
Distinguisher for Full Final Round of Fugue-256

Jean-Philippe Aumasson and Raphael C.-W. Phan

1 Nagravision SA, Cheseaux, Switzerland
2 Loughborough Uni, UK

Abstract. Fugue-256 is the 256-bit version of the hash function Fugue
submitted to NIST’s SHA-3 competition, and selected as one of the 14
second-round candidates. Fugue-256 updates a state S = (S0, . . . , S29)
of 30×32=960 bits with a transform R that depends on a 32-bit message
block and that calls once a double-AES-like round function. R admits
trivial distinguishers, and to obtain unpredictable and pseudorandom
digests, Fugue-256 only relies on a final round G, which maps a 960-bit
state to a 256-bit digest through 18 double-AES-like rounds. The main
result of this paper is an efficient distinguisher for the full 18-round
G, building on a probability-1 differential characteristic covering 15 of
those rounds. Our distinguisher finds with negligible computation pairs
of inputs (S, S′) that differ on 66 bits in average, and such that G(S) and
G(S′) remain constant for all pairs found. We also show that even if the
number of rounds is increased from 18 to 30, nonrandomness remains
in the final internal state of G. In a complete black-box setting, we
furthermore show an efficient integral distinguisher for a slightly modified
version of the full G.

Keywords: hash functions, cryptanalysis, SHA-3

1 Introduction

Among the 14 second-round candidates in NIST’s SHA-3 competition [1], Fugue
is the algorithm with the least third-party analysis published3. Submitted by
Halevi, Hall and Jutla, Fugue allows formal security arguments against collision
attacks and distinguishing attacks on a dedicated PRF mode. However, no formal
argument is given in favor of its “random” behavior when the function is unkeyed,
as in many hash function applications.

Fugue-256 (the version of Fugue with 256-bit digests) updates a state S =
(S0, . . . , S29) of 30×32=960 bits with a transform R parametrized by a 32-bit
message block. R essentially consists of two AES-like transforms (called SMIX)
applied to 128-bit windows of S, and thus can be easily distinguished from a
random transform (for example, any difference in S5 always propagates through
R to S11). This, plus the fact that internal collisions have been found on multiple
rounds of R [2], indicates that R is weak.

To achieve notions as unpredictability and indistinguishability Fugue-256 re-
lies instead on a much stronger transform, called the final round G, computed

3See the SHA-3 Zoo wiki: http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo.

after message blocks have been processed through the R transform. G returns a
256-bit digest from the 960-bit state by making 18 double-AES-like rounds (this
versus just one double-AES-like round for R), and unlike R does not admit triv-
ial distinguishers. [3, §12.4.2] notes: “(. . .) one strategy that may be beneficial
for the adversary is to have nonzero differential only in the last few columns of
the state (. . .) after the first one or two SMIX steps of the final round G (i.e.
the top right most SMIX steps). If this can be accomplished, then there are no
active bytes in the next eight SMIX steps of the second loop of G. However, ob-
taining such a differential state after the first one or two SMIX steps of G is an
extremely low propability event”. This suggests the existence of high-probability
(truncated) differential characteristics for G. To date, however, no distinguisher
is known to exist for the full G.

This paper investigates distinguishers for the final round G of Fugue-256.
Indeed, since R is weak, the crux of Fugue’s security lies in G. First of all, §3
reports a distinguisher for G’s G1 rounds; then, §4 presents a black-box integral
distinguisher for a slightly modified version of G, based on a detailed analy-
sis of G’s propagation of multiset properties. Finally, §5 presents a differential
characteristic for 15 of its 18 double-AES-like rounds, which we exploit (in §6)
to construct an efficient distinguisher for the full G. We conclude in §7 with a
discussion of our results.

Note that as G’s algorithm is unkeyed, this sets the stage for considering
distinguishers that exhibit tuples of inputs and outputs satisfying some “evasive”
property. Paraphrasing [4], such a property is easy to check but impossible to
achieve with the same complexity and a non-negligible probability using oracle
accesses to an ideal primitive. Such distinguishers are for example relevant to
disprove indifferentiability of permutation constructions [5, 6], or to invalidate
indifferentiability claims of hash constructions [7]. These distinguishers often use
an “inside-out” strategy to determine inputs and outputs satisfying an evasive
property; the distinguisher in §6 is inspired by that strategy.

2 Brief description of Fugue-256

Given a message m, Fugue-256 appends zeros and an 8-byte encoding of its bit
length to obtain a chain of 32-bit blocks m0,m1, . . . ,mN−1, which is processed
by updating the state by doing S ← R(S,mi) for i = 0, . . . , N − 1, where S is
initialized to a fixed IV. The digest returned is G(S).

2.1 The round transformation R

Given a message word mi, R transforms the 30-word state (S0, . . . , S29) by doing

TIX(mi)

ROR3; CMIX; SMIX

ROR3; CMIX; SMIX

where ROR3 right-rotates S by 3 words (i.e., it simultaneously sets Si ← Si−3

for all i = 0, . . . , 29), and where TIX(mi) does

S10+ = S0; S0 = mi; S8+ = S0; S1+ = S24

and where CMIX does

S0+ = S4; S1+ = S5; S2+ = S6;

S15+ = S4; S16+ = S5; S17+ = S6

The SMIX function is described in §2.3.
Note that here additions are in fact bitwise XORs. A message word affects

11 state words through R, namely S0 . . . , S6 and S14, . . . , S17. In particular, S14

equals the sum of the initial S8 and of mi.
Also, note that two states that differ only by S10 and S0 such that S10 +S0 is

unchanged map to the same value, regardless of the block mi. A detailed analysis
in [3, §10] shows that this property is necessary to obtain an internal collision
after four applications of R, along with the conditions that

– S1 + S24 is unchanged,
– S3, S7, S12, S15, S16, and S17 have nonzero difference,
– S5, S6, and S11 have zero difference.

[3, §10] also demonstrates that finding internal collisions is difficult.

2.2 The final round G

The final round G transforms the internal state (S0, . . . , S29) by doing five G1
rounds:

ROR3; CMIX; SMIX

ROR3; CMIX; SMIX

followed by 13 G2 rounds:

S4+ = S0;S15+ = S0; ROR15; SMIX

S4+ = S0;S16+ = S0; ROR14; SMIX

where ROR15 and ROR14 right-rotate S by 15 and 14 words, respectively.
G finally returns as hash value the eight words

S1, S2, S3, (S4 + S0), (S15 + S0), S16, S17, S18

G thus makes in total 36 calls to SMIX.
We shall henceforth refer to G’s two types of rounds as “G1 rounds” and “G2

rounds”. Sj
i will denote the value of Si at the input of G’s round (j + 1) ≥ 1;

for example, S0
1 is the second word of the initial state.

2.3 The permutation SMIX

SMIX transforms the 128-bit vector (S0, S1, S2, S3) and lets all the other Si’s
unchanged. Inspired by the AES round function, SMIX views its input as a
4×4 matrix of bytes. First each byte passes through the AES S-box, then the
Super-Mix linear transformation is applied. Unlike AES’ MixColumn, Super-Mix
operates on the whole 128-bit state rather than on each column independently,
which makes SMIX arguably stronger than the original AES round. Note that
Super-Mix is the only Fugue component that provides bytewise mixing within
word borders, the other Fugue components only provide wordwise mixing.

We refer to [3] for a detailed description of Super-Mix, and in particular of
its matrix representation N.

2.4 Previous analysis of Fugue-256

To date, only two references have reported analyses of Fugue: the submission doc-
ument by Fugue designers [3] and the third-party analysis by Khovratovich [2].
We briefly summarize their main results:

Diffusion of R. Diffusion properties for R were analyzed by considering adver-
saries injecting differences into the input message block mi [3, §8.1], or into the
input state S [3, §8.2] of R. The latter analysis concluded that after five consecu-
tive applications of R, the output bytes from SMIX have not been non-linearly
influenced by all 120 input state bytes of S. This illustrates the weak diffusion
properties of R, and is one reason why the final round G bears paramount
importance.

Diffusion of G. [3, §8.3] claims that after the first part of G (i.e., the five G1
rounds), “Every ‘final byte’ in columns 0-4 (and 15) depends non-linearly on
all the 120 ‘initial bytes’ . . . ”. Further, [3, §8.4] observes that after the full G
all output bytes depend nonlinearly on all 120 input bytes via more than 25
SMIX-es.

Internal collisions. [3, §10] analyses in detail Fugue-256’s resistance to internal
collisions, with as main results the necessary conditions for an internal collision
(Lemma 10.1) and the upper bound 2−246 on the probabilty of an internal col-
lision after four message injections, given a random initial state and any fixed
non-zero difference in it (Theorem 10.2). Note that the best known internal
collision search method [2] for Fugue-256 runs in 2352.

External collisions. [3, §11] studies external collisions for Fugue-256 (i.e., col-
lisions occuring only after the final round G), and gives the bound 2−129 on
the probability of an external collision for the second part of G (i.e., the 13 G2
rounds).

PRF analysis of Fugue. [3, §12.4] considers the security of a proposed PRF
construction based on Fugue-256, which sets a 256-bit key as the initial (S22, . . . , S29).
The analysis was performed notably via differential cryptanalysis and against a
collision-finding adversary, assuming that the best adversarial approach is to
look for partial collisions. It was further claimed that it is difficult to launch
distinguishing attacks with probability greater than 2−128. They considered the
adversary inducing nonzero differences into the last few words (columns) of the
state after up to the first round of G, and then remarked that this should prop-
agate through the five G1 rounds and most of G2 rounds.

3 Partitioning distinguisher for G1 rounds

We present a distinguisher that applies to the five G1 rounds of G (also called
“TIX-less rounds” in [3]). These G1 rounds offer more diffusion than G2 rounds,
i.e., CMIX in a G1 round involving three XORs diffuses more words than the
two XORs in a G2 round. We start by tracing the propagation of the input word
S0

5 through G, where we denote the bytes of S0
5 as B0B1B2B3. This S0

5 propagates
with probability one to S4

29. In round 5, ROR3 moves this to position S2, which
then enters SMIX. Let the bytes after the S-box be b0b1b2b3. The definition
of the matrix N of Super-Mix leads to output words S0S1S2S3 of the following
form:

– S0: f(b0) f(b1) f(b0b1b2b3) f(b3)
– S1: f(b0) f(b0b2b3) 0 f(b3)
– S2: f(b0b1b2b3) f(b1) 0 f(b3)
– S3: f(b0) f(b1) 0 f(b0b1b2b3)

where f(·) denotes some undetermined function of the input byte(s) and where
“0” means no influence of any of the input bi.

After ROR3, these words become S3S4S5S6 and then CMIX XORs S4S5S6

with S0S1S2 (which up to this point had not been influenced by S0
5 at all), to

form the new S0S1S2. Thus, S0S1S2S3 entering the second SMIX of round 5
are influenced by the the same bytes of S0

5 that had entered the first SMIX of
round 5, except the order is shifted, i.e. the S0S1S2S3 inputs to SMIX at this
point are of the form:

– S0: f(b0) f(b0b2b3) 0 f(b3)
– S1: f(b0b1b2b3) f(b1) 0 f(b3)
– S2: f(b0) f(b1) 0 f(b0b1b2b3)
– S3: f(b0) f(b1) f(b0b1b2b3) f(b3)

and after SMIX we have S0S1S2S3 of the form:

– S0: f(b0b1b2b3) f(b0b1b2b3) f(b0b1b2b3) f(b0b1b2b3),
– S1: f(b0b1b3) f(b0b1b2b3) f(b0b1b3) f(b0b1b2b3),
– S2: f(b0b1b2b3) f(b0b1b2b3) f(b0b1b2b3) f(b0b1b2b3),
– S3: f(b0b1b2b3) f(b0b1b2b3) f(b0b1b2b3) f(b0b1b2b3),

i.e. the first and third bytes of the SMIX output word at S5
1 are only influenced

by b0b1b3 and not by b2.
Our distinguisher consists in obtaining a pair of inputs to G such that only

the byte B2 of S0
5 varies while the other bytes are constant, and checking that

after five rounds the first and third bytes in S5
1 remain unchanged. Note that

this does not require the cryptanalyst to know what the input values to G are,
except that the byte B2 is variable. This is akin to a partition on the input space
(where only the byte B2 of S0

5 is non-constant) that leads to an output partition
of colliding values (first and third bytes in S5

1 are constant) indexed by these
two constant byte positions. Such a colliding partition bears some resemblance
to the attack by Knudsen on SAFER K-64 [8].

This distinguisher succeeds with probability one and is sufficient to distin-
guish the five G1 rounds from random.

This result is surprising given that the same bytes of S0
5 enter SMIX twice

within round 5 and yet do not fully influence all bytes of the final SMIX output.

4 Integral distinguishers for G variants

This section presents integral distinguishers for variants of the G function. In-
tegral distinguishers were first introduced by Knudsen on the Square cipher [9],
and work by tracing a multiset of words through round components and exploit-
ing the fact that certain operations (e.g., bijections), preserve the zero integral
sum of the multiset. A multiset can be defined to have the following properties:

– Permutation (P): a w-bit P multiset has 2w unique elements pi ∈ {0, 1}w.
– Constant (C): a w-bit C multiset has 2w constant elements ci ∈ {0, 1}w.

Note that the sum of either multiset is zero, i.e.,
⊕2w−1

i=0 pi =
⊕2w−1

i=0 ci = 0.
In addition, we denote by B (balanced) a multiset whose 2w elements sum to

zero, but that is not P nor C. Also, we denote thereafter S0 ∼ S3 for S0S1S2S3.

4.1 Integrals through SMIX

G uses components that preserve byte boundaries, hence it is natural to consider
bytewise integral distinguishers. The main component to analyze is SMIX. In
fact, it is sufficient to concentrate on Super-Mix since the S-box preserves both
P and C. Recall that Super-Mix just involves multiplication of input bytes with
a constant (1, 4, 5, 6 or 7) and XORs of bytes.

Consider a multiset of 256 values S0S1S2S3 on input to Super-Mix, such
that S2 has at least one P byte and the remaining (if any) are C bytes, while
S0, S1, and S3 have only C bytes. We denote the byte multisets of S2 as B0B1B2B3,
Bi ∈ {P, C}. Then, the output multiset of Super-Mix, i.e., the new S0S1S2S3, is
of the form:

B0 + 0 + 0 + 0 + C

0 + B1 + 0 + 0 + C

7B0 + B1 + B2 + 4B3 + C

0 + 0 + 0 + B3 + C

B0 + 0 + 0 + 0 + C

B0 + 0 + 4B2 + 7B3 + C

0 + C

0 + 0 + 0 + B3 + C

6B0 + 4B1 + 7B2 + B3 + C

0 + 7B1 + 0 + 0 + C

0 + C

0 + 0 + 0 + 7B3 + C

4B0 + 0 + 0 + 0 + C

0 + 4B1 + 0 + 0 + C

0 + C

4B0 + 7B1 + B2 + 5B3 + C

If the input S2 has all P bytes, i.e., Bi = P for i = 0 . . . 3, then we have the output
byte multisets of S0 ∼ S3 with the properties

PPBP PBCP BPCP PPCB .

Since G respects byte boundaries, we can do better by starting with only one P

multiset. More precisely, let the input multiset be such that S2 has only one P

byte and the other bytes are C, while the other Si only have C bytes. The output
multiset after SMIX will be as follows, depending on the location of the P byte.

– S2 ≡ PCCC⇒ S0S1S2S3 ≡ PCPC PPCC PCCC PCCP.

– S2 ≡ CPCC⇒ S0S1S2S3 ≡ CPPC CCCC PPCC CPCP.

– S2 ≡ CCPC⇒ S0S1S2S3 ≡ CCPC CPCC PCCC CCCP.

– S2 ≡ CCCP⇒ S0S1S2S3 ≡ CCPP CPCP PCCP CCCP.

4.2 Integrals through 5.5 G rounds

We now trace multiset properties through the first 5.5 rounds of G, i.e., five
G1 rounds and half a G2 round. Without loss of generality, we take as example
S2 = PCCC input to SMIX. The analysis similarly applies for P in other byte
positions of S2 input to SMIX. We start with a multiset of 256 values at the
input to G such that they have C bytes in all byte positions except in the first
byte of S5, which is a P byte. Then we know (from our analysis in §3) that this
propagates undiffused through to the output of round 4, where the P byte is
now in the first byte position of S29. Going into round 5, through ROR3, S29

becomes S2. CMIX affects S2 via S6 but S2’s multiset properties are preserved
because S6 is all C bytes, thus S2 remains as PCCC. Going through SMIX, the
output S0S1S2S3 becomes

PCPC PPCC PCCC PCCP .

All other Si’s have only C bytes. Going through ROR3, S0S1S2S3’s PCPC PPCC
PCCC PCCP goes into S3S4S5S6. Going through CMIX, S0S1S2 and S15S16S17

are influenced by S4S5S6 (though byte boundaries are still respected) so S0S1S2

and S15S16S17 also become PPCC PCCC PCCP. Going through SMIX, recall that
S0S1S2S3 on input to this is PPCC PCCC PCCP PCPC. The S-box preserves the
byte multiset properties, thus Super-Mix is the critical operation; the output

from this SMIX will have the byte multiset properties as:

(P + 4P + 7C + C) + P + P + P = B

P + (P + C + 4C + 7C) + C + C = B

C + C + (7P + C + C + 4P) + P = B

C + C + P + (4P + 7C + P + C) = B

0 + (4C + 7C + C) + P + P = B

P + 0 + (P + 4C + 7P) + C = B

C + C + 0 + (7P + C + 4C) = P

(4P + 7P + C) + C + P + 0 = B

0 + 7P + (6P + 4C + 7C + P) + 7P = B

7P + 0 + 7C + (P + 6C + 4P + 7C) = B

(7P + P + 6C + 4C) + C + 0 + 7P = B

7C + (4P + 7C + C + 6C) + 7P + 0 = B

0 + 4P + 4P + (5P + 4C + 7P + C) = B

(P + 5P + 4C + 7C) + 0 + 4C + 4C = B

4C + (7P + C + 5C + 4C) + 0 + 4P = B

4C + 4C + (4P + 7C + C + 5P) + 0 = B

So, at the end of round 5, we have S0S1S2S3 of the form

BBBB BBPB BBBB BBBB ,

and both S4S5S6 and S15S16S17 are PPCC PCCC PCCP. All other Si’s have only C

bytes. We now proceed into round 6:

– S4+ = S0;S15+ = S0: only S4 and S15’s multiset properties are changed:

S4 = S4 + S0 ≡ PPCC + BBBB ≡ BBBB

S15 = S15 + S0 ≡ PPCC + BBBB ≡ BBBB .

Other Si’s are unchanged.

– ROR15: we trace only the Si’s that have P or B bytes, i.e. S0 ∼ S6 → S15 ∼
S21, S15 ∼ S17 → S0 ∼ S2. All other Si’s are C bytes.

– SMIX: the input S0S1S2S3 is BBBB PCCC PCCP CCCC so the output is of the
form (note that the S-box destroys a B property)

(?) + P + P + C =?

? + (P + C + 4C + 7C) + C + C =?

? + · · · =?

? + · · · =?

0 + (4C + 7C + C) + P + C = P

? + · · · =?

? + · · · =?

? + · · · =?

0 + 7P + (6P + 4C + 7C + P) + 7C = B

? + · · · =?

? + · · · =?

? + · · · =?

0 + 4P + 4P + (5C + 4C + 7C + C) = B

? + · · · =?

? + · · · =?

? + · · · =?

Thus, the output S0S1S2S3 is ???? P??? B??? B???. Here, “?” denotes a byte
multiset where it is not known if it has B, C, or P properties.

Note here that we concentrate only on tracing the multiset properties in the
output S0S1S2S3. This is because these four words undergo the most diffusion
through the rounds and because the S0 output is preserved intact through many
subsequent rounds, e.g. the S0 output of round 6 is observable via the XOR of
two output words after round 18.

4.3 Integrals through 18 rounds minus an XOR and a Super-Mix

We extend the above 5.5-round integral distinguisher to 18 rounds of a slightly
modified version of G, wherein only round 6’s second half is tweaked. More
precisely, the second half of round 6 omits the S16+ = S0 operation, as well as
Super-Mix in SMIX of this second half (but the S-box is not omitted), and where
the final round 18 output includes S14. The 5.5-round integral distinguisher of
the previous subsection can continue through this half-round to the end of round
6 as follows.

– Only S4+ = S0: only S4’s multiset properties are changed, i.e. S4 = ????
since it is XORed with S0 which is ????. Other Si’s are unchanged.

– ROR14: we trace only the Si’s with properties we are interested in, i.e.,
S0 ∼ S3 → S14 ∼ S17, S4 → S18, S15 → S29, S16 → S0, S17 ∼ S21 → S1 ∼
S5.

– SMIX minus Super-Mix: the input S0S1S2S3 is BBPB BBBB BBBB BBBB so the
output (note that the S-box destroys a B property) S0S1S2S3 is ??P? ????
???? ????.

We only exploit the byte multisets of S0 from this point onwards.
The key observation is that the output integral sum after all 18 rounds of G

in positions S18
19+i, i = 0, 1, . . . , 10, equals the integral sum in S7+i

0 after the first
7 + i rounds of G. This means that the output integral sum allows to check the
particular S0 property deep within the G structure, as deep as the output of
the first seven rounds. Going deeper, the integral sum in S6

0 at the output of the
first six rounds equals that of S17

19 (at the output of round 17). A more careful
analysis of round 18 reveals that S17

19 = S18
18 + S18

14 . That is, by simply XORing
two output integral word sums after round 18, one can compute the integral sum
in S17

19 and hence the integral sum in S6
0 at the output of round 6.

This leads to the following distinguisher for 18 rounds of this G variant:

1. Collect a multiset of 256 inputs to round 1 such that the first byte of the S5

input is P; and all other bytes of Si are C, and obtain corresponding outputs
from this G variant oracle.

2. Compute the XOR between the integral sums of S18
18 and S18

14 and check for
??P?, i.e. the third byte integral should be P.

In Appendix, Fig. 4 shows the evolution of the multiset properties.
These integral results have been experimentally verified with the official

source code of Fugue. Note that this distinguisher works in a black-box way,
i.e., the adversary does not manipulate internal state values nor require them
for computation of desired inputs of the distinguisher. Furthermore, the distin-
guisher is applicable even if the cryptanalyst does not know the inputs to G.
One just needs to ensure that all 256 inputs are identical, except for the S5 byte
which is distinct for each input.

5 Probability-1 characteristics for 15 G rounds

In the Fugue analysis in [3, §12.4.2], a difference is considered to be induced in
the right half of the input state such that after one G1 round, differences exist
in the last few words. This difference propagation was then traced through 5 G1
rounds before G2 and it was concluded that if done this way then no differences
enter the SMIX for most of the subsequent G2 rounds.

Given an arbitrary state S, we consider instead an arbitrary input difference
∆ in S5 (left half of the state) and no difference in the other Si’s. Below we
show that after four G1 rounds followed by 11 G2 rounds, the state S always
has a difference ∆ in S18 and no difference in other Si’s. This is illustrated for
∆ = FFFFFFFF in Fig. 1.

Initial difference

.. FFFFFFFF................................ ..

..

G1 rounds

1
..FFFFFFFF........................

..

2
..

................FFFFFFFF................

3
..

..FFFFFFFF........ ..

4
..

..FFFFFFFF

G2 rounds

5
..

..FFFFFFFF........

6
..

..FFFFFFFF................

7
..

..FFFFFFFF........................

8
..

.. .. FFFFFFFF................................

9
..

..FFFFFFFF ..

10
..

..FFFFFFFF........ ..

11
..

..FFFFFFFF................ ..

12
..

..FFFFFFFF........................ ..

13
..

.. FFFFFFFF................................ ..

14
..

................................FFFFFFFF

15
..

........................FFFFFFFF........

Fig. 1. Evolution of differences given an initial difference FFFFFFFF in S5, with 4 G1
rounds and 11 G2 rounds.

5.1 Propagation through G1 rounds

During the four G1 rounds, a difference in S5 does not activate any CMIX nor
SMIX (i.e., the difference never enters those functions). This is because after
all the evaluations ROR3, the difference is never moved to a word of index in
{0, . . . , 6}, which are the indices of words entering CMIX or SMIX. Indeed,
going through each of the 4 rounds, ROR3 respectively moves ∆ to

1. S8 and S11,
2. S14 and S17,
3. S20 and S23,
4. S26 and S29.

Note that an additional G1 round would move ∆ to S2 and so would activate
an SMIX. The probability-1 characteristic thus stops here for the G1 rounds.

5.2 Propagation through G2 rounds

As for G1 rounds, we show that the initial difference (now in S29) never activates
SMIX nor the additions S4+ = S0, S15+ = S0, S16+ = S0. That is, ∆ is never
moved to a word of index in {0, . . . , 3}. Going through each of the 11 rounds,
ROR15 and ROR14 respectively move ∆ to S14 and S28, S14 and S28, S13

and S27, . . . , S5 and S19, and finally to S4 and S18. Again, an additional round
would activate SMIX, as ∆ would enter S3.

6 Distinguisher for full G

This section describes the actual distinguisher for the full 18 rounds of G. This
distinguisher consists in an efficient method to find pairs of initial states (S, S′)
that differ on 66 bits in average, and such that G(S) and G(S′) remain constant
for all pairs found. Note that distinct pairs satisfying only the latter condition are
trivial to find for G (by inverting the algorithm for some well-chosen final states),
however the former condition would be satisfied with negligible probability.

We shall naturally exploit the differential characteristic described in §5, and
follow an “inside-out” strategy, as suggested by the observation below.

6.1 Basic observation: inside-out strategy

First, observe that one can choose the value of any intermediate state between
(before) the first and (after) the last round, and deduce the corresponding initial
and final states by computing backwards and forwards. In particular, one can
choose an intermediate state between (after) the first and (before) the 17-th
round, and determine the position of a difference in S to follow the differential
characteristic depicted on Fig. 1, and deduce the corresponding initial and final
states.

Initial difference

34B58.44................................1................................

..1........B7F6198A822E7BB45.6C2C59

G1 rounds

1
..1................................ ..

..

2
..1........................

..

3
..

.......................1................

4
..

..1........ ..

5
..

..1

G2 rounds

6
..

..1........

7
..

..1................

8
..

..1........................

9
..

..1................................

10
..

..1 ..

11
..

..1........ ..

12
..

..1................ ..

13
..

..1........................ ..

14
..

..1................................ ..

15
..

.......................................1

16
..

...............................1........

17
4.....C132......DBB1....1B..5A..........7C....1F

..5D..1F....1F5D......637C....1F........

18
2F95B95F16D98A895AC3F531F9DD.B47........7C....1FF498B.8D

61C1F2589D4E5A72CB55ABCBF498B.8D........4.....C1

Fig. 2. Evolution of differences with a difference 00000001 in the 15 intermediate
rounds, and a state S set to zero before the 17th round. A state is displayed on two
lines left-to-right from S0 to S14, and from S15 to S29, in hexadecimal basis, replacing
zeroes by dots for readability.

6.2 Forwards: constant G(S) and G(S′)

Recall that after its last (18th) round, G extracts 256 bits from the 960-bit
final state by returning S1, S2, S3, (S4 + S0), (S15 + S0), S16, S17, S18. Because
the probability-1 characteristic activates SMIX at the 17th round, all the words
above will depend on ∆. However, they do not depend on the values of all the
state words entering the 17th round. This observation allows us to find the value
of distinct pairs of states (S, S′) before the 17th round such that their respective
digests are constant for all pairs found (and thus their difference is constant as
well).

A straightforward analysis shows that the digest returned does not depend
on the values of S7 ∼ S13 and S21 ∼, S28 entering the 17th round. It is thus
sufficient to fix S0 ∼ S6, S14 ∼ S20, and S29 to ensure that G(S) and G(S′)
remain unchanged, by varying the other words (recall that S′ is S after setting
a difference in S18).

6.3 Backwards: sparse initial differences

Once one has determined two states entering the 17th round with a difference
∆ in S18, it is guaranteed that after inverting 11 G2 rounds and then four G1
rounds, one obtains two states with only a difference ∆ in S5 (as one follows
that 15-round characteristic with probability 1). Since there is only one G1 round
left to invert in order to get to the initial state, most of the state is unaffected
by ∆: it is easy to show that the initial state will have difference ∆ in S10

and S25, caused by the first inverse CMIX, and undetermined differences in
S0, S27, S28, S29, caused by the second inverse SMIX.

Therefore, only six words of the initial state have nonzero differences, and
if ∆ is chosen of minimal Hamming weight (1), then the two states have in
average 66 bit differences (assuming that the inverse SMIX causes in average
differences in half the bits of its input; this seems a reasonable assumption, as
the linear layer of the inverse SMIX has a much denser algebraic description
than the original, as shown in [3, Fig. 5]). Our experiments did not contradict
that estimate.

6.4 Example

Fig. 2 shows the evolution of differences when the S entering the 17th round is
set to zero (and thus S′ is all zero as well, except for the LSB of S18). From
the above observation, varying S7 ∼ S13 and S21 ∼ S28 does not affect the final
differences. In particular, if S0 ∼ S6 and S14 ∼ S20 are zero when entering the
17th round, the digests returned from S and S′ are always

588CA4D5 2283E13E 786018F3 5B300BF9 4AC5F765 D5DD2538 C74BE4BB 62571AA9

and

4E552E5C 7840140F 81BD13B4 74A5B2A6 0491BC62 48937F4A 0C1E4F70 96CFAA24

regardless of the values of other Si’s.

6.5 Extensions

We briefly describe extensions of our distinguisher to “more than G”: First, the
distinguisher for G can be extended to a distinguisher for G ◦ R, since after
an inverse R the state obtained remains relatively sparse (as the two inverse
CMIX are inactive).

If the number of G2 rounds is increased, there remain fixed differences in the
output of G after up to 20 rounds (i.e., in G1 plus 15 G2 rounds). Nonrandom-
ness in the internal state can be observed after at least 30 rounds (5 plus 25
rounds, that is, after 60 SMIX-es), because constant differences computed after
20 rounds follow the probability-1 characteristic 10 further rounds (see Fig. 3).

G2 rounds (continued)

18
2F95B95F16D98A895AC3F531F9DD.B47........7C....1FF498B.8D

61C1F2589D4E5A72CB55ABCBF498B.8D........4.....C1

19
.C.765.A.CBC24976.7BC6FFE6A968A1........7C....1FF498B.8D352B.A8D

DC5139C5689E98EBB92F1FEC352B.A8D........4.....C12F95B95F

20
38.354D8D19CAD1ADD3C21C8E8623.1F........7C....1FF498B.8D352B.A8DBCAFE2.2

8FF6CD4DA2.B8.6DB6C.D8DDBCAFE2.2........4.....C12F95B95F.C.765.A

21
A6B5FF.87BE5E7.73219688B7FFC6C3A........ .. 7C....1FF498B.8D352B.A8DBCAFE2.2CAF8A797

7163.6E1BE669A322DA32653CAF8A797........4.....C12F95B95F.C.765.A38.354D8

22
DAC69612873CEFA23.A839349B849765........7C....1F F498B.8D352B.A8DBCAFE2.2CAF8A7972ECBE532

AD64ED4681F9.BE7E5D181CB2ECBE532........ .. 4.....C12F95B95F.C.765.A38.354D8A6B5FF.8

23
9F2848C91D1466FFD89A93E9AECC9C9D........7C....1FF498B.8D 352B.A8DBCAFE2.2CAF8A7972ECBE532929EA61D

B517.1EDF8E2E84.C937.923929EA61D........4.....C1 2F95B95F.C.765.A38.354D8A6B5FF.8DAC69612

24
DF1D915133ED562FB15FFD41CB82D8F9........7C....1FF498B.8D352B.A8D BCAFE2.2CAF8A7972ECBE532929EA61D8.83AE13

42A417718.2A2D.84E4479DB8.83AE13........4.....C12F95B95F .C.765.A38.354D8A6B5FF.8DAC696129F2848C9

25
5A1AB2BD39816966DD42511FDD7B8613........7C....1FF498B.8D352B.A8DBCAFE2.2 CAF8A7972ECBE532929EA61D8.83AE13.8C394B1

44.7DF3CAB9812A38E359E12.8C394B1........4.....C12F95B95F.C.765.A 38.354D8A6B5FF.8DAC696129F2848C9DF1D9151

26
771D7EAFCE558D.1C3567BEC.F..74A8........ 7C....1FF498B.8D352B.A8DBCAFE2.2CAF8A797 2ECBE532929EA61D8.83AE13.8C394B154861.AD

7B6CC2ED714A24192B78B97.54861.AD........4.....C12F95B95F.C.765.A38.354D8 A6B5FF.8DAC696129F2848C9DF1D91515A1AB2BD

27
C77B181EE7F4993216D794954D1B27F47C....1F F498B.8D352B.A8DBCAFE2.2CAF8A7972ECBE532 929EA61D8.83AE13.8C394B154861.ADD98FDF4D

C77.A9DB435.66B121.C9F.FD98FDF4D........ 4.....C12F95B95F.C.765.A38.354D8A6B5FF.8 DAC696129F2848C9DF1D91515A1AB2BD771D7EAF

28
82CE.FDF196643374BBA5F1B35531D45F498B.8D 352B.A8DBCAFE2.2CAF8A7972ECBE532929EA61D 8.83AE13.8C394B154861.ADD98FDF4DD5278FF5

9AB3D4ACAAFABB5516.AAA.FD5278FF54.....C1 2F95B95F.C.765.A38.354D8A6B5FF.8DAC69612 9F2848C9DF1D91515A1AB2BD771D7EAFC77B181E

29
3.8BF5E769A899578CFD54.B7B6B291.352B.A8D BCAFE2.2CAF8A7972ECBE532929EA61D8.83AE13 .8C394B154861.ADD98FDF4DD5278FF562C2219.

41B76EB77F6844A.4E646AF122C221512F95B95F .C.765.A38.354D8A6B5FF.8DAC696129F2848C9 DF1D91515A1AB2BD771D7EAFC77B181E82CE.FDF

30
A945EE54.498731E6ABB5E9B6655A7A9BCAFE2.2 CAF8A7972ECBE532929EA61D8.83AE13.8C394B1 54861.ADD98FDF4DD5278FF562C2219.9CE49.1E

84D7A943BCA7F33BA62A84E2B3712941.C.765.A 38.354D8A6B5FF.8DAC696129F2848C9DF1D9151 5A1AB2BD771D7EAFC77B181E82CE.FDF3.8BF5E7

Fig. 3. Evolution of differences with a difference 00000001 in the 15 intermediate
rounds, and a state S set to zero before the 17th round (continued from Fig. 2). The
final differences in S4 and in S19 are unaffected by modification in the state entering
the 17th rounds that map backwards to sparse differences. A state is displayed on two
lines left-to-right from S0 to S14, and from S15 to S29, in hexadecimal basis, replacing
zeroes by dots for readability.

7 Conclusion

We presented an analysis of the SHA-3 candidate Fugue-256 focusing on its
strongest building block, the final round function G, composed of five G1 rounds
followed by 13 G2 rounds. We first exhibited in §3 a property of the G1 rounds
that exploits the low density of the diffusion matrix N, allowing one to construct
a distinguisher for the five G1 rounds. We then reported a detailed analysis of
G’s properties regarding propagation of multiset properties: this study led us to
a distinguisher for a slightly modified version of the full G. This distinguisher
requires to observe the output of G on 256 (possibly partially unknown) inputs,
and thus works in a black-box way. Indeed, what stands in the way between
this distinguisher and the original G is a tweak of a half round, leaving a thin
security margin.
§6 described a (non-black-box) distinguisher for the full, unmodified, G. This

distinguisher cannot be directly applied to Fugue-256, because it seems difficult
to determine two messages mapping the IV to two initial states of G found by the
distinguisher. Nevertheless, it does affect the security guarantees of Fugue-256,
for it shows that one can’t rely upon the assumption that G has no structural
flaw—in particular, no distinguisher—to argue that Fugue-256 shows some ideal
behavior (for example, that it is indifferentiable from a random function4).

All the distinguishers presented need only negligible computation, and could
be verified with the C source code of Fugue-256.

Arguably, the existence of probability-1 differentials and of nonrandomness
in the state for as many as 15 and 30 rounds of G (which has 18 rounds in
Fugue-256) raises doubts on the pseudorandomness of Fugue-256’s digests (note
that in its call for SHA-3 submissions NIST acknowledged the importance of
pseudorandom behavior: “Hash algorithms will be evaluated against attacks or
observations that (. . .) demonstrate some fundamental flaw in the design, such
as exhibiting nonrandom behavior” [1]).

Acknowledgments

We would like to thank Charanjit Jutla for providing us the C code of the
inverse SMIX function. We also thank Willi Meier, Thomas Peyrin, Christian
Rechberger and the Fugue team for comments on a preliminar draft.

References

1. NIST: Cryptographic hash competition http://www.nist.gov/hash-competition.
2. Khovratovich, D.: Cryptanalysis of hash functions with structures. In: SAC. (2009)
3. Halevi, S., Hall, W.E., Jutla, C.S.: The hash function Fugue. Submission to NIST

(updated) (2009)

4For example, note that the tweak of the SHA-3 candidate Keccak [10] was moti-
vated by a structural distinguisher in 21369 that invalidated the claims of its indiffer-
entiability proof.

4. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: Improved attacks for AES-like
permutations. Cryptology ePrint Archive, Report 2009/531 (2009)

5. Dodis, Y., Puniya, P.: On the relation between the ideal cipher and the random
oracle models. In: TCC. (2006)

6. Coron, J.S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. Cryptology ePrint Archive, Report 2008/046 (2008) Full
version of [11].

7. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. NIST mailing list (2009)

8. Knudsen, L.R.: A key-schedule weakness in SAFER-K-64. In: CRYPTO. (1995)
9. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: FSE. (1997)

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Note on zero-sum distinguish-
ers for Keccak-f. NIST mailing list (2010)

11. Coron, J.S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: CRYPTO. (2008)

12. Biryukov, A., Wagner, D.: Slide attacks. In: FSE. (1999)
13. Wagner, D.: A slide attack on SHA-1. Unpublished manuscript (June 2001)
14. Saarinen, M.J.O.: Cryptanalysis of block ciphers based on SHA-1 and MD5. In:

FSE. (2003)
15. Gorski, M., Lucks, S., Peyrin, T.: Slide attacks on a class of hash functions. In:

ASIACRYPT. (2008)

A Slide properties for G

Here we report en passant the sliding properties that we observed on G. The
slide attack [12] was initially applied to cryptanalyze block ciphers, and works
by considering two copies of the encryption process and sliding them side by side
such that their rounds are not aligned; e.g., for simplicity, sliding round i+ 1 of
the first process with round i of the second. Slide attacks were first applied to
hash functions in [13] and [14]. More recent results appear in [15].

Observe that all 5 G1 and all 13 G2 rounds of G are self-similar. Thus one can
find two states S and S′ such that the final state of G(S′) equals the penultimate
state of G(S), by returning G1−5(S) and G1−5 ◦G2−1(S) for some arbitrary S.
Note that the above property holds for an arbitrary number of G1 and or G2
rounds in G.

B Propagation of multiset properties

5
BBBB BBPB BBBB BBBB PPCC PCCC PCCP CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC

PPCC PCCC PCCP CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC

5.5
???? P??? B??? B??? CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC

BBBB BBPB BBBB BBBB BBBB PCCC PCCP CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC

6
BBPB BBBB BBBB BBBB PCCC PCCP CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC ????

P??? B??? B??? ???? CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC BBBB

7
???? ???? ???? ???? PCCP CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC ???? ????

???? ???? ???? ???? CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC BBBB BBPB

8
???? ???? ???? ???? CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC ???? ???? ????

???? ???? ???? ???? CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC BBBB BBPB ????

9
???? ???? ???? ???? CCCC CCCC CCCC CCCC CCCC CCCC CCCC ???? ???? ???? ????

???? ???? ???? ???? CCCC CCCC CCCC CCCC CCCC CCCC CCCC BBBB BBPB ???? ????

10
???? ???? ???? ???? CCCC CCCC CCCC CCCC CCCC CCCC ???? ???? ???? ???? ????

???? ???? ???? ???? CCCC CCCC CCCC CCCC CCCC CCCC BBBB BBPB ???? ???? ????

11
???? ???? ???? ???? CCCC CCCC CCCC CCCC CCCC ???? ???? ???? ???? ???? ????

???? ???? ???? ???? CCCC CCCC CCCC CCCC CCCC BBBB BBPB ???? ???? ???? ????

12
???? ???? ???? ???? CCCC CCCC CCCC CCCC ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? CCCC CCCC CCCC CCCC BBBB BBPB ???? ???? ???? ???? ????

13
???? ???? ???? ???? CCCC CCCC CCCC ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? CCCC CCCC CCCC BBBB BBPB ???? ???? ???? ???? ???? ????

14
???? ???? ???? ???? CCCC CCCC ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? CCCC CCCC BBBB BBPB ???? ???? ???? ???? ???? ???? ????

15
???? ???? ???? ???? CCCC ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? CCCC BBBB BBPB ???? ???? ???? ???? ???? ???? ???? ????

16
???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? BBBB BBPB ???? ???? ???? ???? ???? ???? ???? ???? ????

17
???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? BBPB ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

18
???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

Fig. 4. Evolution of multiset properties given property P in the first byte of the S5

input to G variant (as per §4.3). Note that our analysis, focusing on the permutation
property P, reports a property ??P? at round 17, while our experiments revealed that
the property is in fact BBPB.

