Avaliação da fragilidade do solo em sítios de referência para restauração de matas ciliares do rio São Francisco⁽¹⁾.

<u>João Bosco Vasconcellos Gomes</u>⁽²⁾; Itamar Antonio Bognola⁽²⁾; Ivan André Alvarez⁽³⁾; Manoel Batista de Oliveira Neto⁽⁴⁾; Tony Jarbas Ferreira Cunha⁽⁵⁾.

(1)Trabalho executado com recursos de projeto do Macroprograma 2, Sistema Embrapa de Gestão.
(2)Pesquisador; Embrapa Florestas; Colombo, PR; joao.bv.gomes@embrapa.br; (3)Pesquisador; Embrapa Monitoramento por Satélite; (4) Pesquisador; Embrapa Solos; (5) Pesquisador; Embrapa Semiárido.

RESUMO: A importância do rio São Francisco extrapola a questão regional, podendo-se citar, entre outras atividades, o uso do mesmo e de suas águas para geração de energia elétrica, irrigação e consumo humano e animal. Este trabalho tem por objetivo definir a fragilidade do solo de sítios das margens do rio São Francisco na região de Petrolina e Juazeiro. Esses sítios fazem parte de áreas com planos de restauração da vegetação com espécies nativas. São 15 áreas e três posições de paisagem, totalizando 45 sítios de amostragem. Para cada posição de paisagem foi aberto uma micro-trincheira onde os solos foram observados em sua morfologia, classificados e amostrados. Foram realizadas análises granulométricas e químicas. A fragilidade das terras locais foi definida a partir dos dados colecionados pela definição de fatores de limitação relativos à degradação do horizonte superficial. problemas com a textura dos solos, deficiência de oxigênio e presença de salinidade e sodicidade. A maior parte das posições de paisagem corresponde às planícies aluvionares. O relevo plano predomina na maior parte das paisagens analisadas. Existe uma predominância das classes de fragilidade das terras alta e muito alta, o que realça a importância das atividades programadas de regeneração da vegetação com espécies nativas. As limitações mais decisivas na definição da classe de fragilidade das terras muito alta são, nessa ordem, a presença de salinidade/sodicidade e os problemas de textura do solo, mostrando a importância dos mesmos nos estudos das áreas que margeiam os leitos de rios da região.

Termos de indexação: Neossolos Flúvicos, degradação de horizonte superficial, salinidade e sodicidade do solo.

INTRODUÇÃO

A importância do rio São Francisco extrapola a questão regional, podendo-se citar, entre outras atividades, o uso do mesmo e de suas águas para geração de energia elétrica, irrigação e consumo humano e animal.

Isso não impede que suas margens sejam cobiçadas e pressionadas por diferentes atores locais: sitiantes, pequenos agricultores, empresas

agrícolas e, principalmente próximo de aglomerações urbanas, áreas de recreação (restaurantes, praias etc.). Essa é uma história que primórdios da colonização considerando que o uso da terra ribeirinha em um clima semiárido (boa parte da sua área de influência) traz vantagens competitivas do ponto de vista da oferta ambiental.

Assim, independente das leis que definem áreas de preservação permanente em margens de rios, as áreas de sedimentos aluvionares do rio São Francisco estão fortemente ocupadas com sistemas agrícolas e evidenciam sérios problemas de salinização e perda da camada superficial do solo (Cunha et al., 2011).

O presente trabalho tem por objetivo definir a fragilidade do solo de sítios das margens do rio São Francisco na região de Petrolina e Juazeiro. Esses sítios fazem parte de áreas com planos de restauração da vegetação com espécies nativas.

MATERIAL E MÉTODOS

São quinze áreas de estudo (**Tabela 1**), localizadas na zona ribeirinha do rio São Francisco, onde estão localizadas parcelas de regeneração da vegetação primária. São paisagens da Depressão Sertaneja, sob clima tropical com inverno seco e verão chuvoso, período de chuvas ocorrendo entre outubro e abril e uma precipitação média anual de 450 mm (SILVA et al. 1993).

As áreas estendem-se por 380 km do rio São Francisco (14% do seu total), na faixa submédia da bacia. Cada área apresenta três posições de amostragem, que constituem um transecto em relação à beira do rio: 1) Faixa 1 - 0 a 10m de distância do rio, 2) Faixa 2 - 40 a 50m metros de distância do rio, e 3) Faixa 3 - de 90 a 100m de distância do rio. Assim, temos 15 áreas e três posições de paisagem, totalizando 45 sítios de amostragem, sendo este o delineamento utilizado.

Para cada posição de paisagem os solos locais foram caracterizados em micro-trincheiras conforme Santos et al. (2005) e classificados conforme Embrapa (2006). As microtrincheiras também serviram para a realização das amostragens de solo, realizadas de forma geral em duas profundidades. As análises granulométricas e

químicas realizadas seguiram Embrapa (1997).

Tabela 1 - Áreas de estudo associadas ao projeto de regeneração de matas ciliares do rio São Francisco.

	141101000.	
Área	Município	Propriedade
PA	Petrolina	Fazenda Aara
PC	Petrolina	Sítio Ceres
LO	Lagoa Grande	Assentamento Ouro-Verde
LS	Lagoa Grande	Fazenda Sereníssima 1
LE	Lagoa Grande	Fazenda Sereníssima 2
MU	Santa Maria da Boa Vista	Umbuzeiro
MC	Santa Maria da Boa Vista	Coripós
NS	Casa Nova	Sítio Silva
NV	Casa Nova	Fazenda Verde & Rosa
SS	Sobradinho	Fazenda São Gonçalo
SC	Sobradinho	Comunidade de Correnteza
JA	Juazeiro	Sítio Acauã
JC	Juazeiro	Comunidade de Conchas
CG	Curaça	Assentamento Grapiúna
CJ	Curaça	Assentamento Jatobá

A fragilidade das terras locais foi definida a partir dos dados morfológicos de solo, dos aspectos da paisagem e dos resultados das análises de solo, conforme critérios estabelecidos na **tabela 2**. Procurou-se focar aqueles fatores de limitação que são problemas reais dos ambientes estudados e que apresentem variações capazes de fazer a distinção da fragilidade das terras locais. Não existe o obejetivo de se fazer comparações estatísticas, apenas estabelecer um protocolo que seja útil à distinção ambiental (fragilidade das terras) entre os sítios do estudo.

Tabela 2 - Desvios de comportamento das terras em relação aos aspectos considerados para a definição da fragilidade das terras.

definição da fragilidade das terras.					
Fator de limitação	Atributos considerados				
Degradação do horizonte superficial - ΔA	C orgânico e morfologia de campo				
Textura - ΔT	gradiente textural elevado ocorrendo antes de 60 cm de profundidade e teores de silte + argila elevados desde a superfície				
Deficiência de	posição de paisagem, caráter				
oxigênio - ΔO	gleissólico e outros aspectos da morfologia de campo				
Salinidade – sodicidade - ΔS	Condutividade elétrica, saturação de Na e morfologia de campo				

RESULTADOS E DISCUSSÃO

A maior parte das posições de paisagem corresponde às planícies aluvionares (Neossolos Flúvicos e Cambissolos Flúvicos), aspecto esperado. Os resultados de granulometria revelam a importância das frações silte e areia fina nos pacotes de sedimentos deixados nessas planícies. O relevo plano domina a maior parte das paisagens

analisadas, com poucos trechos em relevo suave ondulado até, no máximo, ondulado (**Tabela 3**).

Tabela 3 – Classe de solo, textura e relevo dos sítios de estudo.

	os de estado.		
Área ¹	Faixa 1 ²	Faixa 2 ²	Faixa 3 ²
PA	RY fa p	RY fa p	CYrp
		Antropossolo fa	
PC	RY fa p	р	RY a p
LO	RY f p	RÝfp	RY f p
LS	RY frs p	CY fr p	CY fr p
LE	RY frs p	CY fr p	CY fr p
MU	RY fra-fs p	RY fra-ra p	RY fra-ra s
MC	RY fa p	RY fa p	RY fa p
NS	RY f-fs p	CY fra-fa p	RY a-fa p
NV	RY af p	RY af p	RY/CY af o
SS	RY fa p	RY/CY af-fa s	RY/CY fa p
SC	RY/CY af-fa p	RY/CY af-fa s	RY/CY fa-f p
JA	RY f-fs p	CY f-fs p	CY r-rs p
JC	RY fa p	RY/CY af p	RY/CY a-af p
CG	RY fra-f p r	CY fr-r p	CY fra-ra (cc) s
CJ	RY af-r p	RY fr p	RY af-fa p
1, ,	161 1 1 7 11		

¹Ver significado dos códigos na tabela 1.

²Classe de solo até segundo nível: RY – Neossolo Flúvico; CY – Cambissolo Flúvico. Classe textural: a – areia, af – areia-franca, fa – franco arenosa, fra – franco-argilo-arenosa, f – franca, frs - franco-argilo-siltosa, fs – franco-siltosa, fr - franco-argilosa, ra - argilo-arenosa, rs – argilo-siltosa, r – argila, cc – fase cascalhenta. Relevo: p – plano, s – suave ondulado, o – ondulado

As **tabelas 4 a 7** apresentam os desvios de comportamentos dos solos nos sítios estudados, a partir dos atributos colecionados.

Tabela 4 − C orgânico e grau de degradação do horizonte superficial - ΔA dos sítios estudados

110112	onto ou	pornoidi	<u> </u>	011100 0	otadadoc	,
Área	Faixa1	Faixa2	Faixa3	Faixa1	Faixa2	Faixa3
Alea		C orgânico)		ΔA^1	
		dag kg ⁻¹				
PA	1,84	0,57	2,17	Fr	Mo	Fr
PC	0,49	0,63	0,32	Мо	Mo	Mo
LO	1,62	1,32	1,69	Fr	Fr	Fr
LS	1,02	1,61	1,49	Fr	Fo	Fo
LE	2,21	1,02	1,02	Fr	Fo	Fo
MU	2,07	2,01	2,21	Fr	Fr	Fr
MC	1,01	0,62	0,81	Fo	Mo	Mo
NS	1,05	0,32	0,33	Fr	Mf	Mo
NV	0,39	0,70	0,67	Mf	Mf	Mo
SS	1,14	0,55	0,72	Fr	Мо	Mo
SC	0,83	0,57	0,45	Mo	Mo	Mo
JA	0,66	0,46	1,54	Mo	Mf	Fr
JC	0,47	0,59	0,31	Mf	Мо	Mo
CG	1,17	1,43	3,01	Fr	Fr	Fr
CJ	0,61	0,64	0,48	Мо	Мо	Mo
$^{1}\Delta A - Fr - fraco$, Mo – moderado, Fo – forte, Mf – muito forte.						

A maior parte dos sítios apresenta classe de fragilidade das terras alta ou muito alta (respectivamente, 10 e 16 sítios dos 45 estudados, **Tabela 8** e **Figura 1**). Para a classe de fragilidade alta, o desvio mais importante foi o ΔT , definido a

classe para 11 sítios de estudo. Na classe muito alta os desvios ΔS e ΔA foram os mais determinantes, definindo a classe para, respectivamente, 11 e 9 sítios (**Tabela 8** e **Figura 2**).

Tabela 5 – Ocorrência de gradiente textural elevado até 60 cm de profundidade (G60) e de teores elevados de silte+argila desde a superfície (sr) - ΔT dos sítios estudados

Área	Faixa1	Faixa2	Faixa3	Faixa1	Faixa2	Faixa3
Alea	Ocorrê	ncia do pr	oblema		ΔT^1	
PA	Não	Não	Não	Nu	Nu	Nu
PC	G60	Não	Não	Mo	Nu	Nu
LO	Não	Não	Não	Nu	Nu	Nu
LS	sr	sr	sr	Fo	Fo	Fo
LE	sr	sr	sr	Fo	For	Fo
MU	sr	sr	sr	Fo	Fo	Fo
MC	Não	Não	Não	Nu	Nu	Nu
NS	sr	sr	Não	Fo	Fo	Nu
NV	G60	Não	Não	Mo	Nu	Nu
SS	Não	Não	Não	Nu	Nu	Nu
SC	Não	Não	Não	Nu	Nu	Nu
JA	G60	G60	sr	Mo	Mo	Fo
JC	Não	Não	Não	Nu	Nu	Nu
CG	sr	sr	sr	Fo	Fo	Fo
CJ	Não	sr	Não	Nu	Fo	Nu

 $^{^{1}\}Delta T - Nu - Nulo$, Mo – moderado, Fo – forte.

Tabela 6 – Ocorrência de caráter gleissólico (gl), caráter vértico (ve), horizonte A degradado, incluindo pavimento desértico por excesso de sais/sodicidade (da), e grau de deficiência de oxigênio - ΔO dos sítios estudados

Sitios estudados						
Área	Faixa1	Faixa2	Faixa3	Faixa1	Faixa2	Faixa3
Alea	Ocorrê	ncia do pr	oblema		ΔO^1	
PA	Não	Não	gl	Li	Li	Fo
PC	da	Não	da	Мо	Li	Mo
LO	Não	Não	Não	Li	Li	Li
LS	Não	da	da	Li	Mo	Mo
LE	Não	da	da	Li	Mo	Mo
MU	Não	Não	Não	Li	Li	Li
MC	da	Não	Não	Мо	Li	Li
NS	Não	da	Não	Li	Mo	Li
NV	da	da	gl	Мо	Mo	Fo
SS	Não	Não	Não	Li	Li	Li
SC	Não	Não	Não	Li	Li	Li
JA	gl	da	ve-gl	Fo	Mo	Fo
JC	da	Não	Não	Li	Li	Li
CG	Não	ve	Não	Li	Mo	Li/Mo
CJ	Não	Não	Não	Mo	Li	Li

 $^{^{1}\}Delta O$ – Nu – Nulo, Li – ligeiro, Mo – moderado, Fo – forte.

Parte dos sítios que apresentam ΔS forte a muito forte apresentam-se abandonadas, e seus problemas com salinidade e sodicidade do solo foram potencializados pelo uso pretérito de irrigação (Cunha et al., 2011). Além dos problemas de manejo inadequado, deve-se considerar que os eventos de enchentes periódicas vêm escasseando ao longo das últimas décadas nas margens do rio São Francisco, pelo controle de vazão que as represas

efetuam. Esses eventos seriam uma forma cíclica de lavagem do excesso de sais das pequenas áreas irrigadas de planícies aluvionares. Nessas ocasiões o rio abandona seu leito natural e gera uma vasta planície de inundação (Cirilo, 1991).

Tabela 7 – Valores de condutividade elétrica da pasta de saturação e da saturação de Na em materiais de solo e desvios por presença de salinidade e sodicidade - ΔS dos sítios estudados

	F1 ¹	F2	F3	F1	F2	F3	F1	F2	F3	
Área	Condutividade			Sati	Saturação de			ΔS^2		
Alea		elétrica		Na	na C1	C		Δδ		
		dS cm ⁻¹			%					
PA	1,44	1,03	22,39	1	2	18	Nu	Nu	Mf	
PC	31,34	13,59	0,47	31	24	2	Mf	Mf	Мо	
LO	0,56	1,06	0,79	1	1	1	Nu	Nu	Nu	
LS	1,05	0,56	12,29	3	1	18	Li	Mo	Mf	
LE	1,46	1,23	6,29	3	2	7	Li	Mo	Fo	
MU	0,36	0,39	0,28	1	1	1	Nu	Nu	Nu	
MC	2,75	0,68	1,00	8	1	1	Fo	Nu	Nu	
NS	0,24	2,64	2,22	1	16	4	Nu	Mf	Li	
NV	4,98	1,29	1,00	23	4	9	Mf	Mo	Fo	
SS	2,55	0,34	0,51	4	1	1	Li	Nu	Nu	
SC	1,18	0,46	0,25	4	1	1	Li	Nu	Nu	
JA	0,14	0,34	0,22	1	9	3	Nu	Fo	Мо	
JC	0,41	0,84	0,40	2	2	2	Nu	Nu	Nu	
CG	2,52	5,81	0,96	3	19	1	Li	Mf	Nu	
CJ	0,59	0,83	0,54	7	2	2	Fo	Nu	Nu	

¹F1 – faixa 1, F2 – faixa 2 e F3 – faixa 3.

CG

CJ

Alta

Muito alta

Tabela 8 – Fragilidade dos solos dos sítios estudados a partir dos desvios/problemas com degradação do horizonte A, textura, deficiência de oxigênio e salinidadesodicidade.

	Fragilidade das terras						
Área	Faixa 1	Faixa 2	Faixa 3				
PA	Baixa	Média	Muito alta				
PC	Muito alta	Muito alta	Média				
LO	Baixa	Baixa	Baixa				
LS	Alta	Muito alta	Muito alta				
LE	Alta	Muito alta	Muito alta				
MU	Alta	Alta	Alta				
MC	Muito alta	Média	Média				
NS	Alta	Muito alta	Média				
NV	Muito alta	Muito alta	Muito alta				
SS	Baixa	Média	Média				
SC	Média	Média	Média				
JA	Alta	Muito alta	Alta				
JC	Muito alta	Média	Média				

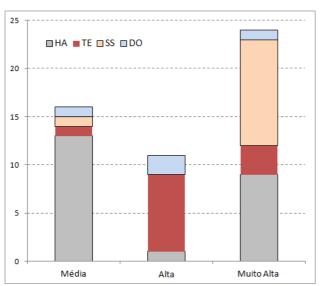
CONCLUSÕES

Muito alta

Alta

Média

Média


Existe uma predominância das classes de fragilidade das terras alta e muito alta nos sítios

 $^{^2\}Delta S - Nu - Nulo$, Li – ligeiro, Mo – moderado, Fo – forte, Mf – muito forte.

estudados, o que reforça a estratégia das atividades de regeneração da vegetação com espécies nativas.

Figura 1 – Frequência das classes de fragilidade das terras nos sítios de estudo.

Figura 2 – Frequência dos fatores de limitação decisivos para que um sítio alcance as classes de fragilidade das terras média, alta e muito alta. HA – degradação do horizonte superficial (Δ A), TE – problemas de textura do solo (Δ T), SS – presença de salinidade/sodicidade (Δ S) e DO – deficiência de oxigênio (Δ O).

As limitações mais decisivas na definição da classe de fragilidade das terras muito alta são, nessa ordem, a presença de salinidade/sodicidade e os problemas de textura do solo, mostrando a importância dos mesmos nos estudos das áreas que margeiam os leitos de rios da região.

REFERÊNCIAS

CIRILO, J. A. Análise dos processos hidrológicoshidrodinâmicos na bacia do rio São Francisco. Rio de Janeiro, COPE-UFRJ, 1991. 185p. (Tese de doutorado).

CUNHA, T. J. F.; SÁ, I. B.; TAURA, T. A.; GIONGO, V.; SILVA, M.S.L.; NETO, M. B. de O.; ARAÚJO F., J. C. Uso atual e ocupação dos solos na margem direita do rio São Francisco em municípios do Estado da Bahia. Petrolina, Embrapa Semiárido, 2011. 29p. (Embrapa Semiárido. Boletim de Pesquisa e Desenvolvimento, 91).

EMBRAPA. Manual de métodos de análise de solo. 2a ed. Rio de Janeiro, EMBRAPA-CNPS, 1997. 212p. (EMBRAPA-CNPS. Documentos; 1).

EMBRAPA. Sistema brasileiro de classificação de solos. Rio de Janeiro, Embrapa Solos, 2006. 306p.

SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C. Manual de descrição e coleta de solo no campo. 5a ed. Viçosa, SBCS, 2005. 100p.

SILVA, F. B. R.; RICHÉ, G. R.; TONNEU, J. P.; SOUZA NETO, N. C.; BRITO, L. T.; CORREIA, R. C.; CAVALCANTI, A. C.; SILVA, F. H. B. B.; SILVA, A. B.; ARAÚJO F., J. C.; LEITE, A. P. Zoneamento agroecológico do Nordeste: diagnóstico do quadro natural e agrossocioeconômico. V.2 Petrolina, Embrapa-CPATSA e Embrapa-CNPS, 1993. 387p.