p' > direct_dependencies.txt;

echo -e "Direct dependencies: $(cat direct_dependencies.txt | wc -l)";

##### Count outdated dependencies

go list -m -u -json all | go-mod-outdated -update -style markdown | sed '1,2d'> outdated.txt

echo -e "Total outdated dependencies: $(cat outdated.txt | wc -l)";

##### Count outdated direct dependencies

go list -m -u -json all | go-mod-outdated -update -direct -style markdown | sed '1,2d'> dir_outdated.txt

echo -e "Direct outdated dependencies: $(cat dir_outdated.txt | wc -l)";

##### Calculating max degree of dependencies

cat all_dependencies.txt | grep github | cut -d " " -f 1 > all_edit.txt

cat all_edit.txt | while read line

do

go run ~/go/pkg/mod/github.com/\!kyle\!banks/depth@v1.2.1/cmd/depth/depth.go $line >> tem

done

awk -F'[^ ]' '{print length($1),NR}' tem > tem2

var1=$(cat tem2 | sort -nr | head -1 | cut -d " " -f 1)

# max degree is equal to the max gap spaces /2 because there are 2 gaps for each gap,

#+1 because I run the script against the dependencies and not the lighthouse project

var2=$(expr $var1 / 2 + 1)

# estimation because I can run it only for some GitHub dependencies and not everything
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echo -e "Best estimation for dependencies max degree:";

echo $var2

B.3 Nimbus (Nim)

The following one-liner lists all the dependencies of a .nimble �le, the name of which is given as an

argument:

#!/bin/sh

perl -p -e 's/,\n/,/' $1 | grep requires | cut -d' ' -f2- | sed 's/ //g' | sed 's/,/\n/g'

B.4 Teku (Java)

The following script is suitable for projects using Gradle as a package manager, and extracts dependencies

with the con�guration implementation from all the build.gradle �les included in the project.

#!/bin/bash

##### Count direct dependencies

find . -name "build.gradle" -exec cat {} \; | grep "implementation" | grep -v "project(" | tr -s ' ' >output

sort -u output > direct_dependencies.txt;

rm output

echo -e "Direct dependencies: $(cat direct_dependencies.txt | wc -l)";

##### Count all dependencies

gradle -q dependencies | grep "\---" | grep -v "project " | cut -d "-" -f 4-7 | grep -v "(*)" | sed 's/->.*$/ /p'

| sed -E 's/:[0-9]+\.[0-9]+.*$/ /g' | sort -u > all_dependencies.txt

echo -e "All dependencies: $(cat all_dependencies.txt | wc -l)";

##### Calculating max degree of dependencies

gradle -q dependencies | sed 's/|/ /g' testfile | awk -F'[^ ]' '{print length($1),NR}' > depth.txt

# max degree is equal to the max gap spaces /5 (because there are 5 gaps for each degree)

# + 1 (as the 1st degree there is no gap)

echo -e "Dependencies max degree: $(expr $(cat depth.txt | sort -nr | head -1 | cut -d " " -f 1) / 5 + 1)";

B.5 GitHub

This Python script uses the GitHub REST API to extract useful project metadata: language, number

of stars, number of open issues, and date of hte last commit.

import sys

import requests

import argparse

import json

from termcolor import colored, cprint

parser = argparse.ArgumentParser(description='Beacon Client Dependencies scanner')

parser.add_argument('client', metavar='repo/project_name', type=str,

help='a beacon client GitHub repository for scanning')

parser.add_argument('file', metavar='filename', type=str,

help='output json file')

args = parser.parse_args()

client = args.client

fi = args.file

print(colored("Scanning... " + client, 'blue'))

try:

response = requests.get("https://api.github.com/repos/"+client, timeout=5)

response.raise_for_status()

date = response.headers["date"]

print(colored("Results, as of date: " + date, "magenta"))

dictionary = response.json()
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name = dictionary['name']

print(colored("Beacon client: " + name, "blue"))

language = dictionary['language']

print(colored("Written in " + language, "magenta"))

stars = dictionary['stargazers_count']

print(colored("It has " + str(stars) + " stars", "magenta"))

open_issues = dictionary['open_issues_count']

print(colored("It has " + str(open_issues) + "open issues", "magenta"))

last_update = dictionary['updated_at']

print(colored("Last commit at " + last_update, "magenta" ))

f = open(fi+".json", "w")

f.write(json.dumps(response.json(), indent=4))

f.close()

print("Response written in the " + fi + ".json file")

except requests.exceptions.HTTPError as httperror:

print(httperror)

except requests.exceptions.ConnectionError as connection:

print(connection)

except requests.exceptions.Timeout as timeout:

print(timeout)

except requests.exceptions.RequestException as requestexception:

print(requestexception)
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