
A Novel Asymmetri Sheme with StreamCipher Constrution
Jean-Philippe AumassonMaster's thesisSeptember 2006

Responsible:Prof. Serge VaudenayLASEC, EPFL

ii

"Tout e qui a pu se dire ontre la siene ne saurait faire oublierque la reherhe sienti�que reste, dans la dégradation de tantd'ordres humains, l'un des rares domaines ou l'homme se on-tr�le, s'inline devant le raisonnable, est non bavard, non violentet pur. Moments de la reherhe ertes onstamment interrom-pus par les banalités du quotidien mais qui se renouent en duréepropre. Le lieu de la morale et de l'élévation ne se trouve-t-il pasdésormais au laboratoire ?"Emmanuel Levinas (Le Monde, 19/20 mars 1978)

iii

iv

AknowledgementsFirst and foremost, I would like to thank my supervisor Prof. Serge Vaude-nay, his outstanding are and onern for students is exemplary. I am alsograteful to Matthieu Finiasz for his assistane and many LATEX tips.I address many thanks to Willi Meier for his relevant remarks and kind-ness, and to his student Simon K¶nzli for fruitful disussions about TCHO.My o�emates Salvatore Bohetti, Jean Monnerat, Florin Oswald, andRaphael Phan shall also be mentionned here, for their sporadi help andonstant sympathy.On the personal side, I am deeply indebted to my parents for makingthis expatriation possible, and �nally my most tender thanks go to Paula,for her support.

v

AbstratThis work is based on the publi-key stream ipher TCHO designed by Fini-asz and Vaudenay, whih relies on the hardness of �nding a low-weight mul-tiple of a given high-degree polynomial over the �eld F2 of arbitrary weight,and on the noisy deoding of the linear ode spanned by a linear feedbakshift register (LFSR). The enryption proedure is non-deterministi: it in-volves two LFSR's, and a soure of random bits of a given bias, whereasderyption onsists in an exhaustive searh algorithm and simple linear al-gebra operations.Until now, stream iphers were only symmetri, and asymmetri shemeswere somewhat di�ult to employ in onstrained environments, like portabledevies or passive RFID tags. In that sense, a seure publi-key ryptosystemwith stream ipher-like design would be a breakthrough.We �rst implement TCHO in software with a high-level language, andreate several algorithms to ompute a pseudo-random bitstream of givenbias from a soure of uniformly distributed random bits. We also adapt anoptimized algorithm omputing the output of a large LFSR, and brie�y studythe problem of testing the primitivity of a high-degree polynomial over F2.Experimental results stress out a prohibitive key generation and deryptiontime, in addition to limitations on the length of a plaintext, and a too highfailure probability in deryption.Then, by viewing the enryption as the ommuniation of a odewordof some yli linear ode over a binary symmetri hannel, we generalizethe onstrution and reate derived sheme, alled TCHO2. We suggest touse other odes than arbitrary LFSR ones, and study the remarkable aseof blok repetition odes, whih allow a deryption algorithm exponentiallyfaster, along with a sharp estimation of the error probability.We prove the semanti seurity of both TCHO and TCHO2, and pro-pose two hybrid onstrutions to build an IND-CCA seure system. We alsointrodue a new adversary model (ICCA), weaker than CCA, and study aonstrution for whih TCHO2 is IND seure in this model. Eventually, weexhib seure asymptoti parameters, and ompare to RSA.In the ultimate hapter, we present some weaknesses of the pseudo-random generator ISAAC.Part of this work lead to a submitted paper.vi

RésuméCe travail est basé sur un nouveau système à lé publique proposé par Finiaszet Vaudenay, possédant une onstrution de hi�rement de �ux propie àune implantation matérielle, se démarquant ainsi des systèmes asymétriquesourants néessitant des opérations arithmétiques non triviales, banissant dee fait l'utilisation de protooles basé sur des shemas asymétriques dansertains environnements, omme les tags RFID passifs.La séurité du système repose essentiellement sur la di�ulté de retrouverun multiple de poids faible d'un polyn�me de haut degré et de poids quel-onque sur le orps F2. L'algorithme de hi�rement est non-déterministe, etnéessite deux LFSR ainsi qu'une soure de bits pseudo-aléatoires d'un biaisdonné. Le déhi�rement onsiste en un algorithme de reherhe exhaustiveet de simples opérations d'algèbre linéaires.Nous implémentons tout d'abord TCHO dans un langage de haut niveau ;plusieurs algorithmes sont rées pour la prodution de la séquene pseudo-aléatoire, et un algorithme optimisé est adapté pour le fontionnement deLFSR longs de plusieurs milliers de bits. Experimentalement, le temps d'unegénération de lé et d'un déhi�rement s'avèrent prohibitifs, de plus ertaineslimitations sur la taille d'un message lair, ainsi qu'une probabilité d'erreurnon négligeable dans le déhi�rement et une grande expansion du hi�ré,rendent le système inutilisable en pratique.Nous proposons ensuite une variante, nommée TCHO2, réduisant expo-nentiellement le temps de déhi�rement, pour laquelle nous alulons pré-isement le taux d'erreur. La séurité sémantique de e nouveau système estprouvée sous ertaines hypothèses, et nous proposons deux onstrutions hy-brides garantissant l'indistinguabilité des hi�rés dans des attaques à hi�réhoisi adaptives. Un nouveau modèle d'adversaire est présenté (ICCA), danslequel nous étudions la séurité de TCHO2 et ertaines de ses variantes. Fi-nalement, nous étudions le omportement asymptotiques des paramètres dusystème, et omparons ave RSA.En�n, le dernier hapitre présente plusieurs faiblesses observées sur legénérateur pseudo-aléatoire ISAAC.Une partie de e travail a donné lieu à un artile soumis à publiation.vii

Note: Comme il est d'usage à l'EPFL, le rapport est rédigé en anglais,pour une meilleure aessibilité.

viii

Notations
Notation Name
Z set of integers
P set of prime numbers
Fq �nite �eld with q elements
Fq[X] ring of polynomials over Fq

Fn2 vetor spae of dimension n over F2

Md d-th Mersenne number: 2d − 1

Pr[E] probability of the event E, with ontextual probability law
Pr[F |E] probability of the event F onditioned to E's ourrene
← a�etation
$←− randomized a�etation (uniform law)
⌊x⌋ �oor: max{n|n ≤ x, n ∈ Z}

⌈x⌉ eil: min{n|n ≥ x, n ∈ Z}

⌊x⌉ nearest integer: n ∈ Z, ∀k ∈ Z, |x− n| ≤ |x− k|

x/y division operation
x|y division prediate: ∃z, x× z = y

gcd(x, y) greatest ommon divisor of x and y
e the transendental number: e =

∑

n≥0
1
n! ≈ 2.7182818

log x binary logarithm: log2 xix

lnx natural logarithm: loge x

n! fatorial: ∏n
k=2 k

(n
k

) binomial oe�ient: n!
k!(n−k)!

Poly (n) some polynomial funtion in n
M† transpose of the matrixM
deg(P) degree of the polynomial Pord(P) order of the polynomial P : min{k,Xk ≡ 1 mod P}wp(P) weight: number of non-zero oe�ients of the polynomial P
x||y onatenation of the bitstrings x and ywh(x) Hamming weight: number of non-zero bits in the bitstring x
x≪ k bitstring x left-shifted of k bits �à la C� (neither irular nor expanding)
LP LFSR with feedbak polynomial P
LP (x) idem, but initialized with the bitstring x
SLP (x) bitstream generated by LP (x)

Sγ random bitstream with bias γ
Sℓ bitstream S trunated to its �rst ℓ bits
P ⊗ S produt of a polynomial and a bitstream
O (g(n)) asymptoti upper bound: f(n) = O (g(n)) ⇐⇒ ∃c > 0, |f(n)| ≤ c|g(n)|

Ω(g(n)) asymptoti lower bound: f(n) = O (g(n)) ⇐⇒ ∃c > 0, |f(n)| ≥ c|g(n)|

o (g(n)) asymptotially negligible: f(n) = o (g(n)) ⇐⇒ limn→∞
f(n)
g(n) = 0

x

Contents
Aknowledgements vAbstrat viRésumé viiNotations viii1 Preliminaries 11.1 Terminology . 11.2 Information and oding . 21.3 Stream iphers . 41.3.1 Generalities . 41.3.2 The linear feedbak shift register 41.4 Publi-key ryptography . 81.5 Seurity de�nitions . 82 The TCHO sheme 122.1 Computational problems . 122.1.1 Finding a sparse multiple of a high-degree polynomial 132.1.2 Deoding a LFSR ode 142.1.3 The hidden orrelation problem 152.2 The publi-key sheme . 162.2.1 Key generation . 162.2.2 Enryption and deryption 172.2.3 Parameters seletion 172.3 Conlusion . 183 Implementation of TCHO 193.1 Linear feedbak shift register 193.1.1 Algorithm . 193.1.2 Analysis . 203.2 Pseudo-random generation with given bias 213.2.1 Choie of a random soure 22xi

3.2.2 Algorithm G1 . 233.2.3 Algorithm G1+ . 253.2.4 Algorithm G2 . 273.2.5 Algorithm G3 . 293.2.6 Algorithm G4 . 303.2.7 Conlusion . 333.3 Primitivity testing of a high-degree polynomial 333.3.1 Proportion of primitive polynomials 333.3.2 Known deterministi tests 343.3.3 Using a non-primitive polynomial 353.3.4 A �lter for primitive polynomials 363.3.5 Conlusion . 383.4 Key generation . 383.5 Enryption and deryption . 393.6 Experimental results . 394 The TCHO2 sheme 424.1 Presentation . 424.2 LFSR odes with trinomials 434.3 Blok repetition odes . 434.3.1 Desription and reliability 434.3.2 Experimental results 454.4 Asymptoti parameters . 464.5 Comparison with other ryptosystems 474.6 Conlusion . 475 Seurity 485.1 One-wayness and non-malleability 485.2 Semanti seurity . 495.2.1 A su�ient ondition 495.2.2 Distinguishing a noisy LFSR from random 495.3 Hybrid enryption IND-CCA seure 505.3.1 KEM/DEM . 505.3.2 Fujisaki-Okamoto revisited 515.3.3 Pratial onerns . 526 Derived onstrutions 536.1 TCHO2 over Fq . 536.1.1 Desription . 536.1.2 Reliability . 536.2 A weakly seure sheme with redued expansion 556.3 Towards IND seurity against hosen-iphertext adversaries . 566.3.1 De�nitions of ICCA and IPA 566.3.2 Notion of valid iphertext and IND-ICCA seurity . . . 59xii

Conlusion 62Referenes 63Appendies 70A Weak initial states in ISAAC 70B The Blum-Goldwasser asymmetri stream ipher 77C Number of irreduible and primitive polynomials 77

xiii

Chapter 1PreliminariesThis hapter introdues the bakground knowledge required to understandthe developments following. The reader familiar with ryptology may skipmost of the hapter.1.1 TerminologyThe logarithm in base 2 is denoted log, and the natural logarithm ln. The�oor and eiling of a real number r are respetively denoted ⌊r⌋ and ⌈r⌉,while the nearest integer is denoted ⌊r⌉.An element of F2 is alled a bit hereafter. An element of Fn2 is alled abitstring, where n may be �nite or in�nite. Its length |x| is its number ofbits. Its Hamming weight wh(x), or simply weight, is its number of ones.The Hamming distane between two bitstrings x and y of equal length is thenumber of positions where x and y di�er. The onatenation of x and y is
x||y. The sum over F2 is denoted +, and the produt · or ×. A bitstring
x an be written (x1, x2, . . . , xn), and (0, . . . , 0) an simply be denoted 0.The sum of two bitstrings of equal length returns a bitstring, and is de�nedas a sum omponent by omponent. It is symbolized as the usual additionby the sign +, we will sometimes use the neologism �to xor� to denote thisoperation. A bitstream is a bitstring of potentially in�nite length produedby some devie or bit soure, and shall be denoted by the symbol S withontextual subsript. The symbol Sℓ refers to the bitstream S trunated toits �rst ℓ bits.Elements of the ring F2[X] are simply alled polynomials hereafter. Tolighten notations, a polynomial P (X) is written P . The degree of a polyno-mial P is denoted deg(P), and its weight wp(P) is its number of non-zerooe�ients.If we speak about random bits, or random sequene, et., it is eitheruniform or non-uniform randomness, and spei�ed only where the meaningan be ambiguous. When no probability ditribution or spae is spei�ed,1

randomly hosen means randomly hosen among all the objets of that kind,with respet to a uniform probability law. We may simply all uniform bitsa sequene of uniformly distributed random bits, and biased bits a sequeneof random bits with a ertain bias.The statistial distane between two probability ensembles D1 and D2over {0, 1}n is de�ned as
D =

∑

x∈{0,1}n

|Pr
D1

[x]− Pr
D2

[x]|.We shall use the aronyms CCA, CPA, IND, NM, and OW, respetivelystanding for the usual notions of adaptive hosen iphertext attak, ho-sen plaintext attak, indistinguishability, non-malleability, and one-wayness.Corresponding de�nitions are realled in a further setion.Finally, we introdue the natural values ceasy and chard, hosen suh thatan algorithm of time omplexity below 2ceasy is onsidered as feasible, butintratable over 2chard (hoosing ceasy = 40 and chard = 80 seems reasonabletoday).1.2 Information and odingWe reall that the length n of a ode C is the �xed number of symbols ofa odeword, while the distane d of a ode (or minimum distane) is theminimal Hamming distane between two odewords. We will only onsiderbinary odes, i.e., where the alphabet is {0, 1}.Introdued in 1948 by Claude E. Shannon [Sha48℄, information theoryis strongly related to oding and deoding problems, some of its results areessential in the seurity of TCHO. In Shannon's theory, any information anbe oded as a sequene of bits, so as to be transmitted from an transmitter(enoder) to a reeiver (deoder) over a ommuniation hannel, whih maybe noised. We onsider the model of the binary symmetri hannel: eah bitsent is modi�ed with a given probability, unhanged otherwise, and no bit isadded nor deleted. A random soure an be de�ned by its bias:De�nition 1. A random soure of bits with bias −1 ≤ γ ≤ 1 produes azero with probability pγ = (γ + 1)/2 (and a one with probability 1− pγ).That is, γ is equal to the di�erene between the probability to outputa zero and the probability to ouput a one. We an limit us to the ase ofpositive biases without loss of generality.De�nition 2. The amount of randomness, or information entropy, of arandom bitstring of length ℓ with bias γ is
ℓ ·H(pγ)2

where H(pγ) is the information entropy funtion:
H(pγ) = −pγ log pγ − (1− pγ) log(1− pγ)It thus aptures the onept of information ontained in a random bit-string, by measuring its level of unertainty 1.De�nition 3. The rate of a ode of �xed length n and m words is the value

R =
logm

nClearly, R ≤ 1 (we annot have more than 2n distint words in a ode oflength n). Hene a ode reahes R = 1 when no redundany has been addedin the ode, in this ase no error an be deteted.De�nition 4. The apaity of a binary symmetri hannel noised with bias
γ is the value

Cγ = 1 + pγ log pγ + (1− pγ) log(1− pγ),Informally, the hannel apaity, is the amount of disrete informationthat an be reliably transmitted over a hannel.This fundamental theorem states a bound on the ability to deode on anoisy hannel (see [Sha48℄ for the proof):Theorem 1 (Shannon, informal). Let us be given a hannel of apaity C,with information transmitted at a rate R. There exists a way to deode withan arbitrary small error probability if and only if R < C.We now de�ne a broadly used family of odes.De�nition 5. A linear ode of length n is a subspae of Fn2 . The dimensionof this subspae is alled the dimension of the ode, and usually denoted k.If the ode has distane d, it is alled a (n, k, d) linear ode.As a onsequene, any linear ode has a n× k generator matrix G of fullrank, and any matrix row equivalent to G also generates the ode.De�nition 6. A linear ode C of length n is yli if, for any c = (c1, . . . , cn) ∈
{0, 1}n,

c ∈ C ⇒ (cn, c1, . . . , cn−1) ∈ C.We now give some results on the ability to detet and orret errors;by onsidering the spheres entered on eah odeword (i.e. all the wordsat a given distane from a given odeword), the following theorem is quiteintuitive:1The story goes that Shannon did not know how to all this measure, so he asked VonNeumann, who said �You should all it entropy (. . .) [sine℄ no one knows what entropyreally is, so in a debate you will always have the advantage�, see [TM71℄ for more details.3

Theorem 2. A ode of distane d an orret up to ⌊d−1
2 ⌋ errors.Proof. The spheres of radius ⌊d−1

2 ⌋ entered on eah odeword do not over-lap, thus any odeword with at most this amount of errors belongs to a singlesphere, and deoding only onsists in hoosing the enter of this sphere.The following bounds on linear odes are given without proof.Theorem 3 (Hamming). If C is a (n, k, d) linear ode, with d = 2t + 1 or
2t+ 2, then

|C|
t

∑

i=0

(

n

i

)

≤ 2nTheorem 4 (Singleton). For any (n, k, d) linear ode, d ≤ n− k + 1.Those de�nitions are the minimal requirements for the understanding ofthe oding related parts of this report, for further theory one an refer to thereferene [Rom92℄, [HWL+91℄ for a onise introdution to the subjet, oreven [MS77℄ for an intermediate approah, also dealing with pure informationtheory.1.3 Stream iphers1.3.1 GeneralitiesStream iphers used to be symmetri iphers, produing a bitstream (alledthe keystream) de�ned by the seret key, ombined with the message to buildthe iphertext, and an thus be depited as keystream generators, deviesproduing a random looking bitstream from a ertain key. The ombinationis the most often de�ned as a simple XOR, but more general de�nitions exist.Stream iphers an often be seen as pseudo-random generators. The streamipher paragon is the Vernam ipher [Ver26℄, proved unonditionnally seureby Shannon in 1949, under the ondition that eah random sequene is usedonly one, introduing the notion of perfet serey. One an wonder whywe do not simply use pseudo-random generators as stream iphers; the maindi�erene is that stream iphers' bitstreams must be de�ned by a unique key,belonging to a large enough key spae, satisfy several statistial propertiesto be delared ryptographially seure, and reah good hardware and/orsoftware performanes so as to be e�etively used.Stream iphers an be either synhronous or self-synhronous: in the�rst ase, the keystream only depends on the key, whilst in the seond italso depends on the previous enrypted bits (for example, the CFB operationmode of blok iphers). Some famous stream iphers are A5/1 (used in GSMenryption), E0 (used in Bluetooth protool), RC4 (used in SSL and WEP),SEAL, SOBER, SNOW, Phelix, et. 4

1.3.2 The linear feedbak shift registerThe linear feedbak shift register (LFSR) is a struture widely used in thedesign of stream iphers, either in its original form, or under variants like theself-shrinking generator [MS94℄ or the Galois LFSR. Here, after short pre-liminaries, we introdue our formalism and state some remarkable propertiesof the LFSR and its outputs.On polynomialsWe all binary polynomial an element of the ring F2[X]. Eah binary poly-nomial an be written under the normal form
∞

∑

i=0

ciX
i,where the number of non-zero oe�ients is �nite. We will only deal withbinary polynomials, and simply all them polynomials.These two routine de�nitions are essential for the following developments:De�nition 7. The order of P ∈ F2[X] is the smallest integer k ≥ 1 suhthat Xk ≡ 1 mod P .De�nition 8. P ∈ F2[X] is said to be primitive if its order is 2deg(P) − 1(the maximal possible order for this degree).More preisely, an irreduible polynomial of degree d is said to be prim-itive if its root in the splitting �eld F2d is a generator of the multipliativegroup F⋆

2d .The next proposition is just the appliation of a famous theorem of La-grange:Proposition 1. The order of any irreduible binary polynomial P of degree
d divides 2d − 1.Corollary 1. If 2d − 1 is prime, then any irreduible binary polynomial ofdegree d is primitive.De�nitionA binary LFSR LP of length n is a devie aimed at produing a bitstream,omposed of a register of n bits (si, . . . , si+n−1), and a linear feedbak fun-tion, haraterizing the update the register. We only onsider LFSR's wherethe register values are elements of F2, but one an also build LFSR's on Fq,for some q = pn, p ∈ P. The register ontent is usually alled the stateof the LFSR, and (s0, . . . , sn−1) the initial state, whih entirely determinesthe bitstream produed. The feedbak funtion is de�ned by a polynomial5

P =
∑∞

i=0 piX
i of degree n, alled the feedbak polynomial, of degree equalto the LFSR length. The o�sets where P has non-zero oe�ients are of-ten alled taps. The update of the state is desribed by the following linearoperation2:

si.........
si+n−1

†

0 0 . . . 0 p1

1 0 . . .
... p2

0 1
... 0 pn−1

0 . . . 0 1 pn

=

si + 1.........
si+n

†

,and so the bitstream produed with an initial state x ∈ Fn2 is
SLP (x) = (s0, . . . , si, . . .).A LFSR is a weak soure of random information; bits are strongly or-related, and the sequene is ondemned to be ultimately periodi, sine thenumber of distint states is �nite: only 2n − 1 (the all-zero state is dis-arded). A LFSR is alled optimal when its period is maximal, i.e. equalto the number of possible non-zero states. By representing the keystreamas a generating funtion, some routine alulus leads us to the followingproposition (one will refer to any good book or leture notes for the proof):Proposition 2. The period of a LFSR is equal to the order of its feedbakpolynomial.Corollary 2. A LFSR of size n ahieves its maximal period 2n − 1 if andonly if its feedbak polynomial is primitive.Thus for any non-zero initial state, if the feedbak polynomial is primive,then all the non-zero states will appear in a period.Properties of the bitstreamDe�nition 9. The produt of a binary polynomial K =

∑∞
i=0 kiX

i of degree
d and a bitstream Sd+N = (s0, . . . , sd+N−1) is de�ned as

K ⊗ Sd+N = (s′0, . . . , s
′
N−1)with

s′i = sik0 + si+1k1 + · · ·+ si+dkd.2One may also �nd in literature di�erent formalisms where the polynomial is reversed,i.e., where it is the reiproal of the harateristi polynomial of the reurrene, but bothare anonial, and equivalent. 6

The operator thus de�ned is distributive over the bitstring sum and thepolynomial sum, it veri�es
(PQ)⊗ S = P ⊗ (Q⊗ S) and P ⊗ SLP (x) = 0for all P,Q ∈ F2[X], any bitstream S, and any bitstring x of length deg(P).As a onsequene we have:Fat 1. ∀P,Q ∈ F2[X] with non-zero onstant term, ∀R ∈ F2[X], ∀x ∈

F
deg(P)
2 , ∀y ∈ F

deg(Q)
2 ,∀ℓ > deg(QR),
(QR)⊗ (SℓLP (x) + SℓLQ(y)) = (QR)⊗ SLℓ

P (x).This result will be used to "delete" a LFSR bitstream, in the deryptionproedure of TCHO. We now state a bridge with oding theory:Fat 2. Let P be a polynomial of degree dP . The set {SℓLP (x), x ∈ Fd2 } is ayli linear ode of length ℓ and dimension at most 2d.Seurity of LFSR-based stream iphersIn pratie, one never uses the textbook LFSR as a stream ipher, but one orseveral LFSR's ombined with non-linear operations, suh as permutations,boolean funtions with high algebrai degree, or more exoti onstrutions.Examples lassial design tehniques are the non-linear ombination gener-ator, the non-linear �lter generator, or the lok-ontrolled generator.Basially, the goal of an attaker is to reover all or part of the initialstate of the LFSR (or any information related), from a soure of informationdepending on the seurity model onsidered. Generally, an attak is per-formed when a few bits of the keystream are known, suessive or not. Notethat an attaker gains nothing in hosen iphertext attak ompared to ahosen plaintext attak or a known plaintext attak, sine the informationobtained on the seret (the keystream bits) is exatly the same (this standsonly when the ombination an be inversed, e.g. if it is a simple XOR). Theproblem of �nding the minimal polynomial produing a given LFSR streamhas also been investigated, and lead to the well-known Berlekamp-Masseyalgorithm [Ber68℄.Brute fore attaks Assuming that the onstrution does not allow us toeasily reompute the initial state of a LFSR from all or part of the keystream,the �rst naive attak to retreive this seret is the try-and-test approah, theso-alled exhaustive searh. A seure stream ipher is often de�ned as onewhere it is the best possible attak, the Grail of ryptographers. The averagetime omplexity of this attak is learly in Ω(2n−1), where n is the numberof seret bits. As usual, time-memory trade-o� an redue this ost (f.ditionary and odebook attaks). 7

Correlation attaks This famous attak was disovered by Siegenthalerin 1985 [Sie86℄, then improved by Meier and Sta�elbah [MS88℄ who pre-sented it as a deoding problem; the general idea is to �nd a statistiallybiased distribution between the keystream and a bitstream produed byanother soure, typially a LFSR. It an lead for example to redue theattak to the noisy deoding of the ode spanned by another LFSR. Sev-eral deoding algorithms have been proposed; maximum likelihood, Gal-lagher's iterative deoding of low-density parity-hek odes, turbo odes,et. In partiular, orrelation attaks were used to attak the widely usedE0 [LV04a, Ekd03, HN99℄, and even the RC5 blok ipher [MNT02℄.Other attaks Below, for histori purposes, we give a non-exhaustive listof known attaks on stream iphers (LFSR-based or not):
• key reuse (medieval),
• orrelation (Siegenthaler, 1984),
• guess-and-determine (Günter, 1988),
• resynhronization (Daemen et al., 1993),
• time-memory tradeo�s (Babbage, 1995),
• baktraking (Goli, 1997),
• algebrai (Shamir et al., 1999),
• side hannel (Koher et al., 1999),
• binary deision diagrams (Krause, 2002).1.4 Publi-key ryptographyPubli-key ryptography was disovered by Di�e and Hellman [DH76℄ in19763. Sine, dozens of ryptosystems appeared, based on hard problems likeinteger fatorization, disrete logarithm, lattie redution, knapsaks, et.,in various algebrai strutures. A publi-key (or asymmetri) ryptosystemonsists of an enryption proedure, requiring an element pk, along with theassoiated deryption proedure whih requires an element sk. The element

pk is made publily available, and alled the publi key, while sk is keptseret, and alled the private key. The system must satisfy the propertythat it is omputationally infeasible to reover sk from pk. More formally,we give the following de�nition.3Ellis [Ell70℄ disovered it independently in 1970, but his works were lassi�ed by aBritish government ageny until 1997. 8

De�nition 10. A publi-key ryptosystem is de�ned by three sets and threealgorithms. The sets are:
• M, the plaintexts spae, �nite or in�nite.
• C, the iphertexts spae, �nite only ifM is �nite.
• R, the random oins spae, �nite, and non-empty only if enryption isprobabilisti.The three algorithms are:
• The key generation algorithm G, whih outputs a pair (pk, sk) of math-ing publi and private keys, on input 1k, where k is the seurity param-eter.
• The enryption algorithm E, whih, given a plaintext m ∈ M and apubli key pk, outputs a iphertext c ∈ C of m. This algorithm may beprobabilisti (involving random oins).
• The deryption algorithm D, whih, given a iphertext c ∈ C and aprivate key sk, returns the mathing plaintext m ∈ M, or ⊥ if thegiven iphertext is not valid.Asymmetri systems are seldom used alone, but as part of an hybridenryption sheme, to enrypt the seret key of a symmetri sheme, whihenrypts the message. This tehnique is often refered as a key enapsulationmehanism and data enapsulation mehanism (�KEM/DEM�). We will meetsuh onstrutions later.Publi key ryptosystems are also losely related to the notions of one-way and trapdoor funtions, but it omes out of the sope of this report (seefor example [BHSV98, Yao82℄).1.5 Seurity de�nitionsAn adversarial model is the statement of what an adversary (i.e one orseveral probabilisti algorithms querying orales) an and annot do whenattaking the enryption sheme, so as to study the seurity of the system.For publi-key shemes, anyone an enrypt any message, so the basi attakis the hosen plaintext attak (CPA). The number of queries is limited to apolynomially bounded number. For symmetri shemes, CPA attaks aremodeled using enryption orale, whilst in the most basi attak the adver-sary only has a iphertext of an unknown message. The best seurity levelis ahieved in the following model:

9

De�nition 11. An adversary is alled an adaptive hosen iphertext (CCA)adversary if she an query the deryption orale whenever she wants, to de-rypt any iphertext exept the given hallenge(s). The number of queriesmust be polynomially bounded. If the iphertext given to the orale is not avalid one, the orale returns ⊥, and the attak ontinues.In literature, this model is sometimes denoted CCA2, and CCA is standingfor non-adaptive adversaries, where queries to the deryption orale do notdepends on the hallenge.Now we review fundamental seurity notions: one-wayness, indistin-guishability, real-or-random seurity, non-malleability, and semanti seurity.We reall that in CCA model, the adversary annot query the deryption or-ale with the iphertext omputed by the hallenger.De�nition 12 (OW seurity). Let Aow = (Aow
1 ,Aow

2) be an adversary in-volved in the following game:1. (pk, sk)← G(1k): a key pair is generated.2. σ ← Aow
1 (pk): the adversary queries orale(s) and return a state.3. m $←−M: a plaintext is randomly piked by the hallenger.4. c = E(pk,m): the hallenger enrypts m and sends c to the adversary.5. m̃← Aow
2 (σ, c):The advantage of an adversary Aow against one-wayness is

Advow = Pr[m = m̃].We say that a ryptosystem is (t, ε)-OW seure when any adversary runningin time less than t gets an advantage less than ε.De�nition 13 (IND seurity). Let Aind = (Aind
1 ,Aind

2) be an adversary in-volved in the following game:1. (pk, sk)← G(1k): a key pair is generated, and pk sent to Aind
1 .2. (m0,m1, σ) ← Aind

1 (pk): the adversary returns a pair of plaintexts ofequal length, and a state σ.3. b $←− {0, 1}: a random bit is piked by the hallenger.4. c← E(pk,mb): the hallenger enrypts mb, and sends c to Aind
2 .5. b̃ ← Aind

2 (m0,m1, σ, c): the adversary guesses the message whih wasenrypted. 10

The advantage of an adversary Aind against indistinguishability is
Advind = 2Pr[b = b̃]− 1.We say that a ryptosystem is (t, ε)-IND seure when any adversary runningin time less than t gets an advantage less than ε.De�nition 14 (ROR seurity). Let Aror = (Aror

1 ,Aror
2) be an adversary in-volved in the following game:1. (pk, sk)← G(1k): a key pair is generated, and pk sent to Aror

1 .2. m0
$←− M, b

$←− {0, 1}: the hallenger piks a random plaintext and avalue b.3. (m1, σ) ← Aror
1 (pk): the adversary hooses a plaintext, sent to thehallenger.4. c← E(pk,mb): the hallenger enrypt mb, and sends it to Aror

2 .5. b̃ ← Aror
2 (m1, σ, c): the adversary guesses whether her message or an-other one was enrypted.The advantage of an adversary Aror in a real-or-random game is

Advror = 2Pr[b = b̃]− 1.We say that a ryptosystem is (t, ε)-ROR seure when any adversary runningin time less than t gets an advantage less than ε.De�nition 15 (NM seurity). Let Anm = (Anm
1 ,Anm

2) be an adversary in-volved in the following game:1. (pk, sk)← G(1k): a key pair is generated, and pk sent to Anm
1 .2. (M,σ) ← Anm

1 (pk): a distribution of plaintexts M and a state σ arereturned by Anm
1 .3. (m, m̃)

$←−M : the hallenger piks two independent random plaintextsaording to the distribution M .4. c← E(pk,m): m is enrypted and sent to Anm
2 .5. (R, y) ← Anm

2 (m,σ, c): the adversary omputes a binary relation Rand a iphertext y.6. x← D(sk, y). 11

The advantage of an adversary against non-malleability is
Advnm = Pr [y 6= c ∧ x 6= ⊥ ∧R(x,m)]− Pr [y 6= c ∧ x 6= ⊥ ∧R(x, m̃)] .We say that a ryptosystem is (t, ε)-NM seure when any adversary runningin time less than t gets an advantage less than ε.This last de�nition models the informal notion of non-malleability: anadversary annot ompute a iphertext meaningfully related to the messagemathing a given distint iphertext. And so a malleable ryptosystem doesnot guarantee integrity of the iphertexts, but may ensure privay.A ryptosystem is told to be X-Y seure if it guarantees X seurity in theattak model Y. In our ontext, we simply all X-Y seure a system whih is

(t, ε)-X-Y seure, with t ≥ 2chard , and ε negligible (i.e. ε ≤ 2−chard), where Xan be either IND, OW or ROR, and Y an be either CPA, or CCA.The two following results are proved in [BDPR98℄:Proposition 3. NM-CPA seurity implies IND-CPA seurity.Proposition 4. NM-CCA seurity is equivalent to IND-CCA seurity.More generally, NM-Y ⇒ IND-Y ⇒ OW-Y, for all adversarial model Y,and X, X-CCA seurity implies X-CPA seurity, for all seurity notion X. Thenext proposition is proved in [BDJR97℄:Proposition 5. ROR-CPA seurity is equivalent to IND-CPA seurity.The important notion of semanti seurity introdued by Goldwasserand Miali [GM82℄ is equivalent [GM84℄ to IND-CPA seurity; it guaranteesthat the iphertext reveals no more information about the plaintext to apolynomially bounded adversary. Note that semanti seurity implies OW-CPA seurity, the weakest level of seurity.To summarize, we obtain the followin relationship:NM-CPA ⇐ NM-CCA
⇓ mSemanti ⇔ IND-CPA ⇐ IND-CCA
⇓ ⇓OW-CPA ⇐ OW-CCA
12

Chapter 2The TCHO shemeA trapdoor stream ipher sounds like a premiere in ryptography, but it isnot exatly one: in 1984 Blum and Goldwasser [BG85℄ used the Blum-Blum-Shub [BBS86℄ pseudo-random generator to build a probabilisti publi-keystream ipher based on the hardness of fatoring a RSA modulus, and onthe seurity of the generator (see Appendix B for details and disussion).However it is more or less as omputationally expensive as RSA, not well�tted for hardware as many streams iphers do, and not really a trapdoorstream ipher in the strit sense. The idea of putting a trapdoor in a LFSR-based stream ipher has been brought by Camion, Mihaljevi and Imai threeyears ago [CMI03℄, but no expliit ryptosystem followed. As a response, thesystem TCHO1 aims at providing a seure trapdoor stream ipher hardware-friendly, and being the �rst real asymmetri stream ipher. Enryption isprobabilisti, and an be desribed as the transmission of a odeword overa noisy hannel, as depited in Figure 2.1: one small LFSR enodes themessage, while a large one randomly initialized, along with a soure of biasedrandom bits, produes the noise. A iphertext is the XOR of the threebitstreams. The private key is used to �anel� the bitstream of the seondLFSR, thereby reduing the noise over the oded message, so as to be ableto deode the yli linear ode spanned by the small LFSR.
ENCODERm c

PRG
Figure 2.1: TCHO enryption sheme.1See http://www.tho.fr for the origins of this name.13

2.1 Computational problemsThe seurity of TCHO relies on the hardness of two distint omputationalproblems; one dealing with sparse multiples of primitive polynomials over F2,and a famous one related to some deoding problems, strongly linked withthe stream iphers ryptanalysis �eld. The two problems are then mergedinto a single one. In this setion we introdue these problems, and statehardness assumptions in terms of their parameters, regarding to the knownattaks of these problems.2.1.1 Finding a sparse multiple of a high-degree polynomialThis problem formalizes the key reovery problem in TCHO:Low Weight Polynomial Multiple (lwpm)Parameters: Three naturals w, d and dP , suh that 0 < dP < d and w < d.Instane: P ∈ F2[X] of degree dP .Question: Find a multiple K of P of degree less than d and weight lessthan w.Unlike integers, e�ient methods are known to fatorize a polynomial over a�nite �eld (Berlekamp's generi deterministi algorithm runs in polynomialtime in the input's degree, whereas the heapest method known for integersis the super-polynomial GNFS), but �nding a multiple of degree and weightbelow ertain bounds an be hard. This problem, or its variants, has beenimportant in LFSR ryptanalysis sine some attaks are possible only whenthe feedbak polynomial or one of its multiple is sparse [MS88, CT00℄. Afew works [GM01, MGV05, Jam00℄ study the distribution of multiples of agiven weight, but onsider the problem of �nding a sparse multiple withoutthe onstraint on the degree. If d is greater than to the order n of P , atrivial solution is the polynomial Xn + 1, hoosing primitive polynomialswould avoid this onern.We an ompute the average number Nsol of solutions of a lwpm instane.The probability that exists a multiple of P with degree d and weight w isheuristially
2d−dP

(d
w−1

)

2d
= 2−dP

(

d

w − 1

)

,and so
Nsol ≈ 2−dP

d
∑

i=1

∑

j<d,j<w

(

i

j

)

.In [GM01℄, an exat enumeration formula is given for the number of multiplesof weight v (of unbounded degree, with onstant term 1) of any primitivepolynomial of given degree. Although this expression is useless here, sine weneed a multiple of a spei� degree, it gives an idea of the problem hardness.14

Example 1. A primitive polynomial of degree 10 has about 1018 multiplesof weight 10 with onstant term 1, but only 339 of weight 3.We now present strategies to solve lwpm. The following are suggested(refer to [FV06℄ for more details):1. Birthday paradox: memory O (

2dP /2
), time O (

dP 2dP /2
) for a singlesolution, and O (L logL) for all solutions with L =

(d
(w−1)/2

).2. Generalized birthday paradox [Wag02℄: time O(

2a+
dP
a+1

), if there ex-ists an a ≥ 2 suh that (d
(w−1)/2a

)

≥ 2dP /(a+1).3. Syndrome deoding [CC98, LB88℄: time O(

Poly (d)
(

d
dP

)w−1
).4. Exhaustive searh: time O (

Poly (d) 2d−dP
) for all solutions.An analysis of these strategies leads to a �rst assumption:Assumption 1 ([FV06℄). When P is randomly hosen among the primitivefators of an unknown sparse polynomial, if (d
w−1

)

≤ 2dP and w log d
dP
≥

chard, then lwpm is hard, on average.2.1.2 Deoding a LFSR odeOur seond problem goes as follows:Noisy LFSR Deoding (nld)Parameters: P ∈ F2[X] of degree dP , a natural ℓ, a bias 0 ≤ γ ≤ 1.Instane: y = SℓLP (x) + Sℓγ .Question: Reover x.The following strategies are suggested:1. Information set deoding: the idea is to randomly pik dP bits of y,and solve the linear system indued by the LFSR. To reover x, weneed to pik only bits with no error. The probability of this event is
pdP
γ . If γ ≤ 21−chard/dP − 1, it requires over 2chard iterations.2. Maximum likelihood deoding (MLD): this brute fore tehnique on-sists in trying every possible initialization, and return the one minimiz-ing the Hamming distane between y and the stream produed. Thealgorithm has a time omplexity in O (

ℓ · 2dP
) (it an be dereased to

O
(

dP · 2dP
) by using a fast Walsh transform [LV04a℄).

15

3. Iterative deoding: the idea of this approah is to �nd low weightmultiples of P forming some parity hek equations, and then deodein the low-density parity-hek ode assoiated (see [CT00℄). For dP ≥
2chard, deoding is impossible.A seond assumption an thus be formulated:Assumption 2 ([FV06℄). If dP ≥ 2chard and γ ≤ 21−chard/dP − 1, then nldis hard.We an also state when the problem is solvable2:Fat 3 ([FV06℄). If dQ ≤ ceasy and √

dQ ln 4
ℓ−d ≤ γw, then nld an e�ientlybe solved.The link with the orrelation attaks beomes obvious: SℓLP

+ Sℓγ is or-related with SℓLP
, with orrelation 1− pγ .2.1.3 The hidden orrelation problemWe now merge lwpm and nld into a single problem.Hidden Correlation (h)Parameters: Two oprime polynomials P and Q, of degree respetively dPand dQ, a natural ℓ, and a 0 ≤ γ ≤ 1.Instane: y = SℓLQ(x) + SℓLP (r) + Sℓγ , with r an unknown random bitstreamof length deg(P).Question: Reover x.Coprime polynomials are required so that the deoding is not ambiguous.A h instane an be redued to an nld instane: if we multiply y by amultiple K of P , of degree d, by the we get the stream

z = K ⊗ (SℓLQ(x) + SℓLP (r) + Sℓγ) = K ⊗ (SℓLℓ
Q(x)

+ Sℓγ).This bitstream is thus of length ℓ − d. By linearity, we obtain a streamprodued by LQ with initial state x′, with noise of bias γw, sine eah bit asum of w bits noised with bias γ:
SLQ(x′) + Sℓγw .Note that the noisy bits with bias γw are orrelated, depending on the o�setsof the non-zero oe�ients of K. Experiments show that K ⊗ Sℓγ behavesmostly like Sℓ−dγw .2The lower bound on γ follows from an approximation of Shannon's bound obtainedusing C(γ) ≈ γ2/ ln 4. 16

The matrix Mf of the linear appliation transforming the real initialstate x of LQ to the new initialization x′ an be alulated, using basilinear algebra. Let MQ be the generating matrix of LQ (as presented inSetion 1.3.2), and (ki)i=0,...,∞ the oe�ients of K, then we have
Mf =

d
∑

i=0

ki(MQ)d−i (2.1)where the sum operation is the usual matrix addition. Therefore to retrieve
x, given the initial state of the LQ in z, it su�es to inverse this matrix. Itan be done in time in O (

d3
Q

) by Gauss-Jordan elimination. To summarize,we redued an h instane to one of nld with parameters (ℓ− d,Q, γw).Other strategies than this redution are proposed to solve h:
• Consider LP and LQ as a single LFSR, reover its initialization (i.e.solve an instane of nld with parameters (ℓ, P × Q, γ)), and deduethose of eah LFSR.
• Multiply the iphertext by Q to anel SℓLQ

and, reover the initialstate of LP , by the same proess that desribed above, exept thathere the nld instane has parameters (ℓ− d, P, γdQ)By Assumption 2, we annot solve nld for SℓLP
+ Sℓγ when dP ≥ 2chardand γ ≤ 21−chard/dP − 1, thus these strategies are infeasible for well hosenparameters.A last onstraint is linked to theoretial onerns; if we suppress thein�uene of P using a multiple K of weight w, the information Iγ one anget on SLQ(x) is bounded:

Iγ ≤ ℓ · CγwIt also gives us a large bound on the information one an obtain on x.Now, what if an opponent omputes all the multiples of P of a given weight
w ? There are at most 2chard

ℓw multiples of weigth w, and we need ones ofdegree lower than ℓ, then at most (ℓ
w

)

2−dP are suitable. We dedue the totalinformation one an get, negleting the ost of �nding suh multiples:
I =

∞
∑

w=2

ℓ · Cγw min

((

ℓ

w

)

2−dP ,
2chard

ℓw

)

.We dedue the assumption of h's hardness:Assumption 3 ([FV06℄). When P is randomly hosen among the primitivefators of an unknown sparse polynomial, if dP ≥ 2chard and γ ≤ 21−chard/dP−
1, and I ≤ 1, then h is hard, on average.17

2.2 The publi-key shemeA publi key of TCHO is a high-degree primitive polynomial P , the privatekey assoiated is a polynomial K, sparse multiple of P . TCHO enryptsbloks of dQ bits. The parameters of the system are
• [dmin, dmax], an interval ontaining dP ,
• d and w, the degree and the weight of K,
• γ, the bias of the random soure,
• ℓ, the length of a iphertext of one blok,
• Q, a polynomial of small degree dQ (the length of a plaintext blok).2.2.1 Key generationTo �nd a key pair, one �rst randomly piks a polynomial of degree d andweight w, then deomposes it into irreduible fators, and looks for a primi-tive polynomial of degree in [dmin, dmax] among those fators. Avoiding theost of testing primitivity, whih is disussed later, the time omplexity ofthe key generation is in O (

dmax

dmax−dmin
d2

), using the Cantor-Zassenhaus al-gorithm [CZ81a℄.Some trik an be used for the seond step: the produt of all irreduiblepolynomials of degree dividing d is X2d−X, so we an ompute gd(X2d−X
mod K,K); if the polynomial omputed has degree lower than d, one knowsthat K has no fator of degree d, otherwise we fatorize the polynomial to�nd one. Although this tehnique speeds up the proess for a single degree,in the worst ase we would have to perform it for eah degree in the range(for a single iteration), that too muh inreases the time omplexity of thealgorithm indued.2.2.2 Enryption and deryptionLet x be a plaintext, i.e., an element of {0, 1}dQ . A iphertext of x is de�nedas TCHOenc(x, r) = SℓLQ(x) + SℓLP (r1) + Sℓγ(r2)where r = r1||r2 is a random bitstring of su�ient length, so the enryption islearly non-deterministi (it is neessary to guarantee the semanti seurity).One inherent weakness of TCHO is its high message expansion; to suitthe onstraints dQ have to be muh smaller than ℓ.Let y be a iphertext, i.e., an element of {0, 1}ℓ. To reover the plaintextwe �rst ompute

K ⊗ y ≈ Sℓ−dLQ(x′) + Sℓ−dγw18

where x′ is the image of x by some invertible linear appliation f . Then, weperform a maximum likelihood deoding (MLD) to reover x′, and �nallyompute x = f−1(x′). As stated previously, ifMQ is the generating matrixof LQ, the matrix of f is
Mf =

d
∑

i=0

ki(MQ)d−i,whih an be inversed in time O (

d3
Q

). Note that this matrix does notdepends on the iphertext reeived, thus it an be preomputed.The ost of MLD is in O (

(ℓ− d) · 2dQ
), and O (

dQ · 2dQ
) using a fastWalsh transform [LV04b℄. The soundness of the system is not guaranteed,sine Sℓγ an take any value of {0, 1}ℓ with non-zero probability, and so deod-ing may fail if the pseudo-random bitstream has a high weight. Indeed everyelement of {0, 1}ℓ has a non-null probability to be obtained by enryptingsome plaintext, sine Sℓγ takes all values in {0, 1}ℓ with non-null probabil-ity. Thus the iphertext spae is {0, 1}ℓ. However, not all iphertexts arederypted suessfully, and for a given key pair, the iphertext spae an bepartitionned into two sets: those whih are orretly derypted (the soundiphertexts), and the others (the non-sound iphertexts). We do not employthe adjetive valid sine it usually stands for an objet that annot have beenprodued by the enryption algorithm.Sine the omplexity of deoding is not linear in dQ, we an think wehad better use a small polynomial Q (i.e. smaller bloks), but the matter isthat the iphertext expansion fator does not linearly grow in terms of dQ.Thus we would enounter some problems of time-memory trade-o�, and thehoie of a set of parameters may depend on the user's requirements in timeand amount of data enrypted.2.2.3 Parameters seletionRefering to the above-stated assumptions, we give seurity onstraints onthe parameters.

• In order to derypt suessfully, we must be able to deode a odewordof length ℓ − d of a random LFSR ode, noised with bias γw, so weneed
dQ ≤ ceasy and √

dQ ln 4

ℓ− d ≤ γ
w. (2.2)

• Message reovery is assumed to be hard if
γ ≤ 2

1− chard
dmin − 1 and I ≤ 1. (2.3)19

• Finally, the private key K must be impossible to reover. It is assumedto be the ase as soon as
(

d

w − 1

)

≤ 2dmin and w log
d

dmax
≥ chard. (2.4)Example 2. For chard = 80, the following parameters meet these onstraints:

γ = 0.98, ℓ = 13080, dmin = 6000, dmax = 6600, d = 11560, w = 99, dQ =
20.2.3 ConlusionAlthough the design of TCHO is very simple and well �tted for an hardwareimplementation, some major disadvantages are its prohibitive deryptiontime omplexity, of exponential ost, and the absene of an estimate of theerror probability in deryption. Experimentally, for some parameters suitingthe assumptions, this probability is small, as predited, but not enough tobe negleted. Exhibiting an exat formula or even an approximation of thetheoretial failure probability is di�ult. A lower bound ould be given ifthe minimum distane of a trunated LFSR ode was known, but �ndingthis distane is hard, and the bound one ould obtain would anyway be tooloose to be signi�ative.

20

Chapter 3Implementation of TCHOIn this hapter we review algorithms for an implementation of TCHO, andpresent the performanes obtained. TCHO was implemented in C++, andompiled with g++ 3.3.5. We gained a preious time using Shoup's libraryfor number theory [Sho05℄ (NTL), whih e�iently implements all ommonoperations in F2[X], using a onfortable and �exible representation. It wasalso used for omputing polynomial fatorization and gd. Some help wasalso found in [Arn05, PTVF92℄. All performanes were measured on 1.5 GHzPentium 4 omputer.3.1 Linear feedbak shift registerWhen implementing LFSR's, the naive bit-per-bit approah is learly une�-ient and very slow, espeially for huge registers like ours, so we had to �nda better algorithm.3.1.1 AlgorithmInspired from [CM03, CM01℄, this algorithm produes bloks of arbitrarysize from a LFSR of any larger length. We �rst introdue some notations:
• b: the length of a blok (in bits),
• n: the length of the LFSR,
• m = ⌈nb ⌉: the number of bloks (i.e bitstrings of length b) used by theLFSR,
• P : the feedbak polynomial, pi its i-th oe�ient, from zero (onstantterm) to n, and P [i] denotes the i-th blok, of b bits, of oe�ients,
• B: the new blok we want to ompute,21

• S: the state of the LFSR; a sequene of bloks, S[1], . . . , S[m] of size
b.

• ⊞: bit-to-bit XOR operator,
• ⊠: bit-to-bit AND operator.The algorithm is based on the leap-forward tehnique, whose basi ideais to build the blok B by onsidering independently eah tap, and reordingthe future bits loated at its o�set. The main proedure is omposed of twostages:1. build the blok onsidering the taps involving only bits of the urrentstate (i.e. taps over b),2. �nalize the blok bit by bit while onsidering the taps ti ∈ [1, b] (wemay need some of the �rst bits of B to build its last ones).These steps respetively orresponds to the �rst two loops of the Algo-rithm 3.1, and the �nal loop aims just at updating the LFSR state. Thetaps in [1, b] are treated separately sine the future bits at their o�set arenot all known yet, and need to be omputed dynamially.Here the partiular ase of a LFSR of length non-multiple of b is im-pliitely handled, and the ase with taps in the �rst blok of the state leadsto the seond step desribed above.3.1.2 AnalysisThe time omplexity of the Algorithm 3.1 to build a blok of b bits is in

O (wp(P)); we loop over all the taps of P above b, and then make b iterationsto proess the �rst taps. In ontrast, the naive bit-per-bit looks the d bitsof the register to ompute eah output bit, so the algorithm runs in time
O (bn) = O (b · deg(P)) when omputing b bits, thus our algorithm requiresin average 2b times less operations.We did not found any better tehnique for software implementations ofLFSR in the literature. Moreover, we used several preomputations, notmentionned in the Algorithm 3.1, to speed up the generation; we build twolists of the taps multiples and non-multiples of b, then treat them separatelyin the algorithm, it leads to a gain of about 3× dP /32 logial operations perblok omputed. The average number of elementary operations (≪,≫,⊞,⊠)required to build a blok in our implementation is estimated to

n(2− 1

2b
) + 6b.In the partiular ase where the taps are all on a boundary (i.e. pi 6= 0 ⇒

b|pi), and when no one (exept the onstant term) has an o�set lower than22

Algorithm 3.1:Input: S,POutput: B1: B ← 02: for i = b+ 1, . . . , n do3: if pi then4: B ← B ⊞
(

S[ib]≪ (−i mod b)
)

⊞
(

S[ib − 1]≫ (i mod b)
)5: end if6: end for7: k ← 1≪ (b− 1)8: for i = 0, . . . , b− 1 do9: buf ← (B[0]≪ i) ⊞ (B ≫ (b− i))10: if wh(P [0] ⊠ buf) is odd then11: B ← B ⊞ k12: end if13: k ← k ≫ 114: end for15: for i = m, . . . , 1 do16: S[i]← S[i− 1]17: end for18: S[0]← B19: return B

b, this time omplexity is redued to
n(

1

2
+

1

b
).Table 3.1 gives some examples of time omplexities ahieved with thisalgorithm (the �eld f.b. is tiked when there are no taps in the �rst blok).We see that we had better using larger bloks for our large LFSR LP , andhoosing small bloks ombined with a trinomial without taps below theblok size for the small LFSR LQ. However tehnial onerns must beonsidered: operations on the natural type of C++, int (32 bits) are muhfaster than on longer emulated types, and so we shall hoose b = 32.A C implementation of this LFSR algorithm independent of TCHO anbe found at http://www.131002.net.3.2 Pseudo-random generation with given biasThis is a big issue; weak pseudo-random generators (PRG) have often leadto unseure systems in pratie, even if it was seure on the paper, wherethe PRG is assumed to be ideal. We present several algorithms produing a23

deg(P) wp(P) b f.b. ost20 3 8 √ 620 3 8 616 000 3 000 32 √ 3 1876 000 3 000 32 12 0986 000 3 000 64 √ 3 0936 000 3 000 64 12 337Table 3.1: Number of operations to build a blok.bitstream of pseudo-random bits with a given bias from a soure of uniformbits. The essential onerns are the time omplexity, the number of uniformpseudo-random bits required to produe one bit, and the soundness with thetheoretial bias, expressed as the statistial distane to the ideal distribution,with the assumption that the uniform generator used is ideal.3.2.1 Choie of a random soureThe andidatesThe three following soures are suggested:1. The rand() funtion of the C language, based on a linear ongruentialgenerator. Its seed is 32 bits long only, so there are only 232 distintbitstreams (note 32 < ceasy).2. The PRG ISAAC [Jen96a℄: �ISAAC requires an amortized 18.75 in-strutions to produe a 32-bit value. There are no yles in ISAACshorter than 240 values. The expeted yle length is 28 295 values� [Jen96a℄.It is designed to be ryptographially seure1, but is not proved to be.The only attak published is a known plaintext one [Pud01℄, and runsin time omplexity 4.67 · 101 240. Its seed is 8 192 bits long.3. The �le /dev/urandom, physial entropy soure on Unix systems.The third proposal an already be dismissed: it annot be seeded, thus weannot reprodue a random string, and it requires I/O system alls, slowingthe generation. Also, some weaknesses of this generator were pointed out bythe analysis performed in [GPR06℄.Statistial testsWe use the program ENT [Wal98℄, displaying minimal statistial results: itis a good tool to ompare generators, but the riteria onsidered are quite1A PRG an be delared ryptographially seure when it passes the next-bit test, i.e.,when no polynomial-time adversary an predit the k-th bit from the k − 1 previous bitswith probability greater than 1/2. 24

super�ial, and annot be used to valid ryptographi generators. We usesamples of one megabyte (223 bits). Table 3.2 presents the most signi�ativeresults of ENT, and time reords: we display the entropy of both bytesand bits, the error perentage in Monte-Carlo π estimation, the orrelationoe�ient (0 when totally unorrelated), and the average time for omputingone megabyte of pseudo-random bits.PRG ent.(bytes) ent. (bits) π error orrelation timerand() 7.999 1.0 0.30 % −5.7 · 10−4 17 msISAAC 7.999 1.0 0.04 % −2.8 · 10−4 6 msTable 3.2: ENT results.The Diehard battery of tests [Mar95a℄ is a set of empirial tests thatmust be passed by a ryptographially seure PRG, (here a huge perioddoes not su�e, f. the Mersenne Twister [MN98℄): �Most of them seem topresent a major leap in sensitivity to detet partiular statistial defets insequenes of bits over the so alled standard tests suh as Chi Square, bias,various orrelation tests, enthropy test, pituring randomness and so on.Diehard tests are thereefore often re�ered to as stringent tests.� [Mar95a℄.Here samples of at least 226 bits are required. ISAAC suessfully passed allthe tests, while rand() did not even passed one. Moreover, it is known thatthe lower-bits of numbers produed by a linear ongruential generator are�less random� than higher-bits, and that linear ongruential generators arefar from being seure [Ste87℄.Final hoieISAAC is learly a better PRG than rand(), moreover it is a ryptograph-ially seure generator suitable for real appliations, also used as a streamipher in some ases. Both the algorithm and the implementation providedby its author are in publi domain. We shall seed the generator using the�le /dev/urandom.Last minute addition: we found dramati �aws in ISAAC, see AppendixA for details. To replae ISAAC we suggest to use the keystream genera-tor QUAD [BGP06℄, both proved seure and pratial, but requiring 1Mo ofmemory.3.2.2 Algorithm G1This is the algorithm suggested informally in [FV06℄. The parameters are n,the length of the blok produed, and B, the maximal preision allowed (e.g.it would be 32 using the type �oat, representing �oating point numbers withpreision less than 2−32). The basi idea is to build a binary tree where the25

leaves are some words of �xed length n. We �rst desribe the preomputationsteps, then the generation algorithm.PreomputationGiven a bias 0 ≤ γ ≤ 1, we have to build a rooted binary tree representingthe probability law indued, to do this, we follow this proedure:1. Compute the probability assoiated with eah word. For a word ofweight k, it is pn−kγ (1− pγ)k. This step is ahieved in O (n) operations(the probability is omputed one for all words of a given weight2).2. Deompose eah probability as a sum of inverse powers of 2, with apreision bound B (i.e. we do at most B divisions by 2, for a preisionof 2−B). It requires O (Bn) atomi operations.3. Build the tree, where eah leave is a word (not neessarily distints),and a word appears at depth k if and only if its deomposition inpowers of 2 ontains 2−k. This proess is learly deterministi, andruns in time O (

2B
) (the maximal number of nodes of the tree).It gives a global ost in O (

Bn+ 2B
). An example of tree is represented inFigure 3.1. There are at least 2n leaves (as muh as distint words), and atmost B · 2n.

00, 1

2

01, 1

8
10, 1

8

00, 1

16
01, 1

16
10, 1

16
11, 1

16Figure 3.1: Tree of G1 for γ = 1
2 , B = 4, n = 2.2This requires the omputation of n/2 binomial oe�ients (sine `

n
k

´

=
`

n
n−k

´). Foran exat result, omputing n! requires n − 1 integer produts, and the omputation ofall the k! does not requires additional ost, sine reorded during the omputation of n.Finally n/2 divisions are realized, and so the ost of omputing all the binomials is in
O (n) operations. However the number of bits in memory is in O (log(n!)).

26

Word generationTo pik a word ω, one just goes through the binary tree by suessive oin�ips until a leaf is met, as desribed in Algorithm 3.2 (ri is the i-th bit of r,the funtion root return the root node of a tree, leftChild and rightChild returnrespetively the left or right hild of a node, whih is a node too, and thefuntion label returns the word orresponding to a leaf). Sine the numberof nodes is �nite, the algorithm always �nishes. Its orretness follows fromthe deomposition of the probability distribution.Algorithm 3.2:Input: r ∈ {0, 1}B , T (the tree)Output: ω ∈ {0, 1}n1: currentNode← root(T)2: offset← 03: while currentNode is not a leaf do4: if ri = 0 then5: currentNode← leftChild(currentNode)6: else7: currentNode← rightChild(currentNode)8: end if9: i← i+ 110: end while11: ω ← label(currentNode)12: return wComplexityThe Algorithm 3.2 learly runs in time O (B). In [FV06℄ the average numberof unbiased bits required to build one biased word is lower than n+2, so theost for a single bit is
RG1 = 1 +

2

n
.Example 3. For n = 32, RG1 = 1.0625.Statistial distaneLetW be the random variable of the word outputed by G1, PrG1[X = ω] bethe probability that G1 outputs the word ω, and PrI [W = ω] the theoretialprobability assoiated with that word. The statistial distane of G1 froman ideal generator I is thus

DG1 =
∑

ω∈{0,1}n

∣

∣

∣

∣

PrG1[W = ω]− Pr
I

[W = ω]

∣

∣

∣

∣

.27

In average, the theoretial probability di�ers from the e�etive of 2−B

2 , andso
DG1 ≈ 2n−B−1.3.2.3 Algorithm G1+We remark that in the previous algorithm, words of equal weight have thesame probability of ourene, thus we an propose an alternative algorithm,where the leaves are not words anymore, but weights in {0, . . . , n}.PreomputationAlthough the asymptoti time omplexity remains the same than for G1,the average one is redue for the third step. Thus to build the tree we followthese steps:1. Compute the probability assoiated with eah weight. For the weight

k ∈ [0, n] this probability is (this follows a (n, 1 − pγ) binomial distri-bution)
pn−kγ (1− pγ)k

(

n

k

)

.It requires O (n) operations, using a non-naive algorithm for binomials.2. Deompose eah probability, like for G1, still in O (Bn) operations.3. Build the tree, in O (

2B
) operations.Now the tree has at least n leaves, and at most Bn, instead of 2n and B ·2n.Word generationLike for G1, we �rst randomly pik a leaf of the tree, using Algorithm 3.2,where the word returned is now on ⌈log n⌉ bits instead of n (at most ⌈log n⌉bits are required to ode an integer in [0, n]). Then we randomly pik a wordof the weight k found: we an use the Algorithm 3.3 (random(n) returns arandom integer in [0, n[), or use another tree to pik the word.ComplexityThe word generation algorithm still runs in timeO (n). Compared toG1, thenumber of leaves is exponentially redued, thus the average ost to selet aweight is about log n+2. To build a word of given weight, piking eah o�setone by one has an average ost of n log n

2 , but we reah a lower ost using
28

Algorithm 3.3:Input: k (a weight)Output: ω ∈ {0, 1}n1: i← 0, w ← (0, . . . , 0)2: while i < k do3: offset← random(n)4: if ωi = 0 then5: ωi ← 16: i← i+ 17: end if8: end while9: return ωa binary tree: there are in average (n
n/4

) possible words, thus the number ofbits to hoose one is about log
(n
n/4

)

+ 2. It gives a total ost of less than
RG1+ =

log
(

n
(n
n/4

)

)

+ 4

nfor a single bit.Example 4. For words of n = 32 bits, RG1 = 1.06, and RG1+ ≈ 1.01.Statistial distaneLet W be the word outputed by G1+. First observe the following fat: fora random word ω,
PrG1+[W = ω|wh(X) = wh(ω)] = Pr

I
[W = ω|wh(X) = wh(ω)].That is, one a weight is piked, we assume that the algorithm randomlypiking a word of this weight behaves as an ideal one. So the statistialdistane from G1+ to an ideal generator is

29

DG1+ =
∑

ω∈{0,1}n

∣

∣

∣

∣

PrG1+[W = ω]− Pr
I

[W = ω]

∣

∣

∣

∣

=
∑

ω∈{0,1}n

(

Pr
I

[W = ω|wh(W) = wh(ω)]

×
∣

∣

∣

∣

PrG1+ [wh(W) = wh(ω)]− Pr
I

[wh(W) = wh(ω)]

∣

∣

∣

∣

)

≈ 2−B−1
∑

ω∈{0,1}n

Pr
I

[W = ω|wh(W) = wh(ω)]

= 2−B−1
∑

ω∈{0,1}n

(

nwh(ω)

)−1

= (n+ 1) · 2−B−1.ConlusionOur variant of G1 ahieves a muh better statistial distane, and reduedrequirement in time an memory, however its onstrution is a bit more om-plex, and this may not be worth its ost for some hardware implementations.Like previously, this kind of algorithm operating on bits is tedious to handlein software, we will present another kind of algorithm reproduing the twostages of G1+ a bit di�erently.3.2.4 Algorithm G2DesriptionThis is another blok-oriented algorithm, based on the same idea than G1+.It produes a random blok in two steps:1. pik a random weigth k (following a (n, 1− pγ) binomial law),2. pik a random word of weight k (uniformly).The Algorithm 3.4 outputs a word ω of size n with respet to a bias 0 ≤ γ ≤
1; the funtion distribution(γ) returns a list of rational numbers (oi)i=−1,0,...,n,
0 = o−1 < o0 < · · · < on = 1, desribing the weights probability distribution:

oi − oi−1 = pn−iγ (1− pγ)i
(

n

i

)

,∀i ∈ 0, . . . , n.The funtion frandom() returns a uniform rationnal number in [0, 1], withpreision 2−B . The probability distribution is preomputed, then the numberof random bits required to produe a word of size n is roughly30

• B to pik a weight k with preision 2−B , B > 1,
• k log n, to hoose a word of weight k (log n bits are required to pik ano�set in the word of length n).Algorithm 3.4:Input: n (blok size), γ (a bias)Output: ω ∈ 0, 1n1: (oi)i=0,...,n ← distribution(γ)2: r← frandom()3: i← 0, weight ← −14: while weight < 0 do5: if r < oi then6: weight ← i7: end if8: i← i+ 19: end while10: i← 0, ω ← (0, . . . , 0)11: while i < weight do12: offset← random(n)13: if wi = 0 then14: ωi ← 115: i← i+ 116: end if17: end while18: return ωComplexityThe preomputation onsists in partitioning the interval [0, 1] ⊂ Q into n+1subintervals of magnitude

pk(1− p)n−k
(

n

k

)

,for k = 0, . . . , n. This requires O (n) operations. The Algorithm 3.4 runs intime O (n). To produe a blok of n bits with preision B and bias γ, theost in terms of uniform random bits is
B + (1− pγ)n⌈log n⌉That is, for one bit, a ost of

RG2 =
B

n
+ (1− pγ)⌈log n⌉.31

The additional ost due to o�sets ollisions was negleted here, sine neg-ligible for our high biases. Indeed, the expeted number of ollisions whenpiking a word of weight w̄ = (1− pγ)n is
w̄−1
∑

i=1

∞
∑

j=1

i · j
nj

=
w̄−1
∑

i=1

i

n(1− 1
n)2

=
(w̄ − 1)(w̄ − 2)

2n(1− 1
n)2

.Example 5. For B = n = 32 bits and γ = 0.98, RG2 = 1.05 ≈ RG1. Theexpeted number of ollisions is 0.033.Statistial distaneLike in G1+, we get
DG2 ≈ (n+ 1) · 2−B−1.3.2.5 Algorithm G3DesriptionWe propose a di�erent kind of generator, whih does not produe bloks butdiretly a stream of �xed length, with a weight depending of the bias; for asequene of ℓ bits, we will have in average pγ · ℓ zeros, and thus will builda sequene of weight exatly ⌊(1 − pγ) × ℓ⌉. We will develop this idea inthe following (this tehnique omes from an idea of Serge Vaudenay). Thetehnique suggested above has another advantage: it would guarantee thatthe deoding will not get harder, i.e. that the sequene won't ontain moreones than predited in average. An obvious drawbak is that it redues thenumber of possible sequenes (of length ℓ and bias γ) to

(

ℓ

(1− pγ) · ℓ

)

.We now desribe a generi algorithm (Algorithm 3.5) produing a bitstringof length ℓ and weight p (here random(n) returns a uniform random integerin [0, n[, and ωi still denotes the i-th bit of the word ω).ComplexityThe time omplexity of Algorithm 3.5 is learly in O (n), and we do n allsto the funtion random. At eah loop, the value p + q dereases from one,thus the total number of uniform random bits required is
ℓ

∑

k=1

⌈log k⌉ ≤ ℓ+ ⌈log(ℓ!)⌉.

32

Algorithm 3.5:Input: ℓ (stream length), γ (a bias)Output: a word v ∈ {0, 1}ℓ1: p← ⌊ℓ · pγ⌉2: q ← ℓ− p3: for i = 1, . . . , n do4: j = random(p + q)5: if j < p then6: ωi ← 07: p← p− 18: else9: ωi ← 110: q ← q − 111: end if12: end for13: return ωThat is, for one bit, a ost of less than
1 +

log(ℓ!)

ℓuniform pseudo-random bits.Sine TCHO shall require bitstring of small weight (high γ), we hadbetter using the strategy, by piking o�sets in the word, thus requiring
RG3 = (1− pγ)⌈log ℓ⌉uniforms bits per biased bit.Example 6. For ℓ = 10000, γ = 0.98, RG3 ≈ 0.13 < RG2.Statistial distaneThe di�erene between the theoretial probability and the probability in-dued by our onstrution to output a 0, is
DG3 ≈ ⌊ℓ× pγ⌉

ℓ
− pγ .FlawThe problem of distinguishing between a bitstream produed by G3 and anideal biased generator is trivial: one only has to ount the ones in the stream,and pik the bit sequene whih has exatly ⌊ℓ · pγ⌉ zeros. The advantageis equal to the probability that the ideal random soure does not math thisexat value. 33

Example 7. For γ = 0.95, ℓ = 100, we should have ⌊ℓ× (1− pγ)⌉ = 3 onesin the sequene produed by G3. An ideal biased generator deviates from thisnumber with probability
1− p97

γ (1− pγ)3
(

100

3

)

≈ 0.78,whih is the advantage of an adversary on the distinguishing problem.Suh a weakness is alarming for a PRG, and so we annot useG3 a prioriin TCHO. But it ould be part of a variant of the ryptosystem, takingadvantage of the properties of this generator; for instane, it guarantees thatthe bias does not deviate too muh.3.2.6 Algorithm G4DesriptionThis generator mixes G2 and G3: a bitstring of length ℓ is diretly gen-erated, by �rst hoosing a weight, then a word of the hosen weight. It isequivalent to G2 with a blok size n = ℓ.ComplexityLike for G2, the preomputation requires the omputation of ℓ/2 binomialoe�ients, ahieved in O (

ℓ(log ℓ)2
) operations.The number of random bits required for one biased bit is in average

RG4 ≈ B

ℓ
+ (1− pγ)⌈log ℓ⌉,by negleting additional ost indued by the ollision (e.g. for ℓ = 10000and γ = 0.985 we get in average of ≈ 0.0004 random bits per biased bitprodued). Here the expeted number of ollision is (f. Setion 3.2.4) isless than

(1− pγ)2 · ℓ
2

.The time omplexity of the algorithm ouputing a biased bitstring of length
ℓ is learly in O (ℓ(1− pγ)).Statistial distaneLike G2 the statistial distane to an ideal generator is

DG4 ≈ (ℓ+ 1) · 2−B−1.

34

Example 8. For ℓ = 40000, γ = 0.985, B = 64, the expeted number ofollisions is about 1.13, leading to an additional ost of about 0.0004 ran-dom bits per bit produed. Negleting this ost, we get RG4 ≈ 0.117, and
DG4 ≈ 2−35. The theoretial number of random bits per biased bit requiredis (information entropy)

−pγ log pγ − (1− pγ) log(1− pγ) ≈ 0.081.OptimalityLet p = pγ . The funtion B
ℓ + (1 − p) log ℓ has a unique minimum value,reahed when
− B

log e
+ (1− p)ℓ = 0,that is, for

ℓ =
B

(1− p) log e
.For example, for the previous example we get ℓ = 5914, and a ost RG4 ≈

0.108.By substituting in the expression of RG4, we get
(1− p)(logB − log(1− p)),whih reahes the theoretial optimal value (the theoretial amount of in-formation ontained in a bitstring, that is, the binary entropy of p, f. Se-tion 1.2) when

logB =
p log p

p− 1
.Sine the maximum of p log p

p−1 on]0, 1[⊂ R is
lim
p→1

p log p

p− 1
≈ 1.442,a quasi-optimal ost will not be ahieved for large enough values of B. Inpartiular, if we tolerate a statistial distane as large as (ℓ+1) · 2−B−1 = 1,we an hoose B = log ℓ, and so the ost reahes the theoretial minimalvalue when

log log ℓ− p log p

p− 1is lose to zero, whih requires ℓ = 3 to be below zero.In the ase where a large number of biased bits is required, one often hadbetter hoose ℓ = B/((1 − p) log e) as �blok size�, to get the lowest ost interms of random bits.To onlude, this generator is very heap in terms of random bits re-quired, but an never reah a quasi-optimal ost. One may be areful to35

the statistial distane indued (i.e. B = 32 would lead to a high distanefor ommon TCHO2 parameters). Compared to G2, the preomputation ismuh more ostly: omputing ℓ! naively is required for an exat estimationof the probability distribution, and division of numbers on about ℓ bits mustbe performed; we had better use the following Algorithm 3.6, used in theGMP library [Gra06℄, based on the reurrene relation
(

n

k

)

=
n− k + 1

k

(

n

k − 1

)

.It requires less than ℓ2 produts and divisions of numbers on log ℓ bits.Algorithm 3.6:Input: n, k, k ≤ n/2Output: (n
k

)1: b← n− k + 12: for i = 2, . . . , k do3: b = b× (n − k + i)4: b = b/i5: end for6: return bIf we tolerate a slight loss of preision, we an �rst estimate ln(n!), ln(k!),and ln((n − k)!) using the Gamma funtion, de�ned by the integral:
Γ(z) =

∫ ∞

0
tz−1e−tdt.Hene for a natural n, Γ(n) = (n−1)!. The value ln Γ(n+1) an be approxi-mated in onstant time [PTVF92℄, thus approximating a binomial oe�ientrequires a onstant number of multipliations and exponentiations (the ex-ponentiation of e an be redued to an exponentiation of the integer 2 to aninteger power, with three additional produts of small rational numbers, soas to avoid expensive �oating point arithmeti). For instane we omputed

2 000 000! in about three seonds, whereas the best exat algorithms using adatabase of prime fators (Shoenhage, Lushny) takes about one minute for
2 000 000!, and the best without a prime fators (split reursive) list takesabout two minutes (see [Lus06℄).3.2.7 ConlusionWe overviewed several algorithms for biased random generation: G1 has asomewhat low ost in terms of unbiased bits, but is not well suited for asoftware implementation, like its variant G1+. The algorithm G2 is moresoftware-friendly, for roughly the same ost in time and random bits. The36

Algorithm G3 is nseure, but requires only a few uniform random bits, andits properties may be exploited by some variant of TCHO2. The last al-gorithm G4 requires less uniform random bits than bits produed, with alow-omplexity and simple implementation. A preision bound B = 64 orlarger shall be required, depending on the values of ℓ. However the pre-omputation is muh more expensive than for G2, so we will �nally usethe latter, sine we an reasonnably allow us a higher number of randombits from ISAAC, and we may enounter large values of ℓ, where G4 exatpreomputations may beome too ostly.3.3 Primitivity testing of a high-degree polynomialHere we brie�y study the problem of testing the primitivity of a high-degreepolynomial, sine required in the key generation proedure.Testing primitivity of a binary polynomial is hard. We reall that anirreduible binary polynomial of degree d is primitive if and only if its orderis equal to 2d − 1. Otherwise, its order is a divisor of 2d − 1 (and so is odd).Thus testing primitivity by omputing the order is as hard as �nding a fatorof 2d − 1. Indeed, the three problems of omputing order of an element ina group, �nding and reognizing a primitive element in a �nite �eld, are alllisted as open problems in [AM94℄. But in our partiular ase of polynomialsover F2, maximal orders are Mersenne numbers, whih have some propertiesrelative to primality testing and fatoring; we present some results aboutthese numbers, dedue seletion riteria for our polynomial P , fator of K.We start by an estimation of the primitive polynomials proportion.3.3.1 Proportion of primitive polynomialsThe proportion of primitive polynomials among the irreduibles is approxi-mated in [FV06℄ to 8/π2 ≈ 81 %, where π is introdued via Bu�on's needleproblem. So the probability for K to have a primitive fator of degree dP isabout 8
π2dP

. Given an interval [dmin, dmax], we get a probability of
1−

dmax
∏

i=dmin

(1− 8

π2 × i)that K has a fator of degree in this interval.However, we an doubt of the auray of the estimation 8/π2: the exatenumeration formula (see Appendix C) give a proportion of primitive poly-nomials among irreduible, for degrees below 100, of 70 %. Unfortunatelywe annot ompute this value for the large degree ranges, sine the full fa-torization is required in the formula (to ompute Euler's totient and M®biusfuntions). Indeed, the probability that a random irreduible polynomial of37

degree d is primitive is exatly
φ(2d − 1)

∑

m|d µ
(

d
m

)

2m
.The number of irreduible polynomials of degree d an be sharply approxi-mated to 2d/d, but there is no way to simply estimate the number of primitiveones.3.3.2 Known deterministi testsWhen 2d − 1 is prime, we know for sure that any irreduible polynomial ofdegree d is primitive (Corollary 1). Thus by testing forMd primality, we antrivially prove primitivity in some ases. However, prime Mersenne numbersare seldom, and it su�es to store in memory the exponents of primes (theyare only two exponents of Mersenne primes in [5 000, 1 000]: 9 689 and 9 941),and we do not have to use primitivity tests. In the ase where primality hasto be tested, several properties of Mersenne numbers may help.When 2d − 1 is omposite, the naive method is:1. Get the full fatorization 2d−1 =

∏∞
i=2 p

αi
i , where pi is the i-th prime,and only a �nite number of αi is non-zero.2. Compute X(2d−1)/k mod P , where k ranges over all the prime fatorsof 2d − 1 until we �nd 1 (otherwise P is primitive).Rieke et al. [RSP98℄ improved this generi algorithm, but �nding a singlefator of 2d − 1 still has a superexponential time ost in d with the bestknown algorithms, thus it is learly infeasible for our degree ranges (d >

6 000). Matsumoto [MN98℄ builds another kind of algorithm for the binarypolynomials, based on bit to bit operations, but again it is too ostly to beapplyed in TCHO. All the other known methods require fatoring 2d − 1 oromputing disrete logarithms in F2d , both notoriously di�ult.There exist fast deterministi tehniques to ompute elements of highorder in some �nite �elds [GvP98℄, but they are not suitable in our ase.Some works fous on trinomials, and algorithms were built to �nd �almostprimitive� high degree trinomials [BLZ03, BZ03℄ . So there is no magialtest avoiding the order omputation, even if, as we see further, Mersennenumbers indue a slight advantage.When d is prime, the following theorem gives a riterion on the primefators of Md:Theorem 5 (Fermat, Euler). Let p and q be odd primes. If p divides 2q−1,then p ≡ 1 mod q and p ≡ ±1 mod 8.38

Proof. If p divides 2q − 1, then 2q ≡ 1 mod p, and the order of 2 in (Zp)
⋆divides q, thus it must be q, beause it is prime. By Fermat's Little Theorem,the order of 2 in (Zp)

⋆ divides p− 1, so p− 1 = 2qk. It gives
2(p−1)/2 = 2kq ≡ 1 mod pso 2 is a quadrati residue modulo p, and it follows p ≡ ±1 mod 8, whihompletes the proof.This result an be used to adapt the Pollard's p-1 algorithm, and Er-atosthene's sieve. When d is not prime, the Ellipti Curve Method is welladapted, but not e�ient enough to get the full fatorization in a reasonnabletime for our ranges of exponents.3.3.3 Using a non-primitive polynomialLet's onsider the ase where P is of unknown order: in [FV06℄ the primi-tivity quality is required so as not to have Xn− 1 as a trivial solution, whenthe order is n ≤ d, and a period long enough. The period would be shorterthan ℓ with probability about ℓ/Md, whih is lose to zero.If P is not primitive, and the order n known, it is less than d withprobability about d/Md, whih is also lose to zero. So the trivial solutionannot be used. But one may fatorize its order. For instane, if n = 3p,we an build a multiple of weight 3 and degree 2n/3, but the probabilitythat this number is lower than ℓ is lose to zero again. A result on thefatorization of Xn − 1 may be used:Theorem 6. Considering polynomials in the ring Fp[X], with p prime,
Xn − 1 =

∏

m|n
Φm(X)where the m-th ylotomi polynomial is de�ned by

Φm(X) =
∏

d|m
(Xd − 1)µ(m/d)with µ is the M®bius funtion (m is not neessarily prime).Proof. The result follows from the M®bius inversion formula (see [LP98℄ Ch.3, �13).The order n has an expeted value lose to 2d−1 (under the reasonnableassumption that orders are roughly uniformly distributed in [3, 2d − 1]).When possible, exploiting the previous result would need to get the fullfatorization of n, and ompute a number in O (

2ν(n)
) of ombinations ofthe fators to hope �nding some �good� multiple, whih is infeasible for ourvalues of d (ν(n) is the number of divisors of n).We onlude that a non-primitive polynomial an be use with no signi-�ative risk. 39

3.3.4 A �lter for primitive polynomialsHere we brie�y desribe a �lter for non-primitive polynomials. In the fol-lowing P is a randomly hosen irreduible polynomial, non-primitive, of ar-bitrary degree d hosen among non-Mersenne prime exponents (i.e. 2d − 1is omposite). A polynomial passing this test would be delared probablyprimitive. Our test is based on the following trivial property:Property 1. ∀k ∈ Z,Xk·ord(P) ≡ 1 mod P .So if X 2
d
−1

k 6≡ 1 mod P for a given prime k less than 2d − 1, we knowthat k divides the order of P . Conversely, if it is 1 modulo P , then P is notprimitive, and νk(2d − 1)− 1 ≥ νk(ord(P)), where, νk(n) is the multipliityof the prime k in n. If 2d − 1 is square free, then X
2
d
−1

k ≡ 1 mod Pimplies k|ord(P). It is onjetured [Guy94℄ that all prime exponent Mersennenumbers are square free, but we annot use this result, sine primes areseldom.The idea of our algorithm is to look for small prime fators of Md, upto a ertain bound B, and hek X 2
d
−1

k 6≡ 1 mod P with k ranging over allthese fators, so that we �nd 1 only if P is not primitive.Algorithm The algorithm T is simply this proedure:1. Find out all the distint prime fators p1, . . . , pr of 2d − 1 less than B.2. For i = 1, . . . , r:If X 2
d
−1

pi mod P = 1, then return 0.3. return 1.Corretness and omplexity This algorithm is learly deterministi.Trivially, for a random P , if P is primitive, then T (P) = 1. If P is notprimitive, T (P) = 1 if and only if P 's order has all the pi's as fators. Let ρbe the probability that T (P) = 1 for a non-primitive P .All the pi an be found in time O (√
B · d2

) using Pollard's rho method(exponential ost in terms of the input's length) . There are at most dsuh fators, and in average ln lnB. Computing all the X 2
d
−1

pi mod P thusrequires O (

d3
) operations in the worst ase (and O (

d2 ln lnB
) on average).What remains to �nd is a bound on ρ.

40

Reliability It is known [HR17℄ that the average number of prime fatorsof an integer n is in average ln lnn, and ln lnB for fators less than B (forhigh B), however Mersenne numbers may not behave like arbitrary integers;in 1964 Gillies [Gil64℄ made a onjeture about the distribution of primedivisors of Mersenne numbers, based on this Wagsta� [Wag83℄ estimates theexpeted number of prime fators of Md between A and B to
∑

k

1

k ln(2kd)
≈ ln lnB − ln lnAwhere the sum extends over all integers k suh that A < 2kd+ 1 ≤ B. Notethat for A = e, we �nd the average estimate for arbitrary integers. Thus theexpeted number of distint prime fators less than B is

ln lnB − ln ln 3sine Md is odd, and the expeted number of prime fators of Md is
ln

lnMd

ln 3
≈ ln d− ln ln 2− ln ln 3.Estimating the failure probability from an assumption on the orders dis-tribution is far from being trivial, so we will use a more algebrai approahof the problem.In the deomposition �eld F2[X]/〈P 〉, has its d distints roots (Ẋ, . . . , Ẋ2d−1).This �eld has 2d elements, and thus is isomorphi to K = F2d , and P rootsare θ, θ2, . . . , θ2d−1 for a ertain θ. The set (1, θ, θ2, . . . , θd−1) is a linearlyindependent family, and spans K as a d-vetorial spae.By de�nition, P is primitive if and only if eah of its roots generates

K×. In that ase all its roots are also generators of K×, sine θ's order ismaximal, and they form a set stable by the Frobenius automorphism.Let F ⊂ K be the set of all the θ suh that (1, θ, θ2, . . . , θd−1) is a linearlyindependent family. Elements of K \ F have their minimal polynomial ofdegree d′ < d, and span a sub�eld of K; hene their order divides 2d
′ − 1,and d′|d. Conversely, if the order of θ divides 2d

′ − 1 for some d′|d, then
θ /∈ F . We have

#{θ ∈ K⋆, ord(θ)|2d′ − 1} ≤ 2d − 1

2
√
d − 1

,so the fration of θ ∈ K⋆ not in F is less than log d/(2
√
d − 1).The probability that a random θ, suh that θ2d−1/pi for i = 1, . . . , r, isnot a generator of K, is the probability that a random α ∈ Z/2d − 1Z is notinvertible given the fat gd(α, pi) = 1. This probability is less than d

B logB ,let A be this event. We dedue 41

d B r ρ

7000 220 37 ≤ 3.3 · 10−4

7000 230 ≈ 48 ≤ 2.2 · 10−7

7003 220 2 ≤ 3.3 · 10−4

7003 230 ≈ 4 ≤ 2.2 · 10−7Table 3.3: Filter failure probability.
Pr[NG(θ)|A] ≤ d · p1

B logB
,where NG is the prediate �not a generator�.Finally,

|Pr[NG(θ)|A, θ ∈ F]− Pr[NG(θ)|A]| ≤ Pr[θ /∈ F] ≤ log d

2
√
d − 1

,and so
ρ = Pr[P not primitive|T (P) = 1] ≤ d

B logB
+

log d

2
√
d − 1

.For ommon values of d in TCHO2, A negligible failure probability anbe reahed (note that the bound is not tight, sine we onsidered the ase of
d fators, whereas they are only ln lnB in average), f. Table 3.3.This algorithm easily generalizes for polynomials over the �eld Fp, with
p prime.3.3.5 ConlusionWe have shown that testing primitivity was as hard as fatoring a Mersennenumber, whih is an infeasible task for our exponents, and so we annotdeterministially test for primitivity. Moreover, no probabilisti polynomialtime tehnique is known at this day to test primitivity. We suggested a de-terministi �lter, that �nds with high probability non-primitive polynomialswhen the bound is su�iently large. We also saw that even with an oralereturning the order of P and the full fatorization of Md, the probability ofexploiting these values is learly negligible.Finally, we hoose not to test primitivity at all, but we still have to hekthat P has no ommon fator with Q, for the deoding not to be ambiguous.3.4 Key generationWe follow the proess desribed in Setion 2.2.1: �rst pik a random Kof given degree and weight, then look for an irreduible fator of degree in42

[dmin, dmax]. When suh a polynomial is found, we have to test whether it isprimitive or not; the probabilisti �lter mentionned in the previous setionould be use, but we also show that an irreduible P oprime with Q su�es,thus testing primitivity is not neessary.We �rst perform the square-free fatorization of K, whih is a straight-forward operation for polynomials: we start by omputing the gd of K andits derivate, then reursively build a deomposition of the form
K =

∏

Ki
iwhere the Ki are pairwise oprime square-free polynomials. At this stagewe look for a suitable P , but �nding our fator here will seldom our,regarding to the parameters used. Then we apply the Cantor-Zassenhausalgorithm [CZ81b℄, the distint degree fatorization, to get the full fator-ization of K into powers of irreduible fators, from the square-free fators.This is a probabilisti algorithm for fatoring on �nite �elds, of asymptotitime omplexity in O (

n2+o(1) ln 2
), whih is the best asymptoti omplex-ity for a fatorization algorithm today (the best deterministi algorithm runsin [Sho90℄ O (

q1/2(ln q)2n2+o(1)
), where q is the ardinality of the �nite �eld).Example 9. It takes on average about 2 seonds to get the full fatorizationof a polynomial of low-weight degree 5 000, and between 20 and 30 seondsfor a polynomial of degree 11 560 (default parameter of TCHO).The publi and private keys, represented as bitstrings, are respetivelyof length (dP + 1) and (d + 1) bits. To redue this length, one an storethe o�sets of the non-zero oe�ients, it requires w⌈log d⌉ bits. If odingnumbers on an arbitrary number of bits is not pratial (e.g. in software),one an store the polynomial K/P on d− dP bits, then reover K with onepolynomial multipliation (ost in O (

d2
P

)).Example 10. A polynomial K of degree 13 000 and weight 99 an be storedon 99× ⌈log 13 000⌉ = 1386 bits, instead of 13 000 naively.3.5 Enryption and deryptionA iphertext is the XOR of three bitstreams; SLP
, SLQ

, and Sγ . In ourimplementation, these streams are arrays of 32 bit words, whih are �rstomputed independently, then xored word by word (there is a total of ⌈ℓ/32⌉words).Deryption is not as easy as the enryption: the bitstream K ⊗ y, oflength ℓ− d, is omputed using bit operators on low-level representations ofthe stream and K in time O (d · (ℓ− d)). The matrixMf−1 is preomputed,and its inversion is performed with a funtion of the NTL, implementing the43

Gauss-Jordan algorithm. The produt by this matrix is performed after theMLD, with an algorithm running in time O (

d3
Q

).Although TCHO is learly a stream ipher (see Subsetion 1.3.1), wemeet a problem inherent to the blok iphers, when the message's length isnot a multiple of the blok size. A broadly solution is to systematially add aone to the message, then add zeros until a blok is �lled. It has the drawbakto add one blok of data to the ipher of messages whose length is a multipleof the blok size, and thus an indue an expansion of the message. Theiphertext stealing tehnique an solve this problem when the blok size isthe same for plain and ipher messages, it is not the ase here. So we haveto use the �rst solution.3.6 Experimental resultsThis setion gathers pratial information about our implementation, andbenhmarks' results, based on the �nal version of the program. Table 3.4gives the average time required to ompute one a bitstream from a LFSR ofone megabyte, and ℓ = 15000 bits, in seven di�erent senarios, dependingon the feedbak polynomial:I degree 30,II degree 6 000,III degree 6 000, with only taps on blok boundaries,IV degree 6 000, sparse (weight 50).senario 1 Mb ℓ bits rateI 290.0 ms 452 µs 3 530 Kb/sII 6.8 s 11.0 ms 150 Kb/sIII 1.1 s 2.1 ms 930 Kb/sIV 1.0 s 1.8 ms 1 024 Kb/sTable 3.4: LFSR performanes.Table 3.5 gives average time required to ompute ℓ bits for ℓ = 15000 and
ℓ = 50000, along with the rate ahieved, using algorithm G4 for di�erentbiases.An alternative approah to ompute a LFSR output is to use a preom-puted look-up table: given a polynomial P of degree dP , we an ompute atable of ℓ · dP bits, ontaining the bitstreams produed by eah initial stateof LP of weight equal to one. Computing suh a table takes less than a se-ond using optimized algorithms, then the generation of a bitstream requires44

roughly ℓ
32 × dP

2 XOR operations (in our implementation, with a 32 bitsproessor). Experimentally the time gain is not signi�ant, sine memoryaess takes a non negligible time (about 70 megabytes are preomputed forommon parameters).
γ ℓ time rate

0.98 50 000 93 µs 64 Mb/s
0.98 15 000 42 µs 42 Mb/s
0.60 50 000 1 400 µs 4 Mb/s
0.60 15 000 440 µs 4 Mb/sTable 3.5: PRG performanes (using G4).In Table 3.6 we present three sets of parameters satisfying the seurityonstraints, and show in Table 3.7 the time required for the full key gener-ation, the number of trials (number of andidates for K tried), the time fora full fatorization, and for enryption and deryption.senario dQ dP γ w d ℓ chardI 16 ∈ [5 600, 6 200] 0.98 87 11 800 12 600 80II 20 ∈ [6 000, 6 600] 0.98 99 11 560 13 080 80III 20 ∈ [7 000, 7 700] 0.98 105 13 950 15 900 80Table 3.6: Senarios.senario key generation trials fat. enryption deryptionI 160 s 6 19 s 12 ms 3 sII 270 s 12 23 s 12 ms 68 sIII 290 s 8 38 s 12 ms 87 sTable 3.7: Key generation and enryption performanes.The high values for deryption are due to the exponential ost in dQ of theMLD. The time neessary for the matrix inversion is negletable regardingto the ost of the MLD, for these parameters. This implementation doesnot use the improvement of the Walsh transform, whih should redue thetheoretial time omplexity of a fator dQ

ℓ−d , but may require non negligibleadditional omputations.
45

Chapter 4The TCHO2 shemeWe present a variant of TCHO, resulting of our study: we �rst show whatkind of odes an be used to enode the message, and suggest muh betterodes than arbitrary LFSR ones for our enryption sheme. Another in-novation of TCHO2 is that the need for P to be primitive is obviated (f.disussion in Chapter 3).4.1 PresentationTCHO2 di�ers from TCHO in the oding applied to the plaintext. In TCHO,a ode spanned by an LFSR with an arbitrary primitive polynomial Q wasused, leading to an expensive deryption proedure. In TCHO2 we willinstead use a ode C of dimension k and length ℓ for whih an e�ientdeoding proedure exists, and denote C(x) the odeword of x in C. Thisode is subjet to many onstraints and annot be hosen at random. Inthe deryption proess of TCHO, the iphertext is multiplied by K to anel
SℓLP

. In this proess, the noise soure Sℓγ beomes Sℓ−dγw , but SℓLQ(x) alsobeomes Sℓ−dLQ(x′). In the ase of TCHO2, the multipliation by K being alinear operation, we will have K ⊗ C(x) = C̃(x), where C̃ is a new linearode of dimension k and length ℓ − d. This means that when derypting aiphertext, one will have to deode in the modi�ed ode C̃. The only asewhere deoding in C̃ an be e�ient for any K is when C is a trunatedyli linear ode, that is, C is the output of an LFSR. In that ase, asfor TCHO, K ⊗ C(x) is equal to C(x′) trunated to ℓ − d bits, where x′ isobtained from x exatly as with TCHO. TCHO2 is thus at the same timea generalization of TCHO as things are seen from a more general point ofview, but also a partiular ase as the only e�ient solutions were alreadyinluded in the sope of the original TCHO.TCHO2 enrypts a plaintext x in the following way:TCHO2enc(x, r1||r2) = C(x) + SℓLP (r1) + Sℓγ(r2).46

Let y be a iphertext of some plaintext x. Deryption works as follows:1. K is used to delete SLP
in y:

K ⊗ y ≈ C̃(x) + Sℓ−dγw = y′where C̃(x) is equal to a trunated odeword C(x′), with x′ = f(x) fora ertain linear appliation f .2. y′ is deoded to �nd x′, and x = f−1(x′) is reovered.Note that the matrix of f−1 an still be preomputed, sine it only dependson K and the ode C used.4.2 LFSR odes with trinomialsA �rst proposal, by Willi Meier, was to use, instead of an arbitrary primitivepolynomial, a trinomial as feedbak polynomial of the LFSR enoding theplaintext. In that ase, deoding algorithms more e�ient than MLD exist;the Algorithm B in [JJ99℄ or Gallagher deoding as used, e.g., in [Wag02℄for fast orrelation attaks, an be applied. The suess probability of thesealgorithms depends on the orrelation value pγw , and the ratio between thelength of known output and the size of the LFSR for whih the initial state issearhed for. Again, onerning the reliability of these iterative algorithms,only experimental results seem to be available. For trinomials it an be seenfrom Table 3 in [JJ99℄ that, for example, orret deoding is expeted ifthe known output has length 100 times the LFSR-length, and pγw is 0.6 orlarger. This learly improves the omplexity of the deoding, but we see inthe next setion that it an be redued again.4.3 Blok repetition odes4.3.1 Desription and reliabilityThese odes o�er straightforward enoding and deoding algorithms: for ablok repetition ode of dimension k and length ℓ = mk, the odeword ofa bitstring x of length k is formed of m ontiguous repetitions of x, and sothe minimum distane of the ode is m (m is also equal to the expansionoe�ient). Deoding is performed using majority logi deoding (MJD),whih is equivalent to MLD for these odes, but runs in time O (ℓ− d),instead of O (

k · 2k
). This omplexity gap allows to enrypt bloks largerthan ceasy, and even any length less than ℓ− d. Note that using a repetitionode is equivalent to setting Q = XdQ + 1 in TCHO (with dQ = k).Here C̃ has minimum distane m′ = ⌊(ℓ−d)/k⌋, but deoding more than

⌊(m′−1)/2⌋ errors (the theoretial bound for deterministi error orretion)47

will be possible. The probability of erroneous deoding is exatly the prob-ability that at least one bit is more frequently erroneous than orret, thatis (if we assume that the orrelation in Sγw indued by the deletion of SLPhas no onsequene here):
ρ ≈ 1−

m′

∑

i=⌈m′/2⌉
piγw(1− pγw)m

′−i
(

m′

i

)

k

. (4.1)This probability an also be expressed using the entral limit theorem (sum-ming k times on the m′ bits). If τ is the random variable of the number oferrors on a single bit, the probability that an error ours in the deoding ofthis bit is Pr[τ > m′/2], whih is equal to
Pr

[

τ −m′(1− pγw)
√

m′pγw(1− pγw)
>
√
m′ pγw − 1

2
√

pγw(1− pγw)

]

≈ 1− ϕ(
√
m′η)with η = γw/

√

1− γ2w. And so the failure probability obtained is
ρ ≈ k · ϕ(−η

√
m′). (4.2)Here ϕ is the umulative distribution funtion of a standard normal distri-bution:

ϕ(z) =
1√
2π

∫ z

−∞
e−t

2/2dt.If the generator G3 was used, the error probability would be expresseddi�erently; if ζ = ⌊(ℓ−d)(1−pγw)⌉) is the exat weight of the pseudo-randombitstring, then the probability that given bit is badly deoded beomes
∇ =

(

ℓ

ζ

)−1

·
⌈m′/2⌉
∑

i=0

(

m

i

)(

ℓ−m′

ζ − i

)

,hene the probability of bad deoding is
ρ′ ≥ 1− (1−∇)k.The value obtained is just a lower bound, sine it onsiders the k bitstringsof length m′ independently, whereas they are not. Even so, this bound islose to the exat value, and experimentally it is also lose to the value of ρfound in (4.2).We an now ask the question: what error probability an we aept ? Wemust be areful in that hoie, indeed a value as low as 2−23 (≈ 10−16) lookssmall enough, but it implies in average one error for 223 bloks of length k,that is, for k = 64, an expetany of one error for 64 megabytes of dataenrypted. In 1943, the mathematiian Emile Borel informally introdued48

four di�erent sales [Bor43℄, to state that a given probability is negligible;at the terrestrial sale, even 1/1000 is negligible, but at the osmi sale weshould only neglet a probability lower than 10−50. He de�nes an event withnegligible probability as one "whih shall never happen, or, at least, shallnever be observed"1. In our ase, we must already make some assumptions:will TCHO2 be used daily to ipher dozens of hard disks, or only monthlyto enrypt 128 bits of some seret key ? The seond a�rmation soundsmore realisti, regarded to the ost in spae and time of TCHO2. We shouldalso remember that requiring an error probability smaller than the one ofhardware failure would be somewhat stupid. So we should be able to toleratea failure probability of 10−10 at our �ryptographi sale�, that is, a wrongderyption of a blok every 500 Mb of data enrypted, or one key of 128 bitsover 100 000 000.
k dP d w γ 1− pγw ℓ ρI 32 ∈ [6 600, 7 200] 13 470 89 0.9832 0.39 32 000 1.0 · 10−6II 64 ∈ [9 000, 9 900] 17 550 97 0.9877 0.35 30 000 4.0 · 10−4III 128 ∈ [5 900, 8 200] 24 420 51 0.9813 0.31 48 000 2.9 · 10−6IV 128 ∈ [5 600, 10 400] 20 300 83 0.9837 0.37 62 000 1.7 · 10−4V 128 ∈ [8 500, 9 075] 17 996 81 0.9870 0.36 68 000 7.0 · 10−11VI 128 ∈ [5 800, 7 000] 25 820 45 0.9810 0.29 50 000 8.9 · 10−9Table 4.1: Examples of parameters for TCHO2 with repetition odes.Table 4.1 shows some parameters suiting the seurity onstraints (f.Assumptions 1 and 4), for chard = 80. When a high seurity is not required,and a somewhat high error probability an be tolerated, muh more pratialparameters may be obtained.4.3.2 Experimental resultsTable 4.2 shows performanes for the repetition odes senarios desribedin Table 4.1, based on the implementation of TCHO. Enryption time isroughly equal to the time needed to ompute SℓLP (r1)

(in all senarios Sℓγ isomputed in less than 1 ms), while for deryption the most expensive op-1He then develops this thought: �When we stated the single law of hane, "eventswhose probability is su�iently small never our", we did not oneal the lak of preisionof the statement. There are ases where no doubt is possible; suh is that of the ompleteworks of Goethe being reprodued by a typist who does not know German and is typing atrandom. Between this somewhat extreme ase and ones in whih the probabilities are verysmall but nevertheless suh that the ourrene of the orresponding event is not inredible,there are many intermediate ases. We shall attempt to determine as preisely as possiblewhih values of probability must be regarded as negligible under ertain irumstanes. It isevident that the requirements with respet to the degree of ertainty imposed on the singlelaw of hane will vary depending on whether we deal with sienti� ertainty or with theertainty whih su�es in a given irumstane of everyday life.� (Chapter 3, Ibid.)49

eration is the multipliation by K (majority deoding and produt by thepreomputed matrix always require less than 1 ms). We give average timesfor a key generation, and the average number of polynomials fatorized (tri-als) during the proedure. The theoretial error probability ρ was auratelyveri�ed experimentally, and so is not repeated here.enryption deryption key gen. trialsI 29 ms 73 ms 330 s 12II 37 ms 53 ms 360 s 6III 42 ms 47 ms 360 s 3IV 56 ms 170 ms 213 s 2V 80 ms 215 ms 805 s 10VI 55 ms 70 ms 682 s 4Table 4.2: Performanes of TCHO2 with repetition odes.Results in Table 4.2 show that, while seleting parameters, a trade-o�must be made between key generation time, enryption and deryption time,and iphertext expansion. Indeed we annot obtain both a fast key genera-tion, a low error probability, and fast enryption/deryption; the prohibitivetime required by a key generation an be redued by using larger degreeranges, thereby inreasing ρ and the time of enryption and deryption,whilst a small degree range allows better suess probability but dramati-ally slows down key generation. Inreasing ℓ redues ρ but indues a hugeexpansion and a high time of enryption and deryption. We review the prosand ons of eah 128 bits senario proposed:III A large interval [dmin, dmax] is hosen, so the key generation time isredued, but ρ is high.IV Compared to III, d is redued, thus key generation is faster, but ρ ishigher.V Here we use a small interval and a larger ℓ, to reah a muh lowerfailure probability, but key generation beomes muh slower.VI A high degree is hosen for K, it allows to redue its weight, and thelength ℓ of a iphertext, but key generation is still long.So far our software implementation of TCHO2 is muh slower than op-timized ones of ryptosystems like NTRU [Sho05℄, RSA-OAEP [Wal98℄, orellipti urves-based systems [Gra06℄, but may perform muh better on adediated ASIC, sine no omplex arithmeti is required, and both LFSRand pseudo-random generators are known to be very fast in hardware (anLFSR implementation in hardware requires about as many gates than theregister's length, and outputs one bit per lok yle).50

4.4 Asymptoti parametersHere we show that seure parameters an be expressed only in terms of thedimension k and chard, by giving expressions involving onstant values in theonstraints formulas. For instane, set w = chard, d = chard
2k, ℓ = α1d,

dmin = chard
2, dmax = α2chard

2, and γ = 1−β/chard. The seurity onstraintsare satis�ed provided that α1 > 1, α2 > 1, and β ≥ ln 4, with the onstraintthat k = O (chard) and k and chard are large enough.Indeed, the onstraint on the hardness of lwpm, w log d
dmax

≥ chard, anbe rewritten k ≥ 2α2 whih always holds for a reasonnable α2. We also need
γ ≤ 2

1− chard
dmin , that is, 1− β

chard

≤ 1− 2 ln 2
chard

chard
2and so we need β ≥ ln 4. Some routine but tedious alulus shows thatthe failure probability ρ is asymptotially bounded with suh parameters.However the parameters thus obtained for TCHO2 may not be pratial forsmall values of k and chard, sine not tight with the seurity onstraints. Withthe parameters above, key generation runs in time O (

chard
4k2

), enryptionin O (

chard
2k

), and deryption in O (

chard
3k + k2

), for parameters providingsemanti seurity against adversaries running in time less than O (2chard).In omparison, RSA with modulus of k bits o�ers key generation in time
O

(

k4
), enryption in O (

k2
) deryption in O (

k3
), and OW-CPA seurity(namely, the infeasibility to fatorize the modulus) against adversaries run-ning in time

O
(

e(
64

9
k)1/3(ln k)2/3

)(GNFS omplexity), and so 2chard seurity holds with chard = O
(

k1/3
), whereasin TCHO2 the blok size and the seurity level are almost independent pa-rameters (we only need k = O (chard)).4.5 Comparison with other ryptosystemsAlthough software performanes of with our implementation are learly worsethan other asymmetri ryptosystems', TCHO2 may be muh more ompet-itive in hardware. Indeed, hardware implementation of RSA [RSA78℄ ismuh more omplex [Ko95℄, for example it requires Montgomery methodto redue the number of modular redution, whih is also non-trivial toimplement. NTRU [HPS98℄ also requires modular redutions, and uses aspeial kind of produt between two polynomials with integer oe�ients,whereas TCHO2 only works over F2, muh more hardware-friendly. Elliptiurve based systems implementation is also non-trivial (it works on a large�nite �eld). Another singularity of TCHO2 is the independene betweena iphertext length and the seurity (). whih ontrast with RSA, NTRU,MEliee [ME78℄, and GGH [GGH97℄ for example.51

One may notie that TCHO2 looks like MEliee: enryption is �enodeand add noise�, deryption is �redue noise and deode�. Like TCHO2 itinvolves a matrix produt, a preomputed inversion of matries related to theprivate key. MEliee is based on Goppa odes instead of LFSR odes, andmostly relies on the NP-hardness of the problem of deoding an arbitrarylinear ode. But it su�ers from a huge publi key (typially 219 bits forseure parameters, whereas TCHO2's is about 213). Sine majority deodingis muh more simple than deoding Goppa odes, we are onvined thatTCHO2 is more appropriate than MEliee. In addition, both publi andprivate key are muh smaller than in MEliee, and deryption requires onematrix-vetor produt instead of two. Our huge iphertext expansion islearly a drawbak, but may be aeptable when iphertexts are not to bekept in memory, and the sole purpose is to enrypt seret keys of a symmetrisheme.4.6 ConlusionThis variant of TCHO with repetition odes is muh more e�ient: enryp-tion and deryption algorithms are faster, larger bloks an be enrypted, apreise estimate of the deryption failure probability is given, and experimen-tal results are muh better than for TCHO. Besides of that, a huge expansionis required to reah both a negligible error probability and an assumed 280seurity (assuming that hoosing chard = 80 is reasonnable today).Eventually, the bitstream SLP
+Sγ an be regarded as trapdoor pseudo-random generator, where the trap allows to redue the noise enough in orderto deode the noised odeword, Other generators of this kind would makeit possible to use other odes (not only linear ones), if the use of the trapdoes not alter the noised pattern. The Blum-Goldwasser [BG85℄ ipher is anexample of trapdoor PRG, where the trap allows to reover the seed of thegenerator, and thus the entirely anel the pseudo-random bitstream.

52

Chapter 5SeurityIn this hapter we prove semanti seurity of TCHO and TCHO2, and designtwo hybrid enryption shemes o�ering IND-CCA seurity.5.1 One-wayness and non-malleabilityLet's begin with the weakest seurity level:Proposition 6. TCHO2 is (2chard , 2−chard)-OW-CPA seure.Proof. It diretly follows from the seurity assumptions 1, and 2 that aplaintext annot be reovered with probability greater than 2−chard in timeless than 2chard . Hene TCHO2 is (2chard , 2−chard)-OW-CPA seure.We now state two negative results on TCHO2 seurity:Proposition 7. TCHO is not (O (ℓ) , 1−ε)-OW-CCA seure, for some small
ε > 0.Proof. Given a sound iphertext, it su�es to modify one bit and ask anorale to derypt it to get with high probability the plaintext orrespondingto the original iphertext, thus the algorithm runs in onstant time, withexatly one query to the orale. The positive value ε is the probability thata iphertext of some random message is not sound, that should be small forwell hosen parameters.As a onsequene, it is not IND-CCA seure either, nor NM-CCA seure.Proposition 8. TCHO2 is not (O (ℓ) , 1)-NM-CPA seure.Proof. If y is a sound iphertext of x, then y+x′|| . . . ||x′ is a sound iphertextof x+ x′, for any x′ ∈ {0, 1}k , with probability 1, thus TCHO2 is malleablein onstant time, without any enryption query.53

Also remark the property that the sum of n sound iphertexts is a soundiphertext, with the same parameters exept the bias now equal to γw. How-ever the obtain iphertext shall be impossible to derypt, even if n = 2, forwell hosen parameters.We an de�ne a non-strit notion of sound iphertext for a given key:at deryption, when performing MJD, if the average proportion of orretbits for all the o�set does not math with the bias γ (for a random bitstringwe get in average as many zeros as ones for a given o�set), then with highprobability this is not well onstruted iphertext. However, independentlyof a key pair, any bitstring of length ℓ may be a valid iphertext. Reallthat we talk abound sound iphertexts instead of valid ones, sine the latteradjetive is ommonly used for objets that ould not have beed produedby the enryption algorithm.5.2 Semanti seurityThe results in this setion are stated for TCHO2, but hold for TCHO aswell.5.2.1 A su�ient onditionTheorem 7. If SℓLP
+ Sℓγ annot be distinguished from Sℓ0 in time t with anadvantage larger than ε, then there exists µ suh that TCHO2 is (t − µ, ε)-IND-CPA seure.Proof. We proeed by redution: let Aror = (Aror

1 ,Aror
2) be an adversary ina real-or-random game, whih, given a hosen plaintext x = Aror

1 (1k) and abitstring z of length ℓ, deides whether z is a iphertext of x or of an unknownrandomly hosen plaintext x′; this adversary returns Aror
2 (z) ∈ {0, 1}, andsueeds with an advantage ε, in time t. Sine a iphertext of TCHO2onsists of some bitstring noised with a random soure, the iphertexts spaeis equal to {0, 1}ℓ, so there are no trivial instanes of the problem, and everyelement of {0, 1}ℓ an be a iphertext of one or several messages.We build an adversary against the problem of distinguishing SℓLP

+ Sℓγfrom Sℓ0 in the following way: given an unknown instane Sℓ⋆, hoose a plain-text x = Aror
1 (1k) independently of Sℓ⋆, and ompute z = C(x) + Sℓ⋆, thenreturn Aror

2 (z). If Sℓ⋆ is random, then so is z, otherwise z is a sound iphertextof x, therefore we got an adversary distinguishing a noised LFSR stream fromrandom with exatly the same advantage than a real-or-random one, in timegreater than t. As real-or-random seurity implies [BDJR97℄ with no losssemanti seurity, TCHO2 is IND-CPA seure unless a signi�ant advantagean be obtained on the above problem.54

5.2.2 Distinguishing a noisy LFSR from randomLet P be a random polynomial, suh that deg(P) ≤ ℓ. In order to determinewhether a bitstring is SℓLP
+ Sℓγ or Sℓ0, one an try to deode it (i.e. reoverthe initial state of LP). It is impossible (f. Assumption 2) when dP ≥ 2chardand γ ≤ 21−chard/dP − 1. Another strategy onsist in multiplying the streamby P , and deiding whether the obtained stream has bias γwP or not. It isimpossible to distinguish a random soure with bias γwP from a uniform oneas soon as γwP < 2−chard/2. Instead of multiplying by P , one an multiplyby multiples of P of lower weight and degree less than ℓ and exploit theobtained bits1. For a random P there are in average (t−2

v−2

)

2−dP multiples ofweight v and degree t with non-zero onstant term, eah multiple requiringat least (ℓ − t)v operations. Hene the total number of bits of bias γv onean obtain using all the multiples of weight v is approximately (for the worst
P)

Nv ≈ 2−dmax

ℓ
∑

t=v

(ℓ− t)
(

t− 2

v − 2

)

≈ 2−dmax

(

ℓ− 1

v

)

. (5.1)The ost of �nding these Nv bits an be lower-bounded by vNv. If γv issmall, the advantage of the best distinguisher is [BSW89℄
Adv ≈ γv

√

Nv/(2π).Now, a distinguishing attak will be possible if the omplexity vNv requiredto obtain Nv bits giving an advantage Adv of 1 is smaller than 2chard . Thevalue of v for whih Adv = 1 is
v =

dmax

log(ℓγ2e)− log dmax
. (5.2)It leads to a new assumption.Assumption 4. If dP ≥ 2chard, γ ≤ 21−chard/dP − 1, and vNv > 2chard , where

Nv and v are given by equations (5.1) and (5.2), then SℓLP
+ Sℓγ annot bedistinguished from Sℓ0.Note that the examples of parameters given in Table 4.1 satisfy thisonstraint. We dedue the following result.Theorem 8. Under Assumptions 1 and 4, TCHO2 is (2chard , 2−chard)-IND-CPA seure.5.3 Hybrid enryption IND-CCA seureIn [FV06℄ the lassial Fujisaki-Okamoto onstrution [FO99℄ is applyed toTCHO. Here we propose to build an IND-CCA seure sheme based on1The same idea was used in Setion 2.1.3 to ompute I.55

TCHO2 using two generi hybri onstrutions, with di�erent requirements.Roughly, the basi KEM/DEM needs a stronger enryption sheme and morerandom bits than the Fujisaki-Okamoto variant, but the latter requires tworandom orales instead of one, and the message has to be enrypted beforeenapsulating the key.5.3.1 KEM/DEMHere the generi KEM/DEM onstrution [CS04℄ is used to build an IND-CCA seure sheme. Under Assumptions 1 and 4, TCHO2 is OW-CPA se-ure [FV06℄. It is known [Den02℄ that a OW-CPA seure asymmetri shemeleads to a IND-CCA seure KEM, so it allows us to build a IND-CCA hy-brid enryption sheme with the generi KEM/DEM onstrution [CS04℄,using Sym, a symmetri ipher that guarantees indistinguishability undernon-adaptive hosen plaintext and iphertext attaks, and a random orale
H:Enryption. Given a message x:1. Choose uniformly a random σ in {0, 1}k , and a random bitstring r ofsu�ient length.2. Compute the symmetri key: ψ ← H(σ).3. Enapsulate the key: χ← TCHO2enc(σ, r).4. Enrypt the message x: y ← Symenc(ψ)(x).5. Output the iphertext (χ, y).Deryption. Given a iphertext (χ, y):1. Compute the enapsulated key: ψ ← H(TCHO2dec(χ)).2. Derypt the message: x← Symdec(ψ)(y).3. Output the plaintext x.5.3.2 Fujisaki-Okamoto revisitedIn [AGK05, AGKS05℄ the Fujisaki-Okamoto onstrution is onverted to atag-KEM/DEM framework. The enryption sheme obtained o�ers IND-CCA seurity when the publi enryption sheme is OW-CPA and Γ-uniform(see de�nition in [FO99℄), and the symmetri ipher one-time seure (OW).For instane, one an simply hoose Symenc(ψ)(x) = x+ F (ψ) for some ran-dom orale F , but Sym an be either a stream ipher or a blok ipher.56

The onstrution requires two random orales H and G. The IND-CPA se-urity of TCHO2 implies OW-CPA seurity, and the proof of Γ-uniformity ofTCHO [FV06℄ applies to TCHO2 as well. So the following hybrid enryptionsheme is IND-CCA seure.Enryption. Given a message x:1. Choose a random σ uniformly in {0, 1}k .2. Compute the symmetri key: ψ ← G(σ).3. Enrypt the message x: y ← Symenc(ψ)(x).4. Enapsulate the key: χ← TCHO2enc(σ,H(σ||y)).5. Output the iphertext (χ, y).Deryption. Given a iphertext (χ, y):1. Compute the enapsulated key: ψ ← G(TCHO2dec(χ)).2. Derypt the message: x← Symdec(ψ)(y).3. Output the plaintext x.5.3.3 Pratial onernsLike for a KEM/DEM, only the key of the symmetri sheme is enryptedwith TCHO2, and so parameters shall be hosen in funtion of the key length.Table 4.1 shows example of parameters for a key of 128 bits, a typial lengthfor symmetri shemes. So the two onstrutions enrypt a message with anoverhead of as many bits as in a iphertext of TCHO2.On a 4 MHz proessor (0.25 µs yle time), a message is enrypted usingan hybrid onstrution with an overhead of ℓ bits, whih is omputed in lessthan 15 ms for ℓ = 50000, when a fast soure of random bits is available.The additional ost of the symmetri enryption shall not be an obstale,and deryption should also be very fast for repetition odes, sine it onlyonsists of some simple bitwise operations, and of the ounting of the bits inthe trunated odeword.In our software implementation, we may use as symmetri ipher thePRG ISAAC, already used by the generator of biased pseudo-random bits,with as symmetri key a seed on 128 bits.
57

Chapter 6Derived onstrutionsWe �rst present a variant of TCHO2 over a larger �nite �eld, then two othervariants, one reduing the expansion but not semantially seure, and oneahieving indistinguishability of iphertexts against some hosen-iphertextadversaries, alled ICCA.6.1 TCHO2 over Fq6.1.1 DesriptionHere K,P ∈ Fq[X], LFSR register elements and output are elements of Fq.Again, K has degree d and weight w, P has degree dP ∈ [dm, dM].A plaintext is now an element of Fkq , where k is the dimension of therepetition ode.
Sγ is rede�ned: it produes a stream of elements of Fq; 0 with probability

pγ , otherwise a random element of Fq, so eah b ∈ F⋆q appears with probability
(1− pγ)/q, thus 0 e�etively appears with probability pγ + (1− pγ)/q.We still have K ⊗ SLP

= 0, and K ⊗ (SLP
+ Sγ) ≈ Sγw . We will note

p = pγw hereafter.At deryption, we obtain
K ⊗ (SLP

+ Sγ + x||x|| . . . ||x) = Sγw + x′|| . . . ||x′for some x′ ∈ Fkq . As usual, x is repeated m = ℓ/k times, while x′ is repeated
m′ = (ℓ− d)/k times.The linear appliation transforming x to x′ is de�ned the same way thanon F2.6.1.2 ReliabilityConsider x′i, the i-th element of the transformed plaintext x′. It is repeated
m′ times, the expeted number of unnoised elements is p · m′. The otherelements are noised with elements of Fq (inluding 0). So the number of58

�lear� elements is p ·m′ + 1−p
q ·m′ on average, where the term 1−p

q ·m′ anbe negleted for high enough values of γ and q (e.g. when γ = 0.985, w = 80,and q = 256).Unlike on F2, we do not require absolute majority of lear elements, henewe an allow an error probability greater than 1/2.By onsidering an isolated repetition of x′i, let (nj)j=0,...,q be disreterandom variables, where n0 is the number of unnoised elements among the
m′ repetitions, and nj , 1 ≤ j ≤ q is the number of elements noised with the
j-th element of Fq, for an arbitrary ordering where the �rst element is 0. Therandom variable n0 follows a binomial law with parameters (m′, p + 1−p

q),while eah nj, 1 ≤ j ≤ q, follows a binomial law with parameters (m′, 1−p
q).Let µj = Pr[n0 < nj], the probability that the unnoised bits �lose� againthe j-th noise element, that is,

µj =

m′−1
∑

r=0

Pr[n0 = r] Pr[nj > r],and so µj = µj′, ∀1 ≤ j ≤ j′ ≤ q. Let µ = µq. It an also be expressed witha standard normal law as
µ = ϕ

(

−
√
m′ p
σ

)where σ = −p2 + p+ 21−p
q , and ϕ is is the umulative distribution funtionof a standard normal distribution:
ϕ(z) =

1√
2π

∫ z

−∞
e−t

2/2dt.Thus the probability that the element x′i is bad deoded is less than
(q − 1) · µ.We dedue a bound on the probability of bad deoding of a word omposedof k elements (x′i)i=0,...,k−1:̃

ρ ≤ 1− (1− (q − 1)µ)k.Basially, we shall deode well the element x′i when p≫ 1−p
q , and p ·m′ ≤

2, sine we need at least two ourenes of the good element to hoose it,whilst the probability that a given element of F⋆q omes twie is negligible.Moreover, the polynomial P should not allow one to get an advantage ondeoding, so we need γdm/2 to be small (dm ≥ 2 · chard).The onstraints on lwpm remains with this sheme.Experiments show that the expansion fator does not get better than forTCHO2 on F2, sine the number of bits of a plaintext and a iphertext arerespetively k · log q and ℓ · log q, if q is a power of 2.59

Example 11. We found parameters giving a low error probability for K ofdegree about 6 000, ℓ = 12000, q = 232 and k = 8, so it enrypt 128 bits in
384 000 bits, with a private key on 192 000 bits.Eventually, this variant leads to lower values of d and ℓ, but the numberof bits of a key and a iphertext shall inrease. Implementation in hardwaremay be harder, however it may speed up LFSR's proessing in software whenusing extension �elds of degree 8 or 32. The number of random bits in termsof ℓ and dP will inrease (to randomly pik elements of Fq), however we shalluse smaller ℓ and dP than in TCHO2.6.2 A weakly seure sheme with redued expan-sionAssume that the PRG an be seeded with exatly k bits. Let's all this newsheme TCHO3. One enrypts a plaintext x on dP bits with the followingalgorithm:1. set r $←− {0, 1}k ,2. set y ← SLP (x) + C(r) + Sγ(r),3. return the iphertext y.The deryption algorithm is:1. reover r from y (usual TCHO2 deryption),2. ompute SLP (x) by eliminating Sγ(r) and C(r),3. get the initial state x, whih is the bitstring formed by the �rst dP bitsof SLP (x),4. return the plaintext x.The deryption proedure is almost the same than in TCHO2, an adversarylearly obtains no more information on the odeword from a iphertext.Complexities of enryption and deryption do not signi�atively hange.Like its elder, this new sheme is not OW-CCA seure, for the same rea-sons. It is also malleable in any adversarial model, sine xoring a iphertextof x with some SLP (x′) results in a sound iphertext of x+ x′.We make a new assumption, on the PRG Sγ :Assumption 5. If the PRG Sγ is seeded on k ≥ chard bits, then, for random
r and r′ bitstring of length k, Sγ(r) + C(r) annot be distinguished from
Sγ(r′) + C(r) with probability greater than 2−chard and time less than 2chard .60

Proposition 9. If k ≥ chard and the seurity onstraints of TCHO2 aresatis�ed, then TCHO3 is OW-CPA seure.Proof. If k < chard, an exhaustive searh on r ould be performed, hene werequire k ≥ chard. By Assumption 4, a CPA adversary knowing SLP (x)+Sγ(r)has no information on x. We also assumed that the pseudo-random genera-tor behaved like an ideal one, and so r annot be reovered either (otherwisewe ould �nd SLP (x), that would ontradit the assumption).Moreover, weproved (f. Theorem 8) that SLP (x) + Sγ(r) +C(r′) does not leak any infor-mation on r′ to a CPA adversary. Therefore, by Assumption 5, an adversaryannot extrat any information on x nor on r from SLP (x) + Sγ(r) + C(r).We dedue that TCHO3 is OW-CPA seure.Proposition 10. TCHO3 is not IND-CPA seure.Proof. In an IND game, where x1 and x2 are the hosen plaintexts, and y theiphertext of xb, b ∈ {0, 1} built by the hallenger, an adversary an ompute
y′ = (Xk + 1)⊗ (y + SLP (x1)).If b = 1, then y′ ≈ Sγ2 , otherwise it will have bias 0. By omputing theweight of y′, she thus orretly guess b with high probability, for ommonparameters: if there are about as many zeros as ones in y′, then she returns

x2, otherwise (learly more zeros than ones), she returns x1.The degree dP is not �xed, but belongs to an interval [dmin, dmax], thusthe length of a message blok may depend on the key generation outputs.Against this, we suggest to set dmin to a suitable message length (e.g. amultiple of 32), and systematially pad with zeros the remaining bits when
dP > dmin.Compared to the original TCHO2, the iphertext expansion is learlyredued: it allows for example to enrypt 5 800 bits instead of 128 in aiphertext of 50 000 bits (expansion turns from 390 to 8).6.3 Towards IND seurity against hosen-iphertextadversariesTCHO2 is not OW-CCA, sine the attaker an ask for the deryption of thehallenge iphertext modi�ed of only one bit, and reover with high prob-ability the original message. In an adversarial model similar to CCA wherethe adversary would not be able to orale-derypt if the message returned isthe hallenge's one may prevent this kind of attak: however, sine TCHO2is malleable, one an easily build a iphertext of x+x′ for any known x′, andthus reover the hallenge message x by querying the orale for the plaintext
x+x′. To solve this, we should modify the enryption proedure to introdue61

a strit notion of valid iphertext, for example by introduing redundanyproper to the plaintext, so as to make impossible the forgery of a valid i-phertext, of x+ x′ for example (this is a partiular ase of malleability, andNM-CCA seurity is equivalent to IND-CCA seurity). In the following we de-�ne the model ICCA, and show a onstrution for whih IND-ICCA seurityis reahed.6.3.1 De�nitions of ICCA and IPAWe introdues a variant of the CCA model:De�nition 16. An adversary is alled an irreversible adaptive hosen i-phertext (ICCA) adversary if she an query the deryption orale whenevershe wants, to derypt any iphertext exept the hallenges, and any othervalid iphertext of their plaintexts. The number of queries and the numberof atomi operations must be polynomially bounded.This states that the adversary fails as soon as she queries for the de-ryption of a iphertext whose mathing plaintext is already involved in thegame: the model gives no trivial way for the adversary to guess whether aiphertext is a ritial one or not; if an attak fails beause of the query ofa ritial iphertext, this event is not part of the information obtained bythe attaker, that is, she does not know that the submitted plaintext indeedenrypts a plaintext of the hallenges, but this has a priori no e�etive sense,exept if the attaker does not know the rules of the game, or if its memoryan be modi�ed, or if she is shizoid. Is the ICCA model really absurd ?If an adversary queries for the deryption of some message, she probablydoes not know the answer. Meanwhile, the hallenger wants her not to knowthat some messages enrypt some publily known iphertext m. Assumeshe queries for the deryption of a iphertext of m: the game will end, im-pliitely saying to the adversary �you should not know what just happened,please forget it�, whih is indeed absurd. But a onrete way to make thissenario sound would be one where iphertexts are sent to the orale, but notremembered by the adversary: when the query is legitimate (the iphertextdoes not enrypts m), the orale would return both the iphertext and theplaintext, otherwise it would return nothing, assuming that the attaker didnot keep any opy of the iphertext emitted.We now introdue a partiular form of the plaintext awareness notion,introdued in [BR94℄ (see also [BDPR98℄), that will help us to prove IND-ICCA seurity. Informally, an asymmetri ryptosystem is said to be IPA(irreversibly plaintext aware) if it is pratially impossible for an adversaryto produe a valid iphertext distint from the ones already known (e.g.given by a hallenger) without knowing the mathing plaintext, while havingaess to an enryption orale (the publi key), with the restrition that theadversary should only build iphertexts for whih the mathing plaintext is62

distint from all the hallenges given in the orresponding game, and from allthe plaintexts mathing the known iphertexts. This impliitly states thatan observer of the adversary reording every information involved in theonstrution algorithm should be able to derypt the iphertext produed(otherwise the adversary would not know the plaintext, that ontradits theinitial postulate). In the lassial de�nition, the restrition stated above doesnot hold; for instane, RSA is not plaintext aware, sine any integer strilyless than the modulus is a valid iphertext. We now give a more formalde�nition of the IPA notion:De�nition 17. Let A be a Turing mahine querying a random orale, takingas input
• pk: a publi key hosen by a hallenger,
• L: a list of iphertexts of random unknown plaintexts,suh that both |L|, the number of orale queries, and the number of atomioperations are in = O (Poly (|pk|)). This mahine outputs a bitstring y,whih is a valid iphertext of some plaintext not enrypted L (w.r.t. pk) withprobability greater than some ε > 0, over all the L, in time t. We all themahine A a (t, ε)-iphertext reator.An asymmetri enryption sheme is said to be (ε, η)-IPA if and onlyif, for all (Poly (|pk|) , ε′)-iphertext reator A, with ε′ ≥ ε, there exists adeterministi Turing mahine A⋆ running in time Poly (|pk|) � the extrator� suh that, for all y produed by A with input L and pk,

Pr[A⋆(A,L, pk) 6= D(y)] ≤ η, 0 ≥ η ≥ 1,where D is the (deterministi) deryption algorithm.The sheme is simply alled IPA if and only if both ε and η are negligible.The list of iphertexts L in the above de�nition models the apaity ofan adversary to eavesdrop a hannel. Note that we assume the existene ofan extrator, but not that any adversary knows, or an easily �nd it.Proposition 11. If an asymmetri ryptosystem is both (ε, η)-IPA and IND-CPA seure, with ε negligible and η suh that
(1− 1

η
)2

chard ≥ 1− 21−chard ,then it is IND-ICCA seure.Proof. In an IND game, an adversary has aess to a deryption orale,but only one valid iphertext � the hallenge � is given, whose query to theorale is forbidden. Thus the iphertext reators feeding the ICCA deryption63

orale all have |L| = 0. We show that, for all IND-ICCA adversary with non-negligible suess probability and polynomial running time, we an build anIND-CPA adversary with equal running time and still non-negligible suessprobability.Consider a (χ, ξ)-IND-ICCA adversary for a (ε, η)-IPA sheme. She makesat most χ deryption queries to the orale. Using the IPA extrator insteadof the deryption orale leads to a perfet simulation with probability greaterthan
(1− 1

η
)χ,that is, the probability that eah iphertext is �derypted� orretly by theextrator. Note that the negation of this is not even a proved su�ientondition for the failure of the attak, but we will assume it. The IND-CPAadversary built this way hene sueeds with probability greater than

ξ − 1 + (1− 1

η
)χ.If ξ is non negligible, so is this last value, as soon as

(1− 1

η
)2

chard ≥ 1− 21−chard .Thus we built a (χ, ξ − 1 + (1 − 1
η)
χ)-IND-CPA adversary from a (χ, ξ)-IND-ICCA adversary, and so is the initial ondition on η implies that for alle�ient IND-ICCA adversary, the deryption orale an be replaed by theIPA extrator. By inversion, IND-CPA seurity implies IND-ICCA seurity,provided that η veri�es the inequality above stated.Proposition 12. Let V(pk,sk) be the number of valid iphertexts for the keypair (pk,sk). If an asymmetri sheme is OW-CPA and

V(pk,sk)
2ℓ − V(pk,sk) ≥ 1

2chard
,then it is not IPA.Proof. If the ratio of valid iphertexts is greater than 1/2chard , then the ad-versary who randomly piks a bitstring of the same length than a iphertextobtains a valid iphertext with probability greater than 1/2chard . In thissimple algorithm, the only information the adversary has is this iphertext.Hene if the sheme is OW-CPA, an adversary annot reover the plaintext,and so no polynomial time extrator exists. Finally, there exists an adver-sary able to ompute a valid iphertext with probability greater than 1/2chardsuh that no polynomial time extrator exists, whih ontradits the IPAde�nition. 64

6.3.2 Notion of valid iphertext and IND-ICCA seurityAddition of deterministi redundanyAmong the k bits of the odeword, M ontain the plaintext, and R = k−Mthe redundany, de�ned by a funtion
R : {0, 1}M → {0, 1}R.A iphertext of x is

y = SLP (r1) + C(x||R(x)) + Sγ(r2),for randomly hosen r1 and r2. Given a iphertext y, deryption is performedwith the following algorithm:1. reover the oded word x||r,2. if R(x) = r, return the plaintext x,3. return ⊥ otherwise.Assume that R is a random injetion: in an IND senario, given x1 and
x2, along with the iphertext c of one of those, the adversary an ask for thederyption of c + y||R(x1 + y) + R(x1)|| . . . ; if the orale answers x1 + y,then she returns x1, otherwise (for answer ⊥ or z ∈ {0, 1}M), she returns x2.Hene no matter how �good� is R, IND-ICCA seurity will never be ahieved.Addition of non-deterministi redundanyNow the odeword on k bits ontains the plaintext on M bits, followed by
N random bits piked by the enrypter, and �nally R = k−M −N bits forto the image of the funtion R, whih now takes two arguments, x and ℵ,the latter being the bitstring of N random bits (ℵ must be inluded in theodeword in order to hek a iphertext's validity). We de�ne

R : {0, 1}M × {0, 1}N → {0, 1}R.A iphertext of x is
y = SLP (r1) + C(x||ℵ||R(x)) + Sγ(r2).The deryption algorithm of y is:1. reover the oded word x||ℵ||r,2. if r = R(x,ℵ), return the plaintext x,3. return ⊥ otherwise. 65

The deryption orale assoiated would return the plaintext x, but not ℵ(nor R(x,ℵ)). From now we onsider R as a random orale, and will allthe enryption sheme TCHO4.We reall that, as TCHO2, the system reated with non-deterministiredundany annot be IND-CCA, sine, in a OW game, a query to the de-ryption orale with the hallenge iphertext with only one bit modi�edwould return with high probability the enrypted message. Sine the basiTCHO2 is IND-CPA seure, it trivially still holds with the non-deterministiredundany above desribed (simply replae x in TCHO2 by x||ℵ||R(x,ℵ)).Note the following fat:
ℵ reovered⇒ x reovered,This impliation is trivial (e.g. XOR the iphertext with x||0||(R(x,ℵ) +

R(0,ℵ))|| . . . and look for 0 as derypted message). However the onverse isnot so obvious; if we had �x reovered ⇒ ℵ reovered�, an ICCA adversarywould win an IND game trivially: assuming that the plaintext enryptedis the �rst of the two hallenges plaintexts, one reovers ℵ, if she is wrong(she an hek it by applying the strategy to reover x from ℵ), she returnsthe other hallenge plaintext, and the one hosen otherwise. Therefore thisimpliation is su�ient to win the IND game, but maybe not neessary, sine�nding ℵ is not formally required. Thus we annot redue our problem tothe omputation of ℵ from x given a iphertext of x.Let's onsider S(x), the set of all iphertexts build by using ℵ as non-deterministi seed, and ξ in plae of R(x,ℵ). We an de�ne a binary equiva-lene relation over S(x) suh that two elements are equivalent if and only ifthey were built with the same ξ. Therefore S(x) an be partitioned into 2Rsubsets of equal size mathing the equivalene lasses de�ned by this rela-tion. Among those lasses, only one ontains valid iphertexts (and only validones): the one where ξ = R(x,ℵ). Hene if an adversary has no informationon R(x,ℵ), there is no way to hoose the right lass with a signi�ant ad-vantage. In partiular, a triplet (x,ℵ,R(x,ℵ)) annot be distinguished froma triplet (x,ℵ, ψ), ψ ∈ {0, 1}R, without querying for R(x,ℵ). This argumentis used to prove the following theorem.Theorem 9. If the onstraints required for the semanti seurity of TCHO2translated to TCHO4 are satis�ed, and if R is a random orale, then TCHO4is (2−R, 1)-IPA.Proof. Consider an IPA adversary A; by querying the orale R, she getstriplets (xi,ℵi,R(xi,ℵi)), i = 1, . . . , L. Using pk, she also obtains pairs
(xi, yi), i = L + 1, . . . ,M , with M = O (|pk|α). Let y be the bitstringreturned by A. When D(y) = ⊥ or D(y) /∈ {x1, . . . , xM}, let's denote W thebitstring enoded in C(W), deomposed in three subbitstrings W = x||ℵ||r.We an distinguish two ases: 66

1. x /∈ {x1, . . . , xM}: then A sueeds as soon as r = R(x,ℵ). We have
Pr[r = R(x,ℵ)] ≤ 2−R, sine R is a random orale.2. r 6= R(x,ℵ): then A fails with probability 1, sineW annot be a validiphertext.By de�nition of IPA, x annot be in {x1, . . . , xM}, so this is the only aseswe onsider. Finally, Pr[A sueeds] ≤ 2−R. Hene any (Poly (pk) , ε)-iphertext reator with ε > 2−R needs to query for R(x,ℵ), and so theextrator sueeds with probability stritly greater than 1 − 2−R, sine itreads the orale queries of the reator. It proves that TCHO4 is (2−R, 1)-IPA.Theorem 10. If (1 − 2−R)2

chard ≥ 1 − 2−chard , then TCHO4 is IND-ICCAseure.Proof. We know that TCHO4 is IND-CPA. By Proposition 11 and Theorem 9,the result follows.If R is not a random orale but a given funtion, it has to satisfy severalproperties. If R is linear on ℵ (i.e. R(x,ℵ)+R(x,ℵ′) = R(x,ℵ+ℵ′)), then inan IND game, if x is one of the two plaintexts hallenges, one only has to XORthe iphertext with 0||ℵ′||R(x,ℵ′)|| . . . and query the deryption orale: ifit answers x, then the adversary returns x, otherwise she returns the seondplaintext. Hene R must be non-linear on ℵ. Moreover, we require that thenumber �linear pairs� is small, that is,
max
x

#{(ℵ,ℵ′),ℵ 6= ℵ′,R(x,ℵ) + R(x,ℵ′) 6= R(x,ℵ + ℵ′)}
2N · (2N − 1)

≤ 1

2chard
.If we XOR the hallenge iphertext with y||0||R(y,ℵ′)|| . . . , one mayobtain (x+ y)||ℵ||(R(x,ℵ) + R(y,ℵ′)) in ertain ases. To prevent this, werequire

max
y,ℵ′

Pr
x,ℵ

[

R(x,ℵ) + R(y,ℵ′) = R(x+ y,ℵ)
]

≤ 1

2chard
.The attak against IND-ICCA seurity mentionned in the previous setionis infeasible as soon as N > chard and

Pr
ℵ6=ℵ′

[R(x,ℵ) = R(x,ℵ′)] ≤ 1

2chard
,onsidering an exhaustive searh on the random bitstring ℵ.For instane, if N = chard + 1, we require R ≥ N ; so we need k >

2chard +M , e.g. to enrypt 32 bits with 280 seurity k should be greater than
192. It indues a iphertext length of about 60 000 bits.67

ConlusionWe studied the existing probabilisti enryption sheme TCHO, implementedand improved it; we designed e�ient algorithms for the generation of a bi-ased random bitstring and a large LFSR output, inluding an almost opti-mal one for the former. The new ryptosystem TCHO2 leads to a slightlyfaster enryption, and an exponentially faster deryption, while introduingnew seurity onstraints and obviating the need for a primitive polynomialas publi key. We proved, under ertain assumptions, that both TCHOand TCHO2 ould ahieve semanti seurity, and suggest two known hybridshemes to reah the strongest level of seurity, namely IND-CCA seurity.We also suggest several variants of our sheme, either sari�ing semantiseurity to get a low expansion, or reahing IND-ICCA seurity at the ost ofa huger expansion.Appliations may be found in embedded environments, to provide a sim-ple enryption proedure. Passive RFID tags may also �nd with TCHO2 away to use publi key ryptography, atually infeasible with other asymmet-ri primitives on their small arhitetures; this may solve important problemsof privay in RFID protools. The expansion would �only� result in an over-head of about 5 Kb in an hybrid framework. Moreover, unlike RSA, TCHO2would not be harmed by a quantum omputer, sine no feasible quantum al-gorithm is known to solve the problems it relies on (this kind of ryptosystemis sometimes alled post-quantum).Finally, as TCHO2 seurity only relies on heuristi assumptions, furtherwork ould be devoted to giving onrete elements of proof, e.g. onern-ing the problem lwpm, or �nding other models of trapdoor pseudo-randomgenerators exploiting the error orretion apaity of ertain odes.

68

Bibliography[AGK05℄ Masayuki Abe, Rosario Gennaro, and Kaoru Kurosawa.Tag-KEM/DEM: A new framework for hybrid enryp-tion. IACR ePrint arhive 2005/027, 2005. Avail-able at http://eprint.iar.org/2005/027. Newer versionin [AGKS05℄.[AGKS05℄ Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and VitorShoup. Tag-KEM/DEM: A new framework for hybrid enryp-tion and a new analysis of Kurosawa-Desmedt KEM. In EURO-CRYPT'05, pages 128�146, 2005. Older version in [AGK05℄.[AM94℄ Leonard Adleman and Kevin MCurley. Open problems in num-ber theoreti omplexity, II. In L. Adleman and M.-D. Huang,editors, ANTS-I, volume 877 of Leture Notes in Computer Si-ene, pages 291�322. Springer, 1994.[Arn05℄ Jörg Arndt. Algorithms for programmers. Available athttp://www.jjj.de/fxt/, 2005.[BBS86℄ Lenore Blum, Manuel Blum, and Mihael Shub. A simple un-preditable pseudo-random number generator. SIAM Journal onComputing, 15:364�383, 1986.[BDJR97℄ Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rog-away. A onrete seurity treatment of symmetri enryption.In FOCS'97, page 394. IEEE Computer Soiety, 1997.[BDPR98℄ Mihir Bellare, Anand Desai, David Pointheval, and Phillip Ro-gaway. Relations among notions of seurity for publi-key en-ryption shemes. In CRYPTO'98, pages 26�45. Springer, 1998.[Ber68℄ Elwyn R. Berlekamp. Algebrai oding theory. MGraw-Hill,1968.[BG85℄ M. Blum and S. Goldwasser. An e�ient probabilisti publi-keyenryption sheme whih hides all partial information. In G. R.69

Blakley and D. C. Chaum, editors, CRYPTO'84, pages 289�302.Springer, 1985.[BGP06℄ C�me Berbain, Henri Gilbert, and Jaques Patarin. Quad: Apratial stream ipher with provable seurity. In EUROCRYPT,pages 109�128, 2006.[BHSV98℄ Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan.Many-to-one trapdoor funtions and their relation to publi-keyryptosystems. In CRYPTO '98, pages 283�298. Springer, 1998.[BLZ03℄ Rihard Brent, Samuli Larvala, and Paul Zimmermann. A fast al-gorithm for testing reduibility of trinomials mod 2 and some newprimitive trinomials of degree 3021377. Mathematis of Compu-tation, pages 1443�1452, 2003.[Bor43℄ Emile Borel. Les probabilités et la vie. Presses UniversitairesFrançaises, 1943.[BR94℄ Mihir Bellare and Phillip Rogaway. Optimal asymmetri en-ryption. In A. De Santis, editor, EUROCRYPT'94, volume 950of Leture Notes in Computer Siene, pages 92�111. Springer,1994.[BSW89℄ Paul T. Bateman, John L. Selfridge, and Samuel S. Wagsta�.The new mersenne onjeture. Amerian Mathematial Monthly,96(2):125�128, 1989.[BZ03℄ Rihard Brent and Paul Zimmermann. Algorithms for �ndingalmost irreduible and almost primitive trinomials. Primes andMisdemeanours: Letures in Honour of the Sixtieth Birthdayof Hugh Cowie Williams (edited by A. van der Poorten and A.Stein), 2003.[CC98℄ Anne Canteaut and Florent Chabaud. A new algorithm for�nding minimum-weight words in a linear ode: Appliationto MEliee's ryptosystem and to narrow-sense BCH odesof length 511. IEEE Transations on Information Theory,44(1):367�378, 1998.[CM01℄ Sandeepan Chowdhury and Subhamoy Maitra. E�ient soft-ware implementation of linear feedbak shift registers. InC. Pandu Rangan and C. Ding, editors, INDOCRYPT'01, vol-ume 2247 of Leture Notes in Computer Siene, pages 297�307.Springer, 2001. 70

[CM03℄ Sandeepan Chowdhury and Subhamoy Maitra. E�ient soft-ware implementation of LFSR and boolean funtion and its ap-pliation in nonlinear ombiner model. In J. Zhou, M. Yung,and Y. Han, editors, ACNS'03, volume 2846 of Leture Notes inComputer Siene, pages 387�402. Springer, 2003.[CMI03℄ Paul Camion, Miodrag J. Mihaljevi¢, and Hideki Imai. Two alertsfor design of ertain stream iphers: Trapped LFSR and weakresilient funtion over GF(q). In K. Nyberg and H. Heys, editors,SAC 2002, volume 2595 of Leture Notes in Computer Siene,pages 196�213. Springer, 2003.[CS04℄ Ronald Cramer and Vitor Shoup. Design and analysis of prati-al publi-key enryption shemes seure against adaptive hoseniphertext attak. SIAM Journal on Computing, 33(1):167�226,2004.[CT00℄ Anne Canteaut and Mihaël Trabbia. Improved fast orrelationattaks using parity hek equations of weight 4 and 5. In B. Pre-neel, editor, EUROCRYPT'00, volume 1807 of Leture Notes inComputer Siene, pages 573�588. Springer, 2000.[CZ81a℄ David G. Cantor and Hans Zassenhaus. A new algorithm forfatoring polynomials over �nite �elds. Mathematis of Compu-tation, 36(154):587�592, 1981.[CZ81b℄ David G. Cantor and Hans Zassenhaus. A new algorithm forfatoring polynomials over �nite �elds. Mathematis of Compu-tation, 36(154):587�592, 1981.[Den02℄ Alexander W. Dent. A designer's guide to KEMs. Publi reportNES/DOC/RHU/WP5/029/1, NESSIE projet, 2002. Availableat http://eprint.iar.org/2002/174.[DH76℄ Whit�eld Di�e and Martin E. Hellman. New diretions in ryp-tography. IEEE Transations on Information Theory, 22(6):644�654, 1976.[Ekd03℄ Patrik Ekdahl. On LFSR based Stream Ciphers - Analysis andDesign. PhD thesis, Lund University, 2003.[Ell70℄ James H. Ellis. The possibility of seure non-seret digital en-ryption. GCHQ-CESG publiation, 1970.[FO99℄ Eiihiro Fujisaki and Tatsuaki Okamoto. Seure integration ofasymmetri and symmetri enryption shemes. In M. Wiener,editor, CRYPTO'99, volume 1666 of Leture Notes in ComputerSiene, pages 537�554. Springer, 1999.71

[FV06℄ Matthieu Finiasz and Serge Vaudenay. TCHo: the trapdoorstream ipher. unpublished, 2006.[GGH97℄ Oded Goldreih, Sha� Goldwasser, and Shai Halevi. Publi-keyryptosystems from lattie redution problems. In CRYPTO '97,Leture Notes in Computer Siene, pages 112�131. Springer,1997.[Gil64℄ Donald B. Gillies. Three new mersenne primes and a statistialtheory. Mathematis of Computation, 18:93�97, 1964.[GM82℄ Sha� Goldwasser and Silvio Miali. Probabilisti enryption &how to play mental poker keeping seret all partial information.In STOC'82, pages 365�377. ACM Press, 1982.[GM84℄ Sha� Goldwasser and Silvio Miali. Probabilisti enryption.Journal of Computer and System Sienes, 28:270�299, 1984.[GM01℄ Kishan Chand Gupta and Subhamoy Maitra. Multiples of prim-itive polynomials over GF(2). In C. Pandu Rangan and C. Ding,editors, INDOCRYPT'01, volume 2247 of Leture Notes in Com-puter Siene, pages 62�72. Springer, 2001.[Gol01℄ Oded Goldreih. Foundations of Cryptography, volume 1. Cam-bridge University Press, 2001.[GPR06℄ Zvi Gutterman, Benny Pinkas, and Tzahy Reinman. Analysis ofthe linux random number generator. Cryptology ePrint Arhive,Report 2006/086, 2006. Available at http://eprint.iar.org/.[Gra06℄ Torbjörn Granlund. GNU multiple preision arithmeti library(GMP), 2006. Available at http://swox.om/gmp/.[Guy94℄ Rihard K. Guy. Unsolved problems in number theory. Springer,2nd edition, 1994.[GvP98℄ Shuhong Gao, Joahim von zur Gathen, and Daniel Panario.Gauss periods: orders and ryptographial appliations. Mathe-matis of Computation, 67(221):343�352, 1998.[HN99℄ Miia Hermelin and Kaisa Nyberg. Correlation properties of thebluetooth ombiner. In ICISC'99, Leture Notes in ComputerSiene, pages 17�29, 1999.[HPS98℄ Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: Aring-based publi key ryptosystem. In J. Buhler, editor, ANTS-III, volume 1423 of Leture Notes in Computer Siene, pages267�288. Springer, 1998. 72

[HR17℄ Godfrey H. Hardy and Srinivasa Ramanujan. The normal num-ber of prime fators of a number n. The Quarterly Journal ofMathematis, pages 76�92, 1917. also published in "Colletedpapers of Ramanujan", Cambridge University Press, 1927.[HWL+91℄ D. G. Ho�man, Wal, D. A. Leonard, C. C. Lidner, K. T. Phelps,and C. A. Rodger. Coding Theory: The Essentials. MarelDekker, In., 1991.[Jam00℄ K Jambunathan. On hoie of onnetion-polynominals forLFSR-based stream iphers. In B. K. Roy and E. Okamoto,editors, INDOCRYPT'00, volume 1977 of Leture Notes in Com-puter Siene, pages 9�18. Springer, 2000.[Jen96a℄ Robert J. Jenkins. ISAAC. In D. Gollmann, editor, FSE'96,volume 1039 of Leture Notes in Computer Siene, pages 41�49. Springer, 1996.[Jen96b℄ Robert J. Jenkins. ISAAC. In D. Gollmann, editor, FSE'96,volume 1039 of Leture Notes in Computer Siene, pages 41�49. Springer, 1996.[JJ99℄ Thomas Johansson and Fredrik Jönsson. Fast orrelation at-taks based on turbo ode tehniques. In Mihael J. Wiener,editor, CRYPTO'99, volume 1666 of Leture Notes in ComputerSiene, pages 181�197. Springer, 1999.[Ko95℄ Cetin Kaya Ko. RSA hardware implementation. Tehnial Re-port TR801, RSA Laboratories, 1995.[LB88℄ Pil Joong Lee and Ernest F. Brikell. An observation on theseurity of MEliee's publi-key ryptosystem. In C. G. Gün-ther, editor, EUROCRYPT'88, volume 330 of Leture Notes inComputer Siene, pages 275�280. Springer, 1988.[LP98℄ Rudolf Lidl and Günter Pilz. Applied abstrat algebra, 2-nd ed.Springer, 1998.[Lus06℄ Peter Lushny. Fast Fatorial Funtions, 2000�2006.http://www.lushny.de/math/fatorial/.[LV04a℄ Yi Lu and Serge Vaudenay. Faster orrelation attak on Blue-tooth keystream generator E0. In Matthew K. Franklin, editor,CRYPTO'04, volume 3152 of Leture Notes in Computer Si-ene, pages 407�425. Springer, 2004.[LV04b℄ Yi Lu and Serge Vaudenay. Faster orrelation attak on Blue-tooth keystream generator E0. In M. K. Franklin, editor,73

CRYPTO'04, volume 3152 of Leture Notes in Computer Si-ene, pages 407�425. Springer, 2004.[Mar95a℄ Georges Marsaglia. The Diehard Battery of Tests of Randomness,1995. Available at http://stat.fsu.edu/pub/diehard/.[Mar95b℄ Georges Marsaglia. The Diehard Battery of Tests of Randomness,1995. Available at http://stat.fsu.edu/pub/diehard/.[ME78℄ Robert J. M Eliee. A publi-key ryptosystem based on alge-brai oding theory. Tehnial report, Jet Propulsion Lab DeepSpae Network Progress report, 1978.[MGV05℄ Subhamoy Maitra, Kishan Chand Gupta, and AyineediVenkateswarlu. Results on multiples of primitive polynomialsand their produts over GF(2). Theoretial Computer Siene,341(1-3):311�343, 2005.[MN98℄ Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a623-dimensionally equidistributed uniform pseudo-random num-ber generator. ACM Trans. Model. Comput. Simul., 8(1):3�30,1998.[MNT02℄ Atsuko Miyaji, Masao Nonaka, and Yoshinori Takii. Knownplaintext orrelation attak against RC5. In CT-RSA'02, LetureNotes in Computer Siene, pages 131�148. Springer, 2002.[MS77℄ F.J. MaWilliams and N.J.A. Sloane. The Theory of Error-Correting Codes. North-Holland, 1977.[MS88℄ Willi Meier and Othmar Sta�elbah. Fast orrelation attakson stream iphers. In C. G. Günther, editor, EUROCRYPT'88,volume 330 of Leture Notes in Computer Siene, pages 301�314. Springer, 1988.[MS94℄ Willi Meier and Othmar Sta�elbah. The self-shrinking genera-tor. In A. De Santis, editor, EUROCRYPT'94, pages 205�214.Springer, 1994.[MS01℄ Itsik Mantin and Adi Shamir. A pratial attak on broadastRC4. In M. Matsui, editor, FSE'01, volume 2355 of Leture Notesin Computer Siene, pages 152�164. Springer, 2001.[PTVF92℄ William H. Press, Saul A. Teukolsky, William T. Vetterling, andBrian P. Flannery. Numerial Reipes in C: The Art of Sienti�Computing. Cambridge University Press, 1992.74

[Pud01℄ Marina Pudovkina. A known plaintext attak on the ISAACkeystream generator. IACR ePrint Arhive, Report 2001/049,2001. Available at http://eprint.iar.org/2001/049.[Rom92℄ Steven Roman. Coding and information theory. Springer, 1992.[RSA78℄ Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. Amethod for obtaining digital signatures and publi-key ryptosys-tems. Communiations of the ACM, 21(2):120�126, February1978.[RSP98℄ Andreas Rieke, Ahmad-Reza Sadeghi, and Werner Poguntke. Onprimitivity tests for polynomials. In ISIT'98, 1998.[Sha48℄ Claude E. Shannon. A mathematial theory of ommuniation.The Bell System Tehnial Journal, 27:379�423, 1948.[Sho90℄ Vitor Shoup. On the deterministi omplexity of fatoringpolynomials over �nite �elds. Information Proessing Letters,33(5):261�267, 1990.[Sho05℄ Vitor Shoup. NTL: A Library for doing Number Theory, 2005.Available at http://shoup.net/ntl/.[Sie86℄ Thomas Siegenthaler. Cryptanalysts representation of nonlin-early �ltered ML-sequenes. In Franz Pihler, editor, EURO-CRYPT'85, volume 219 of Leture Notes in Computer Siene,pages 103�110. Springer, 1986.[Ste87℄ Jaques Stern. Seret linear ongruential generators are not ryp-tographially seure. In In Proeedings of the 28th IEEE Sympo-sium on Foundations of Computer Siene, pages 421�426, 1987.[TM71℄ Myron Tribus and Edward C. MIrvine. Energy and information.Sienti� Amerian, 225(3):179�188, 1971. (Note: the table ofontents in this volume inorretly lists this as volume 224).[Ver26℄ Gilbert S. Vernam. Cipher printing telegraph systems for seretwire and radio telegraphi ommuniations. Journal of the IEEE,pages 109�115, 1926.[Wag83℄ Samuel S. Wagsta�. Divisors of mersenne numbers. Mathematisof Computation, 40:385�397, 1983.[Wag02℄ David Wagner. A generalized birthday problem. In M. Yung,editor, CRYPTO'02, volume 2442 of Leture Notes in ComputerSiene, pages 288�304. Springer, 2002.75

[Wal98℄ John Walker. ENT: A Pseudorandom Num-ber Sequene Test Program, 1998. Available athttp://www.fourmilab.h/random/.[Yao82℄ Andrew C. Yao. Theory and appliations of trapdoor funtions.In Proeedings of the 23rd Annual Symposium on the Foundationsof Computer Siene, IEEE, pages 80�91, 1982.

76

AppendiesA Weak initial states in ISAACWe reprodue below a paper written at the end of the internship.Abstrat. In this note, we study the deterministi random bits generatorISAAC. We present more than 28 135 initial states induing a strongly biaseddistribution of the bits produed at the �rst round of the algorithm, and astrong distinguisher requiring 2176 samples. We also show 232 states thatan be reovered from the �rsts 8 192 bits produed in less than 30 seondswith a paper an a pen, and point out minor weaknesses of the algorithm. Amodi�ation of the algorithm is proposed to �x some of the �aws presented.ISAAC is a deterministi random bits generator designed in 1996. Itsauthor laims [Jen96b℄ that it has �no bad initial states, not even the stateof all zeros�. We investigated the question, and fous in this note on sev-eral minor weaknesses and more than 28 135 states. We start by presentingISAAC, and end with a proposal of a modi�ation of the algorithm.1 ISAAC1.1 PresentationISAAC is derived from the stream ipher RC4. Although it is �designed to beryptographially seure� [Jen96b℄, no seurity proof is given, and it seriouslylaks analysis: only statistial tests argue for its seurity [Jen96b℄, and untilnow, only one publiation [Pud01℄ takled it, presenting a state reoveryattak running in time 101 240.We follow the desription of the algorithm provided in Figure 4 of [Jen96b℄;the internal state is an array of 256 32-bit words, and at eah round, the algo-rithm outputs another array of 256 32-bit words. In the following, S denotesthe initial state, and Si its ith element, while β denotes the �rst output, and
βi its ith element, for i ∈ {0, . . . , 255}. The generation algorithm takes asparameters three values a, b and c, the �rst two are 32-bit, the third is 8-bit,77

initialized to an arbitrary value, and modi�ed at eah round: a is used as akind of entropy aumulator, b ontains the previous pseudo-random word,and c is a simple ounter, inremented at eah round of the algorithm. Theirinitial values are publi, and are not part of the seret initial state. We givethe generation algorithm in a readable form in Algorithm .1, for an arbitraryround, where the internal state is I, the output is O, and the inputs a, b,and c are those omputed in the previous round. The symbol ⊕ denotes thebitwise XOR, + stands for the usual integer addition, and ≪, ≫, are bitshifting operators �à la C�.Input: a, b, c, and the internal state I, an array of 256 32-bit wordsOutput: an array O of 256 32-bit words1: c→ c+ 12: b→ b+ c3: for i = 0, . . . , 255 do4: x→ Ii5: a→ f(a, i) + I(i+128) mod 2566: Ii → a+ b+ I(x≫2) mod 2567: Oi → x+ S(Ii≫10) mod 2568: b→ Oi9: end for10: return OAlgorithm .1: ISAAC algorithm for an arbitrary round.The value f(a, i) in Algorithm .1 is a 32-bit word, de�ned for all a and
i ∈ {0, . . . , 255} as:

f(a, i) =

a≪ 13 if i ≡ 0 mod 4
a≫ 6 if i ≡ 1 mod 4
a≪ 2 if i ≡ 2 mod 4
a≫ 16 if i ≡ 3 mod 4

.We dedue the algorithm used to ompute the �rst ouput β from the initialstate S, depited in Algorithm .2. This redundant algorithm is given for abetter understanding of the following developments.1.2 ObservationsThe notation ≡ stands for the equivalene modulo 232 hereafter.Theorem 1. For a random initial state S, and �xed a, b, and c,
Pr

[

∃i ∈ {1, . . . , 255}, β0 ≡ S0 + Si mod 232
]

≥ 255

256
≈ 0.9961.78

Input: a, b, c, and the initial state SOutput: the array β of 256 32-bit words1: b→ b+ c+ 12: for i = 0, . . . , 255 do3: x→ Si4: a→ f(a, i) + S(i+128) mod 2565: Si → a+ b+ S(x≫2) mod 2566: βi → x+ S(Si≫10) mod 2567: b→ βi8: end for9: return βAlgorithm .2: ISAAC algorithm omputing the �rst ouput β from theinitial state S.Proof. Let µ = f(a, 0) + S128 + b + c + 1 + S(S0≫2) mod 256, be the valueobtained at line 5 of Algorithm .2, at the �rst iteration (i = 0). At line 6 ,when i = 0, we get β0 = S0 + λ, where λ = µ if (µ ≫ 10) mod 256 6= 0,and λ = S(µ≫10) mod 256 otherwise. Sine S0 is random, (S0 ≫ 2) mod 256is a random value in {0, . . . , 255}. Sine S128 is random, then µ is a randomvalue in {0, . . . , 232 − 1}. Hene µ ≫ 10 mod 256 6= 0 with probability
255/256, whih proves the result.When there exists 1 < i < 256 suh that β0 = S0 + Si, S0 and i areorretly guessed with probability respetively 2−32 and 1/255. Thus onereovers S0 and Si for a ertain i, with probability 2−32×1/255×255/256 =
2−40, whereas ideally this probability should be 2−64.Theorem 2. Let i a given value in {0, . . . , 255}. For a random initial state
S, and �xed a, b, and c,

Pr [β0 − β1 ≡ S0 − Si] ≥
254

2562
≈ 0.0039.Proof. We distinguish two ases, for random S, and �xed a, b, c:

• i = 1: from the previous theorem, we get β0 ≡ S0+Sj and β1 ≡ S1+Sj,for some 1 < j < 256, with probability 254/2562 .
• i 6= 1: for similar reasons, we get β0 ≡ S0 + S1 and β1 ≡ S1 + Si withprobability 254/2562 .Eventually, for all �xed i, β0 − β1 is equivalent to S0 − Si with probabilitygreater than 254/2562 , whih ompletes the proof.Generalizing this to all the ouples (βi, βj), the average number of olli-sions (of pairs (βi = Se + Sf , βj = Sg + Sf), for some e, f, g in {0, . . . , 255})79

is
254
∑

i=1

i× 256− i
256

≈ 43.Nevertheless, sine there is no trivial way to identify the olliding pairs amongthe 128×255 = 32 640 possible ones, the interest of this last result is limited.But note that two previous fats would be dramati if ISAAC was used as akeystream generator; it would allow a passive adversary to obtain informa-tion on the key (namely the equivalene lass of S0 − Si) with probability
254/2562 .Theorem 3. Let N ∈ {1, . . . , 127}, and set Si = X for all i > N , and
Si = Y for i ≤ N , with �xed positive integers X < 29 and Y < 210. When
a = b = c = 0, the following fats arise:
• if N = 0, then

β0 =

{

X + 2Y + 1 if Y ∈ {0, . . . , 3}
2X + Y + 1 if Y ∈ {4, . . . , 210 − 1} ,

• if N = 1, then
β0 =

{

X + 2Y + 1 if Y ∈ {0, . . . , 7}
2X + Y + 1 if Y ∈ {8, . . . , 210 − 1} ,

• and generally, for 0 ≤ N < 128, if S0 = · · · = SN−1 = k, then
β0 =

{

X + 2Y + 1 if Y ∈ {0, . . . ,M}
2X + Y + 1 if Y ∈ {M + 1, . . . , 210 − 1} ,with M = max{m, (m≫ 2) < N}.Proof. These results diretly follow from Algorithm .2. and were veri�edautomatially with the original soure ode [Jen96b℄ for all (X,Y).The limitation of X to 29 omes from the fat that above this limit,

(Si ≫ 10) 6= 0 (f. line 6 of Algorithm .2). We also need Y < 210 so that,at line 5, we do not pik an index less than N , that is, for whih Si = Y .For the general ase, the limit M omes from the fat that, at the line 5 ofAlgorithm .2, we shall pik the value Y as soon as Y ≫ 2 is less than N − 1,and X otherwise. Finally, we need N < 128 in order to get i + 128 > N
mod 256 for all i ∈ {0, . . . , N − 1} (f. line 4), and so a = X. We obtainexatly 29 × 210 × 27 = 226 suh states.

80

2 A lass of more than 2
8 135 weak initial states2.1 PropertiesThe states onsidered have a fration of random elements, and the remainingelements are �xed to the same value.Set N ∈ {2, . . . , 256} suh that Si = X, for all i < N , for a �xed positive

X < 232, and the other Si's are all random 32-bit words. Then, for a random
X:

Pr[βi ≡ 2X] ≥ N − 1− i
256

, i = 0, . . . ,N − 1.Indeed, at line 6 of Algorithm .2, we have x = X, and so S(Si≫10) mod 256is equal to X if (Si ≫ 10) mod 256 is greater than i and stritly less than
N , that ours with probability about (N − 1 − i)/256, by Theorem 1 Theinequality omes from the fat that, if we pik an index less than i, the wordat this position is X with probability 2−32. Eventually the value 2X shallappear with high probability, ompared to a random bitstream. There areapproximately 232×254 = 28 128 suh weak states.For example, if N = 64 and X = 0: the last 192 elements of S arerandom, and the 64 �rst ones set to 0, then Pr[β0 = β1 = 0] ≈ 0.06. Notethat, if N is as small as 2, Pr[β0 ≡ 2X] ≈ 1/256 ≈ 0.004, muh higher thanthe 2−32 of an ideal generator. Now onsider slightly di�erent states; for arandom state where there exists N ∈ {1, . . . , 253} distint i ∈ {2, . . . , 255}suh that Si = S0 = S1 = X, not neessarily the �rsts,

Pr[β0 = 2X] ≥ N + 1

256
and Pr[β1 = 2X] ≥ N

256
.There are more than 253 × 28 096 ≥ 28 103 suh states, exluding the onesalready aptured by the previous states mentionned.Analogously, for a random state where there exists N ∈ {1, . . . , 254}distint i ∈ {1, . . . , 255} suh that Si = S0 = X,

Pr[β0 = 2X] ≥ N

256
.There are more than 254 × 28 128 ≥ 28 135 suh states. We distinguish thiskind of states from the previous one, beause the latter an be used by adistinguisher, while the former are muh more numerous.2.2 A strong distinguisherBased on the weak states presented, a strong distinguisher (see Chapter 3of [Gol01℄) is onstruted. Brie�y, a strong distinguisher is a probabilistipolynomially bounded algorithm, querying two blak boxes, eah returning abit sample of �xed length; for one box this sample is truly random, while the81

other's is produed by a pseudo-random generator with a random (unknown)initial state.Here the boxes shall output samples of 64 bits at eah query, and thealgorithm shall selet as the �ISAAC box� the one where the �rst 32 bits arethe most frequently equal to the last 32's (that is, when β0 = β1 in ISAAC),and a random box if there is equality of ourenes. A random state is weakwith probability greater than 28 192−8 103 = 2−89. Thus for a random state,
Pr[β0 = β1 = 2X] ≥ 2−32 + 2−89 2

2562
= 2−32 + 2−104,whereas this probability is 2−32 for a truly random bitstream.Theorem 4 ([MS01℄). Let D1, D2 be distributions, and suppose that theevent E happens in D1 with probability p and un D2 with probability p(1+q).Then for small p and q, O(1

pq2) samples su�e to distinguish D1 from D2with onstant probability of suess.Applying this theorem to our distinguisher, we get p = 2−32 and p(1 +
q) = 2−32 + 2−104, that is, q = 2−72. Hene the distinguisher requires about
2176 samples.2.3 ConsequenesFor more than 28 135 states, the distribution of the βi's obtained is far fromthe uniform one: 2X appears with probability greater than 2−8, muh higherthan the 2−32 expeted. If suh a state is used, one an reover X withprobability greater than 1/512, sine β0 takes the value 2X with probabilitygreater than 1/256, and there exists two distint solutions to the equation
2x ≡ 2X, with unknown x. Moreover, for the �rst kind of weak states, if Nis greater than, say, 216, then 2X appears in average more than 90 times,thus X is reovered with high probability, and the random elements an beomputed by exhaustive searh, so as to �nd the full state, in 240 iterationsof a try-and-hek algorithm (there are roughly 272 suh states).3 States with a onstant valueWhen Si = X for all i ∈ {0, . . . , 255}, and a �xed positive X < 232, as apartiular ase of the states in Setion 6.3.2, we get

Pr[βi ≡ 2X] ≥ 256 − i− 1

256
= 1− i+ 1

256
.The expeted number of i suh that βi ≡ 2X is so greater than

255
∑

i=0

(1− i+ 1

256
) = 127.5.82

Hene more than half of the elements produed at the �rst round are ≡ 2Xin average, when Si = X for i = 0, . . . , 255. It is thus straightforward todistinguish between a real random bitstream and a one produed by ISAACinitialized with a state with onstant value, sine the latter shall have abouthalf of the βi equal to 2X. The full state an even be fully reovered, inonstant time: the equation x ≡ 2X has two solutions, trivially omputed.The right solution is the one that produes β at the �rst round.4 Modi�ation of the algorithmWe modify Algorithm .1 to �x the weaknesses stressed (f. line 7).Input: a, b, c, and the internal state I, an array of 256 32-bit wordsOutput: an array O of 256 32-bit words1: c→ c+ 12: b→ b+ c3: for i = 0, . . . , 255 do4: x→ Si5: a→ f(a, i) + I(i+128) mod 2566: Ii → a+ b+ I(x≫2) mod 2567: Oi → x+ a⊕ S(Ii≫10) mod 2568: b→ Oi9: end for10: return OAlgorithm .3: Modi�ed ISAAC algorithm for an arbitrary round.This new algorithm has the following properties:
• The three theorems states in Setion 6.3.2 do not hold: we get β0 =
S0 + Si ⊕ (a ≪ 13 + S128), for a random state, S128 is random in
{0, . . . , 232 − 1}, thus so is a ≪ 13 + S128. This ontradits the two�rst theorems. The third is trivially ontradited.

• The weak states presented in Setion 6.3.2 have Pr[β0 ≡ 2X] ≈ 2−32,for the same reasons than previously.
• The probability stated for the states with a onstant value does nothold anymore, but the states are still weak: for example, the all-zerostate gives β0 = a≪ 13 with probability 255/256.The Diehard battery of tests [Mar95b℄ is a set of statistial tests for DBRG's,and a suess to them is a notorious requirement for a good DBRG. Weapplyed those tests to 10 samples of 10 Mb of the original and of the modi�edalgorithm, they all suessfully passed all the tests. It does not prove nothing,but guarantees a minimal quality of the pseudo-random bitstream.83

5 ConlusionA random state is weak with probability 2−57, whih may not be negligible,depending on the appliation onsidered. Indeed, weak states might distortsimulations, and harm ryptographi appliations. In partiular, the all-zerostate should be avoided. We managed to �x some of the problems pointedout, however the new algorithm does not seem seure either. We hope thatthese results will help to �ll the lak of study of ISAAC, and will inspiredeeper analysis.

84

B The Blum-Goldwasser asymmetri stream ipherThis sheme was designed in 1984 [BG85℄: enryption is non-deterministi,and the sheme is IND-CPA seure, assuming the hardness of prediting asequene of the BBS [BBS86℄ generator, and of the fatorization of a Bluminteger (at least as hard as a RSA modulus).The publi-key is a Blum integer N = pq (both p and q must be ongruentto 3 modulo 4), and the seret key is the ouple fators (p, q). Enryptiononsists in the generation of a keystream (b0, . . . , bℓ−1), omputed as follows:1. r $←− {2, ℓ − 1}2. x0 ← r2 mod N3. For i = 0, . . . , ℓ− 1(a) bi ← least signi�ant bit of xi(b) xi+1 ← x2
i mod N4. y ← x2ℓ

0 mod NThe value y is outputed along with the enrypted message. Given y, pand q, one retreive the pseudo-random sequene (b0, . . . , bℓ−1) by omputing
x0 the following way:1. rp ← y(p+1

4
)ℓ

mod p.2. rq ← y(q+1

4
)ℓ

mod q.3. x0 ← q(q−1 mod p)rp + p(p−1 mod q)rq mod N .Why deryption works ? By Fermat's theorem,
x

p+1

4

i+1 = x
p−1

2
+1

i ≡ xi mod p,and so y = x2ℓ

0 ≡ xℓ mod N , whih implies y(p+1

4
)ℓ ≡ x0 mod p. TheBézout identity gives q(q−1 mod p) + p(p−1 mod q) ≡ 1 mod N , hene,

q(x0q
−1 mod p) + p(x0p

−1 mod q) ≡ x0 mod N.Note that the random value r an also be reovered, by setting the exponentsof rp and rq to (p+1
4)ℓ+1. Thus it ould be onsidered as a part of themessage in a deterministi sheme. If we only onsider the pseudo-randomstream produed by a seret state r, it an be ompared to TCHO2, wherethe seed is a odeword and the pseudo-random generation is �randomized�by SLP

and Sγ . The Blum-Goldwasser sheme an also be viewed as aKEM/DEM sheme, where the enapsulated key is r (or x0), hidden in y,85

and the symmetri ipher is a simple XOR with the message. Thus it isnot essentially an asymmetri stream ipher, sine the �rst seret reoveredthanks to the private key is not the plaintext, but the seed of the BBSgenerator; its is a trapdoor pseudo-random generator, where the trap allowsto reover the seed, not to anel diretly the bitstream as TCHO2 does.C Number of irreduible and primitivepolynomialsTo get a sharper expression of the average number of trials before �nding aprimitive polynomial P in the key generation stage, and for uriosity, we givehere some results on the number of irreduible and primitive polynomials on a�nite �eld, mainly taken from the COS (http://www.theory.s.uvi.a/).Proposition 13. The number of irreduible polynomials of degree n over Fqis
Lq(n) =

1

n

∑

d|n
µ

(n

d

)

qdwhere µ is the M®bius funtion: µ(m) is equal to 0 if m is not square-free,otherwise (−1)k with k the number of distint primes in the fatorization of
m. This result is linked with the domain of ombinatoris: Lq(n) is alsoequal to the number of Lyndon words (words that are smaller than any oftheir right fators, for a lexiographi ordering) of length n on an alphabetof q distint symbols.Proposition 14. The number of primitive polynomials of degree n over Fqis

Pq(n) =
φ(qn − 1)

nwhere φ is Euler's totient funtion.Thus the probability that a random irreduible binary polynomial ofdegree n is primitive is
φ(2n − 1)

∑

d|n µ
(

n
d

)

2d
,note that, if n =

∏

pi∈P
pαi
i , there are ∏

i(αi + 1) divisors of n.Example 12. Then there are exatly 52 377 irreduible and 24 000 primitivebinary polynomials of degree 20 (45 %), and respetively 99 858 and 84 672of degree 21 (89 %). For prime degrees leading to a Mersenne prime, thereas as many irreduible as primitive polynomials.86

A known result states that L2(n) an be asymptotially approximated to
2n/n. We verify this experimentaly: for degrees in [1, 200] the average errorfration of the real value is roughly 0.015, whereas it is about 8.65 ·10−17 fordegrees in [800, 1 000].Proposition 15 ([GM01℄). The exat number of multiples of weight v (withonstant term 1) of any primitive polynomial of degree t is

Nd,v =
1

v − 1

(

2t − 2

v − 2

)

−Nt,v−1 −
v − 1

v − 2
(2t − v + 1)Nt,v−2with initial onditions Nt,1 = Nt,2 = 0.

87

