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1 Introduction

1.1 Shabal

Shabal [2] is a hash function candidate to the NIST Hash Competition, whose iterated hash scheme is
based on a keyed permutation called P (which may be seen as a block cipher).

A chaining value of Shabal is a string of (384 + 512 + 512) bits, and is denoted (A,B,C). Given
a message block M of 512 bits, the compression function of Shabal computes a new chaining value
(A′, B′, C ′) as follows:

(A′, B′)← PM,C(A⊕W,B +M)
(A′, B′, C ′)← (A′, C −M,B′) .

Here, M and C act as the key of P, W is a counter incremented at each new compression, and arithmetic
operations are computed wordwise with respect to 32-bit words. The mode of operation of Shabal repeats
this compression function for each message block, and finally makes three additional compressions with
the last message block, without incrementing W , and it returns the final value of B.

The permutation P is parametrized by two values:

• p, the number of loops performed in P; larger values of p provide better security guarantees.
• r ≥ 2, the size of A (in 32-bit words).

Furthermore, p and r should satisfy 16p ≡ 0 mod r. The designers of Shabal recommend (p, r) = (3, 12),
which are the parameters of the Shabal version submitted to the NIST Hash Competition.

1.2 Previous observations

One the requirements set by NIST [5] is that candidate algorithms, when used with HMAC to construct a
PRF, “must resist any distinguishing attack that requires much fewer than 2n/2 queries and significantly
less computation than a preimage attack.” It is thus important for SHA-3 candidates to act as random
transforms, yet NIST does not require optimal security against distinguishers (which is close to 2n

queries).
One can note that the compression function of Shabal was not designed to act as a PRF (see e.g. [2,

Theorem 6]). Moreover, due to Shabal’s original structure, the compression function (denoted R in [2])
transforms a chaining value (A,B,C) to a new chaining value (A′, B′, C ′), such that B′ = C−M . Given
a random and unknown chaining value, one can thus easily distinguish that transform from a random
function: query the function with distinct blocks M1 and M2, then check that the values obtained satisfy
B′1 −B′2 = M2 −M1.

Therefore, in this note we will rather concentrate on P, as it is used in Shabal, than on the compression
function (that is, we disregard the output B′ = C −M).

Although P does not formally need to be a pseudorandom permutation (PRP) to guarantee Shabal’s
security, previous works considered algorithms to distinguish P from a random permutation: The doc-
umentation of Shabal [2, §11.6] presents a simple distinguisher for the inverse permutation P−1. Then,
in [1] we presented a distinguisher for P with (p, r) = (3, 12) rounds. But as noted in [3], this is not
applicable when Shabal’s mode of operation is followed, that is, when the operations B+M and C −M
outside P are considered. Also, those results do not generalize to any parameters (p, r).

Recently, Knudsen, Matusiewicz, and Thomsen [4] presented more properties for P, with fixed points
and key-multicollisions (that is, several values of (M,C) such that PM,C(A,B) = (A′, B′), for some fixed
A,B,A′, B′). Their results also generalize to any (p, r), and are independent and different from ours.



1.3 Contribution

In this note, we show an algorithm that distinguishes P from a random permutation, while respecting
Shabal’s mode of operation, for any valid choice of (p, r). As an aside, we present simple pseudo-collision
and pseudo-second-preimage attacks against a slight variant of Shabal; unlike trivial “pseudo” attacks
that work by inverting P, the two IV’s differ on only 32 bits in our attacks. These results may be seen
as near collisions with respect to the IV. Finally, we propose simple tweaks to avoid the properties
highlighted.

2 The keyed permutation P

Shabal’s keyed permutation P works on words of 32 bits. Given inputs A, B, C, and M , it thus operates
on A0, . . . , A11, B0, . . . , B15, C0, . . . , C15, and M0, . . . ,M15. In the algorithm below, indices of A are
implicitly reduced modulo r, and indices of B, C, and M are reduced modulo 16.

1. for i = 0, . . . , 15
2. Bi ← Bi ≪ 17
3. for j = 0, . . . , p− 1
4. for i = 0, . . . , 15
5. Ai+16j ← 3× (Ai+16j ⊕ 5× (Ai−1+16j ≪ 15)⊕ C8−i)
6. Ai+16j ← Ai+16j ⊕Bi+13 ⊕ (Bi+9 ∧ ¬Bi+6)
7. Ai+16j ← Ai+16j ⊕Mi

8. Bi ← (Bi ≪ 1)⊕ ¬Ai+16j

9. for i = 0, . . . , 35
10. Ai ← Ai + Ci+3

Table 1 shows the indices used in the main loop of P, for the recommended parameters (p, r) = (3, 12),
while Table 2 shows the indices of the last loop.

Some preliminary observations about the main loop of P are:

• Indices of B, C, and M do not depend on j
• Exactly one word from C and one word from M are input (through a XOR) within a loop, and

the same pairs (C8−i,Mi) repeat for different j’s
• A difference in Ai+16j propagates to Bi with probability one
• The algebraic degree of the new value of Bi is at most that of the new value of Ai+16j

3 Distinguisher for P as used in Shabal

We present a related-key distinguisher for the compression function of Shabal, for any parameters (p, r).
For ease of exposition, we present this observation of the recommended value (p, r) = (3, 12), but the
result trivially generalizes to any (p, r).

3.1 Key observation

Let ∆ = 80000000. In Shabal, the multiplication by 3 preserves a difference ∆ with probability one; this
can be seen by rewriting

3× (x+∆) = ((x⊕∆)� 1) + (x⊕∆)
= (x ≪ 1) + (x⊕∆)
= ((x ≪ 1) + x)⊕∆ = (3× x)⊕∆ .

To exploit this property, we observe that in P the words C0, . . . , C15 only appear in

Ai+16j ← 3× (Ai+16j ⊕ 5× (Ai−1+16j ≪ 15)⊕ C8−i) .



Table 1. Word indices used in the main loop of P, for (p, r) = (3, 12).

j i Ai+16 Ai+16−1 Bi+13 Bi+9 Bi+6 C8−i Mi

0 0 0 11 13 9 6 8 0
0 1 1 0 14 10 7 7 1
0 2 2 1 15 11 8 6 2
0 3 3 2 0 12 9 5 3
0 4 4 3 1 13 10 4 4
0 5 5 4 2 14 11 3 5
0 6 6 5 3 15 12 2 6
0 7 7 6 4 0 13 1 7
0 8 8 7 5 1 14 0 8
0 9 9 8 6 2 15 15 9
0 10 10 9 7 3 0 14 10
0 11 11 10 8 4 1 13 11
0 12 0 11 9 5 2 12 12
0 13 1 0 10 6 3 11 13
0 14 2 1 11 7 4 10 14
0 15 3 2 12 8 5 9 15

1 0 4 3 13 9 6 8 0
1 1 5 4 14 10 7 7 1
1 2 6 5 15 11 8 6 2
1 3 7 6 0 12 9 5 3
1 4 8 7 1 13 10 4 4
1 5 9 8 2 14 11 3 5
1 6 10 9 3 15 12 2 6
1 7 11 10 4 0 13 1 7
1 8 0 11 5 1 14 0 8
1 9 1 0 6 2 15 15 9
1 10 2 1 7 3 0 14 10
0 11 3 2 8 4 1 13 11
1 12 4 3 9 5 2 12 12
1 13 5 4 10 6 3 11 13
1 14 6 5 11 7 4 10 14
1 15 7 6 12 8 5 9 15

2 0 8 7 13 9 6 8 0
2 1 9 8 14 10 7 7 1
2 2 10 9 15 11 8 6 2
2 3 11 10 0 12 9 5 3
2 4 0 11 1 13 10 4 4
2 5 1 0 2 14 11 3 5
2 6 2 1 3 15 12 2 6
2 7 3 2 4 0 13 1 7
2 8 4 3 5 1 14 0 8
2 9 5 4 6 2 15 15 9
2 10 6 5 7 3 0 14 10
2 11 7 6 8 4 1 13 11
2 12 8 7 9 5 2 12 12
2 13 9 8 10 6 3 11 13
2 14 10 9 11 7 4 10 14
2 15 11 10 12 8 5 9 15



Table 2. Word indices used in the final loop of P, for (p, r) = (3, 12).

i 0 1 2 3 4 5 6 7 8 9 10 11
Ai 0 1 2 3 4 5 6 7 8 9 10 11

Ci+3 3 4 5 6 7 8 9 10 11 12 13 14

i 12 13 14 15 16 17 18 19 20 21 22 23
Ai 0 1 2 3 4 5 6 7 8 9 10 11

Ci+3 15 0 1 2 3 4 5 6 7 8 9 10

i 24 25 26 27 28 29 30 31 32 33 34 35
Ai 0 1 2 3 4 5 6 7 8 9 10 11

Ci+3 11 12 13 14 15 0 1 2 3 4 5 6

Therefore, a difference ∆ in C8−i leads to a difference ∆ in Ai+16j with probability one. Then, P sets

Ai+16j ← Ai+16j ⊕Mi ,

which also transfers a difference ∆ to Ai+16j with probability one. We can thus cancel the difference
introduced by C8−i with an identical difference in Mi. To summarize, given a difference ∆ in C8−i and
in Mi, for any i(’s), the values of B returned by P do not change. However, some differences will be
introduced in A by the final loop of P. For example, with a difference in C8, there will be differences ∆
in A5 and in A9 (cf. Table 2).

Given any key (M,C), one can thus find exactly 216 − 1 = 65535 “semi-equivalent keys” for P.
These keys (M ′, C ′) are such that M ′i = Mi ⊕∆ and C ′8−i = C8−1 ⊕∆, for i in any proper subset S of
{0, . . . , 15}, and M ′j = Mj , C ′8−j = C8−j for j ∈ {0, . . . , 15} \ S.

3.2 The distinguisher

The observation above directly gives a related-key distinguisher for the keyed permutation P. Recall
that in this scenario, one is given a black-box access to a permutation π that is either P or a random
permutation with a same interface, and a randomly chosen key. One can thus identify π with one query
πM,C(A,B) for some arbitrary A and B, and one query πM ′,C′(A,B) with the same A and B, and where
(M ′, C ′) is a related key of the above form (it suffices to flip one bit of M0 and one bit of C8, for example).

This distinguisher can be adapted to P as used by Shabal’s mode of operation, that is, when P is
applied to (A⊕W,B+M). It suffices to query with the input (A,B,C,M), and then with (A,B′, C ′,M ′)
where for some i we have M ′i = Mi ⊕∆, B′i = Bi ⊕∆, and C ′8−i = C8−i ⊕∆. The difference ∆ in B′

ensures that there will be no difference in the input of P (since M is added wordwise to B before the
call to P). Given two inputs with those differences, P will produce values with same B′’s.

This distinguisher generalizes to any (p, r) other than (3, 12): in each single loop, the differences ∆
cancel out for any i, hence repeating the main loop 3 or r times does not change anything; the parameter
r, defining the size of A, also has no influence on our distinguisher (note that, as stated in [2, §2.3], “the
final loop of P (. . . ) is not fully generic towards the parameter r”).

Finally, note that our observation does not give a distinguisher with respect to the standard definition
of pseudorandom permutation (PRP), but rather in the related-key setting. Moreover, we cannot mount
a distinguisher on HMAC-Shabal, nor a distinguisher on Shabal with a secret IV. This is because the
difference introduced gives a difference in the new chaining value (namely, in A′, and in the new B′ =
C −M), and because of the finalization procedure of Shabal.

4 Pseudo collisions and pseudo second preimages for a variant of Shabal

We now consider a variant of Shabal that makes 24N iterations, N ≥ 2, instead of 36, in its final loop.
Consider two inputs to P with difference ∆ in Ci and Mi for all i = 0, . . . , 15. As shown before, there

will be no difference in the B′ returned by P, but there will also be no difference in A′. Indeed, the final
loop will then introduce the difference ∆ in each Ai an even number of times, hence these differences
will cancel out.



However, the operation C −M can also make differences vanish in C, for a well-chosen C (or with
probability 2−16 for a random C). Therefore, the new chaining value (A′, B′, C ′) will contain no difference.
We thus obtain a pseudo collision, by appending (at least) one same block to our colliding pair.

Finally, a collision can be found instantaneously for the variant of Shabal considered, with two IV’s
that differ on exactly 32 bits (all the MSB’s of Bi, Ci, i = 0, . . . , 15). An example, found using Shabal’s
reference implementation, with N = 2, is given in Appendix A.

Note that the above technique allows to find second preimages of messages of at least two blocks, and
for which the first block satisfies (Ci⊕∆)− (Mi⊕∆) = Ci−Mi, i = 0, . . . , 15. This equality is satisfied
with probability 2−16 for a random message, since each of the 16 equalities is satisfied with probability
1/2.

Why this does not work on the original version

To extend the pseudo-collision attack to the original Shabal that makes 36 rounds in its final loop, it is
sufficient to find a set of indices S ∈ {0, . . . , 15} for which we will set a difference ∆ in Ci, i ∈ S, that
such that

• i ∈ S ⇒ (i + 8) mod 16 ∈ S; because we need a difference ∆ in Mi+8 for each difference in Ci,
and we need that C −M makes the differences vanish;
• in Table 2, each Ai is combined an even number of times with a Ci+3 where (i+ 3) mod 16 ∈ S,

so that differences in C cancel out in the final loop.

Below we show that such a (non-empty) S does not exist, and thus that we cannot apply the attack to
the original Shabal.

Consider lines 9 and 10 of the algorithm of P on §2. The index i varies from 0 to 35, i.e., there are 36
possibilities. On the other hand, the indices for C are taken modulo 16. Note that 36 = 2×16+4. Hence,
the first four indices appear three times as indices for C, whereas the rest (i.e., the last 12) appear twice.
Let K denote the set of the first four indices, that is, K = {3, 4, 5, 6}.

We begin by showing that each Ck, k ∈ K, is combined with a different set of Aj ’s, 0 ≤ j ≤ 11. That
is, it is not possible to find distinct k1, k2 ∈ K such that both Ck1 and Ck2 are combined with Aj , for
some 0 ≤ j ≤ 11. Consider a k ∈ K and denote it as k = `+ 3, for some ` ∈ {0, 1, 2, 3}. Then, k appears
as an index for C exactly when i equals `, `+ 16, or `+ 32. Since the indices of A are taken modulo 12,
these three values project to `, ` + 4, and ` + 8 as indices of A. Now, the set {`, ` + 4, ` + 8|0 ≤ ` ≤ 3}
contains exactly 12 (distinct) elements which span the 12 indices of A. Hence, we have shown that the
elements of K split the indices of A into four disjoint sets of size three.

Recall the first condition on S, that if i ∈ S then (i + 8) mod 16 ∈ S, and consider an index of A
of the form `, ` ∈ {0, 1, 2, 3}. We have ` as an index for A exactly when i equals `, ` + 12, and ` + 24.
These correspond to C`+3, C`+15, and C`+11, respectively. Note that `+ 11 ≡ `+ 3 mod 8. As a result,
`+ 3 ∈ S if and only if `+ 11 ∈ S. Moreover, `+ 15 /∈ S, otherwise A` would be combined with an odd
number of indices from S, which would contradict our second assumption.

Now consider an index of A of the form `+ 8, ` ∈ {0, 1, 2, 3}. Analogous to above, we find that A`+8

is combined with C`+11, C`+7, and C`+3, implying that `+ 7 /∈ S.
Finally, consider an index of A of the form ` + 4, ` ∈ {0, 1, 2, 3}. We have ` + 4 as an index for A

exactly when i equals `+ 4, `+ 16, and `+ 28. These correspond to C`+7, C`+3, and C`+15, respectively.
We have already shown that `+ 7 /∈ S and `+ 15 /∈ S. Hence, we muste also have that `+ 3 /∈ S, not to
violate the even occurence condition. This itself implies that `+ 11 /∈ S. Hence, S must be empty.

5 Countermeasures

The properties described above can be avoided by modifying the main loop of Shabal. We propose several
strategies:

1. Make indices of C (or of M) dependent on j (although this would just partially solve the problem).
2. Invert the order of the last two instructions, to force introduction of C’s differences in B.
3. Replace the multiplication by 3 by an operation that does not preserve the MSB difference.
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2. Emmanuel Bresson, Anne Canteaut, Benôıt Chevallier-Mames, Christophe Clavier, Thomas Fuhr, Aline
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A Low-weight pseudo collision for a variant of Shabal

We present a pseudo-collision for a variant of Shabal, which makes 24 iterations instead of 36 in the final
loop of P. Based on the reference code of Shabal submitted to NIST, we thus modified the implementation
of P, and determined the IV by following Shabal’s preprocessing with the modified P. To simplify the
presentation, we set the most significant bytes of C to zero.

The IV of the first message, for respectively A, B, and C, is:

64AE5994 D3EDC8F7 71EE96E3 E7A46592

D00D9D46 4DA04965 D405A8ED 138C3D53

F181D5ED A061EB35 582A90EE B4F2D655

C1099CB7 07B385F3 E7442C26 CC8AD640

EB6F56C7 1EA81AA9 73B9D314 1DE85D08

48910A5A 893B22DB C5A0DF44 BBC4324E

72D2F240 75941D99 6D8BDE82 A1A7502B

09BF68D1 08BAD750 06028CB2 0134F359

05D469D8 041A8CC2 018B2A6E 04052780

0F07D787 0194358F 0C60D665 0E97D79A

050C3434 0ED9A06D 0537DC8D 0CDB5969

The IV of the second message is the same, except that all the MSB’s of B and C words are changed.
The first message is composed of 32 zero words, and the second message of 16 words 80000000

followed by 16 zero words. The common 512-bit digest is

BF3B530D1FB7A4C3736EDB7D364E967E40F0A6CB221BAB2F3232E6928167F17A
1075C320AEB407C4F7D70D4EF9DB92FA98F94B5D5379983DA019D7450F713740

Note that such pseudo collisions can also be found when, in the final loop of P, 35 is replaced by any
integer 12N − 1, for an even N ≤ 2.


