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One goal of research in artificial intelligence is to automate tasks that currently
require human expertise; this automation is important because it saves time and
brings problems that were previously too large to be solved into the feasible domain.
Data analysis, or the ability to identify meaningful patterns and trends in large
volumes of data, is an important task that falls into this category. Clustering
algorithms are a particularly useful group of data analysis tools. These methods
are used, for example, to analyze satellite images of the Earth to identify and
categorize different land and foliage types or to analyze telescopic observations to
determine what distinct types of astronomical bodies exist and to categorize each
observation. However, most existing clustering methods apply general similarity
techniques rather than making use of problem-specific information.

This dissertation first presents a novel method for converting existing clustering
algorithms into constrained clustering algorithms. The resulting methods are able
to accept domain-specific information in the form of constraints on the output
clusters. At the most general level, each constraint is an instance-level statement
about a pair of items in the data set that indicates a preference for being placed
into the same cluster, or, alternatively, into different clusters. The constrained
clustering algorithms developed and presented in this dissertation enforce each
constraint according to the strength of that preference.

The second major contribution of this dissertation is the application of con-
strained clustering algorithms to diverse, significant, challenging real-world prob-
lems. We observe that the additional domain knowledge, when combined with
the algorithms’ ability to enforce that knowledge, produces improvements on a
variety of tasks. The problem domains include automated map refinement, natu-
ral language processing, and automated data analysis of Hubble Space Telescope
observations.
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CHAPTER 1
INTRODUCTION

Unsupervised learning algorithms have had some impressive successes. Data
mining algorithms, for example, are regularly used in the corporate world to extract
useful information from large customer databases. Rather than being restricted
to the realm of academic research, algorithms from machine learning are now
showing up in commercial software, including the PolyAnalyst software offered
by Megaputer and Genio Miner from Hummingbird. In addition to being used as
commercial tools, learning methods have been used to extend the body of scientific
knowledge. Clustering algorithms, which automatically divide a data set into
meaningful sub-groups, have been especially successful in both areas. For example,
the Autoclass clustering program analyzed a large body of infrared spectral data
and discovered a sub-class of stars previously unknown to astronomers (Goebel
et al., 1989).

However, the majority of clustering algorithms are limited in what they can
achieve. They can detect general trends and patterns in data, but they cannot
make use of additional knowledge specific to the problem at hand, as a human
expert can. This dissertation develops and evaluates a new kind of clustering
algorithm that can take advantage of problem-specific information to become a
temporary expert in the domain at hand. In particular, these “intelligent cluster-
ing” methods make use of information expressed as constraints between two items
in the data set. These algorithms, although general in nature, are able to greatly
enhance their performance on individual tasks.

In this chapter, we first discuss unsupervised learning and describe how it is
used. We then contrast it with supervised learning methods and identify some
important limitations of both approaches. Next we outline our proposed method
of intelligent clustering, which falls somewhere in between these two extremes and
seeks to address their respective limitations. After describing several scenarios that
stand to benefit from our method, we conclude by summarizing the key contribu-
tions of our work.

1.1 Unsupervised Learning
We often think of learning as a product of instruction. A student learns by

observing a teacher or by carefully examining correct answers. We refer to this kind
of situation as supervised learning. In contrast, unsupervised learners have neither
an instructor nor a set of correct answers. Unsupervised learning is exploratory
and experimental, seeking knowledge through discovery.

Clustering algorithms are unsupervised in that they do not have access to
any specific information about what they should be seeking. A clustering algo-
rithm uses the same principles to perform data analysis whether the objects under
scrutiny are stars, or apples, or human beings. Success hinges on how well a given
data set conforms to the assumptions encoded in those generic principles. Al-
though currently in widespread use with many different kinds of data, clustering

1
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algorithms adopt no special provisions to account for particular characteristics of
the data set or problem domain.

Exploratory learning via built-in bias. All unsupervised learning is explor-
atory in nature; the learner is presented with a set of observations and then en-
couraged to discover patterns and meaningful structure independently. This is
akin to how we learn to interpret visual images or make summaries of long text
passages: we do not receive specific guidance that tells us “this is a human face” or
“this newspaper article should be summarized with the following three sentences,”
but we are guided by general notions of pattern matching and simplification, re-
spectively. Similarly, a computer can be instructed to detect patterns in data and
to group items by similarity. Despite the lack of specific guidance, unsupervised
approaches cannot be said to be completely ignorant. Just as a human makes use
of general principles to enable learning, a computer makes use of a learning bias
of some sort, which encompasses any assumptions it makes about what is to be
learned (Mitchell, 1997). For a clustering algorithm, this bias might be a pref-
erence for identifying groups of items that are compact and well-separated from
other groups. However, we claim that, for many situations, the built-in bias of
clustering algorithms is either insufficiently specific or actively misleading.

Clustering as a data mining tool. This limitation is significant because clus-
tering algorithms are currently being used for a variety of purposes. Unsupervised
data analysis, or data mining, is becoming more and more prevalent as organiza-
tions continue to create and maintain vast databases. Corporations stockpile in-
formation about their customers; scientists collect gigabytes of observational data.
In both cases, “mining” these databases for recurring patterns or other interesting
structure is very important. Clustering is even being used to detect patterns in
reported computer crimes, so that sites likely to be future targets can be warned
(Brown and Gunderson, 2001). Researchers at Stanford University estimate that
the worldwide production of data in electronic format is between 500,000 and
1,700,000 terabytes per year (Lyman and Varian, 2001). This implies several thou-
sand new terabytes of data every day. The human data analyst is overwhelmed
by the sheer volume of information, yet extracting trends and classifications from
the data is critical. Currently, clustering algorithms for data mining are success-
fully culling useful information from these large databases, but as above, standard
approaches disregard any domain-specific information.

Clustering as a data compression tool. An additional application of cluster-
ing algorithms is data compression, where massive data sets are reduced to more
manageable sizes by replacing a group of similar items with a single representative
data point. This alleviates the intense demand for data storage and transmission
resources. For example, probes and rovers operating remotely on other planets or
in deep space are capable of collecting large amounts of data, but are limited by
size and bandwidth in terms of how much they can store or transmit back. If we
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can only obtain a fraction of the full data set, it is preferable to receive information
about a carefully selected subset of the most interesting items, rather than simply
the first ones that are lined up in the queue (Mjolsness and DeCoste, 2001). Clus-
tering algorithms can perform this kind of filtering to make better use of limited
resources such as bandwidth or storage space. Intelligent clustering algorithms can
use domain knowledge to make better decisions about which items are redundant
(i.e., should be grouped together) and which are significantly different.

Disadvantages of unsupervised learning. Despite the many applications of
clustering algorithms, their very generality also limits their performance on any
specific task. Because they make use of very general notions to identify patterns
and interesting structure in data, they cannot specialize very well for a specific
problem. Further, because unsupervised methods are unguided, they may re-
port patterns or trends that, while present in the data, are completely uninterest-
ing (e.g., a pattern caused by a systematic error in the data gathering process).
The traditional alternative to unsupervised learning has been supervised learn-
ing, which adapts to the problem at hand by not only exploiting but requiring
problem-specific knowledge.

1.2 Supervised Learning
Supervised algorithms differ from unsupervised algorithms in that they depend

on having a set of labeled examples that demonstrate what kind of distinctions
should be made. The labels indicate the correct answer for each of a set of sample
problems. Testing what has been learned then involves presenting the learner
with additional, unlabeled, problems and comparing the learner’s responses to the
correct answers. This is not so different from how teaching and testing of humans
often occur in our classrooms; we seem to be very good at learning by example.

Disadvantages of supervised learning. Despite the proven success of super-
vised approaches to learning, they too have certain limitations and drawbacks.
A supervised algorithm performs best when a large body of labeled examples is
available for the algorithm to learn from. The algorithm is able to train itself to
generate the correct responses, according to the labeled examples, and (hopefully)
to also generalize to unseen data. But as the adage “garbage in, garbage out” re-
minds us, supervised algorithms are limited by the quality of the labeled examples
they are given. In addition, they may be susceptible to over-fitting the training
data: an algorithm that focuses too closely on getting all of the given examples
right may then be incapable of performing well on new, different examples.

The most important drawback to supervised learning is that an expert must
manually create a sufficiently large set of labeled examples. Supervised learning
is an all-or-nothing paradigm; it cannot make use of any unlabeled data. Unfor-
tunately, individual labeling is a time-consuming and tedious process. Further, in
some cases it may not be possible to provide labels at all. For some problems,
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the true answers are not known, and we would like the computer to automatically
discover interesting patterns and classifications on its own. Supervised methods
cannot provide solutions to these problems.

Finally, it is not possible to select one learning paradigm as the universal best
approach. Supervised and unsupervised methods serve different learning goals.
Supervised methods are appropriate when the goal is to build a predictive model
(e.g., neural network, decision tree, support vector machine) for the problem do-
main. Unsupervised approaches are used when the goal is to analyze the data to
discover interesting structure (e.g., clusters or association rules). Our focus is on
the latter type of problem.

1.3 Intelligent Clustering
We are faced with two extremes. Supervised learning requires that every item

be assigned a label. Unsupervised learning ignores any such guidance. What if
we have a data set where some, but not all, items are labeled? What if we have
additional information about the data set that cannot be expressed as individual
labels? In the absence of other alternatives, we are forced to use an unsupervised
approach and to discard all of this extra information.

However, deliberately ignoring information is contrary to what we see as the
basic philosophy of learning. Successful learning is opportunistic, and it attempts
to exploit information from as many sources as possible. Some algorithms, referred
to as weakly supervised or semi-supervised methods, seek to limit the amount of
manual labeling that must be done yet still make use of domain-specific information
when it is available. We extend this body of hybrid algorithms by proposing the use
of “intelligent clustering” algorithms. In this section, we identify four situations
where these algorithms, which can take advantage of partially labeled data and
information that transcends the label format, are particularly useful.

1.3.1 Knowledge Not Expressed as Labels
The usual division between supervised and unsupervised learning recognizes

only one source of information: individual data labels. However, as hinted at
above, there are many other forms that knowledge can take. It may be presented
as structural or spatial information about the problem, heuristic guides, relational
information between items, or some combination of these elements. In recognition
of this variety, the intelligent clustering algorithms we propose are able to exploit
any such information that can be expressed as a set of constraints between items
in the data set.

Information that describes a relationship between items in a data set has proven
particularly challenging for machine learning applications because it cannot be
represented in the usual data format. The most common way to represent items in
a data set is with a feature vector. Each item possesses a value for each of a given
set of features, and those values can be strung together to create a feature vector.
For example, consider a database of census records, as shown in Table 1.1. Each
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Table 1.1: Census data represented in feature-vector format

Name SSN Age Gender Occupation Income
Diana 111-11-1111 30 F Professional Dancer $50,000
Gary 444-44-4444 30 M Professional Dancer $50,000
Lyra 222-22-2222 29 F Rocket Scientist $90,000
Tim 777-77-7777 28 M Assistant Professor $70,000
. . . . . . . . . . . . . . . . . .

person is represented by a variety of features, including social security number,
age, gender, occupation, and annual income.

However, although it is possible to describe an item with a series of features, it
is not possible to use those features to express a relationship between two items.
For example, we cannot use a feature to capture the fact that Gary and Diana
are married to each other, because this requires a way to express relationship
information between items (people). This representational issue is a problem be-
cause a learning algorithm cannot make use of information in formats it does not
understand.

We propose a method for representing instance-level relationships and for nat-
urally integrating those relationships into clustering algorithms. In particular, we
focus on relationships that are consistent with the desired clustering output, and
describe how these can be expressed as a set of instance-level constraints. To
continue the example, we may want clusters of people to represent households or
neighborhoods, and therefore desire that clusters preserve the marriage relation-
ship. We will also show how this formulation is a convenient way to express useful
background knowledge about a variety of real-world problems.

1.3.2 Partially Labeled Data Sets
Section 1.2 described supervised learning and hinted at some reasons why it

might not be possible (or feasible) to provide individual labels for every item in a
data set. This becomes more and more common as researchers encounter data sets
with thousands or millions of elements; in such cases, manual labeling is simply
unrealistic. While supervised methods can restrict themselves to the subset of
data that does possess labels, the unlabeled items also contain information that
can contribute to better system performance. Significant work has been done in
modifying supervised algorithms to enable them to operate on data that is not fully
labeled (e.g., Blum and Mitchell, 1998; Nigam et al., 1998) However, less work has
been done in enabling unsupervised algorithms to exploit partially labeled data
sets.

We will show how to take existing labels, convert them into a set of instance-
level constraints, and then ensure that they are preserved in the final output of a
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Figure 1.1: Different partitions of the census data shown in Table 1.1

clustering algorithm. Our approach can therefore integrate labels, traditionally only
useful for supervised learning, into unsupervised methods.

1.3.3 Intelligent Exploratory Data Analysis
In contrast to situations where informative labels are lacking for practical rea-

sons, there are also domains where supervisory information simply is not known.
This is the case for many data mining applications where the goal is to detect
novel patterns in data. Examples of such situations include market basket anal-
ysis, spectral analysis of astronomy data, and automated image segmentation.
Although specific labels for individual items are not known, the user may have
specific requirements for the output partitions. Ideally, we would like user to be
able to indicate those requirements to the clustering algorithm.

In our census data example, we may wish to analyze the data to detect interest-
ing sub-group structure, without having labeled examples of the kinds of distinc-
tions we wish to discover. To this end, we could apply any traditional clustering
algorithm, which would produce one possible partition of the data set. Figure 1.1a
shows a default partition of the data from Table 1.1. Gary and Diana have been
placed in the same cluster, and Lyra and Tim appear in a different cluster. How-
ever, if we have a more sophisticated clustering goal, such as finding clusters that
are consistent with the gender feature, the partition shown in Figure 1.1b is a
better solution. We would like to require that individuals of different genders end
up in different clusters, but regular clustering algorithms are inadequate for such
tasks.

We propose extending current methods for exploratory data analysis by enabling
them to make use of feature-based clustering heuristics, such as the above restriction
with respect to gender, thereby producing more “intelligent” results.

1.3.4 Structured Data Sets
Our final example involves data sets that possess an inherent structure. For

example, clustering is often applied to images, where each pixel represents an item
in the data set. One application is in image segmentation, where the goal is to
automatically divide an image into homogeneous sub-regions or clusters. Although
it is possible to apply a regular clustering algorithm to this problem, and cluster
the pixels based on their color or intensity values, this kind of approach abandons
the information inherent in the two-dimensional structure of the image. The fact



7

that certain pixels are adjacent is important when attempting to segment an image,
and that structure should be preserved as much as possible in the output.

We propose methods that will integrate information about the structure of a
data set and preserve that structure in the final output, to the degree desired by the
user.

As the previous examples demonstrate, there are many cases where the exper-
imenter possesses useful information about what assumptions can be made about
potential solutions, even if individual labels for every item in the data set cannot
be made (or would be prohibitively expensive to make). These situations include,
among others, knowledge expressed in non-label forms, partially labeled data sets,
intelligent exploratory data analysis, and structured data sets.

1.4 Contributions
In this dissertation, we investigate methods for enabling clustering algorithms

to take advantage of such problem-specific information in an automatic, efficient
fashion. This research creates a bridge between powerful data analysis techniques
and expert knowledge. In summary, this dissertation presents the following con-
tributions:

A flexible instance-level constraint formulation. We propose the use of
instance-level constraints for encoding domain knowledge. We will use both hard
and soft constraints. Hard constraints encode restrictions that must be satisfied in
the final output of the algorithm. Soft constraints express preferences about the
final partition generated by the algorithm and therefore offer additional flexibility
and expressiveness. By accommodating both kinds of constraints, we provide a
rich language for encoding information that is important for clustering algorithms.

A method for intelligent clustering. We describe a general method for aug-
menting clustering algorithms to enable them to make use of background knowl-
edge about the problem domain. In particular, we demonstrate how to incorporate
knowledge in the form of instance-level constraints. This method is not specific to
any single clustering algorithm.

Three intelligent clustering algorithms. We first apply this general tech-
nique by modifying two widely-used clustering algorithms, k-means (MacQueen,
1967) and COBWEB (Fisher, 1987), so that they can accommodate hard instance-
level constraints. These algorithms, though fundamentally unsupervised, are able
to take advantage of problem-specific knowledge to improve their clustering ac-
curacy. Later, we present a second modified version of k-means that can also
accommodate soft constraints.
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Empirical demonstration of scalability and improvements in clustering
accuracy on real-world problems. We evaluate our new clustering algorithms
using artificially-generated constraints and on real problems, where constraints are
generated from heuristic knowledge about the problem domain. Specifically, we
focus on the problems of a) automatically identifying road lanes from GPS data,
b) determining noun phrase coreference relationships, and c) analyzing infra-red
spectral observations of Mars. In applying our methods to such diverse problems,
we are able to show that general constrained clustering algorithms can become
adept experts on particular problems when making use of domain information.

1.5 Roadmap
In the next chapter, we will examine a large body of relevant work and discuss

the advantages of our approach. Chapter 3 describes the details of our method
of integrating background knowledge with clustering algorithms and presents two
modified clustering algorithms, based on k-means and COBWEB. We then ex-
amine the application of constrained clustering to several real-world problems in
Chapters 4, 5, and 6. In addition, Chapter 6 presents a third intelligent clustering
algorithm that can make use of soft constraints.



CHAPTER 2
RELATED WORK

Computers have been weak in their ability to understand
and process information that contains abstractions

and complex webs of relationships, but they are improving.
— Raymond Kurzweil, The Age of Intelligent Machines, 1990

In the preceding chapter, we outlined the limitations of general clustering meth-
ods in terms of their inability to accommodate domain knowledge about a prob-
lem. We are not the first to point out this shortcoming; several modified clustering
algorithms have been developed that attempt to accommodate problem-specific
information in unsupervised approaches. These new algorithms are neither super-
vised nor unsupervised but fall somewhere in between; they are sometimes referred
to as semi-supervised (Cohn et al., 2003; Basu et al., 2002). In this chapter, we
first provide some background on the various types of clustering algorithms (Sec-
tion 2.1) before moving on to discuss how others have enhanced those algorithms
to allow them to use domain knowledge.

Domain knowledge is a very broad term, and background information can
come in a variety of formats. We have divided this information into four cat-
egories: structural information about the data (global constraints), minimum or
maximum cluster capacities (cluster-level constraints), heuristic rules (feature-level
constraints), or partial labels and individual relationships between data items
(instance-level constraints). Section 2.2 states the constrained clustering prob-
lem formally, and Sections 2.3 through 2.6 discuss relevant work with each kind of
domain knowledge in turn. We conclude with an analysis of how the novel methods
that we propose fit into this family of work and which kinds of domain knowledge
our methods accommodate.

2.1 Clustering Algorithms
Clustering algorithms seek an organization P of a data set D that optimizes an

objective function f : P → R. Informally, the goal is to create clusters such that
items within the same cluster are very similar, and items in different clusters are
very different. Many algorithms make use of a distance function d : D ×D → R
to measure the similarity or difference of two points.

In general, finding the optimal solution to a clustering problem is NP-hard
(Garey and Johnson, 1979; Křivánek, 1991). Anderberg (1973) notes that the
number of possible ways to partition n items into k clusters is given by S(k)

n :

S(k)
n =

1

k!

k∑
i=0

(−1)k−i

(
k
i

)
in

For example, this means that the number of ways to sort 25 items into 5 groups is
prohibitively large:

S(5)
25 = 2, 436, 684, 974, 110, 751

9
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An exhaustive search through all possible solutions will be infeasible even for
moderately-sized data sets. Consequently, several methods have been developed
that can reach a good, if not optimal, solution in a reasonable amount of time.
A comprehensive survey of all (partitioning) clustering algorithms is beyond the
scope of this thesis; for references, see Anderberg (1973), Hartigan (1975), and
Gordon (1981). A partitioning algorithm takes in a data set D and returns a set
of clusters P = {C1, . . . , Ck} that form a partition of the items in D. This means
that the clusters Ci are non-overlapping (Ci

⋂
Cj = ∅, i 6= j) and completely cover

the data set (
⋃

i Ci = D). This contrasts with hierarchical clustering algorithms,
which create a set of multiple partitions of the same data, in order of increasing
generality. In a full hierarchy, the topmost partition is a single cluster that con-
tains every item in the data set, and the lowest partition contains n clusters, one
per item.

We will next present an overview of the basic partitioning algorithms before
proceeding to a discussion of the ways that they have been enhanced to accommo-
date additional information not present in the data set. We will reserve a direct
comparison to our methods for the next section, when we discuss constrained clus-
tering. This overview is purely for background purposes; several of these algorithms
will be mentioned again in the next section.

There are two major kinds of partitioning algorithms: batch and incremental.
Batch clustering algorithms examine the entire data set at once to determine the
best way to organize the data. Incremental algorithms develop a partition of the
data one step at a time, where each step incorporates a single data item. Batch
algorithms require that all of the data be present before processing begins, while
incremental algorithms are suited for on-line applications where the data is an
incoming stream of observations.

2.1.1 Batch Partitioning Algorithms
There are three common batch approaches to the clustering problem. The first

method operates on a set of instances represented as feature vectors and attempts
to find a set of clusters that organizes this data well. The second approach starts
with a dissimilarity matrix and successively merges pairs of similar items. The
third method views the input items as nodes in a graph, connected by edges that
indicate the distance between each pair of points.

Feature-vector clustering. K-means clustering (MacQueen, 1967), also known
as nearest centroid sorting and iterative relocation (Forgy, 1965; Jancey, 1966), is
a greedy, hill-climbing method. It searches for the best set of k cluster centroids,
which also determines the structure of the partition by assigning each instance to
its nearest centroid. The centroid of a cluster is a point that represents the mean or
center of gravity of the cluster’s items. Starting with some initial configuration of
the data set, the algorithm iteratively improves its estimate of the cluster centroids
until no further changes are possible. It does this by alternating between assigning
all points to their closest cluster centers and updating the cluster centers. In the



11

field of data mining, several variations on the basic k-means algorithm have been
developed to improve its scaling properties (e.g., BIRCH (Zhang et al., 1996) and
CURE (Guha et al., 1998)). We will develop a constrained clustering version of
the k-means algorithm in Chapter 3.

The alternating nature of the k-means algorithm is reminiscent of Expect-
ation-Maximization (EM) techniques (Dempster et al., 1977), and in fact, various
k-means algorithms can be implemented using EM (Mitchell, 1997). The Autoclass
clustering algorithm (Cheeseman et al., 1988) is a batch partitioning method that
makes use of EM methods in a Bayesian framework.

Dissimilarity matrix clustering. Other batch clustering algorithms operate
on a matrix of dissimilarities between items in the data set. The single link (Sib-
son, 1973) and complete link (Anderberg, 1973) methods are the most common
algorithms in this category. In each case, the algorithms begin with a set of n
clusters, with each item in its own cluster. They then successively merge clusters
together until a stopping criterion is met (number of clusters, maximum clus-
ter diameter, minimum cluster separation, etc.). These algorithms differ in how
they assess the distance between clusters. Building on the point distance func-
tion d(x, y) for points x, y ∈ D, the distance between clusters Ci and Cj is given
by Equation 2.1 for single-link clustering and by Equation 2.2 for complete-link
clustering.

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (2.1)

d(Ci, Cj) = max
x∈Ci,y∈Cj

d(x, y) (2.2)

Because the single-link method merges clusters based on the closest elements
in each cluster, it is good at finding long “chaining” clusters. In contrast, the
complete-link method is better at finding well-separated clusters, because it only
merges clusters if the two most widely separated items are sufficiently close.

Graph clustering. Another common batch clustering method views the data
set as a graph with n nodes and 1

2
n(n− 1) edges. Each pair of points is connected

by an edge that is weighted by the distance between the points. It is then possible
to compute the minimum spanning tree (MST) over this graph and break the k−1
edges with largest weight to obtain a partition of k clusters (Zahn, 1971). Others
have used different graph structures in the same way (e.g., Gabriel graph or RNG
(Urquhart, 1982)).

We have described three general batch partitioning approaches: methods that
operate on feature vectors, dissimilarity matrices, or distance graphs. We next
review incremental partitioning algorithms.

2.1.2 Incremental Partitioning Algorithms
Incremental algorithms are also referred to as online algorithms. Rather than

having access to all of the data at once, these algorithms must continually adapt
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the clustering to an incoming stream of data. Therefore, incremental algorithms
are sensitive to the ordering of the data. In some cases, such sensitivity is in fact
desired. For example, some clustering algorithms aim to emulate human learning
behavior, which is order-sensitive (Fisher, 1987). There are two major types of
incremental partitioning algorithms: capacity clustering algorithms and algorithms
derived from a corresponding incremental hierarchical algorithm.

Capacity clustering. One incremental clustering method is known as region
growing or sequential clustering, where each cluster has a given capacity. Each
item d in D is successively examined and added to the closest cluster C. If C
reaches its maximum capacity, it is removed from consideration for the rest of the
data set. Brown and Gunderson (2001) used a sequential algorithm to analyze
computer criminal attacks and determine criminal preferences. Their goal is to
use these preferences to facilitate a warning to similar sites of the likelihood of
an impending attack. This kind of algorithm is appropriate in situations where
specifying a cluster capacity makes sense. We will return to the notion of cluster
capacities later in this chapter, where the capacity is specified as a constraint on
the behavior of the algorithm.

Variants of hierarchical clustering algorithms. Hierarchical clustering al-
gorithms are the alternative to partitioning clustering algorithms. Rather than
creating a partition of the data, hierarchical algorithms create several levels of
partitions, each at a different level of generality (e.g., each with a different num-
ber of clusters). Some of these hierarchical algorithms are also incremental. A
simple way to create an incremental partitioning algorithm is to specify a method
for selecting one of the partitions created by a hierarchical method. For exam-
ple, COBWEB (Fisher, 1987) is an incremental algorithm that returns a partial
hierarchy of the items in D. We constructed a partitioning version of COBWEB
(Wagstaff and Cardie, 2000) that simply returns a partition corresponding to the
top level of COBWEB’s hierarchy. In Chapter 3, we will also develop a constrained
clustering version of COBWEB.

2.2 Constrained Clustering
The clustering algorithms that we have presented vary greatly in their details,

but they share a common attribute: they all operate solely on a data set, usually
composed of individual feature vectors. However, we often would like to combine
information from multiple sources. Specifically, we identify the data set D as
the observations and a supplemental source Con (for Constraints) as the domain
knowledge or problem-specific knowledge we would like to incorporate. In this
section, we will first discuss two ways to incorporate this kind of information in
methods that do not use clustering, then indicate the connections to our work.
Next, we will formalize the constrained clustering problem, which is the focus of
this dissertation.
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2.2.1 Related Approaches with Non-clustering Methods
The motivation behind our methods is a desire to supplement regular learning

methods with the ability to incorporate additional knowledge about the problem
or domain. Two important techniques with the same goal have been developed for
use with supervised learning methods: co-training and learning with hints.

Semi-supervised learning with multiple views. Co-training is a learning
architecture that incorporates two supervised learning algorithms that collaborate
by alternating roles as teacher and student (Blum and Mitchell, 1998). Each learner
has access to the same data items, but they see a different set of features or view
of those items. The goal is to combine the knowledge embedded in the two views
into a unified organization of all of the items. This approach is semi-supervised
in that it starts with a subset of the data set already labeled. Each learner trains
on the labeled subset and then classifies each of the unlabeled items. They also
indicate their confidence in each of the labels they generate. The most confidently
labeled examples from each of the learners are added to the labeled subset of the
data, and the process iterates. The hypothesis is that, under certain assumptions
about the independence of the two views, the learners will complement each other.
Each may be able to confidently label items that the other learner could not.
This is possible because, even if the learners have the same weaknesses, they have
access to a different set of observations and trends in the data, and their inductive
classifications will therefore not be subject to the same influences.

Although the motivation behind co-training is similar to that of our work, there
are important differences between the two approaches. First, co-training requires
the use of supervised learning algorithms that can output a confidence with each
labeling decision they make. In contrast, our methods are built on unsupervised
methods, so they can operate in the absence of explicit data labels. Second, the
co-training accuracy guarantees depend critically on the independence of the two
data views. If the two views are not independent, then the two learners may in-
advertently reinforce each other’s bad decisions. In practice, this independence
can be difficult to obtain (or determine). We do not need to impose strict re-
quirements about the independence of data views in our work. Instead, we are
able to combine two sources of knowledge (the data observations and the domain
knowledge encoded as constraints) even if there is overlap in the information they
contain. In fact, we will demonstrate that our methods work in cases where the
constraints are very consistent with the data labels based on the feature values
(see our experiments with UCI data sets in Section 3.5) and in cases where they
are not (i.e., the constraints are a truly complementary source of knowledge; see
our experiments with the tic-tac-toe UCI data set).

Supervised learning with hints. Another related area of research uses domain
knowledge in the form of “hints” with supervised learning methods (Abu-Mostafa,
1995). Hints are defined as “properties of the target function that are known
to us independently of the training data.” The hints are used to create virtual
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examples whose feature values are consistent with the specified target function
properties. For example, if the classification of objects in the data set is invariant
under rotations of those objects, this approach might create virtual examples that
are rotated versions of other input objects but have the same labels as the originals.
These hints supply knowledge not already available in the observations and have
been shown to enable the creation of much more reliable models of financial markets
than without such hints (Abu-Mostafa, 2001).

To cast supervised hints in our language, the hints function as hard constraints
on the output (since the supervised learning method attempts to reduce the clas-
sification error on the virtual examples to zero). By specifying different error
calculations for the virtual examples, Abu-Mostafa allowed for the hints to func-
tion as soft constraints as well (by tolerating some misclassification error for the
virtual examples).

The major difference between this work and what we propose is that it operates
in a supervised framework, while we focus on unsupervised methods. Thus, the
hint-supervised approach is of use for situations where a full set of data labels
is already available. If a data item does not have a label, then the hints cannot
be applied: the system can create the appropriate virtual example, but it will
be unable to label that example, and the learning system will be unable to use
it. Again, our constrained clustering approach can be used whether or not a full
set of labels is available. In addition, the goal of the supervised methods is to
learn from examples; in other words, they attempt to induce a function from the
input examples to a set of possible labels. Clustering algorithms do not learn
from examples; instead, they attempt to organize observations into meaningful
groups based on patterns inherent in the observations. To conclude, although the
motivation is very similar, the hint-supervised approach will be used in different
contexts and on different problems than our constrained clustering approach will
be.

2.2.2 The Constrained Clustering Problem
Having reviewed important non-clustering work that combines domain knowl-

edge with learning methods, we now present a formal description of the constrained
clustering problem. A clustering task can be phrased as an optimization problem:1

the goal is to select a partition P from the set of feasible partitions Φ(D) such that
f(P ) is minimized (or maximized), where f is the objective function. Feasible
partitions are clusterings of the data set D that satisfy requirements imposed by
the algorithm. Thus, Φ(D) serves to exclude invalid hypotheses, such as solutions
with overlapping clusters. Each member of Φ(D) is a set of clusters C1, . . . , Ck

that satisfy the following properties:

∅ ⊂ Ci ⊆ D (2.3)

1The problem statement presented here is adapted from Batagelj and Ferligoj
(1998).
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Ci

⋂
Cj = ∅, i 6= j (2.4)⋃

i

Ci = D (2.5)

That is, the clusters Ci must be non-empty, disjoint, and collectively cover
D. This notion can be extended so that Φ(D) also incorporates problem-specific
constraints, thereby enabling the further exclusion of unpromising areas of the
search space. We impose an additional requirement that all partitions in Φ(D)
satisfy all specified constraints Con:

Ci |= Con (2.6)

We will formalize our definition of Con, the set of constraints, in Section 3.1.1.
For now we will use the more general notion that Con contains any information
restricting which partitions are considered valid possibilities by the algorithm.
This view of constraints encompasses a wide range of related work, as the rest
of this chapter will indicate. In fact, the parameters specified as inputs to a
clustering algorithm could also be considered constraints. For k-means clustering,
the value k is a constraint on the output: only partitions with exactly k clusters
are permitted. However, we follow the approach of Tung et al. (2001) in excluding
these parameters from our examination of constrained clustering, since they are
built into the algorithm itself.

Next, we explore existing work on combining clustering algorithms with domain
knowledge. We have identified relevant work that uses each of four different kinds
of domain knowledge. After discussing each of these categories, we describe which
kinds of knowledge our methods can handle.

2.3 Global Constraints
The supplemental knowledge source Con may contain information that applies

to the data set as a whole. We refer to this kind of information as a global con-
straint. It may take the form of a neighborhood relation or some more general
relation between items. In this section, we review methods for incorporating both
kinds of global constraints.

2.3.1 Neighborhood Information
Clustering algorithms are often applied to problems where the data items are

arranged according to structural or neighborhood information. For example, images
consist of individual pixels that are related by their two-dimensional positions.
Figure 2.1 illustrates a simple example. The image in part (a) is composed of 25
pixels and has three distinct regions.

Spatial contiguity. When attempting to segment this image into a number of
regions via clustering, it is a common hypothesis that two adjacent pixels are more
likely to belong to the same class than two widely separated pixels are. More
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Figure 2.1: Image segmentation. (a) the image with pixels numbered; (b) the
corresponding neighborhood (contiguity) relation; (c) a three-cluster result after
clustering the pixels subject to relation N(p)

precisely, we seek to enhance the contiguity of the clusters. It is therefore often
useful to define, for each pixel, a set of neighbors. This set is usually either the
four immediately adjacent pixels (i.e., the north, east, south, and west neighbors)
or the full set of eight possible neighbors (i.e., the diagonal neighbors as well). For
a given pixel p, the neighborhood, N(p), can be expressed as one of

N(p) = {p′ | dS(p, p′) ≤ 1} (2.7)

N(p) = {p′ | dS(p, p′) < 2} (2.8)

where dS is the Euclidean distance according to the (spatial) image layout. Note
that this distance computation is completely independent of d(x, y), which is the
distance that is computed while actually clustering. The distance measure d(x, y)
relies on the features of each pixel, such as its color or intensity, while dS only
examines the spatial position of each pixel. Equation 2.7 describes the four-member
neighborhood, and Equation 2.8 describes the eight-member neighborhood. We
can express N(p) in terms of a relation: {(di, dj) | dj ∈ N(di)}. Figure 2.1b
shows the four-member neighborhood relation on the sample image, with neighbors
connected. Specifying N(p) for a data set is similar to viewing it as a Markov
Random Field (Kinderman and Snell, 1980), where the classification of each item
is dependent on the classifications of the neighboring items but not on any items
farther away.

The neighborhood of p, N(p), is a way to capture structural information about a
data set. In our formulation, the corresponding relation forms Con. Neighborhoods
are not restricted to pixels and two-dimensional images. For example, if each data
item d represents a molecule in three-dimensional space, Con could be defined
to indicate molecular bonds in a lattice. More generally, Con can represent any
relational information between items in the data set. We will see an example of our
constrained clustering approach applied to the problem of Mars spectral analysis
in Chapter 6. It is an image segmentation problem, and as we will see, our methods
can easily incorporate spatial contiguity constraints.
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We now discuss five methods that have been proposed for incorporating neigh-
borhood information in clustering algorithms and compare our approach to each.

Adding Positional Features. The most obvious way to incorporate a notion
of spatial location in a data set is to simply add additional features that encode
an item’s position to the data set. For a two-dimensional image, these features
might be the row and column of each pixel in the image. The distance function
d(x, y) would then naturally assign a higher similarity value to pixels that are close
together and lower values to those that are far apart. An advantage of this method
is that it is very simple; it requires no modification to the algorithm being used.
However, while this approach adds a preference for spatially contiguous clusters, it
does not enforce a spatial requirement. Our work with image analysis in Chapter 6
allows for the specification of a constraint strength, so that the analyst running
the clustering algorithm can control the degree to which contiguity is enforced. In
addition, simply adding positional features is a solution that is restricted to the
contiguity issue alone. We allow for the specification of knowledge from a variety
of sources.

Duplicating Neighbors as Features. Another commonly proposed (but often
impractical) method is to augment each item in the data set with several sets of
additional features: one set per neighbor in the data set (Jain and Farrokhnia,
1991; Masson and Pieczynski, 1993; Roberts et al., 1996). Essentially, data item
di receives duplicates of each of its neighbors’ features. It is easy to see that this
approach causes an immense increase in the data set’s dimensionality, which will
affect virtually every clustering algorithm’s performance. This is important for
work with real problems; the data set we experiment with in Chapter 6 has up
to 1024 features per pixel. Like the previous approach, neighbor duplication is
simple to implement but does not actually enforce a spatial requirement. We will
compare our approach to this method in more detail in Chapter 6.

Modifying the Distance Calculation. Each of the preceding methods makes
modifications to the data set D. It is also possible to incorporate spatial infor-
mation by changing how the distance between two items is calculated, without
modifying the data set directly (Oliver and Webster, 1989). This approach folds
the observation and background knowledge together into one information source,
which has the benefit of enabling the use of regular clustering methods. However,
a disadvantage is that the two sources of information are mixed, and interpreting
the results becomes more difficult. It may not be possible to determine whether
items were clustered together due to intrinsic similarity in their observations or
because of their spatial proximity.

In addition, tinkering with the distance metric is undesirable because it reduces
the algorithm’s applicability. The algorithm becomes so specialized that it can only
be applied to problems that have access to the expected domain knowledge, since
the distance calculation requires it. Our goal has been to create algorithms that
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are capable of taking advantage of the information that is present without making
assumptions about what domain knowledge will be present. Our algorithms remain
general but are able to specialize using whatever knowledge is provided to them.

Modifying the Objective Function. The fourth category of methods that
incorporate neighborhood information when clustering are those which modify the
objective function itself. Usually, this means replacing the objective function with a
weighted sum of the original objective function and the supplemental neighborhood
(contiguity) information. Murtagh (1985) notes that, in general, attempting to
optimize both compactness (variance) and contiguity requires that the user specify
the relative importance of the two objectives via a weighting parameter. For
example, Theiler and Gisler (1997) combine variance and contiguity via a user-
specified parameter λ ∈ [0, 1]. We will compare our soft constrained clustering
approach to their contig-k-means algorithm in more detail in Chapter 6. The most
significant difference between their work and ours is that our algorithms allow for
the specification of a weighting factor (strength) for each constraint. Although
contiguity is important, it does not apply equally to the entire image. If it did, the
best solution would be one that assigns every pixel to the same cluster. In fact,
certain regions should have more contiguity than others; these correspond to the
final clusters in the image. If some initial knowledge about regions in the image is
available, we have the ability to specify that the contiguity constraint is stronger
for the coherent regions than for other places in the image. Finally, we do not
restrict ourselves to contiguity constraints alone. We can accommodate multiple
sources of constraining information using a single representation.

Ambroise et al. (1997) introduce an EM-based method for incorporating conti-
guity constraints. Their approach penalizes a potential solution according to how
discontiguous the solution is. Once again, there is only a single weighting fac-
tor that can be specified, and contiguity information is the only form of domain
knowledge that can be accommodated.

Directly Restricting Φ(D). The final method for incorporating neighborhood
information in clustering is to impose explicit constraints on Φ(D), the set of
allowable partitions. This is usually referred to as contiguity-constrained clus-
tering (Gordon, 1973; Murtagh, 1985; Gordon, 1996; Bachar and Lerman, 1998),
relational clustering (Ferligoj and Batagelj, 1982, 1983), or conditional clustering
(Lefkovitch, 1980).

The output clusters, in this formulation, must preserve the structure given in an
input relation R (i.e., R = Con). The set Φ(D) is thus restricted to solutions that
satisfy R. For each partition P ∈ Φ(D), each C ∈ P must be a valid subgraph
such that (V, E) = (C, R ∩ (C × C)). This is accomplished in agglomerative
algorithms (e.g., single-link and complete-link) by restricting which cluster pairs
can be considered for merging at each step. Batagelj and Ferligoj (1998) describe
a method for satisfying relation R in an iterative relocation algorithm.
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Relation R is treated as a set of soft constraints; not all links in R must be
preserved in the final result. However, the absence of a link between a pair in
C ×C is a hard constraint. If R in the image segmentation example (Figure 2.1b)
included a link between pixels 21 and 5, a two-cluster solution suddenly would be
possible. Otherwise, the two dark regions cannot be merged without also merging
the intervening white pixels.

Another method is to construct the minimum spanning tree over the data set
(Murtagh, 1985), where nodes are the data points and edges indicate that two
points are contiguous. The edges are weighted by the distance (in terms of their
feature vectors) between the two items. This method differs from the general MST
methods mentioned above (Zahn, 1971; Urquhart, 1982). Those methods include
edges between all pairs of items; Murtagh creates edges between neighbors only.
Therefore, the set of possible solutions is automatically restricted to partitions
with contiguous clusters.

Contiguity-constrained clustering requires that the relation R be complete,
i.e., the induced graph is connected. There are two common ways to handle the
disconnected case. If contiguity is defined in terms of a maximum threshold (be-
yond which two items are not considered contiguous), one can iteratively grow this
threshold until a solution is obtained that is fully connected (Perruchet, 1983).
Another option is to separately analyze each connected component (Ferligoj and
Batagelj, 1983; Murtagh, 1985), since as above, it is assumed that the lack of a
link between two components prevents them from being clustered together. While
this may in some cases be a valid assumption (as in the neighborhood relation for
image segmentation), for general relations it will not be. Incomplete knowledge of
the relation R is one possibility. In addition, some relations may only be defined
over a subset of the instances. Also, clusters must be contiguous, which means
that they cannot be composed of two separate contiguous regions. This is reason-
able when segmenting an image into distinct objects, but problematic for other
spatial applications, such as a geological analysis of a satellite image, where the
same minerals may occur at different places in the image.

In contrast, our approach does not require that Con be complete nor that
the resulting clusters be contiguous. We can handle an incomplete subset of the
possible constraints without difficulty. Our methods will enforce the contiguity
constraint at the strength that is specified.

2.3.2 General Relations
Contiguity-constrained clustering has been heavily investigated because of the

volume of image analysis work being done (e.g., image segmentation, satellite image
analysis, remote sensing of the Earth and other planets). However, neighborhood
relations capture only one kind of domain knowledge for clustering. There are
other kinds of global relational information that are important for clustering.

Ferligoj and Batagelj (1983) extend the notion of relational constraints to apply
to asymmetric relations. However, their method appears to apply only to transitive
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relations since it computes a transitive closure of R. More importantly, they restrict
their attention to relations that indicate “sameness.” For example, their method
fails if (x, y) ∈ R means that x and y should not be clustered together; this is a
valid relation, but one that does not indicate “sameness” and is not transitive.

The incorporation of general relations into clustering algorithms has not been
well investigated. Our work in future chapters will show that real-world problems
require richer relations to express relevant domain knowledge. Problems often re-
quire the encoding of relational information that only applies to a subset of the
instances or is inherently intransitive. Consider the hypothetical problem of as-
signing diners to tables at a wedding reception. If phrased as a clustering problem,
the diners are the data items and the table groups are the clusters. The event or-
ganizers may know that certain individuals do not want to be seated at the same
table. This relation is incomplete in that it (presumably) applies only to a subset
of the diners. It is also intransitive; the fact that person A does not want to sit
with person B and person B does not want to sit with person C does not imply
anything about the degree of friendship between A and C. This problem cannot
be handled by the previously described constrained clustering methods; they are
designed with other constraints in mind. However, our methods can accommo-
date this kind of relational, incomplete, intransitive information and enforce the
specified constraints.

2.4 Cluster-level Constraints: Capacity Constraints
Domain knowledge in Con may also take the form of information that applies

to individual clusters. Cluster-level constraints impose requirements on the shape,
size, orientation, or other features of the clusters themselves. The most common
type of cluster-level constraint is a constraint on the minimum or maximum cluster
capacity. Cluster-level constraints do not fit well into our constraint formulation,
and we will not devote much space to discussing them. Methods that can accom-
modate capacity constraints are included in this section because they represent an
interesting set of methods that are complementary to ours.

Minimum capacity constraints. Bradley et al. (2000) developed a method
which makes use of cluster-level constraints to avoid solutions with empty clus-
ters, which often occurs when using a k-means algorithm, especially in a high-
dimensional space when k is large. This approach imposes constraints on cluster
structure. They allow the specification of a minimum number of items for each
cluster. In addition to avoiding solutions with empty clusters, the authors also
demonstrate that the modified algorithm is less prone to local minima than the
traditional k-means algorithm.

In cases where the problem domain dictates a minimum value for cluster size,
this is a valuable approach. However, although they allow mathematically for a
different minimum value for each cluster, it is not clear how the assignment of
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different values would be done. Initial cluster centers (which determine what the
identity of each cluster will be) are generally chosen randomly.

Tung et al. (2001) refer to minimum capacity constraints as existential con-
straints and incorporate them into an iterative relocation algorithm by restricting
the allowable item movements. This prevents the existential constraint from ever
being violated. In addition, as noted above, sequential region growing algorithms
naturally accommodate capacity constraints.

Maximum capacity constraints. Also, some methods make use of a maxi-
mum cluster capacity. Murtagh (1985) suggests that this kind of constraint can be
satisfied by using a hierarchical clustering algorithm and then selecting “suitable”
clusters from the hierarchy. However, a single hierarchy will not include every
possible cluster, and there may not be one available of the appropriate capacity.
This kind of constraint also appears often in research on the facility location prob-
lem (Shmoys et al., 1997), where k facilities must be selected to service a set of
customers but each facility can handle a maximum of c customers.

2.5 Feature-level Constraints: Heuristic Rules
Domain knowledge may also be information that depends on the features of

the data set. Feature-level constraints provide guidance for the placement of items
based on their values for a given feature.

A constrained batch hierarchical algorithm that incorporates feature-level con-
straints was developed by Béjar and Cortés (1998). This algorithm takes in a set of
rules that test for specific feature values and predict the appropriate class. Items
that have the same predicted class are assigned to the same cluster. Talavera and
Béjar (1999) developed a similar algorithm which expands on the work of Béjar
and Cortés by allowing a set of instances to be grouped together even when the
appropriate class label is not known.

This system relies on user input to operate: the user selects which partition in
the hierarchy to use as the derived partition. Thus, the user determines, perhaps
inadvertently, which constraints are actually reflected in the result. If the partition
is chosen below the point where a set of constrained instances are merged together,
then this constraint will not be satisfied. However, in our formulation, the set
of constraints that must be satisfied is explicitly encoded in Con, so unsatisfied
constraints are not a concern. Further, we support knowledge that indicates when
items should not be grouped together, whereas these constrained methods do not.

2.6 Instance-level Constraints
The final form of domain knowledge that we will examine is at the most specific

level. Instance-level constraints place restrictions on individual pairs of items with
regards to their relative cluster membership. They may take the form of partial
labels on the data set, user feedback in interactive systems, or direct constraints
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on the relative placement of item pairs. The existing work in this category is the
most relevant to the our algorithms, because we have focused on enabling the use
of instance-level constraints.

2.6.1 Partial Labels
Although labeling an entire data set is often infeasible, it is often quite prac-

tical to request that a small subset be labeled. If this information is available, it
functions as a valuable source of information. When processing a partially labeled
data set, our methods convert the existing labels into a set of Con relationships.

Majority vote based on labeled members. There is a lot of work currently
being done to investigate the best ways to make use of combined labeled and un-
labeled data. For example, the Neural Information Processing Systems conference
has recently held two Unlabeled Data Supervised Learning Competitions, in 2000
and 2001. These competitions provided data sets and an evaluation system to
enable the direct comparison of a variety of methods that are able to combine
labeled and unlabeled data. Although the emphasis was on supervised methods
that are able to take advantage of supplemental unlabeled data sets, there are also
complementary unsupervised methods that can make use of the labeled data.

One approach that makes use of both kinds of data with a clustering algorithm
is described by Demiriz et al. (1999). They cluster both data sets together using
a modified k-means algorithm, and each cluster is assigned a label by majority
vote based on its labeled members. The algorithm then tries to minimize, over a
range of k values, both dispersion (e.g., mean square error) and impurity (e.g., Gini
index). Minimizing dispersion leads to a preference for fewer (larger) clusters, while
minimizing impurity leads to a preference for a larger number of more specific
(smaller) clusters. The labels that are available on some of the instances act as
constraints on the clustering process via the impurity measure. This approach
combines the strengths of supervised and unsupervised learning, but some details
are unclear. For example, how is a cluster label assigned if none of its members
are labeled? What proportion of instances should be labeled for this method to
be effective? Rather than attempting to assign a label to each cluster, we simply
enforce the specified labels so that items with identical labels end up in the same
cluster, and items with different labels are placed into different clusters. Unlabeled
items are clustered normally.

Seeding clusters based on labels. Basu et al. (2002) suggest a different use
of data labels. Rather than using the labels to determine the identity of a cluster,
seeded clustering methods use them to intelligently select the initial cluster centers
for the k-means algorithm. For each group of items with the same label, they select
the mean of that group as one of the initial cluster centers. Each item in the labeled
subset of data is assigned to the cluster center that matches its label. Basu et al.
propose two modified k-means algorithms. One algorithm uses the cluster centers
as an initial starting point only and is free to modify the cluster assignments for
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each item in later iterations. The other algorithm enforces the initial assignment
of every labeled item throughout the clustering process, updating the unlabeled
items only.

Seeded clustering is similar to the methods we propose. The most significant
difference is that the methods of Basu et al. are restricted to domain knowledge
that can successfully be encoded as individual data labels, while our methods
encompass a far wider range of information. For example, assume that we know
that the items in a subset A of the data set are similar enough that they should
all obtain the same label. Also, assume that we have the same knowledge about a
second group of items B, but that we do not know how the two groups are related.
That is, we do not know whether they are two distinct groups or whether they
should be merged into one larger group. In the formulation of Basu et al., we
cannot abstain from that decision. Their encoding requires that we either assign
every item in A one label and every item in B a second label, in which case they will
be treated as distinct clusters, or assign them all the same label, in which case they
will all be merged together. In contrast, our methods do allow for the specification
that certain items should be grouped together but that the relationships between
others are not known. This is possible because our constraints are expressed as
pairwise relationships rather than labels. Conversely, if the information available
is actually encoded as labels, we can easily convert this into pairwise constraints.
Therefore, our constraint formulation is more general and can accommodate a
wider range of domain knowledge than that of Basu et al. We will report on an
empirical comparison of our methods to theirs in Section 3.6.

2.6.2 User Feedback
Information about individual items in the data set may come in other forms

than class labels. Interactive clustering systems adopt an iterative approach, where
the system produces a partition of the data and then presents it to the user for
evaluation. The user can indicate where the system has made mistakes, and that
information can be used on the next iteration of the algorithm. One example of
such an interactive clustering system is developed by Cohn et al. (2003). Like
active learning approaches (Cohn et al., 1994), where an algorithm requests labels
for the items it deems most informative, this system is able to receive more precise
guidance towards the desired solution. This can reduce the amount of information
that must be specified, since any information the algorithm is able to deduce on
its own need not be explicitly encoded. Beyond simply enforcing the information
specified by the user, the interactive clustering system of Cohn et al. also attempts
to induce a better distance metric over the feature space. The system can auto-
matically stretch or shrink the apparent distances between items according to the
constraints provided by the user. This ability can be very helpful for users who
cannot or do not wish to develop their own, domain-specific distance measure.

However, this kind of distance metric induction may not be appropriate for all
domains. We will discuss this issue further in the next section. In addition, it
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may be easier for a user to specify up front all of the information they wish the
system to use while clustering, rather than interacting with the system after each
iteration. The relative tradeoffs are best evaluated on a per-problem basis. Finally,
scaling is an issue: the larger the data set is, the more difficult it may be for the
user to identify and correct clustering mistakes.

2.6.3 Pairwise Relationships
We now describe our chosen representation for domain knowledge and explain

why we believe it to be the most general and flexible representation available. We
will also contrast our method to the most relevant alternatives.

We believe that the most general way to represent relational information over
the data set is as a collection of pairwise links between items. This representation
of domain knowledge covers several of the other knowledge sources we have al-
ready discussed. Global constraints that define a neighborhood relation are easily
encoded as a set of pairwise links between items. Relations that are incomplete or
intransitive are also naturally expressed in this format. Feature-level constraints
often indicate whether two items should or should not be clustered together, which
allows us to encode them as pairwise links as well. The only kind of constraint that
is not easily represented as pairwise links is the cluster-level constraint. In this
dissertation, we will reserve an investigation of cluster-level constraints for future
work.

Due to the generality it provides, we focus on the instance-level pairwise expres-
sion of domain knowledge. Commonly, two kinds of constraints are used: must-link
and cannot-link. This formulation has been explored in two main ways. The first
is to interpret each pairwise constraint as an indicator that the entire feature space
should be stretched (compressed) to accommodate a cannot-link (must-link) con-
straint (Zhu et al., 2003; Klein et al., 2002). The second option is to treat each
constraint as an isolated statement about the two items involved (Kleinberg and
Tardos, 1999; Wagstaff and Cardie, 2000; Wagstaff et al., 2001). Deciding which
approach to use depends on what kind of knowledge the constraints encode. The
specified constraints can be viewed as hard or soft constraints. We next discuss
work with both kinds of constraints.

Hard constraints. Hard constraints are declarative statements that must be
satisfied by the output of the clustering algorithm. A must-link constraint on a
pair of items indicates that the output partition must place those items in the same
cluster. A cannot-link constraint indicates that the output partition cannot place
those items in the same cluster.

In the context of hard constraints, Klein et al. (2002) compare our constrained
k-means intelligent clustering algorithm to a new approach: rather than modifying
the clustering algorithm to accommodate constraints, they pre-process the data
set to modify the pairwise distances between items. The distance between items
that must-link is set to zero, and the distance between items that cannot-link
is set to the maximum pairwise distance for that data set plus one. Constraint
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information thus propagates throughout the data set. They use a complete-link
agglomerative method on the transformed pairwise distances to cluster the items.
They demonstrate that, for problems where clusters have shapes that are difficult
for the regular k-means algorithm to detect, the complete-link algorithm operating
on the transformed distances can achieve higher performance then our constrained
k-means algorithm. They also achieve much higher performance than our methods
on several real-world data sets. In addition, for some data sets, their approach
requires less than half of the number of constraints that cop-kmeans does, for
the same level of accuracy. Because they extend constraint information through
the feature space, less information must be explicitly encoded in the constraint set.

There is a subtle, but important, distinction between our methods. Klein
et al. created an approach that takes in a handful of constraints and deduces the
feature-level implications of those constraints. They have shown the benefits of this
approach on several data sets, where unconstrained items benefit from constraints
placed on very similar items. However, what happens when items that appear very
similar are in fact from different classes? In such a case, the constraint propagation
may unwittingly make mistakes by forcing those items into the same class.

At first glance, this situation seems unlikely. It indicates that the features being
used to represent items are not very consistent with the true classes of the items.
In inductive learning, the goal is usually to use features that are relevant to the
problem and whose values correlate well with the true class labels. Unfortunately,
it is not always possible to determine which features are the best ones to use
or even whether a given feature is truly relevant to the target categorization.
Alternatively, perfectly correlated features may be too expensive to compute or
simply not available at all. If feature selection could be done perfectly, there
would be no need for additional domain knowledge; the correct clustering would
fall out immediately from the feature value distribution. Therefore, in practice,
we may often face situations where the feature values are not reliable indicators of
class membership.

This observation motivates our model of domain knowledge. Our encoding
and use of constraint information can accommodate knowledge that may not be
consistent with the feature values used to represent the data. Like Abu-Mostafa
(1995), we specifically seek to accommodate information that cannot be deduced
from the feature values alone. The tic-tac-toe data set, which we will present in
Chapter 3, is one such example; its features do not correlate well with the class
labels. Despite its difficulty, we are able to achieve large increases in clustering
accuracy on this problem. The results of running Klein et al.’s algorithm on this
data set are not yet available, but we believe that further insights could be drawn
from this comparison.

Soft constraints. Soft constraints, or preferences, are statements that may or
may not be satisfied by the clustering algorithm. We can be precise about how
likely the constraints are to be satisfied by indicating a strength for each constraint,
or we can treat them all as equally flexible preferences.
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We have adopted the first approach. We posit that pairwise constraints can be
made more expressive by augmenting each one with a strength that indicates how
binding the constraint is. This strength varies from −1 to 1, where 1 indicates
a hard must-link constraint, −1 indicates a hard cannot-link constraint, and 0 is
a “don’t care” statement. Strength values between the extremes are helpful to
express heuristic or approximate domain knowledge; these constraints function as
preferences on the clustering outcome. We refer to a constraint with a strength
greater than 0 as a positive preference and a constraint with a strength less than 0
as a negative preference. We will present our handling of soft constraints in more
detail in Chapter 6.

Kleinberg and Tardos (1999) also allow for the specification of an individual
strength for each constraint. They are concerned with the metric labeling problem,
which is equivalent to our above description of the constrained clustering problem.
Their formulation allows the specification of instance-level constraints between
pairs of items. Each constraint indicates that the two items should receive the same
label (be placed into the same cluster) according to the constraint’s weight. They
incorporate the constraints by calculating a penalty proportional to the weights
of the violated constraints. By phrasing the label assignment problem as a linear
programming problem, they are able to obtain a solution that is guaranteed to be
within a factor of two of the optimal solution.

Our work differs from that of Kleinberg and Tardos both in the kind of con-
straints that are permitted and in the methods that are used to obtain a solution.
We can accommodate both positive and negative preferences, while their work is
restricted to positive preferences only. Their constraints must have nonnegative
weights; there is no facility for including constraints that indicate when two items
should not receive the same label. It would be instructive to determine whether
the linear programming approach could be extended to include constraints of this
nature. In addition, the linear programming method they use to obtain a solution
differs greatly from the two constrained clustering methods that we will present.
Their approach is valuable since it provides an approximation guarantee, which k-
means and COBWEB (the two algorithms we have modified) do not. Our methods
are useful because they are much less computationally expensive than the linear
programming approach.

Zhu et al. (2003) adopt a different approach that treats all of the constraints
as soft constraints that may or may not be satisfied by the output of the cluster-
ing algorithm. They allow for three kinds of constraints: must-link, cannot-link,
and “this pair is closer together than that pair.” Like the interactive clustering
approach of Cohn et al. (2003), their goal is to induce an appropriate distance
measure on the data set. The constraints are not annotated with a strength or
weight; instead, they are given to an iterative method that determines appropri-
ate weights, one per feature, to (linearly) transform the data set into D′. Once
again, this process stretches or compresses the feature space appropriately, so that
must-link pairs are brought closer together and cannot-link pairs are pushed far-
ther apart. They then make use of a standard clustering algorithm to cluster D′,
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which is more likely to enforce the specified preferences than clustering with the
original D would be. Their approach is very similar to that of Klein et al.; the
major difference is that Zhu et al. do not require that the specified constraints be
satisfied, so they are treated as preferences rather than constraints. In addition,
the warping of the feature space performed by Klein et al. is not necessarily a
linear transformation from the original feature space.

In contrast to the method used by Zhu et al., our methods will ensure that
the soft constraints are enforced, to the degree of their individual strengths. This
gives us much more precise control over how the constraints are interpreted and
applied by the clustering algorithm. Information we are very confident about can
be specified with a high strength, while information that is less reliable can be
specified with a low strength. Our soft constraint formulation is therefore more
expressive and more exact than that used by Zhu et al. In addition, because we do
not modify the feature values for the items in the data set, the resulting clusters are
more easily interpreted, since they exist in the same feature space as the original
items.

Another important difference between our work and that of Zhu et al. also
arose in our discussion of Klein et al.’s work. When modifying the feature space,
a single pairwise constraint between two items will also affect every other pair of
items. Our work enforces very local warpings of the feature space, by requiring that
pairwise constraints be enforced; the constraints do not propagate to other items
unless there is a transitive link in the constraint relation. In contrast, both Zhu
et al. and Klein et al. extend each pairwise constraint (in different ways) through
the feature space. In some cases this may be appropriate, given the interpretation
of the knowledge encoded in the constraint. It is our opinion that it is preferable to
adopt a more conservative approach and to assume that each specified constraint
applies only to the two items explicitly mentioned. If it is known that similarity in
the feature space correlates well with similarity in terms of data labels, then one of
the distance-warping methods may be of most benefit, since they will automatically
propagate constraint information.

2.7 Summary
This chapter has presented an overview of both general clustering algorithms

and the work that has been done to enhance those algorithms with additional
domain knowledge. This knowledge functions as a set of constraints on the clus-
tering process. We identified four main sources of knowledge, including global
constraints, cluster-level constraints, feature-level constraints, and instance-level
constraints. We discussed the advantages and disadvantages of relevant research
in each category.

Our focus on instance-level constraints is due to the flexibility that encoding
provides: we can encode all types of constraints, except cluster-level constraints, in
this fashion. It also allows us to express information about incomplete, intransitive,
or otherwise “difficult” relations among items in the data set. In the next chapter,
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we will discuss in more detail our proposed method and how we represent hard
constraints at the instance level. Soft constraints will be explored more fully in
Chapter 6.



CHAPTER 3
CONSTRAINED CLUSTERING ALGORITHMS

The high-level goal motivating this thesis is to develop a collection of clustering
algorithms that can effectively incorporate background knowledge in the form of
constraints. This chapter contains two major contributions. First, it develops a
general method for transforming a generic clustering algorithm into an “intelligent”
clustering algorithm. Second, it shows how this transformation can be effectively
applied to two commonly used clustering algorithms and analyzes their behavior
both formally and experimentally.

We begin by defining and describing instance-level hard constraints in Sec-
tion 3.1.1. Section 3.1.2 presents our general method for creating “intelligent”
clustering algorithms that can take advantage of domain knowledge expressed using
those constraints. In addition, we show how the four example scenarios described
in Chapter 1 can benefit from using a constrained clustering method (Section 3.2).
Next, we describe the details of two such enhanced algorithms, cop-kmeans (Sec-
tion 3.3) and cop-cobweb (Section 3.4), and provide a detailed formal analysis
of each one. These algorithms are intelligent clustering versions of k-means and
COBWEB respectively. Finally, we demonstrate how both modified algorithms
can successfully make use of constraint information to improve their performance
on artificial test problems (Section 3.5).

3.1 Intelligent Clustering
Our focus in this work is exclusively on partitioning algorithms, which divide

the input items into a set of disjoint clusters. As described in Section 2.1, clus-
tering algorithms partition a data set D into k non-overlapping groups (clusters).
Intelligent clustering methods enforce an additional requirement that the output
partition satisfy all specified constraints. This problem was formally defined in
Section 2.2.

Before describing our general method for transforming a clustering algorithm
to be able to accommodate domain knowledge, we will first formally define our
encoding of that knowledge as pairwise constraints on the data set. Our goal
is to construct constraints that express information about the underlying class
structure in the data set, thereby enabling the algorithm to make more accurate
choices about how to cluster instances.

3.1.1 Constraints
Every clustering algorithm has an objective function that guides its search

through the space of possible solutions. This function evaluates candidate solu-
tions and indicates how good (bad) each one is. The algorithm then attempts to
maximize (minimize) the value of this function. When we present the algorithm
with a set of constraints, we impose an additional requirement that the algorithm
only consider solutions that fully satisfy the constraints.

Given the above description of clustering (partitioning), there is a natural way
to express additional, domain-specific knowledge about the problem: we can use

29
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a set of instance-level pairwise constraints on the relative placements of items in
the partition. We use two types of pairwise constraints to provide this kind of
guidance:

• A must-link (inclusive) constraint specifies that two instances, di and dj,
have to appear in the same output cluster (though it does not identify which
cluster). That is, class(di) = class(dj), where class(d) represents the cluster
that contains d. We will indicate that di must-link to dj using the notation
di =m dj. A set of must-link constraints defines an equivalence relation over
D ×D.

• A cannot-link (exclusive) constraint specifies that two instances must not
be placed in the same cluster. In other words, a partition that satisfies
this constraint must have class(di) 6= class(dj). We will indicate that di

cannot-link to dj with di 6=c dj. The corresponding relation defined by a
set of cannot-link constraints is symmetric but not transitive.

As noted in Chapter 2, there are several constraint types that could be consid-
ered useful for a clustering algorithm. These include global, cluster-level, feature-
level, and instance-level constraints. We have argued that instance-level encodings
are a useful general encoding, since they can support global and feature-level con-
straints as well. We will see examples of how feature-level constraints (Chapters 4
and 5) and global constraints (Chapter 6) arise in real problems.

Derived constraints (closure). Because the must-link constraints define an
equivalence relation over the instances, we take a transitive closure over the con-
straints. This closure is defined as follows:

∀i, j, k: given produce
di =m dj dj =m dk di =m dk

di =m dj dj 6=c dk di 6=c dk

di 6=c dj dj =m dk di 6=c dk

If di 6=c dj and dj 6=c dk, we cannot say anything about the relationship between
di and dk, since the cannot-link relation is not transitive. Computing the closure
in this way allows us to extend the cannot-link relation from each item to its equiv-
alence class. In addition, any inconsistencies or conflicts between the constraints
will be detected at this point. As an example, consider the case where di must link
both to dj and to dk, but dj cannot link to dk. The last constraint contradicts the
implied must-link relationship between dj and dk. If no conflicts are found, the
full set of derived constraints can then be presented to the clustering algorithm. If
conflicts are detected, we can alert the user to the conflict and request a new set
of conflict-free constraints.



31

Con=

=/Con

data set D

Constrained Clustering
Algorithm

P’: partition of D

{}
or

Figure 3.1: Constrained clustering architecture

Hard versus soft constraints. Note that both types of constraints are hard
constraints, in that the clustering algorithm will not be allowed to violate any of
them in the partition it produces. In our discussion of how to apply constrained
clustering methods to real problems, we will see that good performance can often be
obtained using hard constraints, but that in some cases we wish to encode domain
knowledge that is heuristic or approximate. In such cases, hard constraints are
inadequate; we require a way to express softer constraints on possible solutions.
For this reason, we have also investigated the incorporation of soft constraints
into clustering algorithms, which we will describe in Chapter 6. For the present
discussion, however, we will focus on hard constraints.

3.1.2 Accommodating Constraints with Clustering
Given our definition of constraints, we can now describe how to modify clus-

tering algorithms to accommodate them. The problem-specific constraints take
precedence over the algorithm’s built-in objective function, as in Tung et al. (2001).
A generic partitioning algorithm takes as input a data set D and produces a par-
tition P of the instances in D, optimizing an objective function f . In contrast, a
constrained partitioning algorithm can additionally access a set of must-link con-
straints (Con=) and a set of cannot-link constraints (Con 6=). It will then return
a partition P ′ of the instances in D that satisfies all specified constraints, or {} if
such a partition is not found. For unconstrained items, the constraint clustering
algorithm follows the guidance the objective function f , as usual. This architecture
is shown in Figure 3.1.

This description of constrained clustering is not specific to any particular clus-
tering algorithm. Likewise, our method for transforming a clustering algorithm
into a constrained clustering algorithm is not restricted to any single clustering
algorithm. Instead, we present a general method for determining where and how
a given clustering algorithm must be modified to allow it to incorporate instance-
level constraints.

Recall that we are focusing on partitioning algorithms. Any such algorithm has
at its heart a cluster assignment step, where data items are placed in their best
host cluster. This may be part of an batch algorithm such as k-means (MacQueen,
1967), or it may occur in an incremental algorithm like COBWEB (Fisher, 1987).
The cluster assignment step is where modifications can be made to enforce the
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Figure 3.2: Constrained clustering process with a batch algorithm

domain knowledge that is provided to the algorithm as a set of constraints. Both
must-link and cannot-link constraints, as defined above, can be accommodated by
making changes to how the cluster assignment is done.

Incorporating Must-link Constraints
A must-link constraint is an immediate indicator that two items should be

placed into the same cluster. The key modification for incorporating must-link
constraints is to perform a check for any such guidance before creating the list of
possible host clusters for d ∈ D. If there is a constraint (d, d′) ∈ Con=, and d′ has
already been assigned to cluster Ci, then d should also be assigned to Ci. Further,
every other item that d must link to can also be immediately assigned to Ci.

Batch algorithms. As discussed in Section 2.1, batch algorithms differ from
incremental algorithms in that they are used only when the entire data set available
before clustering begins. In such a case, a further optimization is possible. The
data set can be pre-processed, in conjunction with Con=, to replace each group of
items that must be linked together with a single representative item, as shown in
Figure 3.2. For numeric features in Euclidean space, the representative might be
the mean or centroid of the group; for symbolic features, the representative might
be a probability distribution of feature values. This representative is weighted by
the number of items it replaces, and clustering then proceeds on the reduced data
set. In a post-processing step, we copy the cluster assignment for the representative
member to each of the original items it replaced.

Incremental algorithms. For incremental algorithms, the updates required
when assigning d ∈ D to a cluster may be slightly more complicated. In a truly
online situation, we may not be able to compute the closure of the constraints
before clustering starts. For example, before seeing item d, we have already pro-
cessed some number of items and placed them into clusters. When we encounter
d, we may discover that d =m d1 and d =m d2, where d1 and d2 have already been
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processed. This implies that d1 =m d2, but since we did not know this when we
assigned d1 and d2 to their clusters, they may be in different clusters. Thus, in
online situations, satisfying must-link constraints may trigger further structural
updates (by moving items around or merging clusters to accommodate the new
information). Our use of incremental algorithms has been restricted to offline sit-
uations, where all constraints are known up front, so we have not had to explicitly
address this issue. However, we make a note of it here as an interesting and useful
extension of this work.

Incorporating Cannot-link Constraints
A constrained clustering algorithm must also ensure that it adheres to any

specified cannot-link constraints when assigning items to clusters. Any assignment
that violates a constraint must be abandoned in favor of a better choice. Therefore,
the key modification to accommodate cannot-link constraints is to prune the list
of possible host clusters to eliminate any solutions that would violate a constraint.

Batch versus incremental algorithms. When using must-link constraints, we
described how batch algorithms have access to an additional pre-processing opti-
mization. Although cannot-link constraints are useful for clustering algorithms,
they do not provide a special optimization for batch algorithms. Figure 3.2 in-
cludes an example of a cannot-link constraint that has been preserved in the out-
put partition; there are no pre-processing effects. However, as we will see, for a
batch iterative algorithm such as k-means, cannot-link constraints can enable the
selection of a better starting point in the search space.

Satisfiability. For algorithms where the number of clusters is fixed, it is possible
for there to be no valid host cluster for a given instance, either because the algo-
rithm made a bad choice early on, or because there truly is no solution that can
satisfy all of the constraints. Handling this situation properly would then require a
form of backtracking to achieve constraint satisfaction (or the determination that
there is no possible satisfying solution). For other algorithms, where the number
of clusters is not fixed, this situation might signal the need for the creation of a
new cluster. In Section 3.5.3, we examine the satisfiability issue experimentally.
For cop-kmeans, a fixed-k constrained clustering algorithm, such “dead ends”
manifest themselves most often for problems with an intermediate number of con-
straints. There are several ways the dead ends could be handled. We found that
simply restarting with a different random cluster initialization was sufficient in
practice to overcome this problem.

This section described a general method for transforming partitioning algo-
rithms into constrained clustering algorithms. It also mentioned some of the inter-
esting side issues involved in this transformation. We next proceed to show how
real domain knowledge can be encoded using our constraint formulation.
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Table 3.1: The married relation

married
Gary Diana
Tim Lyra
. . . . . .

3.2 Solving Concrete Problems
We now return to the four scenarios identified in Chapter 1 as situations that

can benefit from the use of intelligent clustering methods. In general, converting
domain knowledge into a useful representation is a non-trivial task. Knowledge
representation is an active research area in artificial intelligence. In examining
these examples, we will show how a variety of domain information can be encoded
as hard, instance-level constraints for use by our methods.

3.2.1 Knowledge Not Expressed as Labels
Section 1.3.1 presented a data set that represents imaginary census data and

indicated that there are kinds of information that the traditional feature-vector
representation cannot encode. For example, this representation cannot incorporate
the fact that two individuals are married to each other. We could easily indicate
that an individual is married with a simple binary feature. The problem arises
when we need to specify to whom a person is married. Adding a “spouse” feature
which holds the spouse’s name is not sufficient, because rather than making spouses
appear to be more similar, it actually makes them appear to be more different.
Clustering by similarity can then only produce groups of people who are married to
the same person, not those who are married to each other. Alternatively, creating
an additional (binary) feature for each item that corresponds to each potential
spouse is undesirable due to the explosion in dimensionality. Finally, we could
generate a unique “married couple id” for each married pair and store that as
a feature value. This increases the similarity of married pairs, but it does not
guarantee that married pairs will be grouped together.

Domain knowledge: Pairwise relation between data items. The domain
knowledge we wish to encode for this problem is a pairwise relation between data
items. Table 3.1 augments the census data found in Table 1.1 with an additional
source of information: we have defined a simple binary relation, married, on the
items in the data set that indicates their marital relationships. This representation
is compact and precise and can be directly incorporated by a constrained clustering
algorithm.

We can convert this relation into a set of hard, instance-level constraints by
creating a must-link constraint for each married pair. The set of constraints pre-
sented to the intelligent clustering algorithm would then be { Gary =m Diana,
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Table 3.2: Partially labeled census data

Name SSN . . . Label
Diana 111-11-1111 . . . A
Gary 444-44-4444 . . . B
Lyra 222-22-2222 . . . ?
Tim 777-77-7777 . . . B
. . . . . . . . . . . .

Tim =m Lyra, . . . }. When enforced, these constraints will guarantee that a mar-
ried pair is never split across two clusters. More generally, for a pairwise relation
R ⊆ D × D that encodes relationships that we wish to preserve in the cluster-
ing output, we simply create, for each relationship (di, dj) ∈ R, a corresponding
constraint di =m dj:

(di, dj) ∈ R ⇒ (di, dj) ∈ Con=.

3.2.2 Partially Labeled Data Sets
As described in Section 1.3.2, some data sets possess labels for some, but not all,

of their items. Traditional supervised algorithms would only be able to learn from
the labeled data, and traditional unsupervised algorithms would have to ignore
the labels that are present or have a facility for handling unknown values (for the
items without labels). Further, unsupervised methods cannot provide a guarantee
that the labels will be preserved in the final output cluster. In general, we may
have a label Li associated with data item di. Our goal is then to encode a partial
set of cluster labels using our constraint formulation.

Domain knowledge: Partial set of cluster labels. When labels are present
that represent the desired cluster structure, we would like the clustering algorithm
to conform to them. We can achieve this by converting those labels into a set of
instance-level constraints. For each pair di, dj ∈ D, if Li and Lj exist and Li = Lj,
then we create a constraint di =m dj. If Li 6= Lj, we create di 6=c dj.

Li = Lj ⇒ (di, dj) ∈ Con=

Li 6= Lj ⇒ (di, dj) ∈ Con 6=

Let us assume that Table 1.1 has been augmented with a partial set of labels,
as shown in Table 3.2. Some individuals have been labeled with either an “A” or
a “B”. Others do not possess labels, like Lyra. For this example, we obtain the
following constraints: { Diana 6=c Gary, Diana 6=c Tim, Gary =m Tim, . . . }. Because
Lyra’s classification is unknown, she will not participate in any constraints. The
constraints will ensure, however, that the known labels are preserved in the output
partition.
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3.2.3 Intelligent Exploratory Data Analysis
Section 1.3.3 describes a situation where clustering is used as an exploratory

tool. We may wish to cluster the same census data in an attempt to discover inter-
esting groups of individuals, without any specific notion of what the correct result
should be. Regular clustering algorithms are well suited to this task. However, if
we have any information about the desired result, even if it is not in the form of
individual item labels, we would like to provide that information to a constrained
clustering algorithm.

Domain knowledge: Feature-level consistency. In this case, the domain
knowledge we are interested in encoding is a feature-level heuristic that contains
information about the desired relative placement of items. We would like the
resulting clusters to be consistent with the gender feature, so that individuals of
different genders end up in different clusters. This does not necessarily mean
that we wish to identify two final clusters, one composed solely of men and one
composed of women. That division of the census data could be achieved without
any clustering at all (assuming that gender is known for each person in the data
set). Instead, we would like to find “useful” or “interesting” groups inside the
data set that happen to preserve gender distinctions. Thus, we might end up with
groups such as “female engineers” or “male dancers.”

If a match on the feature value contributes to the similarity of the two items,
we formulate a rule for generating constraints:

di.feature = dj.feature ⇒ (di, dj) ∈ Con=.

If a mismatch on the feature value is strong enough evidence to signal that the
two items should not be grouped together, we have

di.feature 6= dj.feature ⇒ (di, dj) ∈ Con 6=.

Our task is to convert this additional information based on the gender feature into
a set of instance-level constraints. In this case, we have

di.gender 6= dj.gender ⇒ (di, dj) ∈ Con 6=.

By examining each person’s value for the gender feature, we construct the following
constraints: { Gary 6=c Diana, Gary 6=c Lyra, Tim 6=c Diana, Tim 6=c Lyra, . . . }. These
constraints will ensure that the resulting clusters are consistent with the gender
feature.

3.2.4 Structured Data Sets
Finally, we return to the final scenario presented in Chapter 1. In Section 1.3.4,

we discussed the problem of image segmentation, where the goal is to divide the
pixels in an image into homogeneous regions. In addition to wanting all of the
pixels in a cluster to have similar color or intensity values, we would also like
neighboring pixels to be more likely to be assigned to the same cluster. Our
formulation of constraints allows us to do just that. In this case, hard constraints
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are not appropriate. We do not want to require that each pair of adjacent pixels be
placed into the same cluster; the only valid solution to that constraint is a single
cluster that contains every pixel in the image. Instead, we would like to specify
a preference, which is best encoded as a soft constraint. We will defer a more
in-depth discussion of soft constraints and how image segmentation can benefit
from their use to Chapter 6.

We have discussed several examples of where a constrained clustering algorithm
would be useful and indicated how to encode three types of domain knowledge as
a set of hard, instance-level constraints. The fourth kind of domain knowledge
is best encoded as a set of soft, instance-level constraints. We now proceed to
describe two constrained clustering algorithms we have developed. To create these
algorithms, we start with two commonly used clustering algorithms, k-means and
COBWEB, and apply the transformation outlined in Section 3.1.2.

3.3 K-means Clustering
K-means clustering is a method commonly used to automatically partition a

data set into k groups (MacQueen, 1967). Most implementations begin by selecting
k initial cluster centers and then iteratively refining them as follows:

1. Each instance di is assigned to the cluster C that will minimize total variance
(sometimes referred to as dispersion).

2. Each cluster center Cj is updated to be the mean of its constituent instances.

The algorithm stops when there is no further change in assignment of instances to
clusters. It is also possible to update the cluster centers after each item is assigned
(Theiler and Gisler, 1997), although doing so makes the outcome of the algorithm
dependent on the order in which the items are processed. The k-means algorithm is
an iterative, hill-climbing algorithm that converges to a local optimum (Selim and
Ismail, 1984). Krishna and Murty (1999) developed a hybrid algorithm, based on
k-means and a genetic algorithm, which instead converges to the global optimum;
this algorithm is much more computationally expensive.

K-means generally seeks to minimize the total squared variance associated with
the output partition:

var(C1 . . . Ck) =
∑
d∈D

dist(d, Ctd.cluster)
2 (3.1)

where Ctd.cluster is the center of the cluster to which d is assigned. Each cluster Cj is
represented by its center Ctj, which is defined as the center of gravity of the points
assigned to Cj. Equation 3.1 measures the “spread” of the data by examining how
far each item is from its respective cluster center. A related objective function is
the sum-of-squares criterion:

ssq(C1 . . . Ck) =
∑
Cj

∑
d∈Cj

∑
d′∈Cj

dist(d, d′)2. (3.2)
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Table 3.3: cop-kmeans algorithm

cop-kmeans(number of clusters k, data set D, must-link constraints Con= ⊆ D × D,
cannot-link constraints Con 6= ⊆ D ×D)

1. Must-link optimization: Identify each group of items that must be linked to-
gether. Replace each such group with a single item that is the mean of the items
in the group, weighted by the number of items it represents. Update Con 6= to be
consistent with the reduced data set.

2. Let Ct1 . . . Ctk be the initial cluster centers.

3. For each instance d in D, assign it to the cluster C that will minimize total variance,
such that violate-constraints(d, C, Con 6=) is false. If no such cluster
exists, halt (return {}).

4. Update each cluster center Cti by averaging all of the points dj ∈ Ci that have
been assigned to it.

5. Iterate between (3) and (4) until convergence.

6. Return the partition {C1, . . . , Ck}.

violate-constraints(data point d, cluster C, cannot-link constraints Con 6= ⊆ D×D)

1. For each (d, d 6=) ∈ Con 6=: If d 6= ∈ C, return true.

2. Otherwise, return false.

Both optimization problems have the same optimal solution, and both have been
shown to be NP-hard (Garey and Johnson, 1979).

3.3.1 The COP-KMEANS Algorithm
Following the general procedure described above, we can modify the k-means

algorithm to accommodate instance-level hard constraints as shown in Table 3.3
(Wagstaff et al., 2001). Changes from the original k-means algorithm are shown
in bold. The algorithm takes in a data set D, a set of must-link constraints Con=,
and a set of cannot-link constraints Con 6=. It returns a partition of D that satisfies
all specified constraints, or the empty partition if one cannot be found.

Must-link optimization. Because k-means is a batch algorithm, it can make
use of the must-link constraint optimization. The constraints in Con= are satisfied
in a pre-processing step: each group of instances that must be internally linked is
replaced by a single instance that represents all items in the group. This new item
is weighted by the number of items that it represents. Then, when updating cluster
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assignments, our changes ensure that none of the specified cannot-link constraints
are violated.

This reduction in the data set size also triggers an update of the cannot-link
constraints. The algorithm must ensure that Con 6= is consistent with the reduced
data set. A must-link group Dm ⊆ D requires that for each pair of items dm1, dm2 ∈
Dm, there is a must-link constraint between dm1 and dm2. The entire must-link
group is replaced by a single data item, dm, and any cannot-link constraints that
any of its members participated in will now apply to dm itself. That is,

(dmi, d
′) ∈ Con 6= ⇒ Con 6= := (Con 6= \ (dmi, d

′))
⋃

(dm, d′).

Item assignment. Like k-means, cop-kmeans attempts to assign each point d
to the cluster that would minimize total variance, as calculated by Equation 3.1.
The cluster assignment will succeed unless a cannot-link constraint would be vio-
lated. If there is another point d6= that cannot be grouped with d but is already
in C, then d cannot be placed in C, regardless of the variance calculation. cop-
kmeans continues down the sorted list of clusters until it finds one that can legally
host d. Constraints are never broken; if a legal cluster cannot be found for d, the
empty partition {} is returned. After convergence, each instance in a must-link
group receives the same cluster assignment that its representative received.

Note that cop-kmeans preserves the invariant that all specified constraints
must be satisfied at all times, i.e., at each step of the iteration. Thus, intermediate
solutions will always be “valid” with respect to the constraints. This allows the
user to potentially make use of an intermediate solution (before convergence) if
desired.

Cannot-link optimization. A further improvement is possible. The quality
of the clusters that the original k-means algorithm creates is known to be very
sensitive to the choice of initial cluster centers (Bradley and Fayyad, 1998). The
usual way to select the initial centers, in the absence of any other information, is to
choose them randomly from the data set. A common problem with this approach
is that it can select two items as cluster centers which would be best placed in the
same cluster, which means that the k-means algorithm will require a large number
of iterations to arrive at the correct solution (and may never reach it, since it
converges to a local optimum).

However, if k-means has access to constraints in Con 6=, it can select better
initial centers. Finding a satisfying solution to the specified constraints effectively
requires finding a k′-clique in Con 6=, for the largest k′ ≤ k. (Note that if a k′-clique
exists in Con 6= for some k′ > k, then there is no partition of D that satisfies the
constraints.) Even if a k′-clique is not known at the outset, cop-kmeans can still
select better initial centers by choosing any two items that cannot link together
as the first two cluster centers, and then randomly selecting the remaining k − 2
cluster centers.
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3.3.2 Formal Analysis of cop-kmeans
The formal properties of the k-means algorithm have been well studied. In

this section, we examine how our changes to the algorithm affect its runtime and
convergence properties. We find that asymptotic runtime increases for a single step
of the iterative algorithm to accommodate constraints, but that empirically the
constraints actually reduce runtime. The convergence guarantees of the algorithm
are also affected, but this does not present a problem in practice.

Runtime. Our first concern is the runtime of the algorithm. The basic k-means
algorithm first selects k points as the initial cluster centers; this requires O(k)
time. The algorithm then iterates between two steps. A single iteration proceeds
as follows. The first step assigns each point to the cluster that will minimize overall
variance. For each point, we must examine its distance to each possible host cluster.
The distance calculation scales with f , the number of features in the data set. The
total runtime for this step is O(nkf). Pelleg and Moore (1999) have shown how
the k factor can be further reduced, for data sets with low dimensionality (f < 8),
using kd-trees. The second step updates each cluster center to be the mean of its
constituents. Since each point is only assigned to one cluster, this update can be
done in O(nf) time. The total cost of a single iteration, then, is O(nkf).

With our changes incorporated, the algorithm’s runtime changes. Let m and
c be the number of must-link and cannot-link constraints, respectively. These
constraints are enforced in the data assignment step of the algorithm. The as-
signment of each item must be consistent with the constraints that involve that
item; since the constraints are binary, each constraint will be examined at most
twice. This will increase the runtime of the assignment step, originally O(nkf),
by O(nkf + m + c). The cluster update step remains O(nf), so the runtime for a
single iteration becomes O(nkf + m + c). The quantity m + c is bounded above
by 1

2
n(n− 1), so the iteration cost is equivalent to O(nkf + n2).

If the must-link pre-processing optimization is used, the cost of a single iteration
is reduced. The pre-processing can be done in O(mf + c) time, and the iteration
cost becomes O(nkf + c). Asymptotically, this is still O(nkf + n2). In reality,
the pre-processing step shrinks the data set size (reducing n) and c is usually
much smaller than n2; in addition, c may be greatly reduced during the must-link
pre-processing step.

Empirical runtime effects. Although the asymptotic complexity of the con-
strained clustering version of k-means is worse than that of the unconstrained
version, empirically we find that both kinds of constraints can contribute to re-
ducing the total runtime. Must-link constraints can be pre-processed to reduce n,
the number of items which must be clustered. More precisely, n is reduced by m′,
where m′ is the size of the transitive reduction of Con=. The transitive reduction
of Con= is the smallest set of pairwise relationships that transitively imply every
relationship in Con=. In addition, each cannot-link constraint may, for a given
item d, also exclude a specific host cluster from consideration. This reduces the
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number of distance calculations that must be done to assign d to a cluster. In
practice, we observe significant reductions in the number of iterations required to
reach convergence. In our experiments with artificially-generated constraints (Sec-
tion 3.5), we found that the mean number of iterations was roughly halved with the
introduction of 100 random constraints for data sets of approximately 50 elements.

Convergence properties. The k-means algorithm is known to converge to a
local optimum in terms of variance and to do so using gradient descent (Bottou
and Bengio, 1995). More precisely, Bottou and Bengio showed that the k-means
algorithm minimizes variance using Newton’s method and that it therefore has the
same (superlinear) convergence speed as Newton’s method.

Our modifications to the algorithm impact its behavior in important ways.
Since the final solution (and each intermediate solution) must satisfy all specified
constraints, the constrained clustering algorithm effectively must also perform con-
straint satisfaction. Deciding whether a satisfying solution exists for a given set
of constraints is itself NP-complete (Garey and Johnson, 1979). The current im-
plementation of this algorithm does not attempt to find a fully satisfying solution.
Instead, it does a one-step lookahead greedy assignment of points during the data
assignment phase. This means that, even for a set of satisfiable constraints, a bad
decision early on may result in a “dead end” where the algorithm has no valid
cluster in which to place a given point. In such a case, we restart the algorithm
with a different random initialization of cluster centers.

This is somewhat unsatisfying, since the original k-means algorithm can guar-
antee that it will return a partition that is a local minimum with respect to vari-
ance; that property is lost in this formulation of cop-kmeans. In practice, there
is little impact on the results we obtain. Our algorithm terminates immediately if
this situation is encountered, and we can then restart with a different set of ran-
dom initial cluster centers. This is standard experimental procedure for k-means
already; since k-means is known to be very sensitive to the initial starting points
it selects, most experimentalists run the algorithm several times on the same data
set and retain the best result.

A possible improvement would be to retain, at each step, the partition produced
by the previous iteration. Then, if the algorithm fails to find a satisfying solution in
the current iteration, it can return the previous partition. In some cases, this may
be better than simply restarting the calculation. However, this partition is not a
“converged” result (otherwise the algorithm would have terminated with it), so it
will not even be a locally optimal result. Consequently, we have not implemented
this change for our experiments.

Another way to approach the problem, which is somewhat easier to analyze and
has better convergence properties, is to start the algorithm with a valid solution
(assignment of points to clusters) that satisfies all of the specified constraints but
may have an arbitrarily large variance. Then, when updating assignments, we
can disallow any changes in assignment that would violate a constraint. cop-
kmeans will then find the best solution, in terms of minimizing variance, inside
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the connected1 space of solutions that includes the specified starting point. Of
course, finding a valid starting point is a difficult problem. If the quantity m+ c is
not too large, this is a reasonable approach to adopt—and it retains the attractive
k-means guarantee of finding a local minimum.

3.4 COBWEB Clustering
As a second concrete example of how a clustering algorithm can be enhanced

to make use of constraint information, we present cop-cobweb, a constrained
partitioning version of the COBWEB algorithm (Fisher, 1987).

COBWEB is an incremental clustering algorithm that employs the concept of
category utility (CU) (Gluck and Corter, 1985) as its objective function. Clus-
ters are not represented by the mean of their elements; instead, each cluster is
represented as a set of probability distributions, one per feature of the data set.
Probability is distributed over the possible values for a given feature. The category
utility of a partition is measured by

CU(C1, . . . , Ck) =
1

k
((

k∑
c=1

|Cc|
n

∑
f

∑
j∈V (f)

P (Ff = j|Cc)
2) −

∑
f

∑
j∈V (f)

P (Ff = j)2)

(3.3)
where k is the number of categories or clusters, Cc is a particular cluster, Ff refers
to one of the features, and V (f) is the set of discrete values for feature Ff . The
values are discrete because COBWEB was designed for use with categorical, or
symbolic, attributes. COBWEB creates a hierarchy of clusters, with more general
clusters towards the top of the hierarchy and more specific clusters towards the
bottom. It is not necessarily a full hierarchy, with a single cluster containing all of
the instances at the top and n clusters at the bottom.

COBWEB considers four primary operators (add, new, merge, and split) that
represent the possible ways to incorporate a new instance into the top level of the
existing hierarchy. It applies each operator and selects the one that maximizes
the category utility of the resulting hierarchy. COBWEB continues recursively by
applying the same operators to that cluster’s children to properly sort the new
instance with respect to deeper levels, halting when the instance is placed in a leaf
node.

Our focus in this work is on partitioning algorithms. Consequently, we will
be using a partitioning version of COBWEB. In the absence of constraints, this
version produces output that corresponds to the top level of the hierarchy produced
by the regular version of COBWEB.

1Here “connected” means that each partition in the solution space is reachable
from every other partition through a series of valid assignments (i.e., assignments
that do not violate any constraints).
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Table 3.4: cop-cobweb algorithm

cop-cobweb(data set D, must-link constraints Con= ⊆ D×D, cannot-link constraints
Con 6= ⊆ D ×D)

1. Let P be the set of clusters, initially {}.

2. For each instance d in D:

(a) Must-link check: If there exists some (d, dj) ∈ Con= such that dj is already
in an existing cluster C ∈ P , then add d to C and store the new partition in
Pmust. Skip to step (e).

(b) New: Let Pnew = P
⋃
{C} where C = {d} is a new cluster.

(c) Add: For each existing cluster Cj in P , create a new partition Paddj
which

has d added to Cj , unless violate-constraints(d, Cj, Con 6=) is true.

(d) Merge: If there exist at least two clusters, let Cmax1 and Cmax2 be the two best
hosts for d from step (c) as determined by the CU values of their resulting
partitions. Merge those two classes, add d, and store the new partition in
Pmerge, unless this would violate a cannot-link constraint.

(e) Split: If there exist at least two clusters, let Cmax be the best host for d from
step (a) or (c) as determined by the CU values. Split Cmax by recursing on
it; that is, replace it with cop-cobweb(Cmax

⋃
{d}, Con=, Con 6=).

(f) Let m = argmax CU(Pk) for k ∈ {must, new, addj ,merge, split}. Update
P = Pm.

3. Return P .

3.4.1 The COP-COBWEB Algorithm
Once again, we can use our general procedure for modifying clustering algo-

rithms to update the COBWEB partitioning algorithm to accommodate instance-
level hard constraints as shown in Table 3.4. In particular, as each instance d in
the data set is encountered, we first check for any must-link constraints (step 2a).
If there is a must-link constraint that indicates that d must be in the same cluster
as some dj that has already been incorporated into the partition, we enforce the
constraint by including d in the cluster C that contains dj. If not, we consider
applying each of the new (step 2b), add (step 2c), and merge (step 2d) operators
to determine where to place d.

Cannot-link constraints are checked during the add and merge cluster assign-
ment steps. More specifically, when considering adding an instance to an existing
cluster Cj, we check for the existence of any cannot-link constraints that would
prevent d from joining Cj (violate-constraints is defined in Table 3.3). When
considering merging two clusters, we once again must check for any cannot-link
constraints that would invalidate the merge (for example, (d1, d2) ∈ Con 6= where
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d1 ∈ Cmax1 and d2 ∈ Cmax2). Whether or not there was a must-link constraint
found in step 2a, we consider an application of the split operator (step 2e), which
recurses on the subset of the instances contained in the best host cluster for d.
Finally, the choice that results in the highest CU is selected as the new partition
P (step 2f).

Note that, unlike cop-kmeans, cop-cobweb cannot fail to find a satisfying
solution. This is due to the fact that cop-cobweb is allowed to select an appro-
priate value for k, the number of clusters, while cop-kmeans must enforce the
additional constraint of a specific value for k.

3.4.2 Formal Analysis of cop-cobweb
The formal properties of the COBWEB algorithm have not been closely exam-

ined. COBWEB is not an iterative algorithm like k-means, so we are not concerned
with convergence. However, runtime remains very important. In this section, we
develop an understanding of how cop-cobweb behaves without constraints and
then describe the impact that adding constraints has. We find that, empirically,
constraints for this algorithm provide significant runtime benefits.

Termination. The basic COBWEB algorithm is recursive in nature. Recursion
occurs when the split operator is applied. Termination is guaranteed because the
split operator recurses on a strict subset of the current data set, and split is only
considered when there is more than one cluster present in that subset (i.e., non-leaf
nodes, in the original hierarchical version). The modifications in cop-cobweb do
not affect termination.

Runtime. For this algorithm, we are interested in the cost of processing each
item, d. For each such item, there are four possible ways to incorporate it into
the existing partition, and each of these possibilities must be examined by cal-
culating the category utility (CU) of the partition. The CU calculation requires
O(
∑

i |V (i)|) time, where V (i) is the set of possible values for feature i. Cre-
ation of a new cluster to contain d requires the initialization of the cluster’s
values for each of the features, so Tnew = f +

∑
i |V (i)|. Adding d to each of

the kd existing clusters requires an update to each of the f features for each
such cluster, so Tadd = kd(f +

∑
i |V (i)|). Merging two clusters and including

d requires the update of each of d’s feature values in the cluster representa-
tion, but it also (in the worst case) requires an update to every possible feature
value (due to the items present in the two clusters being merged). Therefore,
Tmerge =

∑
i |V (i)| + ∑

i |V (i)| = 2
∑

i |V (i)|. Performing a split requires a recur-
sive call on one of the kd clusters (Cmax) and could theoretically incur the cost of
re-processing each item in Cmax. Thus, Tsplit = R(|Cmax|) +

∑
i |V (i)|. In practice,

we cache this information so that it is not re-calculated for subsequent splits, if
performed on the same cluster.
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The total time R(n) required for the incorporation of n items into the partition
is the sum of the time required for each item di, T (di):

R(n) =
n∑

i=1

T (di) (3.4)

T (di) ≤ Tnew + Tadd + Tmerge + Tsplit(Cmax) (3.5)

Merging and splitting are only considered if there are more than two existent
clusters, i.e., kd ≥ 2. However, we are concerned only with worst-case runtime.
After substituting in the individual costs of each operation, we obtain:

T (di) ≤ (kd + 1)f + (kd + 4)(
∑

i

|V (i)|) + R(|Cmax|) (3.6)

cop-cobweb introduces changes that impact COBWEB’s runtime. Let md

and cd be (respectively) the number of must-link and cannot-link constraints in
which d participates. Before the four operators are considered, cop-cobweb
examines the must-link constraints. The cost of some of the individual operations
also changes. The new step is unchanged. The add step, however, checks Con 6=
to prevent any invalid additions. Likewise, the merge step must check whether
merging the two clusters would violate any constraints in Con 6=. It must check
constraints that involve any items in the two clusters, not just cd. The maximum
number of constraints examined is |Cmax1| · |Cmax2|. Accordingly, we update T(di)
as follows:

T (di) ≤ md + Tnew + (cd + Tadd) + (|Cmax1| · |Cmax2|+ Tmerge) + Tsplit(Cmax) (3.7)

To summarize, adding the ability to incorporate user-specified constraints into
the clustering process does have an impact on the algorithm’s runtime. The al-
gorithm must check, for each instance, all of the relevant constraints to ensure
that they will not be violated. The asymptotic runtime therefore increases. How-
ever, we find in practice that runtime actually decreases significantly when using
constraints, since many of the possible operations are excluded from consideration.

Empirical runtime effects. Once again, both kinds of constraints can con-
tribute to reducing the total runtime. Must-link constraints allow cop-cobweb
to skip the new, add, and merge steps, since they dictate immediately which cluster
the item should join. Cannot-link constraints exclude certain host clusters from
consideration during the add step. For example, in experiments with artificially
generated constraints, we find that runtime increases as the number of constraints
increases, until an inflection point is reached. Beyond this point (which varies
for each data set), additional constraints actually decrease cop-cobweb’s run-
time. In our experiments on a real problem from Natural Language Processing, in
Chapter 5, we observe runtimes as low as 0.14 (reduction of 86%) of the original
(unconstrained) runtime.



46

3.5 Experiments with Artificial Constraints
In this section, we report on experiments with cop-kmeans and cop-cobweb

using six data sets in conjunction with artificially-generated constraints. Five are
from the UCI repository (Blake and Merz, 1998), and one (part-of-speech) comes
from the domain of natural language processing. Each graph in this section tracks
the change in accuracy as more constraints are made available to the algorithm.
COBWEB is an incremental algorithm, while k-means is a batch algorithm. De-
spite their significant algorithmic differences, we found that both algorithms im-
proved almost identically when supplied with the same amount of background
information.

Methodology. The number of clusters in each of the six data sets is known.
For experiments with cop-kmeans, we provided the known k value as input. We
initialized the clusters using instances chosen at random from the data set, with
two caveats. First, we used the cannot-link optimization described above which
allows us to select a pair of instances connected by a cannot-link constraint, when
possible. Second, we ensure that no two randomly selected cluster centers are
connected by a must-link constraint.

The data sets we used are composed solely of either numeric features or sym-
bolic features. For numeric features, we used a Euclidean distance metric; for
symbolic features, we computed the Hamming distance. Experiments with cop-
cobweb were restricted to data represented by symbolic features. No distance
metric was needed, since COBWEB uses category utility as its objective function.

We generated the artificial constraints in the following way. For each desired
constraint, we randomly picked two instances d, d′ from the data set and checked
their labels (which are available for evaluation purposes but are not visible to
the clustering algorithm). If they had the same label, we generated a must-link
constraint. Otherwise, we generated a cannot-link constraint.

d.label = d′.label ⇒ (d, d′) ∈ Con=

d.label 6= d′.label ⇒ (d, d′) ∈ Con 6=

This process ensures that our artificially-generated constraints are fully consistent
with the labels used for evaluation, and are therefore a good simulation of reliable
domain knowledge.

3.5.1 Evaluation Method
For evaluation, we compared the output partitions produced by cop-kmeans

and cop-cobweb with the provided data labels. To calculate agreement between
our results and the correct labels, we used the Rand index (Rand, 1971). This
metric is commonly used to compute the similarity of two partitions, P1 and P2,
of the same data set D. Each partition is viewed as a collection of n(n − 1)/2
pairwise decisions, where n is the number of items in D. For each pair of points
di and dj in D, Pi either assigns them to the same cluster or to different clusters.
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Let a be the number of decisions where di is in the same cluster as dj in both P1

and in P2. Let b be the number of decisions where the two instances are placed in
separate clusters by both partitions. Total agreement can then be calculated using
the following equation:

Rand(P1, P2) =
a + b

n(n− 1)/2
. (3.8)

We were also interested in testing our hypothesis that constraint information
can boost performance even on unconstrained instances. Consequently, for ex-
periments with artificial constraints, we present two sets of numbers: the overall
accuracy for the entire data set, and accuracy on a held-out test set (a subset of
the data set composed of instances that are not directly or transitively affected
by the constraints). This is achieved via ten-fold cross-validation; we generate
constraints on nine folds, cluster all ten folds together, and then calculate perfor-
mance on the tenth fold. This enables a true measurement of improvements in
learning: any improvements on the held-out test set indicate that the algorithm
was able to generalize the constraint information to improve performance on the
unconstrained instances as well.

3.5.2 Results using Artificial Constraints
In these experiments, we tested the behavior of both constrained clustering

algorithms when presented with varying numbers of constraints. We here present
results with six different data sets. We find consistent trends for all data sets: ac-
curacy increases as the number of available constraints increases. We conclude that
both algorithms are able to successfully incorporate constraints into the clustering
process.

We conducted 50 trials on each data set, randomly re-ordering the data set
each time, and averaged the results. Each trial is a 10-fold cross-validation run.

The soybean data set. The first data set of interest is soybean, which has 47
instances. Each instance is represented by 35 observations of a diseased soybean
plant. There are four classes of soybean disease present in the data. Without any
constraints, the k-means algorithm achieves a clustering accuracy of 88%, while
COBWEB attains 84% (see Figure 3.3).

Overall accuracy steadily increases with the incorporation of constraints, reach-
ing 98% for both algorithms after 100 random constraints. Lest the number of con-
straints seem high, we note that over 100 pairwise constraints can be achieved by
labeling (at most) 15 items. In addition, background knowledge for a real problem
may come in the form of general rules that generate large numbers of instance-level
constraints. This occurs in our experiments with large data sets from real domains
(see Chapters 4, 5, and 6). For the soybean data set, we find that accuracy on
the held-out test set also improves, achieving 96% for both algorithms with 100
constraints. This represents a held-out improvement of 8–12% over the baseline
(no constraints) for these algorithms.
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Figure 3.3: Clustering accuracy with artificially generated constraints: the soybean
data set (47 instances in four classes)

An improvement in overall accuracy is unsurprising, since the clustering al-
gorithm has access to more information that it would otherwise. However, we
would not necessarily expect to see any improvement on the held-out instances at
all. They do not have any guiding constraint information specified about them.
The fact that we do see an improvement demonstrates that, for this data set, the
knowledge encoded in the constraints is generalizable to the held-out set.

We also applied the Rand index (Equation 3.8) to the set of constraints versus
the true partition. Because the Rand index views a partition as a set of pairwise
decisions, this allowed us to calculate how many of those decisions were “known”
by the set of constraints. (For clarity, these numbers do not appear in the figure.)
For this data set, 100 random constraints achieve a mean accuracy of 48%. We can
therefore see that combining the power of clustering with background information
achieves better performance than either in isolation (96% > 88% and 96% > 48%).

The mushroom data set. We next turn to the mushroom data set, with 50 in-
stances and 21 attributes, a subset of the full mushroom (agaricus-lepiota) data
set. Each instance contains a (hypothetical) description of a single mushroom,
and there are two classes of mushrooms: poisonous and edible. In the absence
of constraints, the k-means algorithm divides the data set into two distinct clus-
ters with an accuracy of 69%, while COBWEB attains 68% (Figure 3.4). After
incorporating 100 random constraints, overall accuracy improves to 97% for cop-
kmeans and 96% for cop-cobweb. In this case, 100 random constraints achieve
73% accuracy before any clustering occurs. Held-out accuracy climbs to 85% for
cop-kmeans and to 83% for cop-cobweb, yielding an improvement of 15–16%
over the baseline.

The part-of-speech data set. The third data set under consideration is the part-
of-speech data set (Cardie, 1993). Unlike the other data sets studied in this section,
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Figure 3.4: Clustering accuracy with artificially generated constraints: the mush-
room data set (50 instances in two classes)

it does not come from the UCI repository. Instead, the data set was generated to
assist in the solution of a problem from Natural Language Processing. Each item
represents an English word, and the label represents the word’s part of speech.
We used a subset of the full data set that contains 50 instances, each described
by 28 attributes. There are three classes in this data set. Without constraints,
the k-means algorithm achieves an accuracy of 54%, and COBWEB attains 56%
(we have omitted the graphs for this data set, as cop-kmeans and cop-cobweb
have very similar performance, just as shown in the previous two figures.). After
incorporating 100 random constraints, overall accuracy improves to 91% for cop-
kmeans and 88% for cop-cobweb. Here, 100 random constraints attain 56%
accuracy. Held-out accuracy climbs to 71% for cop-kmeans and to 74% for cop-
cobweb, yielding an improvement of 17–18% over the baseline.

The tic-tac-toe data set. Next, we focus on the tic-tac-toe data set, with 100
instances. Each instance has nine attributes that represent the positions on a tic-
tac-toe board, and they are divided into two classes: a win for the X player or a
win for the O player. Because this data set is larger, we experimented with more
constraints. Without constraints, the k-means algorithm achieves an accuracy of
51%, and COBWEB attains 49% (Figure 3.5). In other words, the clustering
algorithms are unable to do better than making a random choice between the two
possible outcomes. This data set is known to be very challenging for inductive
learning algorithms. As mentioned in Chapter 2, this is an example of a data set
with feature values that do not correlate well with the true data labels. That is,
two instances that appear very similar according to their feature values will not
necessarily be in the same class.

Despite the difficulty of this problem, we are able to achieve large increases
in clustering accuracy. After incorporating 500 random constraints, overall ac-
curacy is 93% for cop-kmeans and 90% for cop-cobweb, although high per-
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Figure 3.5: Clustering accuracy with artificially generated constraints: the tic-tac-
toe data set (100 instances in two classes)

formance is asymptotically approached well before than that. This set of con-
straints achieves 80% accuracy in isolation. Held-out accuracy reaches 61% for
cop-kmeans, achieving a 10% increase in accuracy. cop-cobweb behaves some-
what worse on this data set, with held-out performance improving marginally to
50%. The lack of large gains on the held-out subset is consistent with our obser-
vations about how the feature values do not correlate well with the class labels. In
other words, the constraints do not generalize well to the unconstrained held-out
subset. Regardless, overall performance does improve greatly.

We believe that this data set is particularly challenging because the classifica-
tion of a board as a win or a loss for the X player requires extracting relational in-
formation between the attributes—information not contained in our instance-level
constraints. Our goal has been to simply demonstrate the benefits that constraints
of any kind can provide, so we created constraints by random selection. However,
if our goal were to improve performance as much as possible on this particular
task, we could instead create constraints intelligently. One possibility would be to
include the spatial relationships between the attributes. We could do this by creat-
ing a must-link constraint between two boards (instances) that have two adjacent
X’s (spatially) in the same positions.

In Chapter 2, we compared our methods to those of Klein et al. (2002), who
developed a method for accommodating constraints by pre-processing the data set
and using a standard clustering algorithm. In addition to adjusting the pairwise
distances between items due to the specified constraints, Klein et al. also extend
this information across the feature space. Thus, two items that are very similar
in terms of their feature values may end up “sharing” constraint information as
well. This enables a more efficient encoding of constraint information, since a
handful of constraints can grow into a large set of constraints that apply to the
entire data set. When true class values correlate well with feature similarity, this
is a useful approach. However, we suspect that with data sets such as tic-tac-toe,
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Figure 3.6: cop-kmeans clustering accuracy with artificially generated con-
straints: the iris and wine data sets

automatically extending the constraints in this way may cause the algorithm’s
performance on unconstrained items to go down.

The iris and wine data sets. In contrast to the preceding experiments, which
made use of data sets with symbolic (categorical) attributes, we also experimented
with using cop-kmeans on two UCI data sets with numeric (continuous) at-
tributes (see Figure 3.6)2. The iris data set consists of 150 of different iris plants,
each described by four attributes. There are three distinct classes, iris setosa,
iris versicolour, and iris virginica. It is well known that one class is linearly
separable from the other two, which are not linearly separable. In our experiments,
incorporating 400 random constraints with this data set yielded a 9% increase in
held-out accuracy (from 85% to 94%). Overall accuracy climbed to 99%, and the
set of constraints achieved 66% accuracy. The wine data set consists of 178 ob-
servations of different wines, each measured with 13 attributes. There are three
classes in the data set, which correspond to which Italian cultivar produced the
grapes. Behavior on this data set was also consistent with our other experiments;
held-out accuracy improved 9% from 71% to 80%, and overall accuracy climbed
to 96%. The constraint set achieved 68% in isolation.

Discussion of results. Our experiments on six different data sets have shown
that both of the constrained clustering algorithms exhibit significant accuracy im-
provements when using constraints. Figure 3.7 summarizes the improvements in
held-out accuracy that we observed for certain numbers of constraints. For the
three smallest data sets, soybean, mushroom, and part-of-speech, we show the accu-
racy results for cop-kmeans (part (a)) and cop-cobweb (part (b)) when incor-
porating 100 randomly generated constraints. Both algorithms perform remark-
ably similarly, showing improvements of 12–18% over the baseline (unconstrained)

2COBWEB cannot handle data with numeric attributes.
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Figure 3.7: Summary of held-out accuracy improvements obtained for cop-
kmeans and cop-cobweb using artificial constraints
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algorithms. We further show the results for cop-kmeans on the three largest
data sets, tic-tac-toe, wine, and iris, when incorporating 500 randomly generated
constraints. We observe improvements of 9–10%.

We conclude from these experiments that even randomly generated constraints
can improve clustering accuracy. As an additional, unexpected side effect, we have
seen that individual constraints often generalize enough to improve performance
on other items in the data set. This is shown in the held-out accuracy results
for all six data sets. This behavior suggests that we can improve performance on
real problems even if our domain knowledge is incomplete, as is often the case.
The constraints that we do encode may boost performance on items without any
explicit constraints as well.

These experiments also demonstrate how our algorithms can easily handle con-
straint relations that apply to only a subset of the data. This contrasts with the
work that has been done with contiguity constraints (see Chapter 2), where the
constraint relation must encompass all data items. In addition, we accommodate
constraints that indicate when two items should not be grouped together as well
as those that indicate when they should be; this is a novel constraint formula-
tion. Finally, our algorithms are not restricted to a single source of constraining
information, as with previous work on image segmentation. Instead, we can ac-
commodate a combination of information from a variety of sources, as long as it
can be expressed as instance-level pairwise constraints.

3.5.3 Analysis of Artificial Constraint Results
In addition to the accuracy improvements we have just presented, we also

observed several other interesting results in our experiments with artificial con-
straints. First, we find that the use of constraints can aid cop-cobweb in select-
ing an appropriate value for k, the number of clusters present in the data. Second,
the constraint satisfaction problem exhibits behavior consistent with that observed
by other researchers. Interestingly, the hardest constrained clustering problem in-
stances are those with an intermediate number of constraints specified. Finally,
we find that the addition of constraints results in a significant drop in the mean
number of iterations that cop-kmeans requires before convergence.

COP-COBWEB: Number of clusters. The cop-cobweb algorithm attempts
to automatically determine the best value for k, the number of clusters in the
data. Figure 3.8 plots the mean value of k selected by cop-cobweb for three
data sets with varying numbers of constraints. In the absence of constraints, cop-
cobweb consistently selects k = 3 for the soybean data set, which conflicts with
the data labels; they claim that there are four distinct clusters present. However,
as more constraints are provided, the mean k value chosen by cop-cobweb nears
the “true” value. In contrast, cop-cobweb chooses a good value for k for the
mushroom data set in the absence of constraints. The algorithm creates too many
clusters for small numbers of constraints, but it selects values close to k = 2 as
more constraints are available. A similar trend is apparent with the part-of-speech
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Figure 3.9: cop-kmeans: Number of successful runs, out of 500

data set. The average solution obtained without constraints has k = 3, but as
the number of constraints increases, so does the mean number of clusters. cop-
cobweb’s selection of k appears to be drifting away from the “correct” value of
k = 3, but for larger numbers of constraints, the mean k value declines again. We
conclude that small numbers of constraints may or may not help cop-cobweb in
selecting the correct value of k. Larger numbers of constraints, however, are much
more effective.

COP-KMEANS: Constraint satisfaction hardness. In our experiments with
cop-kmeans, we observe an interesting trend in terms of the relative difficulty of
finding a partition that satisfies all of the specified constraints. For small numbers
of constraints, it is relatively “easy” to find a satisfying solution. As the number
of constraints increases, the problem becomes more difficult. However, as the
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Figure 3.10: cop-kmeans: Number of iterations before convergence, averaged
over successful runs (max 500)

number of constraints increases further, the problem becomes easier again. This
is consistent with observations made by Selman et al. (1996). They examined the
computational difficulty of solving randomly-generated 3-SAT formulas by plotting
the formula complexity (ratio of clauses to variables) against the amount of work
done by the SAT solver. They found that the easiest formulas to solve tended to
be those either with low complexity or those with high complexity. The hardest
problems were the intermediate ones.

Recall that k-means is a greedy hill-climbing algorithm. cop-kmeans preserves
this quality, which means that it may fail to find a satisfying solution for a given
set of constraints. As previously indicated, running the algorithm multiple times
with different random seeds alleviates this problem empirically. Figure 3.9 plots
the number of successful runs, out of 500, for each data set and various numbers
of constraints. A successful run is one that terminates with a satisfying solution.
Each data set exhibits a minimum where it has the fewest successful runs. The
exact location of this point depends on the complexity of the problem, which
involves both the size of the data set and the number of clusters present. Since
the hardest problems are the ones most likely to fail to find a satisfying solution,
this trend corresponds very well to the hardness results reported by Selman et al.

COP-KMEANS: Empirical convergence speed. In our discussion of the
formal properties of cop-kmeans, we mentioned that empirically, we find that
constraints reduce the number of iterations required before convergence. This is
demonstrated in Figure 3.10. For all six data sets, as the number of constraints
available to the algorithm increases, the mean number of iterations required before
convergence decreases. The effect is especially pronounced for the data sets shown
in Figure 3.10b. These data sets are larger than those that appear in Figure 3.10a,
so the number of iterations required in the absence of constraints is correspondingly
higher. However, after the incorporation of only a modest number of constraints,
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the mean number of iterations required drops below four. In general, constraints
provide a way to achieve convergence in fewer iterations.

3.6 Empirical Comparison to Seeded Clustering
In Section 2.6, we described the work of Basu et al. (2002), who incorporate

domain knowledge expressed as a set of partial labels on a data set. We also
compared their methods to ours, in general terms. The most significant distinction
is that our instance-level encoding of domain knowledge can express a wider range
of information than data labels can. It is always possible to encode any set of data
labels as a set of instance-level pairwise constraints. However, there is not always
a set of data labels that can express the same information for an arbitrary set of
instance-level constraints.

After contrasting their approach to ours in more detail, we will present results
comparing our systems empirically.

3.6.1 Seeded Clustering versus Constrained Clustering
The motivating goal of the work done by Basu et al. is to enable a clustering

algorithm to focus on more promising regions of the search space. The k-means
algorithm can become trapped in local minima, and their modified algorithms seek
to avoid those areas by “seeding” the partition with user-defined labeled examples
of correctly labeled items. Each group of items with the same label becomes one
of the initial cluster groups used by the k-means algorithm. If k is larger than the
number of distinct labels, then the seeded algorithms select the remaining required
cluster centers randomly. In essence, they have developed a clever method for using
partially labeled data to improve the starting point for the k-means algorithm.

Basu et al. propose two algorithms based on this method. The first is Seeded-
KMeans, which uses the labeled data to identify the initial cluster groups but
then is free to modify the data assignments (i.e., break constraints) as clustering
progresses. The second algorithm is Constrained-KMeans, which selects the initial
cluster groups in the same way but then disallows any changes to the cluster
assignments of the labeled items. cop-kmeans is most like Constrained-KMeans;
the main difference is that Constrained-KMeans requires that domain knowledge
be specified as individual data labels.

In addition to guiding the k-means algorithm to more promising regions of
the search space, it is also important to have the ability to override the objective
function when appropriate. Constrained-KMeans and cop-kmeans have this abil-
ity; they prioritize constraints over the output of the objective function. Seeded-
KMeans is more conservative; it dictates a constrained starting point but then
allows the objective function complete control over what happens from that point
on. Basu et al. have shown that this enables Seeded-KMeans to be more robust in
the presence of noisy constraints; it can ignore constraints that do not fit well with
the objective function’s decisions. Constrained-KMeans and cop-kmeans do not
recover well from noisy constraints, since they treat each one as a hard constraint.
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We have not experimented with noisy constraints. We take the view that hard
constraints should only be used to express information that is known to be very
reliable. If the background knowledge under question is approximate, noisy, or
heuristic, soft constraints are a better formulation to use.

3.6.2 Empirical Comparison
Basu et al. conducted experiments on several data sets, of varying sizes, to

compare their algorithms to their reimplementation of cop-kmeans. They eval-
uated the performance of all three algorithms in two ways. First, they calculated
the mutual information (MI) of each partition, which measures the amount of sta-
tistical information overlap between the cluster representations and the true data
labels. In other words, a high MI indicates a large amount of agreement between
the clusters and the correct categorization of the data. Second, they computed the
value of the objective function obtained by the output of each algorithm. In this
case, the goal was to maximize the objective function value. There are some prob-
lems with evaluating clustering based on the value of the objective function. As we
have mentioned, constraints often represent information that overrides the objec-
tive function. Thus, a solution that satisfies the constraints may appear worse than
one that does not, if we only examine the objective function value. Consequently,
the MI values are more informative.

Figure 3.11a shows the MI performance for Seeded-KMeans, Constrained-
KMeans, and cop-kmeans on the Small-20 Newsgroups data set. A fourth al-
gorithm, Random-KMeans, is included as a baseline. It is simply the original
k-means algorithm, which initializes itself using items chosen randomly from the
data set and does not make use of any constraints. Basu et al. report MI numbers
for a single 10-fold cross-validation run. The x axis, “seed fraction,” indicates the
fraction of the training items that are labeled before clustering. For example, a
seed fraction of 0.2 indicates that 20% of the 1800 documents in the training set, or
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360 documents, have been labeled. In this figure, the seeded clustering algorithms
achieve higher MI values than cop-kmeans does. For the four other data sets
analyzed in this fashion, cop-kmeans performs very similarly to the seeded clus-
tering methods (i.e., within 0.01 or 0.02 in terms of MI values). These data sets
include the Newsgroups data set, which is a superset of Small-20 Newsgroups. It is
not clear whether the lower performance of cop-kmeans on Small-20 Newsgroups
is caused by unusual features of this subset or simply due to the smaller data set
size. It is also possible that with a different random initialization of cluster centers
(i.e., another run of cop-kmeans), the results on Small-20 Newsgroups would be
more consistent with results on the other data sets.

Figure 3.11b instead reports on the objective function values obtained; the data
set under consideration is the Yahoo! data set. For this data set, Basu et al. observe
minimal improvements in MI (not shown) for all three algorithms. However, as
Figure 3.11b shows, the use of hard constraints decreases the objective function
value. This is consistent with our earlier comments on what happens when the
constraints override the objective function. A lower objective function value is not
necessarily good or bad. It simply indicates that the constraints disagree with the
built-in bias of the algorithm; this is of concern only if the constraints are not
reliable. The objective function values may provide insights into the data set or
problem, since this behavior tells us how much the bias and constraints agree (or
disagree). However, this evaluation method does not tell us anything useful about
the performance of the algorithms.

Basu et al. also conducted experiments on the same iris data set that we used
previously in this chapter. They evaluated the three algorithms in terms of MI
when provided with about 40 labeled items (a “seed fraction” of 0.3) and varying
amounts of noise in those labels.3 This translates to 780 pairwise constraints. We
have already shown that, for a randomly chosen set of 400 constraints, we observe a
14% improvement in clustering accuracy (to 99% accuracy), and a 9% improvement
in held-out clustering accuracy, on this data set (Figure 3.6). Basu et al. found
that both seeded clustering algorithms achieved an MI value of 0.94, while cop-
kmeans had a lower value of 0.88. However, these results were obtained from
a single cross-validation run. Because the MI values for Random-KMeans over
several trials ranged from 0.80 to 0.90, we suspect that more reliable conclusions
could be drawn after several cross-validation runs, ideally with different splits of
the data set.

In this section, we have reviewed the semi-supervised clustering work of Basu
et al. They developed two seeded clustering methods, Constrained-KMeans and
Seeded-KMeans. When labeled examples of the true classes present in the data set
are available, then these algorithms present useful methods for enforcing those con-
straints, especially in the presence of noisy labels. In some cases, these algorithms
out-perform cop-kmeans in terms of MI; in other cases, there is little difference.

3We are not concerned with noisy constraints, as explained earlier.
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It may be possible to incorporate the ideas of Basu et al. in the clustering initial-
ization phase of cop-kmeans. K-means is sensitive to the choice of initial cluster
centers, and Basu et al. have shown that an intelligent selection of those centers
produces measurable benefits. We have already seen that cop-kmeans performs
well on the general case, where our domain knowledge may not be expressible as
data labels. If we can extend the seeding approach to this case, we expect to see
further gains on those problems as well.

3.7 Summary
This chapter examines the details of constrained clustering by first presenting a

general method for enhancing an existing clustering algorithm to allow it to make
use of domain knowledge. This domain knowledge must be expressed as a set of
instance-level, pairwise, hard constraints on the data items. After demonstrat-
ing that the scenarios presented in Chapter 1 can be accommodated using this
constraint formulation, we presented two enhanced clustering algorithms, cop-
kmeans and cop-cobweb. In experiments with artificial constraints, we have
shown that the new algorithms can successfully incorporate constraints to improve
their clustering performance.



CHAPTER 4
APPLICATION 1: ROAD MAP REFINEMENT

The experiments presented in Chapter 3 all involved artificial problems; we used
standard data sets in conjunction with constraints that were randomly generated
from the true data labels. Those constraints were therefore completely reliable,
in terms of guiding the clustering algorithm towards a result that was consistent
with the labels used for evaluation.

However, we are also very interested in testing these methods in the context
of real-world problems. Can real (and potentially noisy) domain knowledge be
successfully represented as instance-level constraints, and will those constraints
enable significant improvements in clustering accuracy? In this chapter, we first
explore the application of intelligent clustering to the problem of automatic road
map refinement (Section 4.1). Section 4.2 examines the performance of the regular
k-means algorithm on this problem. In Section 4.3, we describe how to encode
heuristic domain knowledge about this problem as a set of instance-level hard con-
straints. As we will show, the unconstrained k-means algorithm performs very
poorly compared to cop-kmeans, which has access to additional domain knowl-
edge about the problem (Section 4.4). In the two chapters that follow, we will
demonstrate the utility of our methods on two other real-world problems.

4.1 Digital Road Maps
Digital road maps currently exist that are used in several applications, such

as generating personalized driving directions. However, these maps contain only
coarse information about the location of a road. Map accuracy, in terms of how
close the map points are to the true location of the road, is low. For example,
Navigation Technologies, Inc., (NavTech) offers maps with individual points that
are up to 15 meters off from the true road location (Navigation Technologies, 1996).
This level of accuracy, while sufficient for generating directions for a human driver
to follow, is inadequate for more sophisticated applications.

Our goal in this application is to refine digital maps by improving their accuracy
and enhancing the fine details. We will produce maps that are annotated not
only with the location of the road, but also with the location of individual road
lanes. Maps of this nature enable the automatic generation of more precise driving
directions as well as a host of more advanced applications, such as alerting a driver
who inadvertently drifts from the current lane.

4.1.1 Using GPS Data to Automatically Refine Maps
One method for producing enhanced maps would be to manually re-survey each

road segment on the map and to update the road maps by hand to include the new
information. This would not only be extremely tedious and expensive but would
also take a long time to complete. Instead, we propose using an automated method
to analyze actual automobile driving patterns and extract information about the
location of road lanes. This approach is low-cost, fast, and allows for easy updates
to the road maps. Further, if a road lane is closed due to construction or some

60
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other obstruction, our analysis methods can detect that that lane is no longer in
use and update the current status of the maps accordingly.

Our approach to this problem is based on the observation that drivers tend to
drive within lane boundaries (rather than, for example, straddling two lanes). Over
time, lanes should correspond to “densely traveled” regions, in contrast to the lane
boundaries, which should be “sparsely traveled.” Consequently, we hypothesized
that it would be possible to collect data about the location of cars as they drive
along a given road, and then cluster that data to automatically determine where
the individual lanes are located.

4.1.2 Experimental Methodology
The data set we will be using consists of observations of several cars driving on

the same network of roads. Each car’s position was sampled approximately once
per second using differential GPS (Global Positioning System) receivers affixed to
the top of the vehicle. The DGPS receiver recorded the longitude, latitude, and
altitude of the vehicle, as well as some information about how reliable each sample
was. All data was taken from I-280 in the Palo Alto, CA, region. We define a
traverse as a single pass by the same car from one end of a road segment to the
other end. Consequently, each vehicle may have made more than one traverse of
a given road.

Road segmentation. To facilitate processing, we segmented the data generated
by each driver by matching it to NavTech’s coarse road map segments. A road
segment is a continuous section of a road that is terminated on each end where it
intersects with other roads. Very long stretches of road may also be subdivided
into separate segments by the NavTech map. Although NavTech’s data points are
not good enough to pinpoint the exact location of a road, they are good enough
to allow us to segment the data streams into individual stretches of road.

Data format. We then converted the data into the following format. Each data
point is represented by two features: its distance along the road segment and its
perpendicular offset from the road centerline.1 For evaluation purposes, we asked
the drivers to indicate which lane they occupied and any lane changes. This allowed
us to label each data point with its correct lane.

4.2 K-means Performance on Lane Finding
The k-means clustering algorithm (MacQueen, 1967) is a standard choice for

clustering in Euclidean space. K-means has demonstrated good performance on
a variety of problems, from image segmentation (Marroquin and Girosi, 1993) to

1The centerline parallels the road but is not necessarily located in the middle of
the road. Schroedl et al. (2000) provide full details on the centerline computation.
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Figure 4.1: Raw data for a sample road segment; the x-axis is the distance along
the road (in meters) and the y-axis is offset from the road centerline

speech recognition (Fontaine et al., 1994), and is known to converge to a local op-
timum (Selim and Ismail, 1984). It is therefore a sensible first choice for clustering
our GPS data.

However, a straightforward application of k-means yields poor results on this
problem. For example, Figure 4.1 shows the data set collected from several tra-
verses of the same road segment. The horizontal axis is the distance along the
road (in meters) and the vertical axis is the centerline offset. Figure 4.2 shows the
output of the regular k-means algorithm on that road segment. We provided the
correct value of k (number of lanes, 4) as input to k-means. The points assigned to
each of the resulting four lane clusters are represented by different symbols. This
algorithm does a poor job of identifying the four lanes, and the mistakes it makes
are representative of its general behavior on this problem. K-means by default
seeks clusters that are spherical in the feature space, which results in clusters that
span multiple lanes in the y direction and do not span the entire length of the road
in the x direction.

To alleviate this problem, we could manually modify the distance calculation
so that distance in the y direction is more heavily weighted than distance in the
x direction is. Alternatively, we could re-scale all of the feature values to place
more emphasis on the y distance than on the x distance. From the viewpoint of
the k-means algorithm, either method would have the effect of compressing the
feature space horizontally. However, the first approach would have us tweaking
the distance calculation differently for every problem the k-means algorithm en-
counters. The second approach also has a major drawback: it requires an intimate
knowledge of the clustering algorithm’s bias so that the data can be pre-processed
in ways that will improve performance. In contrast to both of these approaches,
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Figure 4.2: K-means output partition for the sample road segment in Figure 4.1

our method allows the algorithm to remain problem-independent. We do not need
to make any internal changes to the algorithm to fit it to a specific problem, and
we do not need to pre-process the data to make it fit the algorithm. Instead, we
specify all problem-specific knowledge in a separate, isolated component (Con),
and allow the algorithm to combine it automatically with the data.

With respect to the lane finding problem, we observe that the built-in bias
of the k-means algorithm (towards spherical clusters) is inappropriate. However,
this is because the k-means algorithm sees the data set only as a set of generic
data points. It does not know that it is seeking road lanes, which have a specific
characteristic shape. We know that road lanes tend to be elongated (along the road
segment) and that they tend to be parallel to each other. In the following section,
we will show how to convert our domain knowledge about the problem into useful
instance-level constraints and report on the results of using those constraints with
cop-kmeans, the intelligent clustering version of k-means.

4.3 Generating Lane-finding Constraints
The constraint types defined in Chapter 3 provide us with a language to express

our domain knowledge about the problem of lane finding. In this case, we focus
on two domain-specific heuristics for generating constraints: trace contiguity and
maximum separation.

Heuristic 1: Trace contiguity means that, in the absence of lane changes, all
points a, b generated by the same vehicle in a single pass over a road segment
should end up in the same lane. In other words, traces are contiguous in that all
of the points from a single trace are linked. We convert this heuristic into a set of
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Figure 4.3: Domain knowledge encoded as pairwise links between points generated
by the same traverse of the road segment

constraints in the following way:

∀
a,b

a.traverse = b.traverse ⇒ (a, b) ∈ Con=

where each point is labeled according to its traverse of the segment. Again, the
same car may have made more than one traverse of the same segment; in this case,
points generated by the same car but on different passes will have different values
for the traverse feature.

Figure 4.3 provides a conceptual representation of the relational trace contigu-
ity information by linking each adjacent pair of points that came from the same
traverse. We can see that two points may appear to be very far apart in this
Euclidean space, yet still be generated by the same car. The transitivity of the
must-link relation ensures that two such points will still end up in the same lane
cluster.

Heuristic 2: Maximum separation refers to a limit on how far apart two points
can be (perpendicular to the centerline) while still being in the same lane. If two
points are within ten meters of each other in distance along the road segment, and
their centerline offsets differ by at least four meters, then we generate a constraint
that will prevent those two points from being placed in the same cluster:

∀
a,b
|a.x− b.x| < 10.0 and |a.y − b.y| > 4.0 ⇒ (a, b) ∈ Con 6=

This heuristic helps express the idea that lanes are parallel; the fact that two points
are close together in the x direction has a different meaning than two points being
close together in the y direction. Recall that the x and y axes do not correspond
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Figure 4.4: cop-kmeans output for the sample road segment in Figure 4.1; lane
centers are marked by solid lines

to a fixed set of coordinates in the real world. They simply represent “distance
along the road” and “perpendicular offset from the centerline.” The x axis follows
the road centerline, which may be curving in the real Euclidean space.

We could also have included a set of links in Figure 4.3 between items deemed
too far apart by the maximum separation heuristic, but this would make the figure
difficult to interpret visually. The full set of constraints representing our domain
knowledge about the problem, however, includes both Con= and Con 6=.

Figure 4.4 shows the correct partition of data points into lanes, according to
the labels we obtained from the drivers. In addition, the final cluster (lane) centers
appear as solid lines. Compare to Figure 4.2, which is the output generated by the
k-means algorithm.

4.3.1 Lane Change Detection
The trace contiguity heuristic applies only in the absence of lane changes. If a

driver changes lanes, we need to break that trace into a set of sub-traces so that
no trace spans multiple lanes. This is something of a chicken-and-egg problem,
since we do not yet know where the lane boundaries are, but we need to be able to
detect lane changes! Since we are working with domain knowledge in the form of
heuristics, however, we will content ourselves with an approximation method for
detecting lane changes.

We define a lane change as a contiguous sequence of points d1, . . . , dm, all
generated on the same traverse, whose y feature values define a monotonic sequence
such that |d1.y − dm.y| > tolsep. tolsep is the maximum separation tolerance
allowed for points within a single lane. This value is somewhat road-dependent;
we used 2.0 meters for our experiments with the I-280 data.
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The points in a lane change sequence d1, . . . , dm do not belong to a lane. They
are transitional points signaling motion from one lane to another. Because it is not
possible to unambiguously assign them to a lane, it is also not possible to assign
them to a cluster. Therefore, after identifying a lane change sequence, we remove
all of the points in that sequence from the data set for clustering purposes. This
also severs the trace contiguity connection from the points that occur before the
lane change with those that occur after the lane change (in terms of distance along
the road segment). For example, Figures 4.2 and 4.4 have the lane change points
removed.

4.3.2 Accuracy of Lane-finding Constraints
The constraints we used for our approach to this problem are, as previously

noted, generated from heuristics. For example, the trace contiguity heuristic’s
accuracy is dependent on the accuracy of the lane change detection heuristic.
We selected approximate values for tolsep, but those values may not always be
precisely correct, due to noise in the GPS data and natural variations in road
construction. Therefore, the constraints generated by these heuristics may not be
completely reliable. This is important because we are treating each constraint as
a hard restriction on the set of possible solutions. As we will see, the constraints
are “reliable enough” to provide very high performance on this task. Nevertheless,
it is important to evaluate the accuracy of the constraints, since that accuracy
will affect the accuracy of our output. In the next section, we will accompany our
discussion of experimental results with an analysis of the accuracy of the input
constraints.

4.4 Experimental Results
This section describes the results we obtained when applying k-means and

cop-kmeans to the same set of 20 different road segments. In each case, the
algorithms were required to select the best value for k. We first describe two
important implementation details: how cluster centers are represented for this
problem, and how to automatically select the best value for k. We then discuss
our experiments and observe that cop-kmeans, which has access to the heuristic
domain knowledge described above, consistently performs much better than the
regular k-means algorithm does. Finally, we analyze the errors made by cop-
kmeans and discuss the reliability of the heuristic constraint sets.

4.4.1 Cluster Center Representation
To better analyze performance in this domain, we modified the cluster center

representation. The usual way to compute the center Cti of cluster Ci is to average
all of its constituent points in the following way:

Cti =
1

|Ci|
∑
d∈Ci

d (4.1)
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Figure 4.5: Representation of a cluster (lane) center. l and r are the x coordinates
of the left and right ends of the lane, and y is the y offset of the lane from the
centerline. Points that fall anywhere on the dashed line are considered equally
distant from the center of the cluster.

where each d is a vector of feature values. Thus, the center of a cluster is itself a
point; in this case, Cti would have two values and be represented by (Cti.x, Cti.y).
There are two significant drawbacks to using that representation for this problem.
First, the center of a lane is a point halfway along its extent, which commonly
means that points inside the lane but at the far ends of the road appear to be
extremely far from the cluster center. Second, and more significantly for any
practical use of this method, applications that make use of the clustering results
need more than a single point to define a lane.

Instead, we represented the center of each lane cluster with a line segment
parallel to the road centerline (see Figure 4.5). We express this lane representation
with a tuple 〈l, r, y〉, which indicates the x coordinates of the left (l) and right (r)
ends of the lane as well as the (constant) centerline offset of the lane, y:

Cti.l = min
d∈Ci

d.x (4.2)

Cti.r = max
d∈Ci

d.x (4.3)

Cti.y =
1

|Ci|
∑
d∈Ci

d.y (4.4)

Thus, the center of the cluster is a line segment from (Cti.l, Cti.y) to (Cti.r, Cti.y).
This formulation more accurately models what we conceptualize as “the center of
the lane,” provides a better basis for measuring the distance from a point to its lane
cluster center, and also provides useful output for other applications. To ensure a
fair comparison, both the basic k-means algorithm and cop-kmeans make use of
this lane representation (for this problem).

K-means uses variance as its objective function, which relies on the ability to
calculate the distance from a point to its assigned cluster. For two-dimensional
data, the distance between a point d and a cluster Ci would be calculated as

dist(d, Ci) =
√

(d.x− Cti.x)2 + (d.y − Cti.y)2. (4.5)
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Due to our modification to the cluster center representation, we instead make use
of the following method for calculating distance:

dist(d, Ci) =


√

(d.x− Cti.l)2 + (d.y − Cti.y)2 d.x < Cti.l√
(d.x− Cti.r)2 + (d.y − Cti.y)2 d.x > Cti.r

|d.y − Cti.y| otherwise.

(4.6)

This is a simple extension of the Euclidean distance to handle a line rather than
a point. If d is to the left of the cluster’s left endpoint, then we calculate the
Euclidean distance from d to (Cti.l, Cti.y). If d is to the right of the cluster’s
right endpoint, we calculate the distance from d to (Cti.r, Cti.y). Otherwise, we
calculate the vertical distance from d.y to the cluster center (Cti.y). For example,
in Figure 4.5, any points that fall on the dashed line are considered equidistant
from the cluster center.

It is interesting to note that even with this more expressive cluster center rep-
resentation, the k-means algorithm continues to create very spherical clusters. In
the absence of constraints, the k-means algorithm has no incentive to “grow” its
clusters horizontally and to take advantage of this representation. Therefore, its
greedy search never encounters solutions with very elongated clusters. In con-
trast, when clustering with constraints, the constraints provide exactly that kind
of motivation.

4.4.2 Selecting k
In these experiments, both algorithms were required to automatically select the

best value for the number of clusters, k. Each algorithm generated a partition for
each value of k, from 1 to 5, and then selected the partition (and thus, the value of
k) that it considered to be the best. In this problem domain, we know that there
is a reasonable upper limit on k; in particular, the roads we were analyzing were
all highway roads with a maximum of four lanes per road segment. Therefore, we
can easily bound the possible range of values for k for this problem.

To enable the algorithms to select their best output partition, we used a second
measure that trades off cluster cohesiveness against simplicity (in this case, mea-
sured as the number of clusters). More precisely, we define the quality of a partition
by calculating the average squared distance from each point to its assigned cluster
center and penalizing for the complexity of the solution:

quality(C1, . . . , Ck) =
1

n
(
∑
d∈D

dist(d, Cd)
2) · k2. (4.7)

The goal is to minimize this value. Note that this measure differs from the
objective function used by k-means and cop-kmeans while clustering (variance).
In the language of Jain and Dubes (1988), quality is a relative criterion, while
variance is an internal criterion. An internal criterion (objective function) allows
an algorithm to select between different potential solutions generated when using
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Table 4.1: Lane finding performance (Rand index). Each algorithm was given the
true value for k.

Segment (size) K-means cop-kmeans Constraints alone
1 (699) 49.8 100 36.8
2 (116) 47.2 100 31.5
3 (521) 56.5 100 44.2
4 (526) 49.4 100 47.1
5 (426) 50.2 100 29.6
6 (503) 75.0 100 56.3
7 (623) 73.5 100 57.8
8 (149) 74.7 100 53.6
9 (496) 58.6 100 46.8
10 (634) 50.2 100 63.4
11 (1160) 56.5 100 72.3
12 (427) 48.8 96.7 59.2
13 (587) 69.0 99.8 51.5
14 (678) 65.9 100 59.9
15 (400) 58.8 100 39.7
16 (115) 64.0 76.6 52.4
17 (383) 60.8 98.9 51.4
18 (786) 50.2 100 73.7
19 (880) 50.4 100 42.1
20 (570) 50.1 100 38.3
Average 58.0 98.6 50.4

the same set of input parameters. A relative criterion allows an algorithm to select
between solutions generated on different runs, with different parameters (in this
case, different values for k).

In the lane finding domain, the problem of selecting k is particularly challenging
due to the large amount of noise in the GPS data. Each algorithm performed 30
randomly-initialized trials with each value of k (from 1 to 5). cop-kmeans selected
the correct value for k for all but one road segment, but k-means never chose the
correct value for k (even though it was using the same method for selecting k).
This is due to its strong bias towards spherical clusters; the most spherical cluster
is obtained by assigning all points to a single cluster.

4.4.3 Results on I-280 Data
Table 4.1 presents accuracy results for both algorithms over 20 road segments.

Accuracy was calculated using the Rand metric (see Section 3.5.1) and indicates
the amount of agreement between the output partition (set of lanes) and the true
lane labels. These results represent overall accuracy rather than held-out accuracy,
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since determining the right set of constraints is part of the problem; the constraints
are not artificially generated from the true labels. The number of data points for
each road segment is also indicated. These data sets are much larger than the
UCI data sets discussed in Section 3.5, providing a chance to test the ability of the
algorithm to scale to larger problems.

As shown in Table 4.1, cop-kmeans consistently outperformed the uncon-
strained k-means algorithm, attaining 100% accuracy for all but four data sets
and averaging 98.6% overall. The unconstrained version performed much worse,
averaging 58.0% accuracy. The clusters the latter algorithm produces often span
multiple lanes and never cover the entire road segment lengthwise, even though it
was given the correct value for k. As discussed above, lane clusters have a very
specific shape: they are greatly elongated and usually oriented horizontally (with
respect to the road centerline). Yet even when the cluster center is a line rather
than a point, k-means seeks compact, usually spherical clusters. Consequently, it
does a very poor job of locating the true lanes in the data.

Figure 4.2 showed the output of the regular k-means algorithm for road seg-
ment 15. The correct value of k was specified to obtain this output (without it,
the algorithm selects k = 1). cop-kmeans achieves 100% accuracy on this road
segment (and it selects the proper value of k). The correct partition, which is
identical to the cop-kmeans output, was shown in Figure 4.4.

The final column in Table 4.1 is a measure of how much is known after gen-
erating the constraints and before doing any clustering. It shows that an average
accuracy of 50.4% can be achieved using the background information alone. This
demonstrates that neither general similarity information (k-means clustering) nor
domain-specific information (constraints) alone perform very well, but that com-
bining the two sources of information effectively (cop-kmeans) can produce ex-
cellent results.

4.4.4 Analysis of COP-KMEANS Errors and Constraint Accuracy
An analysis of the errors made by cop-kmeans on the lane-finding data sets

shows that each mistake arose for a different reason. For road segment 12, the
algorithm incorrectly included part of a trace from lane 4 in lane 3. This appears
to have been caused by noise in the GPS points in question: they are significantly
closer to lane 3 than lane 4. The same thing happened for a single point in road
segment 13. Alternatively, the labels for this trace may themselves be noisy. On
road segment 16, cop-kmeans chose the wrong value for k (it decided on three
lanes rather than four). This road segment contains relatively few data points
(115, compared to the average of 534), which possibly contributed to the difficulty.
Finally, for road segment 17, a small part of one trace was assigned to the wrong
lane due to an incorrect lane-change detection. Since cop-kmeans made so few
errors on this data set, it is not possible to provide a more general characterization
of their causes.
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We mentioned above that quality of the output clusters obtained from cop-
kmeans will be sensitive to the reliability of the constraints it is given. In addition,
since these constraints were generated heuristically, we may not expect them to
be completely reliable. Consequently, we evaluated the accuracy of the constraints
that were generated for each road segment by calculating how well they agreed
with the true lane labels. We define two sets of accurate constraints, Acc= and
Acc 6=, which are subsets of Con= and Con 6= respectively, as follows:

Acc= = {(a, b) ∈ Con= | a.lane = b.lane} (4.8)

Acc 6= = {(a, b) ∈ Con 6= | a.lane 6= b.lane} (4.9)

where a.lane is the true lane label for point a. We then calculate constraint
accuracy:

C-acc =
|Acc=|+ |Acc 6=|
|Con=|+ |Con 6=|

. (4.10)

For all but one of the road segments presented in Table 4.1, C-acc is 100.00%.
The exception is segment 13, where the constraint set is 99.93% accurate. The
overall constraint accuracy for the entire collection of road segments, which in-
cludes almost 2 million constraints, is 99.99%. In this case, our heuristic domain
knowledge is very accurate; it is almost entirely consistent with the true data la-
bels. In addition, for the single road segment with slightly inaccurate constraints,
cop-kmeans was still able to achieve 99.8% performance.

In fact, it is instructive to evaluate the sensitivity of cop-kmeans to the accu-
racy of the input constraints. For example, if we modify the lane change detection
heuristic to use tolsep = 3.0 meters, the accuracy of the constraints for segment
13 drops to 99.86%. Impact on cop-kmeans performance is minimal, however; it
drops from 99.797% to 99.795%.

4.4.5 Is K-means a Straw Man?
It might be argued that k-means is simply a poor choice of algorithm for this

problem. For example, there are versions of k-means which are biased towards
elliptical, rather than spherical, clusters, which might be expected to have better
performance on this problem. However, selecting a different algorithm for each
problem encountered has its drawbacks. First, we lose any advantages obtained
by having a general solution to the clustering problem. For example, we must
have access to a comprehensive suite of clustering algorithms, each with their
own bias, and each of which must be maintained. Second, and more importantly,
selecting the proper algorithm for a given problem requires specialized knowledge
about clustering, each algorithm’s bias, and the ability to decide what kind of bias
is appropriate for the problem. Finally, a specialized algorithm with a suitable
bias simply may not be available. We have access to a k-means algorithm that
prefers ellipsoidal clusters, but we do not have one that prefers, for example, hyper-
rectangular clusters. If that is the most appropriate bias for a given problem,
then we must implement a new version of k-means to satisfy it. We therefore
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believe that a better alternative is to maintain a general clustering algorithm that
can accommodate domain-specific knowledge input to automatically specialize by
adapting or overriding its built-in bias.

In addition, the marked improvements we observed with cop-kmeans suggest
another advantage of this method: algorithm choice may be of smaller importance
when constraints based on domain knowledge are available. For this task, even a
poorly-performing algorithm can boost its performance to extremely high levels.
In essence, it appears that domain knowledge can make performance less sensitive
to which algorithm is chosen. This is good news for anyone wishing to make use of
unsupervised learning methods without having the background to make informed
decisions about which algorithm should be used.

4.4.6 Comparison to agglom
Rogers et al. (1999) previously experimented with a clustering approach that

viewed lane finding as a one-dimensional problem. Their algorithm (agglom) only
made use of the centerline offset of each point, ignoring the position of a point along
the road segment. They used a hierarchical agglomerative clustering algorithm that
terminated when the two closest clusters were more than a given distance apart
(which represented the maximum width of a lane).

This approach is quite effective when there are no lanes that merge or split
in a road segment, i.e., each lane continues horizontally from left to right with
no interruptions. For the data sets listed in Table 4.1, their algorithm obtains an
average accuracy of 99.4%, which is slightly higher than the results obtained with
cop-kmeans.2 This is largely due to the impact of a single road segment (segment
16) for which cop-kmeans chose the wrong value for k, as previously described.

However, all of these data sets were taken from a highway, where the num-
ber of lanes is constant over the entirety of each road segment. In cases where
there are lane merges or splits, the one-dimensional approach may have difficulty
representing the extent of a lane along the road segment. We expect that when pro-
cessing data obtained from a larger variety of roads, including segments with lane
merges and splits, cop-kmeans and agglom may have performance that differs
more greatly.

4.5 Summary
In this chapter, we applied the cop-kmeans algorithm to a real-world problem.

We demonstrated how to encode heuristic domain knowledge as a set of instance-
level constraints and reported on the significant performance gains they provide.
cop-kmeans, which combines generic similarity information with problem-specific
domain knowledge, is able to significantly outperform either source of information
in isolation. We also analyzed the accuracy of these heuristic constraints and found
them to be highly accurate, which contributes to the performance of cop-kmeans.

2A maximum merging distance of 2.5 meters was specified.
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In the next chapter, we will see that cop-cobweb also achieves performance
increases when applied to a (different) real-world problem.



CHAPTER 5
APPLICATION 2: NOUN PHRASE COREFERENCE

RESOLUTION

In Chapter 4, we saw how cop-kmeans performed much better than the reg-
ular k-means algorithm on the problem of automatic map refinement. In this
chapter, we explore the application of cop-cobweb to a different real-world prob-
lem, that of noun phrase coreference resolution. The major result of this chapter
is a demonstration that cop-cobweb is able to effectively apply constraints to
improve its performance on the coreference problem.

In Section 5.1, we define this problem and justify our approach to it. Next,
we describe COBWEB’s default performance on this problem and discuss how
appropriate linguistic constraints can be generated (Section 5.2). Evaluation in
this domain is particularly challenging, so we devote some time to a thorough
discussion of it in Section 5.3. Finally, we present experimental results on news
articles (Section 5.4) and compare cop-cobweb’s performance to that of other
systems (Section 5.5).

5.1 Noun Phrase Coreference
The field of Natural Language Processing (NLP) is concerned with developing

algorithms to process text written in human (natural) languages. There are many
steps involved in “processing” (i.e., understanding) a text, including parsing the
input text to discover the syntactic structure of the sentences, performing word
sense disambiguation to match words with their contextual definitions, and higher-
level analyses to discover deeper semantic meanings.

One of the steps in text processing is referred to as noun phrase coreference
resolution. Noun phrases include proper names (e.g., “Frodo Baggins”), common
nouns (“a hobbit”), and pronouns (“he”). The purpose of this step is to identify
pairs of coreferent noun phrases, i.e., those that refer to the same entity. We per-
form this task automatically each time we encounter a pronoun in written or spoken
language: we deduce which other noun phrase(s) it refers to. For example, “it” in
the previous sentence refers to “a pronoun.” You, as a human, probably deduced
that without any conscious effort. Although humans are generally able to perform
this resolution step with ease, it presents a formidable challenge to automated
NLP systems. Noun phrase coreference is a complex linguistic phenomenon, and
successful resolution relies on cues from syntactic structure, semantic constraints,
and shared world experience on the part of the author and the reader.

As a concrete example, an excerpt from a news article about space exploration
is shown in Figure 5.1 with each noun phrase enclosed in square brackets. Any
reader of this text, whether a human or a computer, must be able to determine the
coreference relationships to fully understand what the text means. For example,
the fact that “Mars” and “the Red Planet” refer to the same entity is a crucial
component in interpreting the passage. The figure also visually combines coreferent
noun phrases by placing them into three separate groups. This document contains
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[Human exploration] of [Mars] began not long
after [the dawn] of [the "Space Age"].
In [fact], [the Soviet Union] began making
[preparations] for [its] [first unmanned expeditions] 
to [the Red Planet] even before [that nation]
launched [the world]’s [first artificial Earth satellite],
[Sputnik I], on [October 4], [1957].

Mars
the Red Planet

its

that nation
the Soviet Union

Sputnik I
first artificial Earth satellite

Figure 5.1: An excerpt from a news article with noun phrases bracketed and
coreference classes indicated

a total of 12 coreference groups; the nine remaining bracketed noun phrases do not
participate in a coreference relationship and are considered singletons.

5.1.1 A Clustering Approach
Coreference is a binary relation over noun phrases. It is an equivalence relation

that operates on pairs of noun phrases. Consequently, the task of identifying coref-
erence classes can be naturally phrased as a partitioning, or clustering, problem.
With a suitable set of features to describe each noun phrase and a method for
measuring the distance between each pair of noun phrases, we can apply any stan-
dard clustering algorithm to this task. Each of the resulting clusters corresponds
to what we referred to earlier as a “group.”

In previous work on this problem, we developed an approach to this problem
that uses a clustering algorithm with a highly specialized, hand-tuned distance
measure that incorporates constraint information (Cardie and Wagstaff, 1999).
However, this algorithm is specific to the problem of noun phrase coreference and
cannot be used for other tasks. In contrast, we will present the results of using
the multi-purpose cop-cobweb algorithm, which takes in the data set of noun
phrases separately from the set of constraints.

In this section, we will describe in more detail how noun phrase coreference
resolution can be cast in terms of a partitioning problem. We will also discuss
the features we use to represent each noun phrase. In addition, we will justify our
choice of cop-cobweb for this problem. Finally, we will show an example of the
output produced by the system in the absence of constraints.

5.1.2 Coreference Resolution as Partitioning
As discussed above, we can view the coreference resolution problem as a par-

titioning task. More precisely, the data set D = {NPi} consists of all of the noun
phrases in an input text. We have selected six features to represent each noun
phrase: NPi = < F1, . . . , F6 >. We seek a partition P = {C1, . . . , Ck} such that
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Table 5.1: Features used to represent noun phrases for coreference resolution

Fi Feature Description
1 position Position in the document (sequential)
2 head noun Rightmost noun in the noun phrase
3 semantic class General class from WordNet
4 number singular or plural
5 gender masculine, feminine, either, or neither
6 animacy animate, inanimate, or neither

each cluster Cj represents an equivalence class of noun phrases with respect to
coreference.

Generation of noun phrase features. To create the input data set for a
given document, we used the Empire noun phrase finder (Cardie and Pierce, 1998)
to locate all noun phrases in the text. Note that Empire identifies only base
noun phrases, i.e., simple noun phrases that contain no other smaller noun phrases
within them. For example, “Human exploration of Mars” is too complex to be a
base noun phrase. It contains two base noun phrases, “Human exploration” and
“Mars,” connected by a preposition.

Each noun phrase in the input text is represented by a set of six features, which
are listed in Table 5.1. The choice of features was inspired by heuristics proposed
by research on coreference in the field of computational linguistics (Mitkov, 1999).
All feature values are automatically generated by simple heuristics and, therefore,
are not always perfect. Because Empire is a partial parser, we do not have access
to the full parse structure of the document. This additional information could
potentially increase the accuracy of the noun phrase feature values, or allow the
use of additional features, such as the grammatical role of the noun phrase in the
sentence (e.g., subject or object).

As an example, the values for feature 4 (number) were determined by checking
whether the noun phrase ended with an ’s’. If so, it was labeled plural; otherwise, it
was singular. Feature 3 (semantic class) relies on the availability of a semantic
network. We used WordNet (Fellbaum, 1998) to classify the head noun into one
of several general categories: animal, city, human, time, object. If none of these
applied, we used the noun phrase’s immediate parent in WordNet’s class hierarchy.
Separate heuristics were used to identify a noun phrase as a number, money, or a
company. If the system was unable to assign a specific feature value, the noun
phrase under consideration received a value of unknown for that feature. Further
details on our feature generation methods for this problem are discussed by Cardie
and Wagstaff (1999).
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Selection of cop-cobweb. We selected the cop-cobweb algorithm for this
problem for two main reasons. First, cop-cobweb automatically determines the
number of clusters in the data set. Second, its incremental, order-sensitive nature
is a good fit to our model of how humans process documents. Since documents
are presumably written to facilitate human processing, we can expect that cop-
cobweb will benefit from this structure.

In contrast to our experiments with automatic map refinement, there is no easy
way to estimate a good value for k, the number of noun phrase classes present in
a document. As explained in Chapter 4, when clustering to find lanes in GPS
data, it was reasonable to try a small set of different k values and select the best
resulting partition. This works because roads rarely have more than four or five
distinct lanes. However, with noun phrase coreference, the number of classes could
vary from 1 to n, the number of noun phrases in the document. Documents may
contain hundreds or even thousands of noun phrases. Therefore, cop-cobweb,
which automatically determines the number of clusters present, is a better choice
for this problem.

Most documents (in particular, news articles) are written with the assumption
that a human will be reading them. Humans generally read sequentially, from
the beginning to the end of the document. We therefore process the text in an
incremental fashion, continually building and refining our mental comprehension
of the document as we progress. This means that our interpretation of what we
encounter at any given point in the document is influenced by what we have already
seen (but not by the remainder of the document).

COBWEB was originally developed based on observations about human con-
ceptual processing (Fisher, 1987). It was intentionally designed to be incremental
(and therefore sensitive to the order of the input observations) since that ability
is essential in real-world situations. If a learner is limited to batch processing,
then it cannot form abstractions or draw conclusions about its observations until
it is entirely done processing them. Our modified version, cop-cobweb, retains
this incremental quality. With respect to the problem of text processing, incre-
mental processing is very important. Because humans are the expected readers,
documents written by humans are likely structured and optimized for an incremen-
tal reader. Our choice of cop-cobweb exploits this inherent structure to enable
better processing of the noun phrases in a document.

5.1.3 COBWEB Performance on Coreference Resolution
Let us return to the example text presented in Figure 5.1. Standard (uncon-

strained) clustering of the data using COBWEB produces the output shown in
Figure 5.2 (for clarity, the arrows from noun phrases to the largest cluster have
been omitted). In this case, COBWEB identified a total of three coreference clus-
ters. We can see that the algorithm is overly generous in linking noun phrases
together; the correct answer (according to Figure 5.1) contains 12 clusters. COB-
WEB is generally biased towards the creation of fewer clusters, since it seeks a
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[Human exploration] of [Mars] began not long
after [the dawn] of [the "Space Age"].
In [fact], [the Soviet Union] began making
[preparations] for [its] [first unmanned expeditions] 
to [the Red Planet] even before [that nation]
launched [the world]’s [first artificial Earth satellite],
[Sputnik I], on [October 4], [1957].

fact
the Soviet Union

that nation
the Red Planet

first artificial Earth satellite
the world

Sputnik I
Human exploration

the dawn

Mars

first unmanned expeditions
preparations

1957
the "Space Age"

October 4

its

Figure 5.2: Coreference output for the text in Figure 5.1 when clustering without
constraint information. Arrows from noun phrases to the largest cluster have been
omitted.

partition of the data of minimal complexity. After discussing the kind of con-
straints that are useful for this problem, we will show the output of cop-cobweb,
using constraints, on this example in Section 5.2.1.

5.2 Generating Coreference Constraints
Once again, we make use of the constraint types defined in Chapter 3 to express

our domain knowledge about noun phrase coreference. This problem has been
studied extensively by linguists and has led to several heuristic rules that describe
how coreference resolution can be done.

Table 5.2 lists the ten heuristics, HC1 to HC9 and HM1, that we used to en-
code domain knowledge about coreference in the form of instance-level constraints.1

These heuristics, like the feature set, were inspired by work in computational lin-
guistics and by our own previous experience with noun phrase coreference (Cardie
and Wagstaff, 1999). Each heuristic in the table takes as input two noun phrases,
NPi and NPj, and generates either a cannot-link constraint (for HCh) or a must-
link constraint (for HM1) if the heuristic’s conditions are satisfied. Some of the
heuristics compare feature values for NPi and NPj, while others use additional
non-clustering features. A non-clustering feature is a feature that expresses useful
information but is not used during the clustering process. In this case, the non-
clustering features are useful for the constraint generation phase. We use three
main kinds of heuristics to generate cannot-link constraints: compatibility, article,
and semantic class heuristics.

1For simplicity, we here omit checks for unknown values in attributes; the heuris-
tics apply only to feature values that are known. Also, we abbreviate animacy to
anim and semantic class to semcl.
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Table 5.2: Heuristics for generating constraints between NPi and NPj for corefer-
ence resolution

Compatibility Article
HC1 NPi.number 6= NPj.number HC5 i < j and

NPj.article = indefinite and
HC2 NPi.anim 6= NPj.anim NPi.proper = no and

NPi.pronoun = none
HC3 NPi.gender 6= either and HC6 i < j and

NPj.gender 6= either and NPi.article = none and
NPi.gender 6= NPj.gender NPj.article = definite and

NPi.proper = no and
HC4 NPi.gender = either and NPi.pronoun = none and

NPj.gender = neither NPi.semcl 6= NPj.semcl
HC7 i < j and

NPi.article 6= none and
NPj.article = none and
NPj.proper = no and
NPj.pronoun = no

Semantic class Appositive
HC8 NPi.semcl 6= NPj.semcl and HM1 NPj.appositive = yes and

(NPi.semcl = company or i = j − 1
NPi.semcl = human)

HC9 NPi.semcl 6= NPj.semcl and
NPi,j.semcl 6= company and
NPi,j.semcl 6= human
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Compatibility constraints. Heuristics HC1 through HC4 check for compati-
bility between NPi and NPj. A mismatch on number or animacy is an imme-
diate indication that a cannot-link constraint should be created between the two
noun phrases. The heuristics for handling the gender feature are a little more
complicated, since a value of either can match any of masculine, feminine, or either.

Article constraints. Heuristics HC5 through HC7 encode rules that examine
the articles used in NPi and NPj. The article present in a noun phrase (definite,
indefinite, or none) is a non-clustering feature, because it cannot be profitably used
in clustering. We do not want the similarity of two noun phrases to increase
simply because they match on this feature; the fact that two noun phrases both
have indefinite articles does not make them more likely to be coreferent. Two
other non-clustering features are used by these heuristics: pronoun (nominative,
accusative, possessive, demonstrative, ambiguous, or none) and proper name (yes
or no). The constraints generated by these heuristics are truly complementary to
the data set D, since they are based on information not available in D.

We will use the following two sentences to illustrate the article heuristics.

(1) [The cat] climbed [my tree].
(2) [A cat] crossed [the road].

HC5 asserts that a noun phrase with an indefinite article cannot link backwards
to a noun phrase that is not a proper name or pronoun. In general, an indefinite
article signals the start of a new coreference class; “A cat” in sentence 2 cannot link
to “The cat” in sentence 1. HC6 claims that a noun phrase with a definite article
cannot link backwards to a noun phrase with no article, unless it is a proper name
or a pronoun or the head nouns match. This is because noun phrases with definite
articles tend to link to other definite or indefinite noun phrases. For example, “the
road” cannot link to “my tree.” Finally, HC7 claims that a noun phrase with no
article cannot link backwards to a noun phrase with an article, unless it is a proper
name or pronoun. Once a noun phrase has been introduced with an article, it is
very unusual to refer to it without an article. For example, after encountering
sentence 1, we would not expect to later see just “cat” or any non-pronominal
noun phrase referring to the same cat (unless it were a proper name).

Semantic class constraints. Heuristics HC8 and HC9 provide special handling
for noun phrases classified as human or company. A mismatch on semantic class
usually indicates that NPi and NPj cannot be coreferent. However, because many
proper names are not present in WordNet, we allow humans and companies to
potentially link to noun phrases of unknown classification.

Appositive constraint. Heuristic HM1 indicates that an appositive noun
phrase must be linked to its immediate predecessor in the document. An appositive
noun phrase is a noun phrase that explains or further defines the preceding noun
phrase. In English, appositive noun phrases are usually enclosed by commas or
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parentheses. For example, in the sentence “I spoke with Mr. Brown, my land-
lord, yesterday,” “my landlord” is an appositive noun phrase that refers to “Mr.
Brown.” In such cases, we generate a must-link constraint between the two noun
phrases. Note that it is possible for the output of this heuristic to conflict with
some of the HCh heuristics. For example, in the sentence “My teacher, a famous
biologist, gave an excellent talk today,” “a famous biologist” is an appositive noun
phrase that refers to “my teacher.” However, HC5 will claim that the two noun
phrases cannot be linked, because “My teacher” is not a pronoun or a proper noun,
and “a famous biologist” begins with an indefinite article. Consequently, we per-
mit HM1 to override all of the HCh heuristics, because it is an extremely reliable
heuristic. We will later present a comparative evaluation of the accuracy of each
heuristic.

Constraint generation. We have defined ten constraint heuristics. To generate
the constraint sets, Con= and Con 6=, we apply each heuristic to every pair of
noun phrases in a given document. Each application of a heuristic to a pair of
noun phrases may result in a must-link constraint, a cannot-link constraint, or no
constraint (if the heuristic’s conditions are not met). We take the transitive closure
of the resulting set of constraints (Con=

⋃
Con 6=), as explained in Section 3.1.1,

and provide the closed versions (Con′
= and Con′

6=) to cop-cobweb.

Other constraint heuristics are possible. It is important to note, however, that
this domain knowledge is being represented by hard constraints. Language is in-
famous for its exceptions to rules, and these heuristic rules are no exception. If
a rule is violated by the actual text, but encoded as a hard constraint, then the
clustering algorithm is forced to make an incorrect decision. We will analyze the
accuracy of the constraint sets these heuristics create by comparing their decisions
with the true (human-generated) coreference annotations. We will see that good
performance on the coreference resolution problem can be obtained, even with the
inherent restriction imposed by expressing knowledge as hard constraints. How-
ever, we expect that performance will be even higher, and that a larger range
of domain knowledge can be encoded, if we instead make use of soft constraints
to represent this knowledge. Soft constraints will be investigated more fully in
Chapter 6.

5.2.1 Constraints on a Real Example
Let us once again return to the example text presented in Figure 5.1. Using

the heuristics described in the previous section, and taking the transitive closure
of the resulting constraints, we obtain a set of 111 pairwise constraints. Five of
these constraints are presented in Table 5.3.

These constraints allow cop-cobweb to avoid the mistakes that it makes
without access to the domain knowledge encoded in the constraints. If we run
cop-cobweb with the indicated set of constraints, we obtain the output partition
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Table 5.3: Sample constraints generated on the text in Figure 5.1

Constraint Heuristic
“first unmanned expedition” cannot link to “preparations” HC1

“the dawn” cannot link to “preparations” HC7

“the dawn” cannot link to “the Red Planet” HC9

“the Soviet Union” cannot link to “Human exploration” HC6, HC9

“Sputnik I” must link to “first artificial Earth satellite” HM1

. . . . . .

[Human exploration] of [Mars] began not long
after [the dawn] of [the "Space Age"].
In [fact], [the Soviet Union] began making
[preparations] for [its] [first unmanned expeditions] 
to [the Red Planet] even before [that nation]
launched [the world]’s [first artificial Earth satellite],
[Sputnik I], on [October 4, 1957].

Mars
the Red Planet

that nation
the Soviet Union

the "Space Age"
its

Sputnik I
first artificial Earth satellite

Figure 5.3: Coreference output for the text in Figure 5.1 when clustering with
constraints

shown in Figure 5.3 (for clarity, singleton classes are not shown). The system iden-
tified 12 coreference clusters. The only mistake it made was in deciding which noun
phrase “its” refers to. Pronoun resolution is a notoriously difficult sub-problem in
this task, especially for “it” (e.g., Dagan and Itai (1991) and others have done work
exclusively on resolving “it”). Although the output does not perfectly correspond
to the true coreference relationships in the text, it is a significant improvement over
the output of the clustering algorithm without constraints. In the next section, we
will see how to quantitatively evaluate this output.

5.3 Evaluation
To determine whether our encoding of linguistic knowledge and use of cop-

cobweb is an effective approach to the noun phrase coreference resolution prob-
lem, we need a method for evaluating the accuracy of the noun phrase partitions
that we create. Unfortunately, there is little agreement in the NLP community
about the best method for evaluating performance on this problem. We have
identified eight different metrics that can be used, each of which assesses perfor-
mance in a different way. A detailed analysis of the benefits and disadvantages of
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each metric is beyond the scope of this dissertation. However, we will describe all
eight metrics briefly and present the results obtained using each metric. Although
the numbers generated by the metrics differ, the general conclusions we can draw
from them do not. In this section, we provide some terminology that will aid in
interpreting our results. We introduce three common components in coreference
evaluation metrics: recall, precision, and f-measure.

Recall and precision. Recall and precision are two criteria commonly used for
evaluation in Information Extraction and Information Retrieval. In particular,
several of the proposed noun phrase coreference metrics make use of them. Recall
calculates how many of the desired items (in this case, coreference links) were
correctly identified, and precision computes the percentage of items returned that
are correct. In other words, recall is concerned with coverage, and precision is
concerned with accuracy. Recall is defined as Nc

Nt
and precision is Nc

Nr
, where Nc

refers to the number of returned items that are correct, Nt is the total number
of correct items that could be returned, and Nr is the number of (correct and
incorrect) items that are returned.

F-measure. A trivial way to get 100% recall would be to put all of the noun
phrases into one cluster, since this would definitely cover all of the correct coref-
erence links (i.e., Nc = Nt). However, precision would be very poor since so many
incorrect coreference links would be implied by that partition (in particular, preci-
sion would be 2 · Nt

n(n−1)
). For evaluation purposes, these two numbers are usually

combined into a single value called the f-measure:

f-measure =
(β + 1.0)PR

βP + R
. (5.1)

where R and P refer to recall and precision, respectively. The parameter β varies
between 0 and 1; it allows the evaluator to indicate the relative importance of the
two values. We use β = 1, which gives equal weighting to recall and precision.

We calculate recall and precision by comparing two partitions of the input. The
correct partition is referred to as the key, and the output being evaluated is the
response. To evaluate the response, we must first decide what the “items” being
returned are. One method is annotate coreference by linking each anaphoric noun
phrase2 to each of its coreferent noun phrases. If we designate the set of coreference
links (over which a transitive closure has been taken) in the key as CLk and the
set of links in the response as CLr, we then have

Nr = |CLr| (5.2)

Nt = |CLk| (5.3)

Nc = |CLk

⋂
CLr| (5.4)

2Anaphoric noun phrases are those that have a coreferent antecedent (not all
noun phrases in a document do).
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This intuitive notion of agreement corresponds exactly to the Jaccard method of
comparing two partitions, which we will present in more detail shortly. First,
we discuss the methods that are most commonly used by NLP researchers for
evaluating coreference performance. Some methods tend to view coreference groups
as chains instead of clusters (these views are equivalent, but they have led to
different evaluation methods). Chains are specified by linking each noun phrase
to its closest coreferent antecedent. Thus, a group of g mutually coreferent noun
phrases will have g − 1 links under this scheme, while the same group would have
1
2
g(g − 1) links according to Equation 5.2.

Coreference evaluation metrics. The most common method for evaluating
coreference chains involves determining the minimum number of links that would
need to be added (to eliminate recall errors) or removed (to eliminate precision
errors) (Vilain et al., 1995). We refer to this approach as the Vilain metric. How-
ever, there are important drawbacks to this method which have been discussed by
several authors. The first is that the Vilain metric only evaluates accuracy on noun
phrases that are involved in some coreference relationship, so correctly determining
that a noun phrase is not coreferent with any other noun phrase is unrewarded.
Second, the Vilain metric can report inappropriately high performance numbers for
some partitions, because it only calculates the minimum number of changes that
would be needed to convert the response into the key. Bagga and Baldwin (1998)
instead propose the B-CUBED evaluation method, which scores each noun phrase
individually for recall and precision, including those not involved in a coreference
relationship. Popescu-Belis and Robba (1998) suggest matching each noun phrase
class in the response to a class in the key (COR). They count each noun phrase in
the response that is not attached to any key class as a recall error and each noun
phrase attached to an incorrect key class as a precision error. They also suggest
a refinement to COR that identifies an exclusive (one-to-one) mapping from key
classes to response classes (XCOR). Trouilleux et al. (2000) further expand on
the ideas of Popescu-Belis and Robba by establishing different specificity classes
of noun phrases (proper name, lexical head, and pronoun). These classes are used
to improve the one-to-one mapping of key classes to response classes. We refer to
their method as TROU.

Generic partition similarity metrics. Because we view the key and response
as partitions of the same set of noun phrases, we can also make use of standard
methods for computing the similarity of two partitions, P1 and P2. The most
common of these is the Rand metric, which was described in Section 3.5.1. It
views a partition as a set of 1

2
n(n−1) pairwise decisions between items. We define

values a, b, c, and d according to the following table:

P1

class(di) = class(dj) class(di) 6= class(dj)
P2 class(di) = class(dj) a b

class(di) 6= class(dj) c d
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Table 5.4: cop-cobweb noun phrase coreference results on the example text
shown in Figure 5.1, as assessed by eight metrics. R stands for Recall, P stands
for Precision, and F stands for f-measure.

No constraints With constraints
Metric (R P) F (R P) F
Vilain (75.0 23.1) 35.3 (75.0 75.0) 75.0
B-CUBED (91.7 22.5) 36.1 (91.7 93.8) 92.7
COR (75.0 7.7) 14.0 (75.0 75.0) 75.0
XCOR (25.0 25.0) 25.0 (93.8 93.8) 93.8
TROU (100.0 7.7) 14.3 (75.0 75.0) 75.0
Rand 58.3 97.5
Jaccard 5.7 50.0
FM 18.8 67.1

The columns indicate decisions made by P1 and the rows indicate decisions
made by P2. The diagonal entries represent situations where both partitions agree;
off-diagonal entries represent decisions they disagree on. (This kind of table is also
referred to as a confusion matrix.) Rand calculates agreement as

Rand =
a + d

a + b + c + d
. (5.5)

In contrast, the Jaccard metric does not count decisions where both partitions
placed the pair of items in distinct clusters (d):

Jaccard =
a

a + b + c
. (5.6)

Fowlkes and Mallows (1983) calculate a more complicated function of these values
(FM):

FM =
a√

(a + b)(a + c)
. (5.7)

This metric, like the Jaccard metric, ignores d (the number of pairwise decisions
where both partitions placed the items in separate clusters). The sum b + c is
the total number of decisions that the two partitions disagree on. By dividing by√

(a + b)(a + c), the FM metric calculates a larger penalty for disagreements that

are equally divided between b and c (i.e., the disagreements are spread out over the
entire partition). Given a fixed number of disagreements b + c, FM is maximized
when either b or c is zero (this means that a single cluster in one partition was
split into multiple clusters in the other partition).

Using the example text in Figure 5.1, we evaluated the coreference system
both with and without constraints using each of these eight metrics. The noun
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phrase bracketing and the feature generation were done by hand. The results are in
Table 5.4. The first five metrics calculate recall and precision, while the latter three
simply calculate agreement. Recall for the unconstrained output is generally fairly
high, but precision is very low. In contrast, the use of constraints boosts precision
to high levels, resulting in overall gains in f-measure. The three partition agreement
metrics also show large improvements when constraints are used. Although each
metric assesses performance in a slightly different way, they all agree that the
output produced by cop-cobweb when using constraints is superior to the output
produced by regular clustering. This agrees with our informal impression of the
output. The same eight metrics will be used in the next section to analyze the
performance of cop-cobweb on a larger body of evaluation texts.

5.4 Quantitative Evaluation of COP-COBWEB
To determine which of several coreference systems exhibits the best empirical

performance, evaluation on a standard, common data set is crucial. The Message
Understanding Conference (MUC) provides a common testing ground by putting
together collections of manually annotated news articles. In addition to evaluating
systems for their performance on other information extraction tasks, MUC offers
a coreference resolution track. Each participant builds a coreference system, and
then all systems are tested on the same data under the same conditions (MUC-6,
1995). This standardization makes it possible to run our system on the same data
and to make precise comparisons.

Each MUC data set consists of a set of news articles. The noun phrases are
not identified prior to processing, which means that noun phrase detection is an
additional task that is required of each participant. The default scoring system uses
the Vilain metric (Vilain et al., 1995) to compare the system’s coreference output
to the key document, which is annotated with the correct coreference information.

In our opinion, the lack of a standard set of input noun phrases is a big drawback
to the MUC evaluations, because a coreference system may be unnecessarily penal-
ized if the noun phrases it is working with differ from the noun phrases identified
in the key document. To explicitly measure only a system’s coreference ability, we
would want to provide each system with the same input set of noun phrases. This
has not been done, probably because it is difficult to separate a coreference resolu-
tion system from the parsing system it relies on to identify the noun phrases (and
possibly their syntactic features). To better evaluate our system’s coreference
performance, we created a modified set of MUC key documents that use the same
set of base noun phrases that our system receives as input. In the next section,
our evaluations make use of these “baseNP keys.” For quantitative comparisons
with other systems (Section 5.5), we fall back on the default MUC keys.

5.4.1 Results on the MUC-6 Dry Run Data Set
The MUC-6 evaluation includes two data sets: the dry run data set, used for

training and development, and the formal data set, used for a blind evaluation of
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Table 5.5: cop-cobweb noun phrase coreference results on baseNP keys for the
MUC-6 dry run evaluation, assessed by eight metrics

Metric No constraints Constraints Pruned constraints
Vilain 50.1 53.0 53.9
B-CUBED 15.2 74.3 74.4
COR 22.3 41.5 42.0
XCOR 15.8 69.9 70.0
TROU 13.8 28.9 29.3
Rand 51.0 96.9 96.9
Jaccard 3.5 20.3 20.4
FM 15.1 33.4 33.5

the systems. Each data set contains 30 documents. The results of running our
system on the MUC-6 dry run evaluation data sets are given in Table 5.5. We
report f-measure for the first five metrics and agreement values for the others. By
comparing the numbers in the second and third columns, we see that each of the
metrics shows a significant improvement in performance when constraints are used.
This improvement occurs despite the fact that the constraint heuristics only have
access to shallow parsing information (base noun phrases). If our method were
used in conjunction with a more sophisticated parser, we would be able to encode
additional knowledge about coreference in the constraint sets, such as disallowing
a coreference link between a subject and an object unless the object is a reflexive
pronoun.

The smallest improvement occurs when the output partitions are assessed by
the Vilain metric. It is known that this metric is often overly generous in scor-
ing “bad” partitions (Popescu-Belis and Robba, 1998; Trouilleux et al., 2000).
Popescu-Belis and Robba state that the Vilain metric is “too indulgent” because
it calculates the minimum number of links that would need to be corrected to
transform the response into the key. Visual inspection of the unconstrained output
partitions suggests that this is probably happening. We will explain the contents
of the fourth column shortly.

5.4.2 Accuracy of Coreference Constraints
We have noted that these hard constraints are generated by general heuristics

and therefore are not guaranteed to be 100% accurate. It is important to get
an idea of just how accurate the constraints are. We have calculated, for each
heuristic, the percentage of constraints generated by that heuristic that agree with
the true coreference annotations on the MUC-6 dry run data set. Table 5.6 presents
the computed accuracy of each heuristic. The appositive heuristic is remarkably
unreliable, which is a direct consequence of our poor ability to accurately detect
appositive noun phrases. Consequently, we did not use this heuristic to generate
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Table 5.6: Accuracy of heuristics as evaluated on the MUC-6 dry run data set

ID Heuristic Accuracy
HC1 Number 98.95%
HC2 Animacy 99.05%

HC3 and HC4 Gender 99.01%
HC5, HC6, and HC7 Articles 99.57%

HC8 and HC9 Semantic class 99.20%
HM1 Appositive 46.15%
All All 98.96%

All but HM1 No appositive 98.99%

constraints for the results in Table 5.5. When using all of the heuristics, the total
accuracy is 98.96%; without heuristic HM1, accuracy improves slightly to 98.99%
(the effect of HM1’s inaccuracy is small because it is a heuristic that generates
relatively few constraints).

We can see that the most reliable heuristics are conditioned upon the articles in
the noun phrases. Surprisingly, the heuristic that prevents mismatches in number
is the least reliable. This is probably due to our very simple assignment of singular
and plural feature values to the noun phrases, because the heuristic itself is generally
a very reliable one in English. As with the appositive heuristic, a more accurate
classifier for this feature would improve the accuracy score for HC1. Its accuracy
is still high enough for it to be a useful source of constraints, so we will use it for
our experiments.

5.4.3 Clustering with Pruned Constraints
Because the set of input constraints is not 100% accurate, it is difficult to

determine whether errors made by cop-cobweb are due to clustering mistakes
or to incorrect information in the constraints. In general, we will not be able
to automatically tell which of our heuristically-generated constraints are accurate
and which are not. However, we are interested in determining how sensitive cop-
cobweb is to the accuracy of the input constraints. Because we have access
to the true answer for each noun phrase, it is possible for us to prune the con-
straint set by removing each incorrect constraint. In addition to experiments with
the heuristically-created Con= and Con 6=, we also experimented with PCon= and
PCon 6=, their pruned counterparts:

PCon= = {(d, d′) ∈ Con=|d.label = d′.label} (5.8)

PCon 6= = {(d, d′) ∈ Con 6=|d.label 6= d′.label} (5.9)

The label attribute is the true class assignment of each noun phrase. The accuracy
of PCon= and PCon 6= is guaranteed to be 100%. The fourth column in Table 5.5
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Figure 5.4: Runtime improvements observed when clustering with constraints on
the MUC-6 dry run data set. Tconst and Tnoconst are the runtimes for clustering
with and without constraints, respectively. Only those documents with Tconst > 1.0
second when using constraints are shown.

presents the results we obtain when providing the pruned constraints as input to
cop-cobweb. In each case, clustering accuracy either stays the same or goes
up slightly. We conclude that the 1% inaccuracy of the original constraint set,
although definitely a factor when applying constrained clustering to this problem,
should not have a large impact on future results.

5.4.4 Runtime Improvements
In Chapter 3, we mentioned that empirically, we have observed significant run-

time savings when using cop-cobweb with constraints. Let Tconst be the time
required to run cop-cobweb with constraints and Tnoconst be the time required in
the absence of constraints. In Figure 5.4, we plot Tconst/Tnoconst for several docu-
ments from the MUC-6 dry run data set. We have only included the 12 documents
for which Tconst > 1.0; the remaining 18 documents were each processed in less
than 1.0 second when using constraints. Runtime savings on these 12 documents
range from 7 to 78%. Savings for the formal evaluation data set are even more
dramatic; they range from 21 to 93%. These improvements in runtime occur be-
cause the constraints provided to cop-cobweb exclude certain areas of the search
space from consideration.

We have discussed cop-cobweb in isolation by comparing its performance
with and without constraints and demonstrating that the addition of pairwise
constraints is a clear benefit to the algorithm, in terms of accuracy and efficiency.
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Table 5.7: Summary of MUC-6 results and baseline performance on the MUC-6
formal data set, using the Vilain metric

Method Recall Precision F-measure
Worst reported in MUC-6 36 44 40
Best reported in MUC-6 59 72 65
Baseline 1: All one class 80 34 47
Baseline 2: Match head noun 46 52 49

Next we will compare cop-cobweb’s performance to that of other state-of-the-art
noun phrase coreference systems.

5.5 Quantitative Comparison to Other Systems
In this section, we compare our system’s performance to other coreference res-

olution systems. We will continue to make use of the Vilain metric for quantitative
comparisons. As mentioned above, several shortcomings of this metric have been
identified (Popescu-Belis and Robba, 1998; Bagga and Baldwin, 1998; Trouilleux
et al., 2000). However, the metric has been consistently used by participants in the
MUC competitions, so it provides the only means for quantitative comparisons. It
is important to keep in mind that, for these comparisons, the results do not just
evaluate coreference accuracy. As discussed above, each system identified noun
phrases in a different way, so errors in noun phrase identification are folded in with
errors in coreference resolution in the output of any given system.

5.5.1 Results on the MUC-6 Formal Data Set
The formal MUC-6 evaluation included seven different systems. F-measures

ranged from 40% to 65% (see Table 5.7). The best scoring system (Appelt et al.,
1995) attained a recall of 59% and a precision of 72%, while the worst scoring
system had a recall of 36% and a precision of 44%. Most coreference systems use
a set of hand-coded filters or heuristics and algorithms that are highly specialized
to the coreference task. The main exception is work that provides labeled train-
ing texts to a decision tree learner and outputs a classifier that can automatically
label a pair of noun phrases as “coreferent” or “not-coreferent.” We will discuss
two simple baseline methods, summarize methods that do not use learning tech-
niques, and then compare supervised and unsupervised coreference systems to our
experiments with cop-cobweb.

Baseline 1: All one class. The first baseline, “all one class,” places all of the
noun phrases into one large class; it claims that every noun phrase is coreferent
with every other noun phrase in the document. This baseline is very simple, yet
as shown in Table 5.7, its performance is surprisingly high according to the Vilain
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metric (this is one of the weaknesses of this metric). This baseline would attain
a recall of 100% if we had access to the full set of noun phrases used by the
human annotators on these documents. Since we are using our own set of noun
phrases, the recall obtained by this baseline (80%) instead indicates the upper
bound we can expect to obtain for recall. The remaining 20% of coreference links
involve noun phrases that do not appear in our input data set. The missing noun
phrases include nested noun phrases such as “Enron” in “the Enron executive,”
since Empire does not detect nested noun phrases, as well as noun phrases that
are omitted due to parsing mistakes, such as incorrect part of speech tags. “All
one class,” as expected, attains a very low precision (34%).

Baseline 2: Match head noun. The “match head noun” baseline is slightly
more sophisticated. It posits a coreference link between any two noun phrases that
have the same head noun. This very simple rule also performs quite well, attaining
46% recall and 52% precision (49% f-measure).

Non-learning approaches. As mentioned above, most coreference resolution
systems make use of hand-crafted filters and heuristics rather than techniques
from machine learning. Azzam et al. (1998) evaluated their focus-based system,
LaSIE, on the MUC-7 formal evaluation texts (MUC-7, 1998). LaSIE tracks the
current conceptual focus at each point in the text as well as a list possible actors.
Their system obtains an f-measure of 60.4%, but they also show that a very simple
heuristic-based pronoun resolution method outperforms the focus-based method,
achieving 62.3%.3 The authors posit that this is because the focus-based method
relies heavily on a sophisticated analysis of the text (to determine what the current
focus is). This analysis is difficult to do well automatically, and errors in that
analysis cause errors in the coreference output. We have also observed that errors
in our computed noun phrase features have an impact on coreference accuracy,
but our system is likely to be less sensitive to this effect because we are computing
simple features.

Supervised learning approaches. McCarthy and Lehnert (1995) and Aone
and Bennett (1995) use supervised learning techniques to determine noun phrase
coreference relations. Both systems train a C4.5 decision tree classifier (Quinlan,
1993). The resulting decision tree takes in two noun phrases and outputs whether
or not they are coreferent. The decision tree trains on a data set consisting of
several noun phrases pairs that are manually annotated as “coreferent” or “not
coreferent.” McCarthy and Lehnert create 1

2
n(n − 1) training instances by pair-

ing each noun phrase with every other noun phrase. Aone and Bennett train
only on noun phrase pairs where the second noun phrase is anaphoric. McCarthy
and Lehnert participated in the MUC-6 evaluation, so we can compare our scores

3These results do not appear in Table 5.7 because they are evaluated on a
different data set.
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Table 5.8: Quantitative comparison of noun phrase coreference systems that use
machine learning techniques, on the MUC-6 formal data set using the Vilain metric

Method Recall Precision F-measure
Supervised methods

RESOLVE (decision tree) 44 51 47
(McCarthy and Lehnert, 1995)

Decision tree, pruning non-coref examples 59 67 63
(Soon et al., 2001)

Decision tree, pruning coref and non-coref 63 77 70
(Ng and Cardie, 2002)

Unsupervised methods
NP constrained clustering 53 55 54

(Cardie and Wagstaff, 1999)
cop-cobweb, no constraints 72 31 43
cop-cobweb, with constraints 50 40 44

directly to theirs. On the formal evaluation corpus, their system, RESOLVE, ob-
tained a recall of 44% and a precision of 51% (f-measure 47%). Table 5.8 presents
these results as well as figures for the other learning methods we will discuss.

Although both systems demonstrate the ability to learn from the labeled ex-
amples, there are some drawbacks to this approach. The first is that coreference is
a transitive relation, so making pairwise coreference decisions in isolation requires
a later “coordination” step to resolve any conflicts. For example, if the system de-
cides that NPi and NPj are coreferent, and NPj and NPk are coreferent, but NPi

and NPk are not coreferent, the coordination step must decide how to resolve this
so that transitivity is upheld. McCarthy and Lehnert mention this issue but do not
discuss how they solved it. Others have suggested using a clustering algorithm as
a post-processing step to ensure that the output is in fact a partition (Soon et al.,
2001). Another problem with training on noun phrase pairs, identified by Soon
et al., is that the class distribution of the training set is highly skewed: the number
of coreferent pairs is much smaller than the number of non-coreferent pairs. This
situation is known to cause problems for supervised learners (Cardie and Howe,
1997). Soon et al. directly addressed this problem by intelligently pruning the
training set to reduce the number of non-coreferent pairs. In evaluation on the
MUC-6 formal data set, their method achieved a recall of 59% and a precision of
67% (f-measure 63%). Ng and Cardie (2002) further showed that intelligent prun-
ing of the coreferent pairs as well can also improve performance, to an f-measure
of 70% (see the second and third entries in Table 5.8).

Unsupervised learning approaches. In contrast to the above supervised ap-
proaches to noun phrase coreference resolution, we previously developed a custom
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clustering algorithm created specifically for this problem (Cardie and Wagstaff,
1999). This method takes in one parameter, a cluster radius threshold, and uses a
custom distance measure to determine how close two noun phrases are. Linguistic
constraints and preferences (soft constraints) are incorporated in the distance cal-
culation; this system can therefore encompass a wider variety of domain knowledge
than our hard constraints can. For the MUC-6 formal evaluation, this system ob-
tained a recall of 53% and a precision of 55% (f-measure of 54%); we refer to this
method as “NP constrained clustering” in Table 5.8. This system has the substan-
tial benefit of not requiring any labeled training examples; it deduces coreference
relationships solely on the “similarity” of the noun phrases under consideration.
In addition, it out-performs the only other learning approach used in the MUC-6
evaluation (RESOLVE). However, it does not outperform the best-scoring system
(as mentioned previously, this system had an f-measure of 65%). In addition, the
decision tree methods previously discussed also perform significantly better.

Another approach that does not require human intervention is that of Dagan
and Itai (1991). They focused exclusively on performing coreference for the pro-
noun “it,” arguably the most difficult noun phrase to resolve. For each occurrence
of “it,” they collected co-occurrence statistics from a large body of texts that were
parsed, but not labeled with coreference information. These statistics were com-
puted for all subject-verb and verb-object pairs and used to filter out implausible
antecedents. The approach looks promising, but unfortunately was only evaluated
on 74 occurrences of “it” (not from the MUC texts), so it is difficult to compare to
other work here. For those 74 examples, performance using their statistical filter
improved from 64% to 74% (in terms of how many “it”s were assigned to their
correct nearest antecedent).

5.5.2 Comparison of COP-COBWEB to Other Coreference Systems
For these data sets, and using the Vilain metric, cop-cobweb achieves a recall

of 72% and precision of 31% (43% f-measure) without any constraints. Performance
improves with the inclusion of constraints to an f-measure of 44%. Because most
of the constraints are cannot-link constraints, we expected precision to improve
when constraints are used. It is also unsurprising that recall goes down, due to
inaccuracies in the feature value computations and in the constraint heuristics
themselves. We will explain why the Vilain scores obtained by cop-cobweb
appear low and then discuss the advantages of the cop-cobweb approach to this
problem.

Factors influencing COP-COBWEB’s Vilain scores. There are several rea-
sons that we do not observe higher f-measure values for cop-cobweb, most of
which arise from our experimental setup and are independent of the algorithm
used. The most significant factor, which we have previously mentioned, is the
mismatch between the set of noun phrases we obtain from Empire and the set
of noun phrases used in the key documents provided by MUC. Since 20% of the
coreference links in the keys involve noun phrases we do not have access to, there is
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a large impact on recall. Secondly, we have also noted the drawbacks of using the
Vilain metric for evaluating noun phrase coreference. Although this metric reports
only a small improvement in cop-cobweb’s performance compared to clustering
without constraints, the other metrics we have used show much larger improve-
ments (see Table 5.5). Finally, our feature values are probably not very accurate
representations of the noun phrases. These three difficulties would arise regardless
of which algorithm we used, so their contributions to the low f-measures reported
do not tell us anything specifically about cop-cobweb’s abilities.

Other factors are more directly relevant to an assessment of cop-cobweb. We
have previously noted that the constraints used by the algorithm are imperfect, due
to their heuristic generation. However, our experiments with pruned constraint sets
have shown that this inaccuracy is unlikely to have a large impact in our results. It
is also the case that supervised methods often out-perform unsupervised methods
when applied to the same task. The supervised methods have specific examples of
the desired classifications. In contrast, unsupervised methods simply seek a “good”
organization of the data, which may or may not correspond to the specific concept
encoded in the labels used for evaluation. cop-cobweb is a hybrid algorithm; it
has more guidance than a purely unsupervised method, in the form of constraints,
but it does not have access to explicitly labeled examples of coreferent relationships.

Finally, we expect that our set of constraint heuristics is incomplete. Each
heuristic generated constraints that improved the performance of cop-cobweb,
but it is likely that there are other applicable rules about coreference that could
(and should) also be added to the set of heuristics. We have demonstrated that
cop-cobweb can effectively apply the constraints it is given; augmenting the con-
straint set with additional (reliable) information is likely to improve performance
further.

Advantages of using COP-COBWEB for coreference resolution. Al-
though the Vilain scores for cop-cobweb do not exceed those of other algorithms,
there is a significant advantage to using cop-cobweb on this problem. Domain
knowledge from a variety of sources can be easily encoded using our constraint
formulation. For example, although the Vilain scores for both baselines are higher
than those reported for cop-cobweb, we could emulate the performance of either
one by using a suitable set of constraints. Baseline 1, which places all of the noun
phrases into a single class, can be duplicated by creating a must-link constraint
between each pair of consecutive noun phrases in the document. Baseline 2, which
connects each pair of noun phrases with identical head nouns, can be duplicated by
creating a must-link constraint between noun phrases with matching head nouns
and a cannot-link constraint between every other pair of noun phrases.

In addition, the use of soft constraints, rather than hard constraints, should
further improve the performance of this algorithm. Because we could only encode
knowledge as hard constraints, we were forced to omit information that functions
as a “preference” rather than a “constraint.” For example, HC5 claims that a noun
phrase with an indefinite article, such as “a cat,” cannot link backwards to a noun
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phrase that is not a proper name or a pronoun. However, HC5 is violated by a
sentence such as “[Her cat] is [a cat] that literally climbs walls.” Consequently, we
would like to indicate that HC5 is usually but not always reliable. In Chapter 6,
we will see how soft constraints, which allow the specification of a strength for
each constraint, can be formulated and integrated by a constrained clustering
algorithm. We have reason to believe that this would lead to improved Vilain
scores, due to our previous experience with a clustering algorithm specialized to
the problem of coreference resolution (Cardie and Wagstaff, 1999). That algorithm
used the same set of features that we have used for our experiments with cop-
cobweb, but it was able to accommodate preferences as well as constraints. The
critical reader then asks why one might prefer cop-cobweb to that algorithm,
if we simply duplicate its performance on this problem. The answer highlights
another significant advantage of cop-cobweb: its generality. cop-cobweb can
be applied to any clustering problem, not just that of noun phrase coreference.

5.6 Summary
In this chapter, we applied the cop-cobweb constrained clustering algorithm

to the problem of noun phrase coreference resolution. This challenging problem
is far from being considered “solved” by the NLP community, and a diverse array
of techniques are being applied to it. We described how background linguistic
knowledge about the coreference relation can be encoded as a set of instance-level
constraints and provided as input to cop-cobweb. The results of eight different
metrics agree that this is an effective way to improve performance on this prob-
lem. We also compared cop-cobweb’s performance to other methods specifically
designed with the coreference problem in mind. The best available coreference
system, which uses supervised learning techniques and intelligent pruning of the
training set, out-performs cop-cobweb, which is not surprising. We do find,
however, that the general cop-cobweb algorithm, when specialized to this task
through the use of constraints, provides an improvement over not using constraint
information. In addition, cop-cobweb allows for the encoding and use of a di-
verse set of constraints. We expect that applying cop-cobweb to this problem
with soft constraints will demonstrate further improvements.



CHAPTER 6
SOFT CONSTRAINTS AND APPLICATION 3: SPECTRAL

ANALYSIS

This chapter presents a real-world1 problem involving spectral analysis of tele-
scopic observations of Mars. We have previously explored the use of clustering with
hard constraints. This task is exploratory in nature, and because our knowledge
of Mars is itself approximate and incomplete, encoding that knowledge using soft
constraints is a necessity. The first major contribution presented in this chapter
is the development of a soft constrained clustering algorithm. Our analysis of real
Mars data produces the second major contribution: the preliminary conclusions we
can draw based on constrained clustering of this data simultaneously confirm pre-
vious discoveries and suggest novel hypotheses about the planet. Our techniques
are demonstrated to be useful for scientific discovery of new knowledge.

After describing the problem of spectral analysis (Section 6.1), we survey other
approaches that use clustering on this problem (Section 6.2). We analyze the per-
formance of the basic k-means clustering algorithm in Section 6.3. In Section 6.4,
we present a soft constrained k-means clustering algorithm, and in Section 6.5
we discuss the soft constraints we used in our experiments. We conclude with a
discussion of our experimental results in Section 6.6.

6.1 Spectral Analysis
Spectral analysis, or spectroscopy, attempts to infer the composition or miner-

alogy of an object based on measurements of how it interacts with light (electro-
magnetic radiation) (Hunt, 1980; Bell, 1997). In this case, we focus on reflectance
spectroscopy, in which we analyze the difference between the light incident on the
object and the light that it reflects. The ratio of reflected to incident light, after
being corrected as much as possible for viewing geometry and other experimental
factors, is referred to as radiance or albedo. Due to the arrangement of atoms and
their electrons, different elements and compounds produce reflectance spectra with
different features. These features include absorption bands, which are contiguous
regions in the spectra with relatively low radiance, indicating that the object is
absorbing incident light strongly at those wavelengths. Other interesting features
include the slope of the radiance between specific wavelengths and the location of
radiance peaks and valleys.

Once radiance observations have been collected, it is possible to compare an
observed spectrum to that of several different minerals or other compounds, as
measured in the laboratory, to determine the composition of the remote object.
Of course, for real observations, a given region on a remotely observed object is
unlikely to be composed purely of one element or compound. It is more common
to encounter a mixture, and this means that characteristic spectral features may
be muted or absent. Nevertheless, it is often still possible to identify major con-

1Real other world.
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stituents of an object based on the observed spectrum by performing matching to
laboratory spectra (Adams and McCord, 1969).

Infrared observations. We do not restrict our observations to the visible part of
the electromagnetic spectrum. The window of visible wavelengths is quite narrow
(300 – 700 nm), and distinguishing characteristics often appear beyond this limited
scope, especially in the near-infrared (700 – 5000 nm). For example, an Fe3+

absorption band for various minerals occurs between 850 and 950 nm. Therefore,
observations in the near-infrared are very important for remote sensing and for
identifying the chemical composition of a remote body (Bell, 1997).

Manual spectral analysis. Data collected by remote sensing is most commonly
interpreted and analyzed manually by experts in the field. Generally, this is done
by creating radiance ratio images and scatterplots and then analyzing the results
visually to construct threshold values that will distinguish homogeneous groups
from each other. A radiance ratio image is created by calculating the ratio of
radiance at two specified wavelengths for each pixel and then scaling the resulting
values to produce an output greyscale image. Scatterplots are created by plotting
pixels in two dimensions, usually either the radiance values at two wavelengths or
a radiance value versus a related ratio value. Often, these values will be binned
and colored according to the number of pixels that fall into each bin, so that
highly-populated areas will be more immediately apparent.

Both of these analysis tools have been instrumental in the discovery of new
knowledge about Mars. McSween Jr. et al. (1999) selected “representative” spectra
from rock observations obtained by the Mars Pathfinder Lander and used the
results of both techniques to conclude that there are four major spectral classes
of rocks present. Bell et al. (2000) performed a detailed manual analysis of the
dust and soil found at the Pathfinder landing site and determined that there are
two distinct “dust” and five “soil” classes. However, by themselves these tools are
only an intermediate step in the analysis process. A human expert is called upon
to interpret the ratio images and scatterplots.

Consequently, manual analysis has limited scalability. As data sets get larger
and larger, there is a real need for automated methods to assist in reducing the
number of individual items that a human must examine. Some researchers have
already experimented with using techniques from statistics and machine learning to
augment their manual analyses of astronomical data. As reported by Lillesand and
Kiefer (1987), this work has involved both supervised and unsupervised approaches.

Supervised learning for spectral analysis. The most popular supervised
learning technique for spectral analysis is the neural network, although decision
trees have also been used (Bertin, 2000). Gulati et al. (1995) applied a neural
network to the problem of stellar classification (into known star categories). They
selected 55 spectra with known classifications for training and then applied the
learned neural network to 158 test spectra. Merényi et al. (1996) used a neural
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network to analyze spectroscopic observations of Mars; they manually identified
ten classes in the data, then labeled five to ten sample training spectra for each
class. After training the neural network on these examples, they were able to apply
it to the full data set and classify each pixel into one of the ten classes.

Supervised learning can be of help in processing large data sets because human
intervention is needed only for the initial labeling of the training set. However,
supervised learning does not completely solve the problem of scalability. Gulati
et al. note that their approach would be substantially improved by having access
to a larger training set, and ideally, one that is more consistent with the items
in the test set. It is not easy in general to estimate the number (or identity)
of items required for the training set to guarantee good performance on unseen
items. More importantly, supervised methods are useful when the goal is to apply
an existing categorization to new data. We are in a different situation; we do
not know precisely what categorization of Mars observations will yield the most
information.

To summarize, the motivating hypothesis behind this work is that an analysis
of spectral observations can identify geologically or compositionally interesting re-
gions on Mars. This task is by definition an exploratory one. The volume of data
being collected makes manual analysis impractical. Therefore, we turn to auto-
mated analysis methods as our tool of choice. Supervised methods would require
us to specify examples of what we want to find in the data, while unsupervised
clustering algorithms instead adapt to patterns actually present in the data set
and therefore are less “biased.” In addition, clustering algorithms can rapidly pro-
cess large data sets and produce summary output (clusters) that point the human
analyst towards specific subsets of data that have interesting characteristics. In
the next section, we will discuss previous clustering approaches to the problem of
spectral analysis.

6.2 Other Clustering Approaches to Spectral Analysis
We begin with a review of various clustering analysis techniques that have

been applied to spectral data. Next, we discuss methods that can incorporate
additional information. These methods have largely been limited to working with
image contiguity information (spatial relationships between pixels).

6.2.1 Clustering Spectral Information
Clustering has been demonstrated to be of use on a variety of astronomy prob-

lems. It has primarily been used to automatically classify observations into mean-
ingful groups or to perform image segmentation.

Classification. Djorgovski et al. (2000) discuss the utility of clustering algo-
rithms for analyzing large sky surveys. Yoo et al. (1996) used COBWEB/95,
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an enhanced version of COBWEB (Fisher, 1987) that can handle continuous at-
tributes, to induce a clustering hierarchy on 33,021 sky objects from the Second
Palomar Observatory Sky Survey. The algorithm’s taxonomy of sky objects suc-
cessfully separated stars from galaxies, even though no training data was provided
and this particular goal was not specified to the algorithm. de Carvalho et al. (1995)
applied Autoclass, a Bayesian clustering algorithm (Cheeseman et al., 1988), to the
same data set and obtained a partition of the objects into four clusters. Manual
post-analysis of the clusters determined that they represented meaningful cate-
gories: stars, galaxies with bright central cores, galaxies without bright cores, and
stars with “fuzz” around them.

Image segmentation. For a data set that includes observations taken at d
spectral bands, we can view each pixel as a data vector, containing d values. The
distance between two pixels can be defined as the Euclidean distance between their
respective d-valued spectra. We can then apply common clustering algorithms to
organize the data set into subregions that are internally similar and distinct from
each other.

A different approach is to cluster the pixels in an image based on a his-
togram rather than the individual points themselves (Narendra and Goldberg,
1977; Schowengerdt, 1983; Wharton, 1983). Their algorithm effectively discretizes
the feature space into a set of cells, where each cell is annotated with a frequency,
i.e., the number of data points that fall into that region. Clusters are identified by
seeking cells with relatively high frequency counts. This approach is computation-
ally efficient and does not need to make any assumptions about the probability
distributions of the clusters (e.g., Gaussians). However, these benefits come at
the expense of losing fine discriminability, and as with any discretizing operation,
the quality of the results is dependent on the choice of number of cells and their
placement in feature space.

6.2.2 Incorporating Spatial Information
Although spectral information is very important for remote sensing analysis,

it is also desirable to include other relevant information that is available. By far,
the largest body of work on spectral analysis that uses information beyond just
the spectral features is that which attempts to incorporate the spatial information
inherent in a two-dimensional image. Each pixel is described by observations at
d spectral bands, but it is a common hypothesis that the relative position of the
pixels is also important for classification purposes. In other words, the identity
of neighboring pixels may also be important to the classification of a given pixel.
This bias is supported by the fact that, for real remote sensing imaging systems,
several experimental factors (e.g., diffraction and internal scattering) cause light
from a given location in the scene to spread out into neighboring pixels.

K-means variants. One approach is to use a Bayesian update rule inside the
iterative k-means algorithm, and to weight the priors so that a given pixel has a
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predisposition for receiving the same classification as its neighbors (Montolio et al.,
1992). Alternatively, Theiler and Gisler (1997) modified the objective function
used by k-means to take into account the overall contiguity of the partition. We
will adopt this approach for our own development of a soft constrained clustering
method, but we will allow the encoding of domain knowledge from a variety of
sources, not just spatial contiguity.

Spatial information as additional features. Soh and Tsatsoulis (1999) used
the regular COBWEB clustering algorithm to perform image segmentation of im-
ages taken at a single wavelength. To do this, they first performed an initial seg-
mentation of the image into regions by automatically finding threshold values such
that all pixels within a region have intensity values below the calculated thresh-
old. They then calculated additional spatial and textural features for each such
region by examining, for example, the region’s spatial variety (synonymous with
discontiguity). Next, they used the COBWEB clustering algorithm to condense
these regions into large-scale clusters in the image.

The authors applied this technique to several Earth images, and the approach
demonstrates apparently good results visually. However, they provide limited as-
sessment, despite the fact that they report class labels for each of the clusters
obtained from COBWEB. Quantitative assessment is limited to a comparison of
the size of the resulting clusters to the amount of coverage in each real class in-
dicated by a human expert on the same images; we do not know how much these
clusters agree (spatially or spectrally) with the expert classification. In addition,
this approach has only been applied to images taken at a single wavelength. For
multi-spectral data, the authors speculate that their technique could be applied to
each wavelength separately, and the results could be fused together in an unspeci-
fied manner. In contrast, we will accept multi-spectral input directly into a single
run of the algorithm and automatically produce unified output.

Neighbors encoded as additional features. Masson and Pieczynski (1993)
developed a stochastic version of the EM clustering algorithm (Dempster et al.,
1977) by constructing additional features for each pixel that incorporated a single
neighbor’s values. Roberts et al. (1996) compared clustering multi-spectral data
on the basis of the spectral information alone to clustering the same data with
additional spatial information. The original data set, a Landsat image, contains
information from seven spectral bands. Spatial information was incorporated by
augmenting each pixel with a set of seven additional features for each of its eight
neighbors. The biggest disadvantage of this method is the dramatic increase in
dimensionality of the data set; in this case, dimensionality rises from d = 7 to
d = 63. The authors compensated by running a principal components analysis
(PCA) to provide a projection of the data down into a two-dimensional space.
The PCA and projection were done separately on the original data (d = 7) and
on the spatio-spectral data (d = 63). This transformation of the data allowed the
authors to apply a variety of clustering algorithms (to each set of two-dimensional
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data) without modifying the algorithms themselves. Evaluations of the contiguity
of the resulting partitions show that the contiguity is higher when using the spatio-
spectral data set.

One of the algorithms Roberts et al. used was the contig-k-means algorithm
developed by Theiler and Gisler (1997), which incorporates contiguity information
directly into the k-means algorithm as previously described. Thus, when this
algorithm was applied to the spatio-spectral data, it was in a sense receiving the
same information twice (in the data features and in the spatial relation, which it
was able to directly observe). Not surprisingly, the difference in its performance on
the two data sets (in terms of contiguity) was very small. However, the variance
of the partition it produced on the spatial data was much higher than that of
its partition of the spatio-spectral data, which indicates that the latter clusters
were a “tighter” fit to the data. On the other hand, it is unclear whether these
numbers can be directly compared, since each data set is using a different pair of
(PCA-reduced) features to represent each pixel.

6.2.3 The Need for Constraints in Remote Sensing
Although automated tools are useful for summarizing large quantities of data,

there is a need for such tools that can also incorporate additional domain knowledge
into their analyses. As we have just shown, most previous work with specializing
clustering algorithms for the problem of spectral analysis has focused solely on
methods for incorporating spatial contiguity. We claim that there is a much richer
class of relevant information that can, and should, be used when performing a
clustering analysis of spectral data. For example, Pieters et al. (1996) warn of the
dangers when blindly attempting to find the best numerical fit to data. Unsuper-
vised application of their mixture modeling approach to determining mineralogical
composition of remote objects often came up with physically implausible results.
Therefore, they recommend the use of “additional constraints or assumptions” to
restrict solutions “to be consistent with laboratory trends.” Further, Djorgovski
et al. (2000) warn that “a blind application of the commonly used clustering al-
gorithms in such real-life cases could produce some seriously misleading or simply
wrong results.”

Exploratory analysis should be guided and constrained as much as possible, to
ensure that the results it produces are reasonable from a scientific view. Therefore,
our goal is to develop a method that can effectively encode and apply domain
knowledge to improve its analysis of spectral data.

6.3 K-means Performance on Spectral Analysis
In the next section, we will show how the basic k-means algorithm can also be

transformed to handle soft constraints and argue that this is a powerful and natural
way to encompass domain knowledge from a variety of sources. However, we first
describe the data set used in our experiments. In addition, we will discuss the
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Figure 6.1: Mars observed by STIS at 907 nm

performance of the regular k-means algorithm on this problem and show examples
of its output.

6.3.1 Experimental Methodology
The data set under consideration is composed of multiple observations of the

planet Mars by the Hubble Space Telescope (HST) in April and May, 1999. We
will refer to it as the STIS2 data set. The planet was observed at 1024 different
wavelengths, resulting in 1024 images of Mars, each at a resolution of about 20×80
km per pixel. The images at each wavelength were then map-projected onto a
1200 × 600 pixel latitude/longitude grid to preserve this spatial resolution. To
simplify the presentation of our analysis, we will show the results of working with
a smaller version of this data set, which was subsampled to 360× 180 pixels. We
also reduced the number of distinct wavelengths under consideration to 26, by
performing a sliding Gaussian average on each full spectrum and recording every
40th value. Our final data set, then, contains 64,800 pixels, with a dimensionality
of 26. The wavelengths span 528 to 1016 nm.

Figure 6.1 shows the entire planet when observed at a single wavelength (907
nm). The image is a Mollweide equal-area projection with the north pole at the
top, south pole at the bottom, and 0o longitude in the center of the map. Brighter
areas indicate a higher observed radiance; this image has been contrast-enhanced
to more clearly delineate the light and dark regions. Our data set is an image cube
composed of 26 such images.

Derived features. In addition to the 26 wavelengths available in the down-
sampled data set, we computed five additional derived features. This choice of
additional features was motivated by the features reported as most useful for clas-
sifying scenes obtained by the Mars Pathfinder Lander (Bell et al., 2000). The

2STIS stands for “Space Telescope Imaging Spectrograph,” the HST instrument
used to collect the data.
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Table 6.1: Derived features for the STIS data set

Feature Description Calculation Min Max

FL “flatness” of spectrum R528

R762
0.38 1.02

BD670 670 nm band depth (Fe3+) 1− R667

.58∗R608+.42∗R747
−0.061 0.24

BD860 860 nm band depth (Fe3+) 1− R879

.68∗R801+.32∗R1016
−0.02 0.07

BD950 950 nm band depth (Fe2+) 1− R947

.26∗R747+.74∗R1016
−0.07 0.06

SL 800 – 1000 nm slope R1016 −R801 −0.05 0.01

list of derived features is given in Table 6.1. Rλ refers to the radiance observed at
wavelength λ.

The first feature of interest is a measure of how flat each pixel’s spectrum is
(FL), which is calculated by taking the ratio of the radiance at the lowest available
wavelength to the radiance at the average “peak” of the STIS spectra. Most of Mars
is dominated by areas with very strong absorption at lower wavelengths, which is
what gives the planet its characteristic reddish color. The very red regions will
have an FL value well below 1.0, while other areas will be distinguished by a FL
value near 1.0. For this data set, FL varies from 0.38 to 1.02.

Since we are interested in determining the chemical composition of areas on
Mars, we also include features that are sensitive to specific absorption bands. A
band centered around 950 nm indicates the presence of Fe2+, while bands near
670 and 860 nm indicate the presence of Fe3+ (see Adams, 1974; Morris et al.,
1985). (The precise wavelength values differ slightly because we are working with
a discrete set of 26 wavelengths, and in each case we selected the closest available
value.) The band depth at wavelength λ, BDλ, is calculated as:

BDλ = 1− ERλ (6.1)

where ERλ is the “expected” radiance at λ in the absence of the band. We deter-
mine the “expected” radiance by calculating the continuum value: we compute a
linear interpolation between the radiance values at two nearby wavelengths outside
of the band.

Finally, we also know that the spectral slope between 800 and 1000 nm is
important for distinguishing Martian spectra (see McSween Jr. et al., 1999; Bell
et al., 2000). We calculate this value by subtracting the radiance at 801 nm from
the radiance at 1016 nm. Technically, this slope (SL) should be divided by the
wavelength separation (215 nm), but since this value is constant for all spectra,
we omitted that additional step.

6.3.2 K-means Results
To provide a basis for later comparisons, we ran the regular k-means algorithm

on the STIS data set. The output provided by this algorithm indicates what can
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(a) k = 2 (b) k = 5

Figure 6.2: Two classifications of Mars by the k-means algorithm
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(b) k = 5

Figure 6.3: Average cluster spectra for the partitions shown in Figure 6.2

be learned from an automated analysis of the data set without any specific domain
knowledge. The input data includes the 26 spectral observations and five derived
features for each pixel.

Before describing the results we obtained with k-means, we will first justify
our choice of k-means for this problem. We do not claim that k-means is the only
useful clustering algorithm for this problem. It may also be instructive to analyze
the data using, for example, an algorithm which attempts to find a good value for
k on its own, rather than having it specified as input. However, k-means is useful
as an exploratory tool for spectral analysis precisely because we can control the
number of clusters it generates. This allows us to examine Mars at different levels
of generality. As we will show, the output at different k values provides us with
different insights about the planet.

Figure 6.2 shows the output of the k-means algorithm for k = 2 and k = 5. In
these images, each pixel is colored according to its classification by the clustering
algorithm (the color values themselves are not meaningful). Black regions corre-
spond to non-planet regions or to missing data. For k = 2, the planet is divided
into two regions that correspond directly to its characteristic light and dark areas
(cf. Figure 6.1). With larger values of k, such as k = 5, the planet splits into finer
distinctions.
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An examination of the average cluster spectra reveals that the cluster separa-
tions are dominated by simple albedo differences. Figure 6.3 plots, for each cluster
identified by k-means, the average spectrum for that cluster. The x-axis is wave-
length in nm, and the y-axis is the radiance factor, I/F . This value is defined
as the observed radiance (I) divided by the radiance of sunlight reflected off a
“perfect” diffuse reflector at the same distance as Mars (F ). The colors used for
each spectrum correspond to the colors used in Figure 6.2. Visually, the average
spectrum in each cluster is very similar to the other cluster spectra in shape, and
brightness is the major distinguishing factor. This is not surprising; a principal
components analysis (PCA) of this data set (and other Mars observations in gen-
eral) confirms that the first principal component is albedo and that this component
typically explains 90–95% of the variance in spectral observations of Mars (Bell,
1992). An exception to this general rule is the cluster identified by green x’s in
Figure 6.3b; its shape differs in important ways from the rest of the average cluster
spectra. We will return to this interesting exception in Section 6.6.

6.4 Constrained Clustering With Soft Constraints
We have noted in previous chapters that some kinds of domain knowledge are

perhaps better encoded as soft constraints (or preferences) rather than as hard
constraints. This is particularly true for our spectral analysis of the Mars data.
We do not yet know precisely what can be found in this data set, but we have some
general knowledge about the problem domain that should be of use to a clustering
algorithm. Therefore, before proceeding to describe the constraints that we used
for this problem, we first describe our formulation for soft constraints and present
an algorithm that can use them, scop-kmeans.

6.4.1 Soft Constraints
Previously, we defined two kinds of hard constraints, must-link and cannot-link

(see Section 3.1.1). Each constraint was specified as a relationship between two
data items. For soft constraints (preferences), we will augment each relationship
with an additional strength factor, s, that indicates how reliable the constraint is.
This single constraint formulation (〈di, dj, s〉) subsumes both soft and hard con-
straints. The absolute value of s ranges from 0 to 1, with higher values indicating
a stronger constraint. We also attach a sign to the strength; negative values in-
dicate a preference against being grouped together, while positive values indicate
a preference towards being grouped together. A constraint such as 〈di, dj, 1〉 is
equivalent to a must-link constraint, and 〈di, dj,−1〉 is equivalent to a cannot-link
constraint (〈di, dj, 0〉 is a “don’t-care” statement).

Soft constraint closure. The use of soft constraints requires a modification
to how we compute the constraint closure. The graph of the constraint relation
is weighted; each edge (constraint) has a weight determined by its strength. In
Section 3.1.1, we defined the closure of a set of hard constraints as follows:
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∀i, j, k: given produce
di =m dj dj =m dk di =m dk

di =m dj dj 6=c dk di 6=c dk

di 6=c dj dj =m dk di 6=c dk

Because the edges are now weighted, each derived constraint must also have a
strength assigned to it. We calculate this conservatively as the minimum (absolute)
strength of the two constraints that imply the new constraint. The closure for a
set of soft constraints is defined in this way:

∀i, j, k: given produce
〈di, dj, s1〉 〈dj, dk, s2〉 〈di, dk, min(s1, s2)〉
〈di, dj, s1〉 〈dj, dk,−s2〉 〈di, dk,−min(s1, s2)〉
〈di, dj,−s1〉 〈dj, dk, s2〉 〈di, dk,−min(s1, s2)〉

where s1 and s2 are the (positive) strength values for the corresponding constraints.
If both constraints are positive (preference towards linking), then the derived con-
straint also has a positive strength, which is the minimum of s1 and s2. If one of
the contributing constraints is negative, then the derived constraint also has a neg-
ative strength, which is the minimum of s1 and s2. As before, if both contributing
constraints are negative, then we cannot conclude anything directly from them, so
we do not create a derived constraint.

6.4.2 The SCOP-KMEANS Algorithm
We have chosen k-means as our prototype for the development of a soft con-

straint clustering algorithm. As discussed above, this is a useful algorithm for the
spectral analysis problem, so it is very relevant to the goals of this chapter. A
similar transformation is possible with the COBWEB clustering algorithm, but we
will not present those details explicitly here.

We achieve soft constrained clustering with k-means by modifying its objective
function to incorporate a real-valued penalty for violating constraints. This penalty
is proportional to the strength of the violated constraint(s). scop-kmeans3 calcu-
lates CV , the maximum strength of the violated constraints, if any. See Table 6.2
for a full listing of the scop-kmeans algorithm; once again the changes from the
basic k-means algorithm are shown in bold. The objective function, f , combines
CV with var (variance) in the following way:

f(C1 . . . Ck) =
var

1− CV
(6.2)

where CV is an estimation of the proportion of the maximum strength constraints
that are violated, weighted by their strength. It ranges from 0 (no constraints
violated) to 1 (all constraints with strength 1.0 violated). The penalty for con-
straint violation is non-linear. Since the goal is to minimize the objective function,

3“S” stands for “soft.”
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Table 6.2: scop-kmeans algorithm

scop-kmeans(number of clusters k, data set D, preferences Pref 〈a, b, s〉 where (a, b) ⊆
D ×D and s ∈ [−1, 1])

1. Let C1 . . . Ck be the initial cluster centers.

2. For each instance d in D, assign it to the cluster Cj which will minimize the
following objective function:

f(C1 . . . Ck) =
var

1− CV

where var is the variance of the partition and CV is the constraint
violation value; CV := constViol(d, C1 . . . Ck, P ref).

3. Update each cluster center Ci by averaging all of the points dj ∈ Ci that have
been assigned to it.

4. Iterate between (3) and (4) until convergence.

5. Return the partition {C1 . . . Ck}.

constViol(data point d, partition C1 . . . Ck, preferences Pref)

1. Let CVmax := 0, nConst := 0, nV iol := 0.

2. For each 〈d, d′, s〉 ∈ Pref :
If |s| > CVmax,

If s > 0 and d.class 6= d′.class, then CVmax := |s| and nConst := nV iol := 1.
Else if s < 0 and d.class = d′.class, then CVmax := |s| and nConst = nV iol := 1.

Else if |s| := CVmax,
Increment nConst by 1.
If s > 0 and d.class 6= d′.class, then increment nV iol by 1.
Else if s < 0 and d.class = d′.class, then increment nV iol by 1.

3. Return CVmax ∗ nV iol
nConst .
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partitions that violate constraints of greater strength will appear much “worse” to
the algorithm than those that violate weaker constraints.

More precisely, the constViol function examines each constraint that applies
to data point d. CVmax is the maximum (absolute) strength of d’s violated con-
straints. nConst counts the number of constraints at strength CVmax, and nV iol
tracks how many of those are violated. The function then returns CVmax times the
fraction of maximum strength constraints that are violated. Constraints at a lower
strength may or may not also be violated, but the maximum strength violations
take precedence, as they should.

This algorithm is similar in motivation to the contig-k-means algorithm (Theiler
and Gisler, 1997). However, they incorporate only one kind of soft constraint into
the k-means objective function (contiguity), and they calculate a linear combina-
tion of contiguity and variance:

f(C1 . . . Ck) = λ ·D + (1− λ) · var (6.3)

where D refers to the discontiguity of the partition C1 . . . Ck, and λ is a user-
specified weighting factor that determines the relative importance of variance ver-
sus contiguity. In contrast, scop-kmeans has the ability to incorporate a variety
of different soft constraints, each with their own strength. In particular, our formu-
lation can encode information indicating stronger contiguity in certain areas than
in others. Further, our algorithm can accommodate negative constraints, which the
contig-k-means algorithm cannot. Their constraint model does not allow negative
constraints.

6.5 Generating Spectral Analysis Constraints
scop-kmeans gives us the ability to encode approximate or heuristic domain

knowledge in a form that the algorithm can use to guide its search through the
space of possible partitions of the data. With respect to our exploratory analysis of
HST observations of Mars, soft constraints are essential. Although some knowledge
is encoded in our choice of features (and derived features), other information cannot
be represented in that form. In contrast to previous approaches to clustering
spectral data, we can use constraints to make such information available to the
clustering algorithm.

There are two major kinds of domain knowledge that we selected for testing in
conjunction with constrained clustering. The first, spatial contiguity, is commonly
useful whenever processing images. The second, slope relationships, is specific to
our current knowledge of the planet Mars. Both kinds of information cannot be
effectively encoded either as simple features or as hard constraints. Although we
will only report on two sources of domain knowledge for this problem, we do not
claim that they are a comprehensive representation of everything currently known
about Mars. A significant advantage of our clustering architecture is that new
hypotheses about data relationships can be easily encoded and tested. We plan to
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investigate several additional sources of domain knowledge about this problem in
a similar way in the future.

Spatial contiguity. The assumption that regions in an image should be spatially
contiguous is a common one. When performing image segmentation to identify
objects in a scene, contiguity is required.

For remote sensing, contiguity is important, but there is an important tradeoff
between contiguity and the level of precise distinctions we wish to make. For
example, we could classify the entire state of Utah as “desert,” or we could identify
multiple regions (“canyons,” “desert,” “forest,” “water”). However, the “water”
cluster will appear in several different isolated regions of the state, which greatly
reduces the contiguity of this cluster (and the entire partition). Creating a separate
cluster for each body of water (“Great Salt Lake,” “Utah Lake,” “Colorado River,”
“Lake Powell,” etc.) would improve the contiguity of the partition, but this is only
useful if the water in each of these bodies is different enough (in the end user’s
opinion) to merit being placed in different clusters.

Therefore, we express spatial contiguity as a soft constraint. It is a global
constraint, but we can easily encode it as a set of instance-level soft constraints.
More precisely, for each pair of pixels d, d′ that are spatial neighbors in the image,
we generate a constraint 〈d, d′, scontig〉. Formally,

∀
d,d′

d.neighbor(d′) ⇒ 〈d, d′, scontig〉 ∈ Pref.

We define the spatial neighbors of d as its eight directly adjacent pixels (border
pixels will have fewer than eight neighbors). This formulation allows us to easily
experiment with different values for scontig. We will show the results obtained with
a range of scontig values in Section 6.6.

Slope relationships. The SL derived feature, which indicates the slope of a
given spectrum between 800 and 1000 nm, is known to be very important for
distinguishing Mars spectra (Bell et al., 2000). A negative slope can be indicative
of a Fe2+ absorption band, hinting at the presence of olivine or pyroxene. However,
a positive slope rules out the possibility of such a band. Therefore, because we
are seeking mineralogically significant separations, we decided to test applying
a negative soft constraint to pairs of spectra that have slopes of different signs.
In this case, we are encoding a feature-level constraint as a set of instance-level
constraints. More precisely,

∀
d,d′

d.SL > 0 and d′.SL < −0.03 ⇒ 〈d, d′, sslope〉 ∈ Pref.

The range of SL on this data set is from −0.05 to 0.01. We restrict this constraint
to items d′ with a relatively strong negative value (d′.SL < −0.03). We will show
the results of experimenting with various fixed values of sslope. Another possible
approach would be to let sslope vary with the magnitude of the difference between
d.SL and d′.SL. Again, this level of fine control over soft constraints has not
previously been possible.
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Figure 6.4: Contiguity obtained with k=4 for different scontig values

6.6 Experimental Results
Our experiments with the STIS data and soft constraints have yielded a variety

of interesting and exciting results. We have organized the presentation of these
results into three categories. First, we will show experiments that confirm that
our encoding and use of soft constraints is in fact an effective way to incorporate
domain knowledge in clustering. Next, we will compare our analysis to results
reported by other researchers about Mars. Finally, we will present a summary
of several novel results that our experiments have produced. The results of these
experiments, taken as a whole, firmly establish constrained clustering as a useful
spectral analysis tool.

6.6.1 Effective Use of Soft Constraints
The spatial contiguity constraint incorporates the spatial relationships in an

image into the clustering process. We can test whether this information has been
effectively encoded and applied by the algorithm by looking at the contiguity of the
resulting partition with and without constraints. This kind of constraint therefore
provides an easy way to confirm the effectiveness of our soft constraint formulation
and algorithm.

With respect to the STIS data, we created a set of contiguity constraints as
described in Section 6.5 and experimented with different values for scontig, the
constraint strength parameter. In this case, we do not take a transitive closure
over these constraints. This heuristic encodes a local notion of contiguity, which
indicates that a pixel prefers to be classified similarly to its neighbors. A transitive
closure of these constraints would require that every pixel be placed into the same
class (with strength scontig), which is not the preference we want to encode.
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Figure 6.4 plots the per-pixel contiguity of the output partition for sixteen
different runs of scop-kmeans on the STIS data with k = 4. Each run used
the same random initial cluster centers but had access to a different set of soft
constraints; each constraint set used a different value for scontig. Contiguity on
the y-axis is specified as the average per-pixel contiguity. It is calculated in the
following way:

Contig(P ) =
1

n

∑
(d,d′)∈N

δ(d.class = d′.class). (6.4)

The partition P contains all of the items d ∈ D, with each item annotated with
its assigned cluster (class). N is a binary relation containing neighbor pairs (d, d′).
δ is a function that returns 1 if its argument is true and 0 otherwise. A per-pixel
contiguity of 0.75, for example, means that on average, 3/4 of a pixel’s neighbors
have the same class that the pixel does.

We experimented with scontig ranging from −0.9 to 0.9 (we will explain what
a negative value for this constraint means shortly). There are no solutions for
scontig = 1.0. The only way to find a valid solution for scontig = 1.0 is to put all
of the pixels into the same class, which is impossible for any k 6= 1. Also, the
results obtained with scontig = [−0.7,−0.9] are degenerate; clusters are composed
of uniformly scattered points in the image.

Figure 6.4 shows that as scontig increases, so does the contiguity of the output
partition, which demonstrates that the scop-kmeans algorithm can accept these
soft constraints and apply them successfully. Normally, we would use a positive
value for scontig, to indicate a preference towards spatial contiguity. However, we
also tested what would happen when specifying a negative value for scontig, indi-
cating a preference against contiguity. scop-kmeans was also successful at incor-
porating this kind of constraint: contiguity steadily decreases as scontig becomes
more negative.

The output at scontig = 0.0 is exactly what is obtained when running without
any constraints, as we would expect. This data set exhibits a fairly high amount
of spatial contiguity even when clustering without constraints (0.744, with k = 4).
We observe what seems to be an inflection point in the graph around scontig = 0.0,
due to our non-linear constraint violation penalty. If we instead used a linear
penalty, we would expect this graph to exhibit linear behavior. Instead, the non-
linear penalty allows us to interpret a |scontig| of 1.0 as a completely hard constraint
that cannot be violated.

6.6.2 Comparison to Other Research on Mars
We have shown that scop-kmeans can effectively make use of soft constraints

by discussing our contiguity results. In addition, our analysis has also produced
science results that largely agree with other investigations of Mars observations.
Bell et al. (1997) collected HST observations of Mars in 1994 and 1995 at nine
wavelengths (225–1042 nm) and analyzed the data using ratio images and scatter-
plots. They report three major findings:
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Figure 6.5: K-means output for k = 3

1. B1: There are two distinct bright regions, largely distinguished by their R673

R410

ratios (one is 20–25% higher than the other).

2. B2: Dark regions have a 3–5% deeper absorption band at 860 nm than do
the bright regions.

3. B3: The 953-nm absorption band has a depth of 0–5% for bright regions
and a depth of 7–15% for dark regions.

Comparison to B1. Our observations do not include wavelengths as low as 410
nm, but we can examine the average values for FL for each cluster (this is the R528

R762

ratio). Running with k = 3 (and no constraints) produces clusters that correspond
to one cluster covering the “dark” areas and two clusters collectively covering the
“bright” areas (see Figure 6.5a). In the absence of constraints, we find that the
two bright clusters have FL values of 0.523 and 0.446, which indicates that one has
a ratio that is 17% higher than the other. The average cluster spectra are shown
in Figure 6.5b. This agrees well with B1. It is important to note that these three
clusters were identified based on their homogeneity; we did not identify “bright”
and “dark” regions explicitly for the algorithm to analyze.

When performing the same analysis but incorporating a spatial contiguity con-
straint with strength 0.5, this result is unchanged; we still find two bright clusters
with the same relationship. However, the clusters are slightly more contiguous
(per-pixel contiguity rises from 0.802 to 0.814).

Comparison to B2. We observe less of a distinction between the bright and
dark regions in terms of BD860 than was reported by Bell et al. Rather than the
dark areas having a 3–5% deeper absorption band, we instead see a difference of
only about 2%. However, the trend is the same.
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Comparison to B3. Interestingly, our results directly contradict B3. Recall
that the deepest band depth at 950 nm in our data set is only 6%. We observe a
very minimal average 950-nm absorption band for bright regions and an absorption
of 1–2% for dark regions.

There are two possible reasons for the discrepancy between our results and
B3. First, we are using a very coarse division of the planet into two or three
regions and labeling those as “bright” and “dark.” Although the averages show
very small absorption features, the constituent pixels in each cluster possess a
variety of band depths. Pixels in the bright cluster have a BD950 that ranges from
4% to −7% (a negative band depth indicates a local reflectivity maximum rather
than an absorption feature). Pixels in the dark cluster range from having a BD950

of 6% to −6%.
Second, we are probably not calculating the continuum (“expected”) radiance

value at 950 nm in the same way that Bell et al. did. This is important, because it
directly affects the band depth calculation. This may explain why the maximum
band depth we observed differs so greatly from their observations.

Regardless, we are encouraged by the degree of agreement we find between
our independent analyses of the same planet. We find agreement even though the
observations are separated by five years and some of the derived features have not
been calculated in exactly the same way. In terms of observing conditions, Bell
et al. noted that at the time they were collecting their data, Mars was experiencing
very cloudy weather. In contrast, our data set was created during extraordinarily
clear Martian conditions. This allows us to see more of the planetary mineralogy,
due to the reduction in obscuring ice and clouds. As we will see in the next
section, our automated analysis was also able to detect and isolate areas where ice
and clouds are present.

6.6.3 Novel Scientific Findings
In addition to results that confirm or suggest alternatives to existing knowledge

about Mars, our analysis also suggest several other interesting features of our
particular data set. These observations add to the sum of our knowledge about
the planet and are therefore valuable from a scientific viewpoint. In this section,
we detail five interesting observations that came out of our automated analysis of
the data set.

950-nm band depth. We found that this absorption band was a very distinct
feature for regions on Mars. When clustering with k = 2, we find that the bright
cluster has an average band depth of 0.3%. This is minimal, but it clearly contrasts
with the average result for the dark clusters. Rather than finding an absorption
feature at 950 nm, we find that the average value for BD950 is −2% (a local
reflectivity maximum). This result suggests that the bright regions may be more
likely to have a Fe3+ absorption band at this location.
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(a) With contiguity constraints, k = 6,
scontig = 0.5

(b) Without constraints, k = 5

Figure 6.6: Dark low-red regions on Mars

800 to 1000 nm slope. This feature also turns out to be important for distin-
guishing regions on Mars, as we hypothesized. The overall average slope for this
data set is negative from 800 to 1000 nm. Our results indicate that bright regions,
on average, have a slope that is twice as strongly negative as the dark regions.

Unusually dark low-red regions. There are two regions on Mars that show
up as having abnormally dark and flat spectra, in comparison with the rest of
the planet. Most of Mars is covered with spectra that have low FL values; the
average for our data set is 0.530. However, these two regions have an unusually
high average FL value of 0.820 (at k = 6). In fact, every pixel in the cluster has
an above-average FL value (from 0.642 to 1.018). These spectra, because they are
so relatively flat, can also be considered “low-red” regions; they will appear much
less red than most of the planet does.

Besides being flat, these spectra are also very dark, with very low overall ra-
diance values. The spatial location of these pixels is relevant; they occur in two
places, Syrtis Major and two patches just southwest of the north polar cap. These
are two places previously known to be very dark (McCord et al., 1971). Figure 6.6a
shows the output of scop-kmeans when using contiguity constraints with k = 6.
The two regions of interest are labeled. (There are other pixels also assigned to
this cluster, near the south edge of the planet. However, they are mostly artifacts
of the data gathering process; they were observed under very poor conditions due
to the viewing geometry between the Earth and Mars.)

These results were obtained when clustering with contiguity constraints. If we
do not use it, a similar cluster appears at k = 5, but it is much less distinguished; its
average FL value is only 0.799. This, too, is above average, but it is less spatially
(and spectrally) coherent. The variance for the cluster obtained when using the
regular k-means algorithm is 0.068, while the variance of the corresponding cluster
when using cop-kmeansis only 0.057. Lower variance means that the average
cluster spectrum is a better fit to the items in the cluster, spectrally. The average
spectrum for the unconstrained cluster is shown in Figure 6.3b. It is the flattest
cluster in the graph, clearly distinguished from the other clusters.
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(a) With contiguity constraints, k = 7,
scontig = 0.5

(b) Without constraints, k = 6

Figure 6.7: Ice/cloud regions on Mars

Ice/cloud regions. There are also two regions on Mars that are distinguished
by bright and flat spectra. They appear in the north polar region and over the
Hellas Basin. If we increase k to 7, this cluster appears with a FL of 0.745, which
is higher than average yet distinguished from the dark, flat regions above. In fact,
the higher value of k also permits a tighter fit to the dark flat cluster; it now has an
average FL of 0.825. Because these regions are significantly brighter than dark flat
cluster, and because of their spatial locations, we hypothesize that they represent
ice (water ice or CO2 ice) present at the pole and thin clouds present over the
Hellas Basin. Both of these hypotheses are physically plausible and in accord with
what we believe to be possible on Mars.

Figure 6.7a shows the output of scop-kmeans when using contiguity con-
straints with k = 7. The north polar region is almost entirely covered by the
ice/cloud cluster, as is the Hellas basin. The dark flat cluster is still visible (cf. Fig-
ure 6.6a). Once again, these are the results obtained when clustering with contigu-
ity constraints. Without that information, the results are again less satisfactory.
At k = 6, a cluster similar to the ice/cloud cluster appears (Figure 6.7b), but its
FL value is at 0.751. We also observe that the ice/cloud cluster obtained when us-
ing contiguity constraints is a better fit to the data; that cluster’s average variance
is only 0.149, compared to an average variance of 0.178 obtained when clustering
without constraints. In addition, without contiguity constraints the dark flat clus-
ter disappears; some of its pixels appear to have been subsumed by the ice/cloud
cluster, which explains why that cluster’s FL value is higher.

Slope constraint has little effect. We experimented with different values for
sslope and different ways of calculating these constraints, but found that the con-
straints have little effect on the final results. This appears to be because the
clusters found in the absence of constraints are already fairly well separated with
respect to this feature; darker areas tend to have lower slope values than brighter
regions, as mentioned above. It is possible that calculating this feature as a rela-
tive value rather than an absolute one might yield values that correlate less with
albedo. We have not tested this hypothesis yet. Although the slope constraint did
not significantly alter the results in this case, it is still a useful piece of knowledge
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to include. For exploratory analyses in particular, blind analysis of the data can
produce misleading results. By including additional information such as the slope
constraint, we can guarantee that the output will be reasonable in terms of this
particular domain knowledge. Without such constraints, we cannot be certain that
the results will be physically meaningful.

6.7 Summary
In this chapter, we have achieved two major goals. First, we have developed a

formulation for soft constraints and a clustering algorithm that can make effective
use of those constraints. Second, we applied this algorithm to a very large database
of Mars observations and found that the results are of value scientifically both for
confirming the results of independent analyses of the planet and for highlighting
points of disagreement. These results indicate that constrained clustering can be
a useful tool for scientific discovery. We believe that scientists from a variety of
disciplines can benefit from adding constrained clustering to their set of frequently
used analysis tools.



CHAPTER 7
CONCLUSIONS

This dissertation has presented four major contributions: an expressive way to
encode knowledge as constraints, a general method for creating constrained cluster-
ing algorithms, three new constrained clustering algorithms, and a demonstration
of the robustness of the approach by applying it to three significant real-world
problems. This chapter summarizes each contribution and then discusses several
extensions to this work that we envision.

7.1 Major Contributions
Expressive constraint formulation. We have developed an expressive con-
straint formulation for encoding domain knowledge about a problem. This en-
coding encompasses soft as well as hard constraints. We have discussed problem
domains for which each type of constraint is most appropriate. We demonstrated
that this encoding of knowledge effectively transmits information to constrained
clustering algorithms and that the constraint formulation is rich enough to be
of use on a diverse array of problems. Further, our encoding is novel in that it
accommodates negative constraints as well as positive ones.

General method for creating constrained clustering algorithms. We have
also developed a general method for transforming a regular partitioning clustering
algorithm into a constrained clustering algorithm. The resulting algorithm can
apply knowledge encoded as instance-level pairwise constraints to guide its selec-
tion of the best partition of the data. This transformation is not particular to any
single algorithm, and its general applicability is one of its strengths.

Three new constrained clustering algorithms. We have applied this trans-
formation to two common clustering algorithms, k-means and COBWEB, and
developed constrained versions of each that are general enough to be applied to a
variety of problems. Two of the algorithms, cop-kmeans and cop-cobweb, are
designed to function with hard constraints, which must be satisfied by the final
output partition. The third algorithm, scop-kmeans, accommodates information
encoded as soft constraints, which express preferences of varying strengths about
the placement of items. All three algorithms represent novel contributions to the
body of algorithmic tools available for data analysis.

Results on real-world problems. We have demonstrated the robustness of
our approach by applying constrained clustering algorithms to three significant
real-world problems and reporting on the improvements obtained when using con-
straints. First, we used cop-kmeans to automatically improve road maps, refining
them to the resolution of individual lanes. Second, we applied cop-cobweb to
the problem of noun phrase coreference resolution. Finally, we used scop-kmeans
to analyze spectral observations of the planet Mars; our results both support ex-
isting hypotheses about Mars and uncover interesting new aspects of the data set.

117
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The diversity of problems we experimented with is a testament to the general
applicability of our techniques.

7.2 Extensions to Constrained Clustering
We have demonstrated the strengths of constrained clustering using several

algorithms and applying our techniques to several real-world problems. There are
several extensions to this work that we envision as the next logical steps. First, we
plan to develop a soft constrained version of COBWEB. We expect that the method
we used to develop scop-kmeans can also be applied to develop a scop-cobweb
algorithm. We will apply this algorithm to the coreference problem, which will
also allow us to encode a broader collection of information, as soft constraints. A
comparison between the results of scop-cobweb and the results we have already
obtained with cop-cobweb will further our understanding of the relative benefits
of each type of constraint.

In addition, our work has been focused exclusively on partitioning algorithms.
There are cases where hierarchical algorithms, which construct an organization of
the data at several different levels of generality, are most useful. We anticipate
the development of intelligent constrained hierarchical methods modeled after our
constrained partitioning work, and we believe that the key lies in the use of soft
constraints.

Finally, we have only scratched the surface in terms of interesting information
to be discovered in the STIS Mars data set. We plan further experiments, using
additional features and constraints, to assist us in further exploration of the planet.
For example, we plan to experiment with the contiguity constraints that vary in
strength across the planet. We will assign regions known to be fairly homogeneous
a stronger contiguity constraint than “borderline” regions (such as the transition
to the polar caps). In the process of these experiments, we will demonstrate the
power of constrained clustering as a scientific tool. If this tool continues to be
effective at confirming existing knowledge about Mars as well as discovering novel
information, we hope to encourage its broader use in other scientific endeavors.
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Merényi, E., Singer, R. B., and Miller, J. S. (1996). Mapping of spectral variations
on the surface of Mars from high spectral resolution telescopic images. Icarus,
124:280–295.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.



125

Mitkov, R. (1999). Anaphora resolution: the state of the art. Working paper (Based
on the COLING’98/ACL’98 tutorial on anaphora resolution).

Mjolsness, E. and DeCoste, D. (2001). Machine learning for science: State of the
art and future prospects. Science, 293(5537):2051–2055.

Montolio, P., Gasull, A., Monte, E., Torres, L., and Marqués, F. (1992). Analysis
and optimization of the k-means algorithm for remote sensing applications. In
de la Blanca, N. P., Sanfeliu, A., and Vidal, E., editors, Pattern Recognition
and Image Analysis, volume 1 of Series in Machine Perception and Artificial
Intelligence, pages 155–170. World Scientific, Singapore.

Morris, R. V., Lauer Jr., H. V., Lawson, C. A., Gibson Jr., E. K., Nace, G. A., and
Stewart, C. (1985). Spectral and other physicochemical properties of submi-
cron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4),
goethite (α-FeOOH), and lepidocrocite (γ-FeOOH). Journal of Geophysical Re-
search, 90:3126–3144.

MUC-6 (1995). Proceedings of the Sixth Message Understanding Conference. Mor-
gan Kaufmann, San Francisco, CA.

MUC-7 (1998). Proceedings of the Seventh Message Understanding Conference.
Morgan Kaufmann, San Francisco, CA.

Murtagh, F. (1985). A survey of algorithms for contiguity-constrained clustering
and related problems. The Computer Journal, 28(1):82–88.

Narendra, P. M. and Goldberg, M. (1977). A non-parametric clustering cheme for
Landsat. Pattern Recognition, 9:207–215.

Navigation Technologies (1996). Software Developer’s Toolkit. Navigation Tech-
nologies, Inc., Sunnyvale, CA, 5.7.4 Solaris edition.

Ng, V. and Cardie, C. (2002). Combining sample selection and error-driven pruning
for machine learning of coreference rules. In Proceedings of the 2002 Conference
on Empirical Methods in Natural Language Processing.

Nigam, K., McCallum, A., Thrun, S., and Mitchell, T. (1998). Learning to classify
from labeled and unlabeled documents. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pages 792–799, Madison, WI. The AAAI
Press.

Oliver, M. and Webster, R. (1989). A geostatistical basis for spatial weighting in
multivariate classification. Mathematical Geology, 21:15–35.

Pelleg, D. and Moore, A. (1999). Accelerating exact k-means algorithms with geo-
metric reasoning. In Knowledge Discovery and Data Mining, pages 277–281.



126

Perruchet, C. (1983). Constrained agglomerative hierarchical classification. Pattern
Recognition, 16(2):213–217.

Pieters, C. M., Mustard, J. F., and Sunshine, J. M. (1996). Quantitative mineral
analyses of planetary surfaces using reflectance spectroscopy. In Dyar, M. D.,
McCammon, C., and Schaefer, M. W., editors, Mineral Spectroscopy: A Tribute
to Roger G. Burns, pages 307–325. The Geochemical Society.

Popescu-Belis, A. and Robba, I. (1998). Three new methods for evaluating ref-
erence resolution. In Proceedings of the LREC 1998 Workshop on Linguistic
Coreference.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66(366):846–850.

Roberts, S., Gisler, G., and Theiler, J. (1996). Spatio-spectral image analysis using
classical and neural algorithms. In Dagli, C. H., Akay, M., Chen, C. L. P.,
Fernández, B. R., and Ghosh, J., editors, Smart Engineering Systems: Neural
Networks, Fuzzy Logic, and Evolutionary Programming, volume 6 of Intelligent
Engineering Systems Through Artificial Neural Networks, pages 425–430. ASME
Press, New York, NY.

Rogers, S., Langley, P., and Wilson, C. (1999). Mining GPS data to augment
road models. In Proceedings of the Fifth International Conference on Knowledge
Discovery and Data Mining, pages 104–113, San Diego, CA. ACM Press.

Schowengerdt, R. A. (1983). Techniques for Image Processing and Classification in
Remote Sensing. Academic Press.

Schroedl, S., Rogers, S., , and Wilson, C. (2000). Map refinement from GPS traces.
Technical Report RTC Report No. 6, DaimlerChrysler Research and Technology
North America.

Selim, S. Z. and Ismail, M. A. (1984). K-means-type algorithms: A generalized con-
vergence theorem and characterization of local optimality. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 6(1):81–87.

Selman, B., Mitchell, D. G., and Levesque, H. J. (1996). Generating hard satisfia-
bility problems. Artificial Intelligence, 81:17–29.

Shmoys, D. B., Tardos, E., and Aardal, K. (1997). Approximation algorithms for
facility location. In Proceedings of the Twenty-ninth Annual ACM Symposium
on the Theory of Computing, pages 265–274.



127

Sibson, R. (1973). SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal, 16(1):30–34.

Soh, L. and Tsatsoulis, C. (1999). Segmentation of satellite imagery of natural scenes
using data mining. IEEE Transactions on Geoscience and Remote Sensing,
37(2):1086–1099.

Soon, W. M., Ng, H. T., and Lim, D. C. Y. (2001). A machine learning approach to
coreference resolution of noun phrases. Computational Linguistics, 27(4):521–
544.
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