
Tuple cryptanalysis of ARX
with application to BLAKE and Skein

Jean-Philippe Aumasson1, Gaëtan Leurent2, Willi Meier3,∗, Florian Mendel4, Nicky Mouha5,6,†, Raphael
C.-W. Phan7, Yu Sasaki8, and Petr Susil9

1 Nagravision, Switzerland
2 University of Luxembourg

3 FHNW Windisch, Switzerland
4 Graz University of Technology, Austria

5 ESAT/COSIC, Katholieke Universiteit Leuven, Belgium
6 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium

7 Loughborough University, UK
8 NTT, Japan

9 EPFL, Switzerland

Abstract. We introduce tuple cryptanalysis, a variant of structural cryptanalysis techniques as square,
saturation, integral, internal collision, or multiset cryptanalysis, the main difference being that tuple
cryptanalysis considers ordered rather than unordered multisets. This allows cryptanalysts to better
trace structural properties within a cipher’s internal state. Unlike previous works that focus on S-box
based algorithms, structural analysis is applied to ARX constructions, with preliminary results on
reduced versions of Skein’s and BLAKE’s ARX cores. Due to its simplicity and efficient verification,
tuple cryptanalyis can be used as a security benchmark for ARX schemes.

Keywords: hash functions, cryptanalysis, BLAKE, Skein

1 Introduction

We introduce tuple cryptanalysis, a technique inspired by and which extends the previous notions of square [1],
saturation [2], integral [3], internal collision [4], and multiset cryptanalysis [5], notably the latter proposed
in the Biryukov/Shamir attacks on the SASAS construction.

The core object that we utilize is a tuple, i.e. an ordered list of possibly repeating elements. Thus, a
tuple differs from an ordered set because of element repetition, and differs from a multiset in the sense
that the elements have a prescribed internal ordering within the tuple. Tuple cryptanalysis can be seen as a
generalization of multiset cryptanalysis—if one disregards the ordering, a tuple reduces to a multiset.

2 Tuple properties

2.1 Definitions and notations

We consider tuples of 2w elements where each element is a w-bit word. A tuple T can be viewed, by abuse of
convention, as an ordered multiset, thus elements may share the same value from an underlying set {0, 1}w.
Therefore, to each unique value in {0, 1}w one can associate a multiplicity corresponding to how many tuple
elements have that value. A tuple is said to have the following properties10:

∗Supported by GEBERT RÜF STIFTUNG under project number GRS-069/07.
†Funded by a research grant of the Institute for the Promotion of Innovation through Science and Technology in

Flanders (IWT-Vlaanderen)
10C,P,B,X have respectively been named “passive”/“constant”, “active”/“saturated”/“permutation”, “balanced”,

and “garbled” in the literature.

– C: elements equal a constant value c ∈ {0, 1}w, thus the element value c has multiplicity 2w and other
values have null multiplicities.

– P: elements are all distinct, i.e. the tuple defines a permutation, so each element has multiplicity 1.
– E: all element values have even multiplicity (possibly zero).
– A: the tuple is ADD-balanced, i.e. the elements’ ADD sum11 is zero (when counting their multiplicities).
– B: the tuple is XOR-balanced, i.e. the elements’ XOR sum is zero (when counting their multiplicities).
– F: the elements’ ADD sum is 2w−1.

Furthermore, we write X when the tuple satisfies none of the above properties, or when it hasn’t been identified
as having any of them; for example, analysis of a specific ARX chain as Threefish-256’s may determine a
tuple to be X as the result of P ⊕ P, while experiments reveal that the said P tuples are in fact ordered in
such a way that their XOR is actually P as well (a concrete example is found in Fig. 1).

Note that one can split the properties in two categories:

– Those characterized by the multiplicity of the elements (C,P,E).
– Those characterized by relations between the elements (A,B,F).

If T = (T0, T1, . . . , T2w−1) and S = (S0, S1, . . . , S2w−1) are two tuples, then T + S is the tuple defined as

T + S := (T0 + S0, T1 + S1, . . . , T2w−1 + S2w−1) .

If the tuple T satisfies the C property, we write C(T). Similar notations are used for other properties. We use
the notation (say) C5PC2 to denote a 8-word tuple decomposed into word tuples with property CCCCCPCC,
in this order. More precisely, C5PC2 is the class of all 8-word tuples (T 0, . . . , T 7) that satisfy C(T 0), C(T 1),
. . . , C(T 4), P(T 5), C(T 6), C(T 7).

2.2 Properties relations and transformations

We give a non-exhaustive list of relations between the aforementioned properties, along with rules on how
properties are transformed through various operators.

General rules. Before describing ARX-specific results, we recall general rules as given in [5]. The results
below consider an additional property D, defined as the “dual” property of a tuple that is either P or E. The
results are stated for multisets, but apply as well to tuples.

Lemma 1 (Biryukov/Shamir).

1. Any multiset with either property E or property P (when w > 1) also has property B.
2. The E and C properties are preserved by arbitrary functions over w-bit values.
3. The P property is preserved by arbitrary bijective functions over w-bit values.
4. The B property is preserved by an arbitrary linear mapping from w bits to n bits when w > 1. It is

preserved by arbitrary affine mappings when the size of the multiset is even.

Lemma 2 (Biryukov/Shamir).

1. Property Ci−1PCk−i is preserved by a layer of arbitrary S-boxes provided that the ith S-box is bijective.
2. Property Dk is preserved by a layer of bijective S-boxes.
3. Property Dk is transformed into Bk by an arbitrary linear mapping on n bits and by an arbitrary affine

mapping when the size of the multiset is even.
4. Property Ci−1PCk−i is transformed into property Dk by an arbitrary affine mapping when the size of the

multiset is even.

In the above statements, “bijective function” covers e.g. addition or XOR with a constant, and “linear
mapping” and “affine mapping” cover rotation by a fixed constant.

11As unsigned integers modulo 2w.

2

Transformations through ARX. The following logical relations are straightforward, for all tuples T and
S:

C(T)⇒ B(T)

C(T) ∧ P(S)⇒ P(T + S) ;

for succinctness we just write them as

C⇒ B

C + P = P

General truth tables for ADD, XOR, and ROT are given in Table 1. All properties but F and A are invariant
through rotation, i.e. C ≫ n = C, P ≫ n = P, E ≫ n = E, B ≫ n = B. The A property is not
ROT-invariant but only MSB-shift-invariant, i.e. A� n = A, because MSB’s then do not affect LSB’s.

Most results in the ADD and XOR truth tables are trivial. Let us show why the relation P+P = A holds:
it is deduced from the observation that P⇒ F, i.e. the sum of all elements from two P tuples is

2w−1∑
i=0

i+
2w−1∑
i=0

i = 2w−1 + 2w−1 ≡ 0 mod 2w ,

which defines the A property. Observe that we must then have

P + P 6= P ,

that is, the ADD-sum of two P tuples is never a permutation. Note however that

P⊕ P 6⇒ ¬P ,

i.e. the XOR of two permutations can be a permutation. A counter example for w = 2 is given by {0, 1, 2, 3}⊕
{3, 0, 2, 1} = {3, 1, 0, 2}. It is easy to see that a sufficient condition for satisfying P⊕ P is that there exists a
bijective function f such that the two P tuples T and S satisfy Ti = Si ⊕ f(Si).

Table 1. Truth tables of ADD, XOR, and ROT over tuples.

+ A B C E F P

A A X A X F F
B X X X X X X
C A X X E F P
E X X E X X X
F F X F X A A
P F X P X A A

⊕ A B C E F P

A X X X X X X
B X B B B X B
C X B C E X P
E X B B B X B
F X X X X X X
P X B P B X B

≫ A B C E F P

n X B C E X P

Ordering-dependent transformations. More specific properties relying on the ordering of elements
within a tuple (relatively to another tuple), not captured by truth tables, can be exploited to analyse ARX
constructions. For example:

3

• If T is a P tuple and S is such that Si = −Ti, then C(T + S); if T and S are such that Si = Ti ⊕ c for
some constant c, then C(T ⊕ S).
• If T is a P tuple and S is such that Si = −Ti for all i’s, then E(T ⊕ S). This property follows from the

fact that for each i = 0, . . . , 2w − 1, there exists a unique j for which Ti = −Tj , i.e. we have

Ti ⊕ Si = Ti ⊕ (−Ti) = Tj ⊕ (−Tj) .

Therefore, each ith of T element is paired up with a jth element such that Ti⊕Si = Tj⊕Sj . In particular,
zero and 2w − 1 satisfy Ti = −Ti, thus zero has multiplicity 2 in T ⊕C. Note that writing P⊕ (−P) = E
is incorrect, for the two permutations need have properly related orderings, which that notation does
not express.
• If T and S are P tuples such that for all i’s, Ti = Si ≫ r, for some fixed r, then T ⊕ S does not satisfy

property P. This can be seen by observing that the zero element will appear at least twice, due to the
elements 0 and 2w − 1 that are both rotation-invariant and XOR-doubling to zero. However, observe
that, given any solution x to the equation x ⊕ (x ≫ r) = v, a second solution can be obtained with
x ⊕ (2w − 1). Thus, that equation has an even number of solutions, i.e. elements of T ⊕ S will all have
even multiplicity, i.e. we have E(T ⊕ S).
• If T , S, and R are two P tuples sharing a same ordering, then P(T + S + R). More generally, we have
P(T + 2nT) where n is an integer, and 2nT denotes the sum of 2n copies of T . This property follows
from the fact that the tuple T + 2nT has elements ((2n+ 1)T0, (2n+ 1)T1, . . . , (2n+ 1)T2w−1), which by
definition are all distinct (because 2n+ 1 and 2w are coprime, which implies that (2n+ 1)x = (2n+ 1)y
if and only if x = y).

These properties will prove useful when searching for optimal choices of tuples within a cipher’s structure.

2.3 Characterizing tuples at the bit level

The ordering of a tuple’s elements can be characterized by the structure of its bit representation. Here, we
adapt the notations of Z’aba et al. [6] to describe different kinds of bit tuples obtained by bit slicing a w-bit
tuple.

• ai: this bit tuple has its bit elements ordered as the alternation of contiguous segments of 1s (resp. 0s),
where each segment length is 2i; e.g. (0, 1, 0, 1, 0, 1, 0, 1) and (1, 0, 1, 0, 1, 0, 1, 0) are the two a0 bit tuples
that may be obtained by bit slicing a 3-bit word tuple P where elements are canonically ordered in unit
increments from 0 to 23 − 1; and extracting only the least significant bit of all its 8 elements. Note that
as a by product of its definition, an a0 bit tuple is E and therefore B. In fact, it is worth noting here
that for a bit tuple, the properties E and B are equivalent, so henceforth for bit tuples we will use them
interchangibly.
• bi: this bit tuple has its bit elements ordered as either once-repeating or alternating segments of con-

tiguous 1s (resp. 0s), where each segment length is 2i; e.g. (1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0) is a b1 bit
tuple. By definition, bi for i > 0 is E; while b0 is not interesting as any bitstring can be represented by
b0. Instead, we are interested only in some structured subsets for which b0 may be E; e.g. the b0 obtained
as a sum of two or more ai is E, in fact it has an equal number of 1s and 0s.

2.4 Implementation and verification

Given a chain of ARX operations over w-bit words, the transformation of tuple properties is independent
of the word size w. This allows one to verify tuple properties of the 64-bit word Threefish algorithm using
reduced versions with 8-bit words. Rather than hardcoding the transformation rules identified by analysis, a
computer program can individually verify the tuple property of each word of the internal state. This makes
empirical observations independent from analytical results, making the former more reliable, as they are
immune to analytical errors. Our C programs tracing tuple properties in the internal states of Skein and
BLAKE are available on demand.

4

Divergence between results on reduced-word versions and concrete 32- or 64-bit word algorithm may
be due to artefacts coming from the choice of rotation values. Also, one should experiment with random
rather than fixed constants to avoid errors due to false positives. Any observations should thus be thoroughly
investigated before deducing general rules from it.

3 Application to Threefish

Threefish is the block cipher at the core of the SHA3 candidate Skein. The three instances Threefish-256,
-512, and -1024 all work on 64-bit words and rely on the 2-word permutation MIX defined as

MIX(x, y) := (x+ y, (x+ y)⊕ (y ≫ r))

where r is some context-dependent rotation constant.

3.1 Transformations through MIX

MIX transforms a tuple CP to at least PB:

MIX(C,P) = (C + P, (C + P)⊕ (P ≫ r)) = (P,P⊕ P) = (P,B) ,

i.e. one may get a more structured tuple property than B, as discussed later. Another example is given with

MIX(P,P) = (P + P, (P + P)⊕ (P ≫ r)) = (A,X) .

By making assumptions on the P tuples, one can get more specific results. For example, if the tuples are
chosen such that each of the two i’s elements are the additive inverse of each other, then one obtains (C,P)
as output . The choice of the constant in C can also affect the results obtained: for example, if C is zero then
CB is transformed to BB, instead of XX in the general case. This is because ADD then behaves as XOR,
allowing the B property to propagate through the MIX addition.

Table 2 reports a (non-exhaustive) list of worst case tuple transformations through MIX and MIX−1.
Unlike in Table 1, the truth table’s diagonal is not a symmetry axis.

Table 2. Transformations of tuple properties through MIX and MIX−1. Lines list first arguments to MIX, for
example CP maps to PB while PC maps to PP .

MIX A B C E F P

A AX XX AX XX FX FX
B XX XX XX XX XX XX
C AX XX CC EB FX PB
E XX XX EE XX XX XX
F FX XX FX XX AX AX
P FX XX PP XX AX AX

MIX−1 A B C E F P

A XX XX XX XX XX XX
B XX XB XB XB XX XB
C XX XB CC EE XX PP
E XX XB XE XX XX XB
F XX XX XX XX XX XX
P XX XB AP XB XX XB

3.2 Transformation through Threefish rounds

We considered the Threefish ARX chain and compare the properties determined by mere analysis with those
empirically obtained for a specific choice of a constant. Empirical results are more precise—i.e. stronger
as far as cryptanalysis is concerned—than theoretical predictions relying only general ARX rules, because
of dependencies between the tuples of internal words, difficult to track analytically. Indeed, better results
are achieved by tracking the actual tuples rather than only their properties, for the latter hide structural
properties exploitable in the construction of distinguishers.

To refine the analysis, one should thus track the evolution of tuples rather than of their properties.
Manually tracking the evolution of tuples allowed us to (partially) reconstruct the properties observed.

5

1
PC CC
PP CC

2
PC CP
PP PB

3
PB PP
AX AX

4
AX AX
XX XX

5
AX AX
XX XX

1
PC CC
PP CC

2
PC CP
PP PE

3
PB PP
BB EP

4
BP EB
BB FA

5
BA FB
FX BB

Fig. 1. Evolution of tuple properties in Threefish-256’s ARX chain: (left) analysis; (right) case of null constants and
rounds keys. For each round, we show the input and the output of each MIX.

3.3 Distinguishing attacks

We construct distinguishers that consist in the efficient finding of a tuple of 2w inputs, i.e. Threefish plaintexts,
satisfying some tuple properties in such a way that the output, i.e. ciphertext, also satisfies some unexpected
tuple properties. Note that a random tuple is A (resp. B,F) with probability 2−w. Unlike most differential
distinguishers, tuple properties lead to deterministic distinguishers.

Our “inside-out” strategy is simple and similar to that of zero-sum attacks [7–10]: we choose a tuple of
264 internal states with a given property, e.g. being a CPC6 tuple, then we compute the round function
backwards and forwards until just before some tuple property is no longer observed.

In general, better initial tuple properties are those with the strongest non-trivial local structure (i.e.
P) and with only one active word; the property will then diffuse and lose its structure, e.g. progressively
downgrading to B and then to X. Optimized initial tuple structures will consist of a set of P’s related in such
a way that ordering-dependent transformations (see §§2.2) can be exploited to reduce diffusion.

Known-key attack. In this setting the key and the tweak are picked uniformly at random, and remain
fixed through all 2w evaluations of the cipher; i.e. each element of the tuple is processed with the same round
keys. The actual value of the key and tweak are not used, but one needs access to the internal state after
four rounds (which may be realized by introducing precise faults in a given register).

Fig. 2 presents

1. the evolution of tuple properties as predicted by analysis only relying on the nature of the properties,
not on the actual tuples and their dependencies;

2. the properties typically observed with a random key and random C constants;
3. the properties observed with null rounds keys and constants.

In these three cases, tuple properties are traceable on up to 7, 8, and 9 rounds respectively. The analysis
holds for any word size, thus directly applies to the (64-bit) Threefish-512; empirical observations may
include artefacts of the reduced-word implementation (e.g. due to false alarms, choice of rotation constants).
Nevertheless, the difference of results between mere analysis of properties and actual observations reveals
that interdependencies between tuples provide additional structure to the output. A more detailed analysis
(tracing the structure of tuples) would thus reveal more properties.

Fig. 3 is similar to Fig. 2 but for Threefish-1024: tuple properties are observed on up to 9, 10, and 12
rounds, respectively.

Chosen-keys attack (sketch). The strategy in this scenario is choosing several words in a subkey so that
the value after the addition of a internal state and the subkey can be constant. In this section, we explain the
attack on Threefish-512 as an example. For example, assume that the internal state and the key just before
the key addition has the form CPC6, such that the P tuple is respectively T and −T + C in the state and
in the key, where C is some C tuple. The results of the addition of these values always become a C8 tuple.

6

0 XX XX PP AP
1 CC CC PP XX
2 CC CC AP CC
3 CC PC CC CC
4 PC CC CC CP
5 CP CB PC PC
6 XB PB PP PX
7 XX AX XX XX

0 BA XX PP AP
1 CC CC PP XX
2 CC CC BP CC
3 CC PC CC CC
4 PC CC CC CP
5 CP CB PC PC
6 FB PP PP PX
7 EX EX XB AB
8 XX XX FX XX

0 XX XX PP AP
1 CC CC PP XX
2 CC CC AP CC
3 CC PC CC CC
4 PC CC CC CP
5 CP CE PC PC
6 EE PP PP PE
7 EE EB BE EE
8 BX FX FA AB
9 XX FX XX XX

Fig. 2. Evolution of tuple properties in Threefish-512’s ARX chain: (left) analysis; (center) example with random key
and C constants; (right) case of null constants and round keys.

0 XX AP PP XX XX XX PP XX
1 CC PP XX CC CC CC AP XX
2 CC CC CC XX CC PP CC CC
3 CC CC AP CC CC CC CC CC
4 CC CC CC PC CC CC CC CC
5 CC CC PC CC CP CC CC CC
6 CB CC CC PC CC CC CP PC
7 XC CB PC CP CP PC PC CX
8 XB XP PP PX PB PX XP PX
9 XX XX XX AX XX XX XX XX

0 XX AP PP XX XX XX PP XX
1 CC PP XX CC CC CC AP XX
2 CC CC CC XX CC PP CC CC
3 CC CC AP CC CC CC CC CC
4 CC CC CC PC CC CC CC CC
5 CC CC PC CC CP CC CC CC
6 CB CC CC PC CC CC CP PC
7 FC CB PC CP CP PC PC CX
8 FF BP PP PX PF PF XP PF
9 AX BB XX EX AX BB BB BX
10 XX XX XX XX XX FX XX XX

0 XX AP PP XX XX XX PP XX
1 CC PP XX CC CC CC AP XX
2 CC CC CC XX CC PP CC CC
3 CC CC AP CC CC CC CC CC
4 CC CC CC PC CC CC CC CC
5 CC CC PC CC CP CC CC CC
6 CE CC CC PC CC CC CP PC
7 EC CE PC CP CP PC PC CE
8 EE EP PP PE PE PE EP PE
9 EB BB BA EB AB BB BE BE
10 FA BB FX AX FF BB FX FX
11 FX AX XX XX XX BA XX AX
12 XX BX XX XX XX XX BX XX

Fig. 3. Evolution of tuple properties in Threefish-1024’s ARX chain: (top-left) analysis; (top-right) example with
random key and C constants; (bottom) case of null constants and round keys.

7

Obviously, the constant state continues until the next subkey with the form −T + C appears and thus the
attack can be extended by at least 4 rounds because Threefish only inserts a subkey in every 4 rounds.

The analysis in [11] proposed the key difference that achieves the null difference in one subkey k2. Details
of the key difference is shown in [11, Table 2], which is also described in Table 3. Based on this difference
for a pair of (key, tweak)s, 264 (key, tweak)s forming C4PC3 state for sub-key k3 can be constructed. Let us
assume that such 264 (key, tweak)s exist. Then, zero-difference and ∆-difference in Table 3 are replaced with
C and P for the tuple analysis, respectively. Namely, the property of 264-set for each subkey can be described
as follows;

k0 = C5PCP,

k1 = C7P,

k2 = C8,

k3 = C4PC3,

k4 = C3P2CPC,

k5 = C2P2CP2C.

k2 never breaks the property of C8 which are generated by the addition of the internal state and k3. Hence,
C8 state continues for eight rounds and the attack becomes more efficient.

Table 3. Details of the subkeys and of their differences, given a difference ∆ in k7 and t0 (leading to ∆ differences
in k8 and t2).

s d
ks,0 ks,1 ks,2 ks,3 ks,4 ks,5 ks,6 ks,7

Differences

0 0
k0 k1 k2 k3 k4 k5 + t0 k6 + t1 k7
0 0 0 0 0 ∆ 0 ∆

1 4
k1 k2 k3 k4 k5 k6 + t1 k7 + t2 k8 + 1
0 0 0 0 0 0 0 ∆

2 8
k2 k3 k4 k5 k6 k7 + t2 k8 + t0 k0 + 2
0 0 0 0 0 0 0 0

3 12
k3 k4 k5 k6 k7 k8 + t0 k0 + t1 k1 + 3
0 0 0 0 ∆ 0 0 0

4 16
k4 k5 k6 k7 k8 k0 + t1 k1 + t2 k2 + 4
0 0 0 ∆ ∆ 0 ∆ 0

5 20
k5 k6 k7 k8 k0 k1 + t2 k2 + t0 k3 + 5
0 0 ∆ ∆ 0 ∆ ∆ 0

6 24
k6 k7 k8 k0 k1 k2 + t0 k3 + t1 k4 + 6
0 ∆ ∆ 0 0 ∆ 0 0

We now explain how to compute 264 (key, tweak)s with considering all the details. In Table 3, we need to
make sure that the differences in k7 and t2 cancel each other by k7 + t2 (modular addition), and at the same
time, the differences in k8 and t2 cancel each other by k8 + t0 (modular addition), while k8 is computed by

C240 ⊕
⊕7

i=0 ki (exclusive OR) and t2 is computed by t0 ⊕ t1 (exclusive OR).
Previous work [11] only considers the difference in the most significant bit, and thus, the use of two

different operations does not cause any problem. However, the tuple attack needs to make sure that the
differences always cancel each other for any ∆, and we thus need careful analysis.

The generating procedure is as follows. Fix k0 · · · k6 to a constant value which satisfies C240⊕
⊕6

i=0 ki = 0.
Let k7 take all the 264 values in {0 · · · 264 − 1}. This makes k8 = k7 for each k7. We then set t0 = −k7 and
t1 = 0. Then, for each k7, we have t2 = t0 = −t2. This is sufficient for k7 + t2 = k8 + t0 to be constant
(actually 0), which now ensures the C8 property for sub-key k2.

With exploiting the above property, we can construct 12-round tuple property in the inverse computation.
The construction of the property is described in Fig. 4:

8

1. In the inverse direction, we set the subkey and the state value between rounds 11 and 12 to tuples C4PC3,
such that the P tuples of the state and the key are the additive inverses of each other. This makes the
constant round up to round 4. Finally, after the inverse computation for round 4, the subkey tuple is
C7P, which leaves a balanced word in the plaintext.

2. In the forward direction, we simply search for the tuple in the state value between rounds 11 and 12.
Our code detected that after 5 rounds, some word in the internal state still keeps a detectable property.
Finally, by combining the tuple properties in both directions, we can detect a non-ideal property for 17
rounds of Threefish-512.

Start state

),,,,,,,(CCCPCCCC3k

Round 11 to 8

),,,,,,,(CCCPCCCC

),,,,,,,(CCCCCCCC
2k

Round 7 to 4

),,,,,,,(PCCCCCCC
1k

Round 3 to 0

),,,,,,,(PCPCCCCC 0k

Plaintext

5k

Round 16

),,,,,,,(CPCPPCCC
4k

Round 12 to 15

Ciphertext

whitening

Cancellation

Constant
rounds

Inverse
tuple

property

Forward
tuple

property

source of the variation
for inverse computation

),,,,,,,(CPPCPPCC

),,,,,,,(XXFAXXXX

),,,,,,,(CCCPCCCC

),,,,,,,(XFXXXXXX

),,,,,,,(XAXXXXXX

Fig. 4. Sketch of a chosen-keys attack for 17 rounds of Threefish-512. Notation −P represents that elements in this
tuple are ordered so that addition of P and −P tuples are 0.

This attack, with a complexity of 264, finds a 264 plaintexts whose additive-sum is zero and 2w for two
words in the specified positions, and the additive-sum of 264 corresponding cihpertexts also has zero for a
word in the specified position. On the other hand, for a random permutation, the probability for achieving
the same property with just 264 queries is 2−64, and thus our distinguisher has a significant advantage.

9

4 Application to BLAKE

4.1 Transformations through G

BLAKE’s ARX core is the G function, which computes:

a := a+ b+ (mσr(2i) ⊕ cσr(2i+1))

d := (d⊕ a) ≫ 16

c := c+ d

b := (b⊕ c) ≫ 12

a := a+ b+ (mσr(2i+1) ⊕ cσr(2i))

d := (d⊕ a) ≫ 8

c := c+ d

b := (b⊕ c) ≫ 7

where ci’s are constants and mi’s are message words. In BLAKE, this 4-word keyed permutation is succes-
sively applied to the four columns and to the four diagonals of a 4×4 array of words (32-bit in BLAKE-256,
64-bit in BLAKE-512).

Unlike with MIX, we won’t enumerate all the (1296) entries of the truth table of G. We shall instead
give the most interesting and useful transformations. We focus on the half-round function (i.e. the first four
lines of G), as it is sufficient to determine tuple-transformation properties of the full G and of a round of
BLAKE.

We first examine the one-P transformations by each half G, as they will appear in our distinguishers,
though not necessarily as starting points. Our notations follow the G algorithm and are self-explanatory:

• PCCC 7→ PPPP 7→ AXXX:

a := P + C + C = P a := P + P + C = A
d := (C⊕ P) ≫ 16 = P d := (P⊕ A) ≫ 16 = X
c := C + P = P c := P + X = X
b := (C⊕ P) ≫ 12 = P b := (P⊕ X) ≫ 12 = X

When the C are all zero and P is some tuple T , then the output tuple after the first half is (T, T ≫
28, T ≫ 16, T ≫ 16). After the second half of G, one obtains a tuple AXXX.

• CPCC 7→ PPPP 7→ AXXX:
a := C + P + C = P a := P + P + C = A
d := (C⊕ P) ≫ 16 = P d := (P⊕ A) ≫ 16 = X
c := C + P = P c := P + X = X
b := (C⊕ P) ≫ 12 = P b := (P⊕ X) ≫ 12 = X

• CCPC 7→ CPPC 7→ PXAP:
a := C + C + C = C a := C + P + C = P
d := (C⊕ C) ≫ 16 = C d := (C⊕ P) ≫ 16 = P
c := P + C = P c := P + P = A
b := (C⊕ P) ≫ 12 = P b := (P⊕ A) ≫ 12 = X

• CCCP 7→ CPPP 7→ PXXB:
a := C + C + C = C a := C + P + C = P
d := (P⊕ C) ≫ 16 = P d := (P⊕ P) ≫ 16 = B
c := C + P = P c := P + B = X
b := (C⊕ P) ≫ 12 = P b := (P⊕ X) ≫ 12 = X

Among the four choices above, the best option seems to start with a P tuple in the c position, for it leads
to the most structured output. Note that the first choice (P in a) leads through the inverse half G to PCCP,
and to PCPB after a full G. As with Threefish, one can start with P tuples T and −T in a and b to reach
CPCC after one half G.

10

4.2 Transformations through BLAKE rounds

We consider the BLAKE permutation independently of the redundancy introduced by the compression
function. BLAKE’s round function processes the four rows of a 4×4 word array in parallel, thus three
columns with only C tuples remain only-C after the column step. For example:

C C C C
C C C C
P C C C
C C C C

 7→

P C C C
X C C C
A C C C
P C C C

At the next step the four diagonals are transformed in parallel, hence each of the G functions will process at
most one non-C tuple. Following our previous example, the diagonal step transforms the tuples as follows:

P C C C
X C C C
A C C C
P C C C

 7→

A P X X
X X X X
X X X X
B X X X

At the subsequent (column) step, the state becomes all-X.

4.3 Distinguishing attacks

Known-key attack. Like for Skein, one can construct an inside-out distinguisher for some random key (i.e.
message), as depicted on Fig. 5: 2.5 rounds of the core permutation of BLAKE can be attacked with this
simple strategy, which has complexity 232 for BLAKE-256 and 264 for BLAKE-512.

X E X X
X X P X
A X X A
B X X X

←
A P A A

B P C B
P B F C
P P X F

←
C C A C

C C C B
P C C C
C P C C

←
C C C C

C C C C
P C C C
C C C C

→
P C C C

X C C C
A C C C
P C C C

→
A P X X

X X X X
X X X X
B X X X

Fig. 5. Tuple properties of BLAKE’s ARX chain, for random message and constants. The first three arrows denote
the tuple property for the backward computation and the last two arrows denote the tuple property for the forward
computation.

Chosen-keys attack (sketch). In the same spirit as the chosen-keys attack on Threefish, we sketch a
chosen-keys attack on BLAKE’s core permutation, as depicted on Fig. 6. The proposed attack targets four
rounds of BLAKE’s permutation, using the word permutations corresponding to round 3.5 to 7.5.

The attack collects 264 values of the following form for the state between round 5 and 6 and the message,
which is an XOR of the start state for the backward and forward directions.

P C C C
C C C C
P C C C
C C C C

 , (m0,m1,m2,m3, . . . ,m15) = (C,C,−P,C, . . . ,C).

Note that the property in the backward direction can be held for any constant value for a pair of upper-left
word denoted by P and m2 denoted by −P. Therefore, for all 232 values of a pair of upper-left word and m2,
the property in the backward direction is iterated, which preserves the property of B and P for the XOR-sum
of 232 iterated results. Similarly, the same thing will occur for the forward direction. In the end, this attack,
with a complexity of 264, finds a 264 inputs whose XOR-sum is 0 for two words in the specified positions, and
the XOR-sum of 264 corresponding outputs also has 0 for four words in the specified positions, A detailed
analysis is necessary to verify or improve this attack strategy.

11

P
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

m12

m2
m10

m6
m11

m0
m3

m8

Round 6
Column

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

m13

m4
m5

m7
m14

m15
m9

m1

Round 6
Diagonal

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

m5

m12
m15

m1
m13

m14
m10

m4

Round 7
Column

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

m7

m0
m3

m6
m2

m9
m11

m8

Round 7
Diagonal

C
C
P
C

C
C
C
P

P
C
C
C

C
P
C
C

m11

m13
m14

m7
m1

m12
m9

m3

Round 8
Column

P
X
A
P

P
X
X
B

A
X
X
X

A
X
X
X

A
B
P
P

P
C
C
P

X
P
F
F

A
B
B
X

m0

m9
m7

m5
m4

m2
m15

m10

Round 5
Column

C
C
P
C

C
C
C
P

A
C
C
C

C
B
C
C

m1

m14
m12

m11
m8

m6
m13

m3

Round 5
Diagonal

C
C
P
C

C
C
C
C

C
C
C
C

C
C
C
C

-P

cancel

X
X
X
B

E
X
X
X

X
P
X
X

X
X
A
X

m6

m2
m10

m5
m0

m4
m8

m15

Round 4
Diagonal

start
point

start
point

Fig. 6. Sketch of a chosen-keys attack for four rounds of BLAKE’s core permutation.

12

5 Conclusion

We introduced tuple attacks, a refinement of multiset attacks, and showed how to apply it to ARX algorithms.
Although our preliminary application to Skein and BLAKE does not improve on previous attacks, tuple
attacks have the advantage of being efficiently verifiable, because their power—in terms of rounds attacked—
is mostly independent of the word size. We thus propose tuple attacks as a new benchmark tool to evaluate
the security level of ARX chains.

Future work is expected to improve our attacks on Skein and BLAKE’s ARX cores, and to better
understand how the bit-level structure of tuples affects the evolution of tuples’ properties. For example, a
question of great interest is the existence of fixed-points of the round transformation of tuple properties.

References

1. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: FSE. (1997)
2. Lucks, S.: The saturation attack - a bait for Twofish. In: FSE. (2001)
3. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: FSE. (2002)
4. Gilbert, H., Minier, M.: A collision attack on seven rounds of Rijndael. In: Third AES Conference. (2000)
5. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. J. Cryptology 23(4) (2010)
6. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral attack. In: FSE. (2008)
7. Aumasson, J.P.: Zero-sum distinguishers. Rump session of CHES 2009

http://131002.net/data/talks/zerosum rump.pdf.
8. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and

Hamsi. Public comment on the NIST Hash Competition (2009) http://131002.net/data/papers/AM09.pdf.
9. Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and application to Keccak-f and

Hamsi-256. In: SAC. (2010)
10. Boura, C., Canteaut, A.: A zero-sum property for the Keccak-f permutation with 18 rounds. In: ISIT. (2010)
11. Aumasson, J.P., Çalık, C., Meier, W., Özen, O., Phan, R.C.W., Varıcı, K.: Improved cryptanalysis of Skein. In:

ASIACRYPT. (2009)

13

