
Practical attack on 8 rounds of the lightweight
block cipher KLEIN

Jean-Philippe Aumasson1, Maŕıa Naya-Plasencia2,∗, and Markku-Juhani O.
Saarinen3

1 NAGRA, Switzerland
2 University of Versailles, France

3 Revere Security, USA

Abstract. KLEIN is a family of lightweight block ciphers presented at
RFIDSec 2011 that combines a 4-bit Sbox with Rijndael’s byte-oriented
MixColumn. This approach allows compact implementations of KLEIN
in both low-end software and hardware. This paper shows that interac-
tions between those two components lead to the existence of differentials
of unexpectedly high probability: using an iterative collection of differ-
ential characteristics and neutral bits in plaintexts, we find conforming
pairs for four rounds with amortized cost below 212 encryptions, whereas
at least 230 was expected by the preliminary analysis of KLEIN. We ex-
ploit this observation by constructing practical (≈ 235-encryption), ex-
perimentally verified, chosen-plaintext key-recovery attacks on up to 8
rounds of KLEIN-64—the instance of KLEIN with 64-bit keys and 12
rounds.

Keywords: block ciphers, cryptanalysis, lightweight cryptography

1 Introduction

Lightweight cryptography is concerned with the design, analysis, and imple-
mentation of cryptographic schemes—such as stream ciphers or authentication
protocols—that minimize the consumption of resources, mainly ROM and RAM
in software, and power, energy, and area in hardware. Research in lightweight
cryptography is motivated by the growing number of low-resource computing de-
vices such as RFID tags, network sensors, or low-end embedded software systems
(for example, smartphones, digital cameras, portable GPS devices). The field has
gained interest these last years with a multitude of new lightweight primitives,
including the block ciphers present (CHES’08) [1], KATAN and KTANTAN
(CHES’09) [2], PRINTcipher (CHES’10) [3], Hummingbird-2 (RFIDsec’11) [4],
LED [5], Piccolo (CHES’11) [6] and the hash functions Quark (CHES’10) [7],
PHOTON (CRYPTO’11) [8], and SPONGENT (CHES’11) [9]. Most of those

∗Supported by the National Competence Center in Research on Mobile Information
and Communication Systems (NCCR-MICS), a center of the Swiss National Science
Foundation under grant number 5005-67322 and by the French Agence Nationale de
la Recherche through the SAPHIR2 project under Contract ANR-08-VERS-014



designs are hardware-oriented, and minimize area either using a combination of
a small Sbox and a simplistic linear layer, or using a shift-register-based con-
struction.

KLEIN is a new family of lightweight block ciphers, presented at RFID-
Sec 2011 by Gong, Nikova, and Law [10]. The instances KLEIN-64, KLEIN-80,
and KLEIN-96 process 64-bit data blocks and respectively make 12, 16, and 20
rounds and accept keys of 64, 80, and 96 bits. Thanks to an involutive 4-bit
Sbox and Rijndael’s MixColumn, the KLEIN ciphers allow compact and low-
memory implementations in low-end software and hardware. For example, on an
Iris sensor node based on an 8-bit AVR microcontroller (ATmega128L), any of
the KLEIN instances can be implemented with 97 bytes of RAM and approxi-
mately 4 KB or ROM. In 180 nm ASIC, approximately 2000 GE are needed for
an implementation with 64-bit datapath.

The preliminary security analysis of KLEIN includes lower bounds on the
number of active Sboxes in a differential characteristic. Namely, it is shown
that any 4-round characteristic has at least 15 active Sboxes, which implies a
probability below 2−90 for any characteristic of KLEIN-64. To the best of our
knowledge, the best attack reported on KLEIN-64 is a key-recovery integral
attack on five rounds with complexity 248 [11, §4.2.1].

Contribution. We propose a refined differential analysis of KLEIN, showing
that collections of iterative differential characteristics can be used to bypass
the bound proven in the preliminary analysis. We exploit this observation by
presenting practical chosen-plaintext key-recovery attacks on up to 8 rounds of
KLEIN-64. Our results have been confirmed—and even refined—experimentally.
§2 starts with a brief description of KLEIN-64. Then §3 presents a high-

probability differential, which is exploited in §4, first by constructing distin-
guishers, and then by building key-recovery attacks on top of the distinguisers.
We conclude in §5.

2 Brief description of KLEIN

Our description differs in representation from that in [10], but is functionally
equivalent. This is done to make the operation of some of our attacks more
apparent.

Table 1. The Sbox used by KLEIN. This Sbox is an involution.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] 7 4 a 9 1 f b 0 c 3 2 6 8 e d 5

KLEIN is built from an involutive 4-bit Sbox (given in Table 1) and opera-
tions in GF(28). The field representation is defined by the irreducible polynomial



x8 +x4 +x3 +x+ 1 (as in Rijndael). During encryption, one can decompose the
field operations to XOR and multiplication by 2. We write this multiplication
operation algorithmically as a left shift with a conditional XOR:

L(x) =

{
(x� 1) if x ∧ 80 = 00,
(x� 1)⊕ 1b if x ∧ 80 = 80.

A KLEIN round is composed of the following steps:

1. AddRoundKey, which XORs a round key to the 64-bit state.
2. SubNibbles, which applies the 4-bit Sbox to each nibble.
3. RotateNibbles, which left-rotates the state of 16 bits.
4. MixNibbles, which applies two MixColumn’s in parallel.

The last round has an additional AddRoundKey operation after MixNibbles. Note
that in the last round, MixNibbles is not omitted, unlike MixColumns in Rijndael.

Algorithm 1 KLEIN-64 encryption given 64-bit plaintext P0, . . . , P7

1: for i = 0 to 7 do
2: Vi = Pi Copy the plaintext to the state vector
3: end for
4: for r = 0 to 11 do
5: for i = 0 to 7 do
6: Vi = Vi ⊕K

(r)
i AddRoundKey

7: end for
8: for i = 0 to 7 do
9: Vi,0 = S[Vi,0] SubNibbles (lower nibbles)

10: Vi,1 = S[Vi,1] SubNibbles (higher nibbles)
11: end for
12: for i = 0 to 7 do
13: T(i+6) mod 8 = Vi RotateNibbles
14: end for
15: V0 = L(T0 ⊕ T1) ⊕ T1 ⊕ T2 ⊕ T3 MixNibbles lower half
16: V1 = L(T1 ⊕ T2) ⊕ T0 ⊕ T2 ⊕ T3

17: V2 = L(T2 ⊕ T3) ⊕ T0 ⊕ T1 ⊕ T3

18: V3 = L(T3 ⊕ T0) ⊕ T0 ⊕ T1 ⊕ T2

19: V4 = L(T4 ⊕ T5) ⊕ T5 ⊕ T6 ⊕ T7 MixNibbles higher half
20: V5 = L(T5 ⊕ T6) ⊕ T4 ⊕ T6 ⊕ T7

21: V6 = L(T6 ⊕ T7) ⊕ T4 ⊕ T5 ⊕ T7

22: V7 = L(T7 ⊕ T4) ⊕ T4 ⊕ T5 ⊕ T6

23: end for
24: for i = 0 to 7 do
25: Ci = Vi ⊕K

(n)
i Final half-round and copy to ciphertext

26: end for

Algorithm 1 details the KLEIN-64 encryption. We index vectors as Vi where
Vi,0 and Vi,1 are the low and high nibbles of byte i. Algorithm 2 describes the



KLEIN key setup for the three possible key lengths: 64, 80, and 96 bits. Observe
that the key setup has the following properties

• The higher and lower nibbles are not mixed at all.
• The round counter has no effect on the higher nibbles with a 64-bit key and

only during last round with a 80-bit key.
• If the higher nibbles are all 0 or 7, the higher nibbles will stay as 0 or 7

throughout the key setup.
• A higher-nibble fixed point for the 64-bit key setup is

7000007070700000 7→ 7000007070700000 .

Algorithm 2 KLEIN-64 key setup given 64-bit key K.

1: K(0) = K The first round key
2: for r = 1 to 12 do
3: for i = 0 to 4 do
4: K

(r)
i = K

(r−1)

((i+1) mod 4)+4

5: K
(r)
i+m = K

(r−1)

((i+1) mod 4)+4 ⊕K
(r−1)

(i+1) mod 4

6: end for
7: K

(r)
2 = K

(r)
2 ⊕ r Round constant

8: K
(r)
5,0 = S[K

(r)
5,0 ] Nonlinear mixing

9: K
(r)
5,1 = S[K

(r)
5,1 ]

10: K
(r)
6,0 = S[K

(r)
6,0 ]

11: K
(r)
6,1 = S[K

(r)
6,1 ]

12: end for

3 A collection of differential characteristics

Our attack exploits a collection of iterative differential characteristics that have
a same input difference and output differences in a specific 32-bit subspace (i.e.
it is iterative). Below we first analyze the probability to follow one of those
characteristics, which we successfully verified experimentally.

3.1 Observations

We first report four important observations that will allow us to identify high-
probability differentials for KLEIN. We refer to MixColumn as the function exe-
cuted twice within MixNibbles.

Observation 1. If the difference entering MixColumn is of the form 0000000X

where X represents a non-zero difference in {1, . . . , 7}—i.e. a nibble with null
MSB—then the output difference is of the form 0Y0Y0Y0Y, where the wildcard Y

represents a non-zero difference. That is, higher nibbles remain free of difference.



Observation 2. If the difference entering MixColumn is of the form 0X0X0X0X

where the wildcard X represents a difference in {0, . . . , 7}, then the output dif-
ference is of the form 0Y0Y0Y0Y, where Y represents a possibly null difference.
Furthermore, the average number of non-zero Y’s is 3.75, as one can experi-
mentally verify. For example, the input difference 04020405 leads to the output
difference 0f090100.

Observation 3. If the difference entering MixColumn is of the form 0X0X0X0X

where the wildcard X represents a difference in {8, . . . , f}, then the output dif-
ference is of the form 0Y0Y0Y0Y, where Y represents a (possibly zero) difference.
Furthermore, the average number of non-zero Y’s is 3.75. Note that, contrary to
Observation 2, an X cannot be zero. For example, the input difference 0c0a080f

leads to the output difference 010f0708.

Observation 4. Given a random difference, KLEIN’s Sbox returns a difference
in {1, . . . , 7} with probability 7/15 ≈ 2−1.1, for a random input. If the difference
is b or e, the probability is 3/4 ≈ 2−0.42. These values can be verified either
experimentally or using the difference distribution table in [11].

3.2 The collection of characteristics

Our attack exploits a truncated differential defined as a collection of (iterative)
characteristics. That is, we not only set conditions on the intput/output differ-
ences, but also on the path followed to reach them.

Definition. To best exploit the first two observations, our collection of char-
acteristics is such that higher nibbles remain inactive. A sufficient condition is
that after SubNibbles the first four lower have differences either all in {0, . . . , 7},
or all in {8, . . . , f}. A similar condition is imposed on the last four lower nib-
bles. Fig. 1 gives a representation of the collection of characteristics. Note that
the collection of characteristics is iterative, as it has the same conditions on the
input as on the output at any round.

To maximize the probability at the first round, we choose an input difference
b. At the first round, we thus have one active Sbox, and one active MixColumn. At
the second round we always have four active Sboxes, and two active MixColumn’s.
Then we enter a state where all lower nibbles are active with high probability.

Probability analysis. We estimate the probability of our truncated differential
as a collection of characteristics.

At the first round, it is sufficient that the input difference B gives a difference
in {0, . . . , 7} after the Sbox. This occurs with probability 3/4, thus p1 ≈ 2−0.42.

At the second round, there are four active nibbles entering SubNibbles. Ro-
tateNibbles propagates the four active nibbles to MixNibbles, wherein two lower
nibbles are inactive in each half. Thus, the differences after SubNibbles in the



second round must be in {0, . . . , 7}. Since such a difference is reached with prob-
ability 7/15, we have p2 = (7/15)4 ≈ 2−4.40.

At the third round, there are on average 3.75 active nibbles coming from each
MixColumn of the second round, and all four lower nibbles are active with prob-
ability 15/16. This is necessary to obtain four active nibbles with differences in
{8, . . . , f} after SubNibbles, but not to obtain four active nibbles with differences
in {0, . . . , 7}. The probability to obtain one the desired sets of differences in one
half of the state is (

7

15

)3.75

+

(
15

16

)
×
(

8

15

)4

.

Recall that a difference in {0, . . . , 7} is reached with probability 7/15, and one
in {8, . . . , f} with probability 8/15. As the halves of MixNibbles behave similarly,

p3 =

((
7

15

)3.75

+

(
15

16

)(
8

15

)4
)2

≈ 2−5.82 .

The differential is iterated through subsequent rounds, hence we have

p4 = p5 = p6 = p3 .

Note that, for the sake of simplicity, we do not consider the case when two
inactive boxes occur in the same MixColumn, as this has a negligible impact on
the probability obtained. Fig. 1 shows the cumulative probabilities for a sequence
of 1 to 7 rounds of KLEIN.

3.3 Comparison with the lower bounds

The KLEIN paper [10] proves that any 4-round characteristic activates at least
15 Sboxes and has probability at most 2−30. For comparison, our differential
on 4 rounds has probability 2−16.45, yet it activates 21 Sboxes. Our result thus
does not contradict the 2−30 bound, for it considers a collection of character-
istics rather than a single one. Indeed, as argued in [10, §§3.1], “the strength
of a cipher against differential attacks is reflected by the maximum probability
of a differential, i.e. a collection of characteristics”. However, the assumption
that [10, §§3.1] “one characteristic has a much larger probability than the other
characteristics of the differential” is proven wrong by our observations. That
is, the maximal probability of a characteristic cannot be taken as an accurate
estimate of the maximal probability of a differential, as the above assumption
would imply.

4 Attacking KLEIN

This section shows how to exploit the differential described in §3 to attack re-
duced version of KLEIN-64. We start with the observation that neutral bits can
be used to reduce the cost of finding values conforming to the differential.



Fig. 1. Representation of the collection of differential characteristics, where a square
represents a nibble (white means inactive, black means possibly active). The two right-
most columns respectively show the round’s probability and the cumulative probability
of obtaining the differential.

1
SubNibbles �������� ��������

p1 ≈ 2−0.42 2−0.42RotateNibbles �������� ��������
MixNibbles �������� ��������

2
SubNibbles �������� ��������

p2 ≈ 2−4.40 2−4.82RotateNibbles �������� ��������
MixNibbles �������� ��������

3
SubNibbles �������� ��������

p3 ≈ 2−5.82 2−10.64RotateNibbles �������� ��������
MixNibbles �������� ��������

4
SubNibbles �������� ��������

p4 ≈ 2−5.82 2−16.45RotateNibbles �������� ��������
MixNibbles �������� ��������

5
SubNibbles �������� ��������

p5 ≈ 2−5.82 2−22.27RotateNibbles �������� ��������
MixNibbles �������� ��������

6
SubNibbles �������� ��������

p6 ≈ 2−5.82 2−28.08RotateNibbles �������� ��������
MixNibbles �������� ��������

7
SubNibbles �������� ��������

p7 ≈ 2−5.82 2−33.90RotateNibbles �������� ��������
MixNibbles �������� ��������



4.1 Finding and exploiting neutral bits

The term neutral bit was introduced by Biham and Chen [12] in the context of
SHA0 cryptanalysis. In the input of some cryptographic function, a bit is said
to be neutral with respect to a given differential (characteristic) when flipping
this bit in an input conforming to the differential (characteristic) leads to a new
input also conforming to that differential. Biham and Chen actually used sets
of neutral bits (called k-neutral sets). A similar technique has been used in the
context of block cipher cryptanalysis, for example in Biham et al.’s analysis of
Skipjack [13].

In KLEIN, one can observe that the first two and last two input bytes in
a plaintext block are neutral with respect to the first two rounds’ collection of
characteristics. Indeed,

• in the first round, those bytes first pass through the Sbox, then after Ro-
tateNibbles they form the 4-byte half of the state that is inactive in MixNibbles

• in the second round, our neutral bytes first pass through the Sbox—still
independently of the other bytes and of the difference—then they are mixed
with the other bytes within MixNibbles. However, since the conformance of
the output of MixNibbles only depends on the active nibbles, our bytes remain
neutral up to this stage.

• in the third round, values entering the Sbox depend on the first and last two
input bytes; these are thus not neutral for the third round.

Therefore, given a pair of inputs satisfying the truncated differential, 232 pairs
conforming to the first two rounds can be obtained by varying the first two
and last two input bytes. In other words, the conformance to the differential is
independent from the values of those bytes.

It follows for example that after a 228 effort to find a pair satisfying the
6-round differential, one can derive 232 pairs for which the full differential is
followed with probability 2−28.06+4.80 = 2−23.26. A new conforming pair can
thus be found with effort ≈ 223, instead of 228 without exploiting neutral bits.
With an extra effort of 227 encryptions—which leaves the total complexity below
229—one expects to find 8 other conforming pairs.

4.2 Distinguisher for 7 rounds

Based on our 6-round differential characteristic, we construct a distinguisher for
7-round KLEIN-64. Our main observation is that for a pair conforming to the
6-round differential, the SubNibbles of round 7 has all higher nibbles inactive. Al-
though MixNibbles may activate arbitrary nibbles at round 7, one can determine
the differences before MixNibbles given only the output after 7 rounds, thanks to
the linearity of MixNibbles. In other words, one can check that only lower nibbles
were active after SubNibbles. A conforming pair is expected to be detected after
228 observations, against 232 ideally, which constitutes the distinguisher.

The distinguisher is actually more powerful: once a conforming pair is found
in 228, one can produce approximately 8 other pairs with negligible extra cost,
as explained in §§4.1.



4.3 Distinguisher for 8 rounds

The distinguisher for 7 rounds consisted in finding one (and possibly many)
conforming pairs at a lower cost than for an ideal cipher. For 8 rounds, the
distinguisher consists in finding several pairs (rather than one) with reduced
complexity.

First, one collects approximately 233.90 pairs, and records the ones that con-
form to the output difference as per the collection of characteristics in §3. One ex-
pects to record approximately 4 pairs satisfying the difference by chance, and one
conforming to the collection of characteristics. Observe that the conforming pair
can be identified using the neutral bits, as it is the only pair for which neutral bits
will lead to an additional conforming pairs in approximately 233.90−4.80 = 229.10

trials.

It follows that by testing 232 derived pairs for each of the (say) 5 pairs
obtained initially, one new conforming pair is expected for the pairs obtained
by chance, and about 8 new pairs for the one conforming to the characteristics.
Therefore, with about 233.90 + 4 × 232 ≈ 235, one expects to find twice more
conforming pairs than ideally (16 vs. 8).

4.4 Key-recovery for 7 rounds

Our key-recovery attack for 7 rounds starts by using the distinguisher of §§4.2 to
detect a pair satisfying the 6-round differential. Then, we exploit the invertibility
of the final MixNibbles and RotateNibbles to determine the output differences
of each nibble after the last SubNibbles (i.e. that of the seventh round. These
differences should be null for all higher nibbles.

Then, the attack tries values of the lower nibbles (i.e., linear combinations
of key bits) and pass them through the Sbox; the difference obtained is inverted
through MixColumn; if the difference obtained has only lower nibbles active, then
the guess is considered as possible.

Since the inverse MixNibbles produces lower only active nibbles given lower
only active nibble with probability 2−3, we can reduce the search space from 216

to 216/23 = 213 for each of the two MixColumn instances. Overall, this reduces
the cost of key-recovery to 258 trials. The attack always succeeds, as all candidate
keys are tried within the 258 trials.

The attack can be improved by using several conforming pairs. Using neutral
bits, one can generate 8 more pairs in 227. It is expected that 6 are sufficient to
identify the correct combination of key bits, by taking the intersection of the 213-
element sets determined for each conforming pair. One can thus recover the 32
bits corresponding to the XOR between the lower nibbles of the ciphertexts, and
those after the last SubNibbles. Since these bits are a linear combination of the
key bits, it is equivalent to recovering 32 key bits (due to the linear independency
of the 32 equations). The 32 key bits left can then be bruteforced in 232.

The attack thus recovers the complete 64-bit key with fewer than 233 encryp-
tions.



4.5 Key-recovery for 8 rounds

One can extend the strategy of the 7-round attack to 8 rounds, using the trick
mentioned in §§4.3 to detect the pair conforming to the collection of characteris-
tics when “false alarms” (i.e. values conforming to the input/output differential
but not necessarily to the collection of characteristics). Within fewer than 234

encryptions, one thus identifies a conforming pair with high probability.
Using neutral bits, one expects to produce approximately 8 other conforming

pairs after 232 trials. This is more than enough to identify with certainty 32 bits
of the last subkey, as done in the attack on 7 rounds. Overall, the 64 bits of the
last subkey (and thus of the original key) can be found with complexity below
235 encryptions.

4.6 Experimental verification

We experimentally verified the correctness of the probablities reported in §3 as
well as the correctness of the distinguishers and key recovery attacks claimed.
Namely, we implemented the chosen-plaintext attack that aims to recover the
lower nibbles of the last subkey. As exact complexities cannot be fully confirmed
experimentally, we just checked that the order of magnitude was consistent with
the expected complexities.

Since no reference code of KLEIN is published by its designers, we wrote
our own reference C implementation of KLEIN-64 and made sure it matched
the test vectors provided in [11]. A reference implementation of KLEIN is very
easily written: it took us less than one hour to implement KLEIN-64, by reusing
available code of MixColumn to implement MixNibbles, and implementing Sub-
Nibbles with a look-up table.

Based on our reference KLEIN-64 code, we implemented the method that re-
covers the combinations of subkey bits that are XORed with the higher nibbles of
the state after the last SubNibbles: a first conforming pair is found by bruteforce,
then neutral bits are used to find five more conforming pairs. Below we copy ex-
amples of outputs of our program for the attack on 6 and 7 rounds, reporting
the number of trials done for finding each of the pairs, the value found—to make
sure that all are distinct—as well as the total time of the attack:

$ ./attack 6

test vector ok

soundness ok

Pair found in 2ˆ22.85: c093c2304ac8b7ca

Pair found in 2ˆ18.41: ccc0c2304ac855a6

Pair found in 2ˆ15.81: b4efc2304ac8fa2d

Pair found in 2ˆ17.42: bbddc2304ac81c53

Pair found in 2ˆ14.72: 9b53c2304ac8bdd2

Pair found in 2ˆ19.26: 40c9c2304ac86349

Subkey lower nibbles recovered:

745a

a1ba

Actual subkey lower nibbles:



745a a1ba

10 seconds elapsed

$ ./attack 7

test vector ok

soundness ok

Pair found in 2ˆ27.29: 0e45d5ed12117e30

Pair found in 2ˆ23.78: dd50d5ed12114908

Pair found in 2ˆ23.74: d78dd5ed12112a02

Pair found in 2ˆ24.45: fdb7d5ed1211f745

Pair found in 2ˆ22.69: a4e3d5ed121123bc

Pair found in 2ˆ15.82: 6286d5ed12116f2c

Subkey lower nibbles recovered:

1bda

5d7d

Actual subkey lower nibbles:

1bda 5d7d

296 seconds elapsed

In the list of pairs found, the first one is found by bruteforce and the sub-
sequent ones are derived using neutral bits, thereby reducing the cost by a fac-
tor 24.82 on average. We used an Athlon64 X2 Dual Core 4400+. Although our
code is slightly optimized (e.g. with SubNibbles implemented as 8-bit look-ups)
and gcc-compiled with speed-optimization flags (-O3 -m64 -march=athlon64

-fomit-frame-pointer -funroll-loops), the attacks can probably be sped
up further.

The 8-round attack took much more time to verify than the attack on 7
rounds, due to the possible finding of false alarms. For example, one failed ex-
periment returned after a few hours

Pair found in 2ˆ32.27: 0beeadb61e7d4787

Pair found in 2ˆ29.80: 0beeadb61e7d4787

Pair found in 2ˆ31.61: 0beeadb61e7d4787

Such results suggest that the first pair found was not conforming to the collec-
tion of characteristics, as the tentative use of neutral bits failed to find distinct
conforming pairs. Nevertheless, we were able to find conforming pairs for the
8-round attack. We were particularly lucky with the following experiment:

$ ./attack 8

test vector ok

soundness ok

Pair found in 2ˆ28.21: fb5248c1a424ca3e

Pair found in 2ˆ26.43: 00b848c1a424882f

Pair found in 2ˆ28.54: 180b48c1a4245a09

Pair found in 2ˆ26.78: 1ee948c1a4246b1d

Pair found in 2ˆ25.81: 226848c1a424362e

Pair found in 2ˆ27.56: 2e3548c1a424f161



Subkey lower nibbles recovered:

d42c

d515

Actual subkey lower nibbles:

d42c d515

1344 seconds elapsed

The experiments reported above demonstrate that the attacks described in §4
do work and succeed in recovering the key with a complexity that seems to be
in line with our analytical estimates.

5 Conclusion

We presented practical, experimentally verified attacks on the lightweight ci-
pher KLEIN-64 reduced to up to 8 rounds, out of 12 in total. Our attack is
made possible by a high-probability differential described as a large collection
of differential characteristics. Our results suggest that combining a 4-bit Sbox
(as used in Serpent) with the byte-oriented MixColumn linear layer (as used in
Rijndael/AES) is not an optimal strategy, as far as security is concerned. This
work is the first third-party analysis of KLEIN published, to our best knowledge.
Future works may seek to extend our attacks to more rounds of KLEIN.

Acknowledgments

We would like to thank the reviewers of INDOCRYPT 2011 for their insightful
comments.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: CHES. (2007)

2. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In: CHES. (2009)

3. Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
block cipher for IC-printing. In: CHES. (2010)

4. Engels, D., Saarinen, M.J.O., Smith, E.M.: The Hummingbird-2 lightweight au-
thenticated encryption algorithm. In: RFIDsec. (2011)

5. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
CHES. (2011)

6. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: CHES. (2011)

7. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight
hash. In: CHES. (2010)

8. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: CRYPTO. (2011)



9. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: A lightweight hash function. In: CHES. (2011)

10. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: RFIDSec. (2011)

11. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
http://doc.utwente.nl/73129/ (2011)

12. Biham, E., Chen, R.: Near-collisions of SHA-0. In: CRYPTO. (2004)
13. Biham, E., Biryukov, A., Dunkelman, O., Richardson, E., Shamir, A.: Initial

observations on Skipjack: Cryptanalysis of Skipjack-3XOR. In: SAC. (1998)


