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Abstract 

Open collaboration platforms have fundamentally changed the way knowledge is produced, disseminated 

and consumed. In these systems, contributions arise organically with little to no central governance. While 

such decentralization provides many benefits, a lack of broad oversight and coordination can leave 

questions of information poverty and skewness to the mercy of the system’s natural dynamics. 

Unfortunately, we still lack a basic understanding of the dynamics at play in these systems, and specifically, 

how contribution and attention interact and propagate through information networks. We leverage a large-

scale natural experiment to study how exogenous content contributions to Wikipedia articles affect the 

attention they attract and how that attention spills over to other articles in the network. Results reveal that 

exogenously added content leads to significant, substantial and long-term increases in both content 

consumption and subsequent contributions. Furthermore, we find significant attention spillover to 

downstream hyperlinked articles. Through both analytical estimation and empirically-informed simulation, 

we evaluate policies to harness this attention contagion to address the problem of information poverty and 

skewness. We find that harnessing attention contagion can lead to as much as a twofold increase in the total 

attention flow to clusters of disadvantaged articles. Our findings have important policy implications for 

open collaboration platforms and information networks. 

Keywords: user-generated content, open collaboration platforms, information consumption, attention 

contagion, spillover effect   
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1.   Introduction  

Wikipedia is one of the most successful examples of open collaboration platforms, serving millions of 

information seekers daily. It is both a repository of free knowledge and the most-visited educational 

resource on the planet1. By the end of 2017, a mere sixteen years since its inception, the English language 

Wikipedia alone contained over 5.5 million articles and a total of over 3.1 billion words, over 60 times as 

many as the next largest English-language encyclopedia, Encyclopædia Britannica2. It consists of millions 

of articles written by a global network of volunteers and is accessible to anyone with an internet connection. 

Wikipedia represents a new generation of internet-based collaborative tools that strives to be open, 

accessible, and egalitarian.  

However, Wikipedia’s reliance on open and distributed collaboration as well as community governance 

is not without its problems. As noted by Wikipedia itself, volunteers don’t always contribute to the content 

that people need the most3. A large proportion of articles are incomplete or insufficiently supported with 

references 4 . Because of Wikipedia’s open and distributed production model, it is difficult to direct 

contributors’ attention to articles that most need improvement. Hence, not only are these articles 

incomplete, but they are likely to remain so. As a consequence, the coverage and depth of knowledge in 

Wikipedia articles is uneven. While well-developed articles are considerably longer than their analogues in 

Encyclopædia Britannica, many articles are still of poor quality and are on average half as long as their 

professionally edited analogues5. Importantly, coverage also appears to be uneven across both geographical 

areas and knowledge domains (Graham et al. 2014, Halavais and Lackaff 2008, Kittur et al. 2009). For 

example, Wikipedia has strong coverage of military history and political events in America, but articles on 

biology, law, medicine, and information on developing countries are often absent or underdeveloped6.  

 
1 It is the 5th most visited website in the world, according to Alexa.  
2 https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia 
3 https://wikiedu.org/changing/wikipedia/ 
4 http://time.com/4180414/wikipedia-15th-anniversary/ 
5 https://en.wikipedia.org/wiki/Wikipedia:Size_comparisons 
6 https://en.wikipedia.org/wiki/Criticism_of_Wikipedia  



Left unchecked, the societal implications of uneven coverage are deeply troubling. Despite the 

openness of Wikipedia, there are growing concerns that geographical areas and knowledge domains that 

are left out or underrepresented will remain so or become even further underrepresented relative to the 

growing knowledge base in a kind of poor-get-poorer phenomenon. Geographical informational skews can 

act to further limit our understandings of, attention to, and interactions with impoverished areas in terms of 

regional economic, social, political, and cultural concerns (Forman et al. 2012, Graham et al. 2014, Norris 

2001, Yu 2006). Knowledge-domain information skews can compound insularity, lead to domain-based 

siloing, and push information seekers towards alternative, domain-specific information platforms that are 

less open and not free. Informational skew may reinforce or even compound existing biases in worldviews 

and exacerbate information poverty. Existing research has shown that information (un)availability has a 

surprisingly strong impact on real-world outcomes in financial markets, scientific advancement, and the 

tourist industry (Hinnosaar et al. 2017, Thompson and Hanley 2017, Xiaoquan and Lihong 2015, Xu and 

Zhang 2013). These studies further emphasize the salience of the skewed coverage problem in Wikipedia. 

Importantly, while we focus on Wikipedia, concerns of uneven coverage exist in a variety of platforms that 

facilitate collaborative content production, including open-source software (e.g. GitHub), knowledge 

markets (e.g. Stack Overflow or Quora), and product reviews (e.g. Amazon or Steam). 

It is unclear whether Wikipedia’s uneven coverage is driven by selection effects on the part of 

Wikipedia editors due to their intrinsic interests (Kuznetsov 2006, Nov 2007), natural emerging trends and 

exogenous factors (Kämpf et al. 2012, 2015, Keegan et al. 2013) or a systematic tendency for well-

developed articles to continue to receive more attention via the “rich-get-richer” dynamic (Aaltonen and 

Seiler 2016, Barabási and Albert 1999). Most existing work on knowledge contribution behavior on 

Wikipedia has focused primarily on the motivation of its editors (Gallus 2016, Harhoff et al. 2003, Lampe 

et al. 2012, Nov 2007, Zhang and Zhu 2011, Zhu et al. 2013).  However, it is critical that we understand 

the factors that govern the evolution and lifecycle of articles, which are central to the dynamics of 

Wikipedia as a system. Such factors are also likely important determinants of uneven coverage. 



Unfortunately, our understanding of how open collaboration platforms evolve and attract attention is still 

very limited. 

There are three streams of research in the literature that are relevant to our study. The first stream of 

research emphasizes the dynamic co-evolution of knowledge consumption and knowledge production. The 

open collaboration model allows consumers of knowledge to react to existing content and potentially also 

become contributors. But, how does production and consumption of knowledge interact in this complex 

dynamic system (Kämpf et al. 2012, Wilkinson and Huberman 2007)? Aaltonen and Seiler ( 2016) find that 

longer Wikipedia articles tend to receive more editing in the future. Kummer (2019) studied how attention 

shocks arising from natural disasters affect contributions. Kane and Ransbotham (2016) investigate the 

feedback loop between consumption and contribution of articles in WikiProject Medicine and find that the 

state of content moderates this feedback loop. It is noteworthy that they argue that this feedback loop in 

open collaboration platforms has been under-researched and that a deeper understanding is warranted.  

The second stream of research emphasizes the network perspective by recognizing that, similar to the 

web as a whole, Wikipedia is an information network of hyperlinked articles. This has important 

implications: at least some of the traffic (attention) arriving at a particular article flows outward along links 

to other downstream articles. The importance of this network perspective derives from a long tradition of 

relating a node’s relative importance to its network properties -- an assumption that is implicit to the well-

known PageRank algorithm. The overall exposure of an article in Wikipedia is determined by the various 

ways that an information seeker can arrive at it via both external (e.g., search engines) and internal sources 

(upstream Wikipedia articles). Previous research has shown that the network position of an article is 

correlated with its content consumption and production (Kane 2009, Kummer et al. 2016, Ransbotham et 

al. 2012). Moreover, the structural embeddedness of an article in the content-contributor network is 

positively related to its viewership and information quality (Kane and Ransbotham 2016, Ransbotham et 

al. 2012). Beyond information networks, Lin et al. (2017) examined a product recommendation network 

and found that both network diversity and stability are significantly associated with product demand. These 



findings suggest that articles that are disadvantaged in terms of network position may receive less attention, 

further limiting their future evolution.  

The third stream of research focuses on attention flow or spillover in information networks and policies 

to optimally leverage spillover. West and Leskovec (2012) used an experimental game to study the 

dynamics of attention flow in Wikipedia through the lens of goal-oriented search. Kummer (2014) studied 

spillovers from articles that are featured on the home page of German Wikipedia. Wu and Huberman (2007) 

study the dynamics of attention to articles on the news aggregator Digg.com and show how attention to 

articles decays with their novelty. Several works have focused on how content, and particularly perception 

of its importance, can drive attention. Salganik et al. (2006) conducted a series of randomized online 

experiments to determine the impact of music track ranking on consumption. Muchnik et al. (2013) 

demonstrated that perceived popularity of comments not only attract attention and additional votes but can 

lead to herding phenomena where “likes” beget additional “likes.” Carmi et al. ( 2017) carried this idea 

further and studied how demand shocks generate not only attention but attention spillover in the product 

recommendation networks of Amazon.com, yielding substantial benefits to downstream recommended 

products. Finally, Aral et al. ( 2013) studied seeding strategies for policies that leverage spillover in the 

context of social networks. These studies suggest that attention spillover has a significant impact on real-

world outcomes and policies that leverage spillover can be beneficial.  

While all three streams of research have enriched our understanding of knowledge production and 

consumption in information networks, much of the work on open collaboration platforms like Wikipedia 

relies on endogenous observational data, making it difficult to draw valid causal conclusions. In addition, 

existing work has focused only on the local direct effect of attention spillover. It has not addressed how 

heterogeneous characteristics of articles moderate spillover. Nor has it considered the systemic effect of 

spillover and its broader policy implications.  

Yet, a rigorous understanding of the dynamics at play in the Wikipedia network and collaborative 

information systems in general is indispensable for understanding how information evolves in these 



systems. Such an understanding is vital to the mission of global empowerment through open knowledge 

production and dissemination. Moreover, it is an important precursor to the development of sound policies, 

such as incentivizing contributions to achieve more robust coverage7. Randomized controlled experiments 

are the gold standard for causal inference but are difficult to conduct on platforms like Wikipedia. Apart 

from the technical challenges and ethical concerns associated with experiments in this context, the 

continued survival and operations of these platforms depend completely upon the community of 

contributors, who are highly sensitive to sudden and unvetted policy changes. On the other hand, natural 

experiments that create exogenous variation in otherwise endogenous relationships can also permit valid 

causal inference. 

In this study, we leverage a natural experiment to examine how exogenous content contributions to a 

Wikipedia article affect future activities surrounding the article in terms of both pageview dynamics and 

editing behavior. More interestingly, we examine how the attention an article attracts can spill over to other 

articles it links to and hence further propagate through the network. Furthermore, we consider the broader 

policy implications of spillover. We conduct policy simulations to understand how spillovers concentrated 

in the clusters of the network, which we term attention contagion, could impact the evolution of Wikipedia 

as a system and how it could be harnessed and incorporated into policies to address impoverished regions 

in information networks. 

The goal of the policy simulation is to integrate our findings into an empirically-calibrated attention 

diffusion model and to guide policy decisions through the analysis of counterfactuals. While the platform 

can answer some policy questions through analysis of observational data and through experimentation, 

many relevant counterfactuals for policy recommendation are not directly recoverable from direct 

estimates. They may be too costly or even impossible to test. In our context, interpreting the spillover effect 

of individual articles on the whole system is not straightforward. In particular, the effect of spillovers might 

 
7 https://meta.wikimedia.org/wiki/Research:Increasing_article_coverage   



be amplified when editorial efforts are directed at a group of interconnected articles. The key idea behind 

the policy simulation approach is that reduced-form analysis is used to estimate parameters of a model of 

the system so that the model can be used to extrapolate findings to more complex or more interesting 

policies, at the cost of imposing additional model assumptions (Taylor and Eckles 2018). 

Our study provides three major contributions. First, we confirm and obtain causal estimates of the 

feedback loop between contribution and attention. We find that contribution drives sustained increase in 

future attention (12% on average, with stronger impact for more significant contributions) and future 

contributions (3.6 more edits and 2 more unique editors over a 6-month period). Second, we determine the 

article and network characteristics that most amplify spillover or attention contagion. We find that spillovers 

have the most impact (as much as 22%) for less popular articles that are hyperlinked from focal articles 

through newly created links. Third, we provide insights from comparisons of policies to address 

information-impoverished regions of the network based on analytic derivation and empirically-calibrated 

simulations. We demonstrate that a policy designed to leverage attention contagion can yield substantial 

increases in attention (as much as a twofold) to impoverished regions of information networks. These results 

are directly relevant to concerns of societal equity and have managerial importance for collaborative 

information platforms. 

2. Natural Experiment and Data 

Since 2010, the Wikipedia Education Foundation has been collaborating with university course instructors 

to encourage students in the United States and Canada to expand and improve Wikipedia articles through 

course assignments. The mission of this endeavor is to cultivate students’ skills such as media literacy, 

writing, and critical thinking, while leveraging student effort to fill content gaps on Wikipedia. Since its 

launch, university instructors participating in the program have guided their students to add content to 

approximately 46,000 course-related articles on Wikipedia. About 35,000 students have contributed more 



than 35 million words to Wikipedia, equivalent to 22 volumes of a printed encyclopedia. These student-

edited articles have collectively received 282 million views by the end of 20178.   

In this study, we leverage the exogenous content contributions that result from this campaign to enrich 

our understanding of the dynamics in open collaboration platforms. The identification derives from the 

assumption that the content contributions by students are exogenous to the natural evolution of the articles 

and would not have occurred during the same time period in the absence of the Wiki Education campaign. 

This is likely to hold for two reasons: first, many of the treated articles pertain to topics that do not naturally 

relate to current events (e.g., detailed topics in fundamental sciences, such as properties of molecules, etc.); 

Second, the timing of contribution is exogenous. The content addition occurs during a fixed time period 

that corresponds to an arbitrary class period – that is to say that the contribution would not have occurred 

during the same time period in the absence of the assignment. We seek to learn three things from this natural 

experiment: First, whether efforts that focus on developing underdeveloped pages can lead to long-term, 

sustained impact; Second, more generally, how contribution and attention dynamically interact and how 

this interaction depends upon article attributes; Third, whether and to what extent attention propagates 

through the information network, i.e. the phenomenon of attention contagion. Finally, we seek to combine 

insights in order to synthesize and assess policies that address information poverty and skewness. 

For this study, we collected all the articles that received content contribution from students through this 

campaign in the year of 20169. For each article, we retrieved its title, URL, the time period of the course 

(i.e. the shock period), and the number of characters added to the article by the assigned student from the 

website of Wiki Education Dashboard10. In our analysis, we retain only articles that existed prior to the 

campaign (excluding new articles created by students) and those that received substantive contributions (of 

 
8 https://wikiedu.org/changing/wikipedia/ 
9 Wikimedia changed their measurement of “pageviews” in May 2015 to better filter out bot traffic and 

incorporate the visits from mobile devices. Looking at the articles edited in 2016 guarantee we have a 

consistent measure of pageviews in the 6 months before and after the content shock. 
10 https://dashboard.wikiedu.org/ 



at least 500 added characters during the shock period). This leaves us with 3,296 unique treated articles in 

the sample.  

To assess the impact of the content shock, we consider the number of pageviews of an article, a widely-

used measure of information consumption. In addition, we parse the complete revision history of each 

article to obtain the time series of edits and authorship (i.e., the number of unique editors that worked on 

the article over time). Both the pageviews and revisions are collected through the public API developed and 

maintained by the Wikimedia Foundation11. 

2.1. Matching and control group 

Rates of Wikipedia content creation and consumption are subject to seasonality and other temporal patterns. 

A simple comparison of quantities of interest (e.g. pageviews and revisions) before and after the content 

shock may therefore be misleading. Observed changes can be attributed to alteration of the page content, 

but also to naturally occurring trends. Statistical modeling techniques alone are often insufficient to fully 

account for seasonality and other complex temporal patterns of article activity. We address this issue by 

constructing a sample of treated and control articles, matched across multiple attributes. The control group 

is used to identify the average outcomes corresponding to the counterfactual state that would have occurred 

for articles in the treatment group had they not received the content contribution during the shock period. 

The control group is chosen via the following procedure.  First, we pick candidates for the control group 

by choosing a random sample of 100,000 Wikipedia articles that did not receive content contribution from 

students. Next, we define the hypothetical shock period for each control article by randomly sampling from 

the pool of shock periods of treated articles and measure the pre-shock article characteristics for control 

articles. Finally, we use Coarsened Exact Matching (CEM) (Iacus et al. 2012) based on each article’s pre-

shock characteristics of tenure, size and popularity (calculated based on average historical pageviews) to 

obtain a matched sample by pruning articles that have no close match in the treated and control group. We 

 
11 https://www.mediawiki.org/wiki/API:Main_page 



opt for a k-to-k matching solution (i.e., an equal number of treated and control units), which is accomplished 

by pruning observations from a CEM solution within each stratum until the solution contains the same 

number of treated and control units in all strata. Pruning occurs within a stratum through nearest neighbor 

selection using a Euclidean distance function.  

Matching is a frequently used technique for drawing causal conclusions from observational data based 

on the assumption of selection on observables (Ho et al. 2007, Rosenbaum and Rubin 1983). It emulates a 

randomized experiment, after the data has been collected, by constructing a balanced dataset in which 

samples in the control group are similar to the samples in the treated set in observed characteristics. We 

confirm that the constructed control group closely mirrors the treatment group in seasonality and natural 

time trends. This can be verified in the model-free plots of pageviews over time in Section 2.3 and by 

comparing article attributes in each group as displayed in Table 1. The average of all three covariates are 

very close across groups and t-tests fails to reject the null hypothesis that they have the same mean value. 

In addition, this between-group panel research design lends itself neatly to a standard Difference-in-

Difference estimation of the effect of content contribution. 

Table 1: Balanced Check for Matched Sample 

 Size (characters) Popularity (weekly 

pageviews) 

Tenure (weeks) 

Control 16,228 1,575 506 

Treatment 16,255 1,574 506 

t-test (p-value) 0.70 0.93 0.51 

Table 1 illustrates the quality of our matching procedure. It compares pre-shock characteristics of articles in the 

matched groups. T-tests indicate that we cannot reject the null hypothesis that articles in treatment and control group 

have the same mean across all three characteristics. 

The above procedure yields 2,766 pairs of matched treated and control articles. For each article, we 

construct a panel of weekly pageviews from 26 weeks before the shock to 26 weeks after (excluding the 

shock period itself). Our final sample consists of a balanced panel of 52 periods for 5,532 articles or 287,664 

observations at the article-week level. Our results are robust to other matching procedure choices. For 



example, we evaluated an alternative matching procedure that incorporates matching on article topic and 

find that the direct effect results are qualitatively similar with only small changes in the magnitude of effect 

sizes. In addition, we also demonstrate that our results are robust to matching based on network 

characteristics of articles (see Appendix for further details).   

2.2. Links and hyperlink articles 

Because we are also interested in attention spillovers from treated articles to downstream hyperlinked 

articles, we parse content revisions to retrieve the outgoing hyperlinks from focal articles. Following the 

links, we retrieve all articles linked to by treated and control articles. There are millions of such hyperlinked 

articles. To avoid confounds that may arise from multiple exposures to the treatment, we retain only 

hyperlinked articles that are linked to from one and only one treated article (Walker and Muchnik 2014). 

For parity, we treat articles downstream of control articles in the same manner. This allows us to obtain a 

clean estimate of the spillover effect from each link. This procedure yields 131,974 hyperlinked articles 

that are downstream from directly treated articles. The spillover treated and spillover control articles 

constitute our sample for analyzing the spillover effect of the content contribution. This is illustrated in 

Figure 1. 



Figure 1: Research Design - Direct Effect and Spillover Effect 

 

Figure 1 illustrates the direct treated and direct control articles, which constitute our matched sample for analyzing 

the direct effect of the treatment. Similarly, the spillover treated and spillover control articles constitute our sample 

for analyzing the spillover effect of the content contribution. 

 

2.3. Model-free evidence 

In this section, we present model-free evidence regarding the direct and spillover impact of the content 

shock, in terms of both pageview dynamics and editing behavior. A model-free examination of the evidence 

can reveal important effects while avoiding modeling assumptions. 

Pageviews dynamic 

Because articles are highly heterogeneous, they experienced a large variance in activities (such as 

pageviews) even prior to treatment, a phenomenon that is typical for complex social systems (Muchnik et 

al. 2013)  To compensate for large baseline variation, we scaled pageviews for each article relative to its 



own pre-shock popularity, which is computed as average weekly pageviews over 26 weeks (about 6 

months) prior to its shock period12:  

𝑠𝑐𝑎𝑙𝑒𝑑𝑃𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑖,𝑡 =
𝑝𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑖,𝑡

𝑝𝑟𝑒𝑆ℎ𝑜𝑐𝑘𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖
 (𝑒𝑞 1) 

Where  𝑝𝑟𝑒𝑆ℎ𝑜𝑐𝑘𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖 = 1/26∑ 𝑝𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑖,𝜏−𝜇 
26
𝜇=1  and 𝜏 is the week when the content shock 

begins for article 𝑖.  Because courses in our sample begin at different weeks and have different durations, 

we align their start dates and exclude the duration of shock period itself from the analysis. We consider 

relative time before or after the shock. Figure 2 plots the mean and standard deviation of weekly scaled 

pageviews in the 6 months prior to and after the shock period for treated and control articles.  

Figure 2 

 
Figure 2 displays the pageviews dynamics for articles in the treatment and control group. Time is measured 

relative to the shock period (which is excluded), up to 26 weeks before and after. Dots and whiskers represent 

the mean and standard deviation of scaled pageviews in each bin, respectively. 

This model-free view of the data displays a clear seasonal trend for both treatment and control group 

articles, indicating the need for careful construction of a control group as a counterfactual. Prior to the 

shock, articles in the control group mimic the time trend of those in the treatment group well, highlighting 

the success of our CEM procedure. We can also see the significant and relatively long-lasting impact of the 

 
12 Note that this normalization simply scales the time series of pageviews of each article by a constant. 
Examination of the model-free evidence for scaled and unscaled pageviews reveals that this scaling is appropriate. 



treatment on post-shock pageviews. Treated articles received approximately 10% more traffic than control 

articles, and this effect persisted for at least 26 weeks after the contribution shock.  Evidently, Wikimedia’s 

campaign efforts to develop underdeveloped pages both worked and had a relatively long-term impact, 

suggesting the potential for a policy approach to fill impoverished regions in Wikipedia’s information 

network. 

Figure 3 plots the mean and standard deviation of weekly scaled pageviews in the 26 weeks prior to 

and after the shock period for articles in the spillover treated and spillover control groups. While pageviews 

of spillover treated articles seem to exceed those of spillover control articles after week 10, it is unclear 

from this model-free evidence alone whether the effect is significant. It should be noted that there is little 

doubt that spillover of attention occurs on Wikipedia– this can be seen explicitly from published clickstream 

data of actual traffic flowing over hyperlinks from one article to another (see Sources of Increased Attention 

in section 3 for further discussion). What is unclear is the extent and heterogeneity of treatment spillover 

effect and whether it can be teased out. Downstream articles, by virtue of being selectively linked to, tend 

to be more popular and have a larger variance in pageviews, suggesting that the effect, if it exists, may 

require econometric strategies to uncover. For example, it could be the case that the spillover is significant 

for only less popular articles, which may themselves be underdeveloped.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 



  
Figure 3 displays the pageviews dynamics for articles to which treatment and control group articles link. 

Time is measured relative to the shock period (which is excluded), up to 26 weeks before and after. Dots 

and whiskers represent the mean and standard deviation of scaled pageviews in each bin, respectively.  

During the shock period, students also added new links to downstream pages, as part of their 

contribution efforts. Newly added links are interesting in terms of attention spillover, because they may 

function to “open the valve” of attention flow between articles. Intuitively, old links can convey only 

changes in attention to downstream articles. In contrast, a newly added link can convey the totality of 

attention to downstream articles. This is illustrated in a simple conceptual model:  

Δ𝑝𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑠𝑖,𝑗
𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟

 ∝ 𝑝𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑠𝑖 ∗ 𝑛𝑒𝑤𝐿𝑖𝑛𝑘𝑖,𝑗   + Δ𝑝𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑠𝑖
𝑡𝑟𝑒𝑎𝑡𝑒𝑑  (𝑒𝑞 2)  

Where 𝑛𝑒𝑤𝐿𝑖𝑛𝑘𝑖,𝑗 can be thought of as an indicator variable (equal to 1 for new links, and 0 for old links). 

This suggests that attention spillover may be more clearly visible in model-free evidence if we look only at 

newly-linked downstream articles (i.e., those downstream articles that were linked to from treated articles 

during the shock period). Figure 4 is similar to Figure 3 but distinguishes spillover populations by whether 

the link from the directly treated article was pre-existing (old link) or was added during the shock period 

(new link). New link articles in the spillover control group are not displayed because they did not receive 

sufficient new links during the shock period.    

 

 



Figure 4 

 
Figure 4 displays the pageviews dynamics for hyperlink articles based on whether the downstream article 

is connected through a new link or an old link. The time period is from 26 weeks prior to the contribution 

shock to 26 weeks after. Dots represent mean value of scaled pageviews in each bin and whiskers 

represent the corresponding standard deviation. 

The model-free plot of the spillover effect for new links confirms our reasoning. Spillover of attention 

across newly created links is clearly significant and the temporal pattern of spillover closely follows the 

pattern of the post-shock pageviews of directly treated articles. Compared to an old link, a new link can 

convey an additional 15% pageviews to target articles on average.  

Editing behaviors 

Prior research has suggested that content contributions are self-promoting – that, in addition to boosting 

future attention (consumption), they also drive future contributions. We examine model-free evidence to 

determine whether the exogenous content contribution to articles leads to future contributions to those 

articles. We retrieved the full revision history of all articles in our sample and constructed two measures of 

editing behavior, the number of total edits and the number of unique editors in the six months prior to and 

after the shock period for each article. Because contribution behavior is relatively rare, we collapse the time 

series into a “pre” and “post” period.  For each article, we look at the editing behavior before and after the 

content shock and their difference across treatment and control groups. 

 



Table 2: Editing behavior before and after the shock period 

 Total edits Unique editors  

 Before After Δ Before After Δ 

Control 11.2 11.3 0.1 6.2 6.5 0.2 

Treatment 11.7 15.4 3.7 6.7 9 2.2 

t-test (p-value) 0.45 - <1e-9 0.36 - <1e-16 

Note: The values display under the columns “Before” and “After” are counts of total edits and unique editors in the 

6 months before and after the shock period.  Δ = After - Before. The values in the row “t-test” are p-values from a 

two-sided t-test of the null hypothesis that control and treatment group have the same mean. 

 

Editing behavior is similar across treatment and control groups during the pre-shock period, as 

expected: t-tests fail to reject the null hypothesis that the treatment and control group have the same mean 

number of total edits ( 𝑝 = 0.45) and number of unique editors (𝑝 = 0.36) prior to the shock. For treated 

articles, in the 6-month period after the contribution shock, the number of total edits increased by 3.7 (p<1e-

9) and the number of unique editors increased by 2.2 persons (p<1e-16). In contrast, control group articles 

did not experience any significant increase in number of total edits or number of unique editors. These 

results confirm that exogenous content shocks significantly drive future editing behavior. 

Overall the model-free evidence confirms that exogenous content contributions drive future attention 

and editing behavior and that spillover of attention occurs significantly for newly added links. To capture 

the impact of varying intensity of treatment and heterogenous treatment impact, we turn to econometric 

modeling.  

3. Empirical Methods 

3.1. Direct Impact of Contribution Shock 

In this section, we use econometric models to infer how differing intensities of content shocks affected 

treated articles contingent on article characteristics, in terms of future content consumption and future 



editing behavior. We further investigate the source of attention increases to treated articles by analyzing the 

internal and external inbound traffic to treated pages.  

Content Consumption 

We estimate the average treatment effect on the treated (ATT) for content consumption using the following 

simple specification as the baseline model: 

𝑃𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑠𝑖𝑡 = α𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑖𝑡 + 𝛾𝑖 + 𝛿𝑡 + 𝑒𝑖𝑡    (𝑒𝑞 3) 

where 𝑖  is a Wikipedia article and 𝑡 indexes the week. The dependent variable 𝑃𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑠𝑖𝑡 is the scaled 

pageviews for article 𝑖  at week 𝑡  as defined in 𝑒𝑞 1 . For brevity, we have defined 𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑖𝑡 =

𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑃𝑒𝑟𝑖𝑜𝑑𝑡 ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖, a dummy variable equal to 1 if the period 𝑡 is after shock and the article 

𝑖 is a treated article, and 0 otherwise. We include article and week fixed effects (𝛾𝑖 and 𝛿𝑡) to account for 

article level heterogeneity and common pageviews trends over time on the platform. Equation (3) estimates 

a simple Difference-in-Difference model of the impact of exogenous content contribution.  

However, content contribution may have different impacts on articles with different characteristics. For 

example, less popular articles (with less average attention prior to the shock) may have been more or less 

affected. Article characteristics include article length, tenure and popularity (defined as average pageviews 

over the 6 months period before the shock). Moreover, not all treated pages received equal contributions 

during the shock period. Actual contributions varied significantly across treated articles, ranging from 

hundreds to tens of thousands of characters added through the course of student edits. To account for 

varying treatment intensity and to allow for heterogeneous treatment effects, we estimate the following 

model: 

𝑃𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑠𝑖𝑡 = 𝛽1𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑖𝑡 ∗ log(𝑐ℎ𝑎𝑟𝐶𝑜𝑢𝑛𝑡𝑖) + 𝛽2𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑖𝑡 ∗ 𝑋𝑖 

+𝛾𝑖 + 𝛿𝑡 + 𝑒𝑖𝑡    (𝑒𝑞 4) 



where log (𝑐ℎ𝑎𝑟𝐶𝑜𝑢𝑛𝑡𝑖) is the logarithm of number of characters added to article 𝑖 by a student during 

the shock period13. It represents the variation of treatment intensity. 𝑋𝑖 is a vector of article characteristics 

measured before the content shock, including article tenure, size, and popularity. To provide better 

interpretability of model estimates and to avoid the assumption of linearity, we bin these three continuous 

variables to low and high levels by their median value and include dummy variables that are equal to 1 

when the value is high and 0 otherwise (i.e. older article, longer article, and more popular article) in the 

vector 𝑋𝑖 . Diagnostic tests show that two bins for our continuous variable is a reasonable choice (see 

Appendix for more detail). The interaction term of 𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑖𝑡  and 𝑋𝑖  allows us to investigate 

heterogeneous treatment effects. We retain article fixed effects and week fixed effects. The parameters of 

interest are 𝛽1  and 𝛽2.  

We use linear regression to estimate the above models and results are reported in Table 3. Because 

we scale the pageviews of each article with respect to its average pageviews over the six months prior to 

the shock, all estimates can be conveniently interpreted as the percent changes of pageviews relative to their 

pre-shock average. Following the suggestion of Bertrand et al.(2004), all reported standard errors allow for 

arbitrary serial correlation across time and heteroscedasticity across articles to properly gauge the 

uncertainty around the estimates for serially correlated outcomes in panel data.  

Overall, we find post-shock pageviews for treated article increased by 12% on average. The magnitude 

of the treatment effect is positively correlated with treatment intensity and the impact is stronger for articles 

that are younger and less popular. The effect is both economically and statistically significant. Based on the 

model estimates in (3), a relatively young and less popular article with 6000 characters added (the average 

number of characters added for treated articles in our sample) during the shock period experienced a 25% 

boost in post-shock pageviews. The impact is even larger for similar articles that received a more intense 

treatment. 

 

 
 13 For articles in the control group, the value of log (𝑐ℎ𝑎𝑟𝐶𝑜𝑢𝑛𝑡𝑖) is set to zero. 



Table 3: The Impact of Content Contribution on Consumption 

 Scaled pageviews 
 (1) (2) (3) 

PostShock 0.119***   

 (0.017)   

PostShock*log(char count)14  0.035*** 0.065*** 
  (0.005) (0.008) 

PostShock*old article   -0.041* 
   (0.024) 

PostShock*popular article   -0.142*** 
   (0.025) 

PostShock*long article   -0.015 
   (0.025) 

Article fixed effect Yes Yes Yes 

Time fixed effect Yes Yes Yes 

Observations 287,664 287,664 287,664 

Adjusted R2 0.122 0.122 0.124 

 Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 
 *Significant at the 10 percent level. 

 

We perform diagnostics to assess our modeling assumptions in terms of linear interaction effects and 

common support. Results show that both assumptions are satisfied. For robustness, we also estimated 

alternative specifications. Using linear regression, we drop article fixed effects 𝛾𝑖 and retain only a simple 

treatment indicator, and all estimates are similar (see the Appendix for more details).   

Editing Behavior 

Beyond the impact on attention, we are also interested in whether exogenous content contributions spur 

future editing behavior. Because editing behavior is typically sparse for a Wikipedia article, for modeling 

purposes, we collapse the time series into just “pre” and “post” periods for the 6 months prior to and after 

 
14 Note that in models 2 and 3, we include PostShock*log(char count) and exclude a bare PostShock term because 

log(char count) captures the intensity of a treatment (and every article that received a contribution as a consequence 

of treatment had some number of characters added).  



the contribution shock. For each article, this yields two 6-month time periods during which we count the 

number of total edits and number of unique editors and these comprise the dependent variables. Compared 

to alternative approaches (such as multistage, zero-inflated models), this transformation permits a simpler 

linear model which retains interpretability and avoids more restrictive modeling assumptions (such as 

distributional assumptions on the error term that are required by Poisson or Negative Binomial regression). 

In addition, as suggested by (Bertrand et al. 2004), the “pre” and “post” time series collapse allows us to 

obtain a consistent estimator for the standard errors of the treatment effect in the Difference-in-Difference 

model. The models estimated here are similar to models in equation (3) and (4) for content consumption, 

apart from the time period collapse and the exchange of the dependent variable for editing behavior. For 

the sake of interpretability, we report the results from a linear regression, but results from Poisson regression 

and Negative Binomial regression are qualitatively similar (see Appendix for details).   

Table 4: The Impact of Contribution Shock on Future Editing behavior 

 Number of total edits Number of unique editors 
 (1) (2) (3) (4) (5) (6) 

PostShock 3.596***   1.996***   

 (0.855)   (0.243)   

PostShock *log(char count)  1.173*** 1.186***  0.640*** 0.606*** 
  (0.229) (0.234)  (0.068) (0.065) 

PostShock *old article   1.446   0.691** 
   (0.957)   (0.339) 

PostShock *long article   -1.840**   -0.829*** 
   (0.926)   (0.305) 

PostShock *popular article   0.241   0.333 
   (0.856)   (0.326) 

Article Fixed Effect Yes Yes Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes Yes Yes 

Observations 10,964 10,964 10,964 10,964 10,964 10,964 

Adjusted R2 0.63 0.63 0.63 0.82 0.82 0.82 

Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 

 
*Significant at the 10 percent level. 



As we can see from Table 4, the contribution shock has a significant impact on future editing behavior 

in terms of both number of total edits and number of unique editors. Based on model estimates from column 

(1) and (4) in Table 4, an article that received content contribution in the shock period had approximately 

3.6 more edits and 2 more unique editors in the 6 months after the shock period, compared to articles that 

did not receive exogenous content contribution. Similar to our findings for content consumption, the 

magnitude of the treatment effect increases with treatment intensity. Based on the estimates from column 

(2) and (4), an article with 6000 characters added during the shock period attracts 4.5 more edits and 2.5 

editors in the 6 months post-shock period. As for heterogeneous treatment effects, the most significant 

factor we weaker impact for articles that already have a substantial amount of content. 

Sources of Increased Attention 

Both model-free results and estimates from statistical models confirm that exogenous contributions to 

articles drive future attention. But from where does this increased attention originate? In general, articles 

can receive attention directly from external sources (e.g., traffic arriving to an article from outside of the 

information network, such as through search engine discovery or links from external websites) and internal 

sources (e.g. traffic flowing to an article from another upstream article). This distinction is interesting and 

meaningful from a policy perspective as some articles may act to pull attention into the information network 

from external sources, thereby increasing the overall attention to the platform. Articles also play a role in 

the redistribution of attention throughout the platform, which is relevant from the standpoint of information 

equity. An article’s role in the flow of attention on the information network is illustrated in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 5 

 

Figure 5 illustrates the flow of attention on information networks with respect to a 

particular article in terms of flow in (internal and external) and flow out. 

For many large-scale real-world information systems, we cannot directly observe the detailed flow of 

attention (traffic). However, recently released data of monthly Wikipedia clickstream15 snapshots provide 

exactly this level of detail for all Wikipedia articles. The clickstream data show how users arrive at an 

article and what links they click on within the article over the course of a given month, aggregated at the 

article level. They contain counts of (referrer, resource) pairs extracted from the Wikipedia HTTP request 

logs, where a referrer is an HTTP header field that identifies the address of the webpage that linked to the 

resource being requested. In other words, the clickstream data gives a weighted network of articles and 

external sites, where the weight of each edge corresponds to the traffic flow along that edge. These counts 

are aggregated at the monthly level and any (referrer, resource) pair with greater than 10 observations in a 

month are included in the dataset. To give a sense of the scale of the data, the August 2016 release contains 

25.8 million (referrer, resource) pairs from a total of 7.5 billion requests for about 4.4 million English 

Wikipedia articles. Figure 6 displays an example from the Wikimedia website, which illustrates incoming 

and outgoing traffic to the page “London” on English Wikipedia.  

 
15 https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream 



Figure 6 

 
Figure 6 displays the sources of incoming and outgoing traffic for the “London” Wikipedia article, as 

determined from the clickstream monthly data snapshots provided by the Wikimedia foundation. 

We leverage this data to shed light on the sources from which increased attention originate. The 

clickstream data snapshots are only available for a limited number of months during the period of our 

natural experiment. To look at the change of traffic flow, we need to compare snapshots before and after 

the shock period. Fortunately, the Wikimedia Foundation released clickstream snapshots for both August 

2016 and January 2017, which are just before and after articles were treated in the fall semester of 2016.  

For each article, we calculate its total inbound traffic (combined internal and external traffic arriving at 

the article), total outbound traffic (traffic leaving the article), internal inbound traffic16 (traffic flow to the 

article from other articles in the network) and external inbound traffic (traffic flow to the article from a 

search engine or other external website). We use CEM to ensure that articles in the treatment group and 

control group are comparable across all traffic measures prior to the start of the natural experiment (i.e. in 

the August 2016 snapshot). The k-to-k CEM procedure leaves us with 1,017 articles in both the treatment 

and control group (see Appendix for distribution and balance checks for clickstream data). 

First, we look at changes in network structure in terms of newly created incoming links. During the 

shock period, it is likely that links to articles in either the treatment or control group were created, either by 

 
16 The link traffic only includes links from other Wikipedia articles. The link traffic from other website 

outside of the ecosystem of Wikipedia were classified under the “external traffic” category. 



student editors or as part of the natural evolution of the information network. Matching the 2,024 treatment 

and control articles in our sample with the clickstream data snapshots (for August 2016 and January 2017), 

we find that the number of active incoming links17 for treated articles grew significantly faster as compared 

to control group articles. As we see in Table 5, articles in the treatment group received on average 0.9 more 

active links during the shock period (compared to 0.4 for articles in control group). New incoming links 

make an article more discoverable by creating new channels to capture attention flow within the network. 

These increased channels may explain how contributions ultimately drive attention.   

Table 5: Number of incoming links 

 Number of incoming links per articles 

 Before After Δ 

Control 6.6 7.0 0.4 

Treatment 6.6 7.5 0.9 

t-test (p-value) 0.96 - < 1e-15 

Notes: The values display under the columns “Before” and “After” are the average number of incoming links per 

articles in the 6 months before and after the shock period.  Δ = After - Before. The values in the row “t-test” are p-

values from a two-sided t-test of the null hypothesis that control and treatment groups have the same mean. 

 

Attention from external sources can also explain the attention increases we observed. To determine the 

extent to which observed attention increases derive from internal or external sources, we compare pre/post 

shock changes in internal, external, and total incoming traffic across treatment and control articles in Table 

6. The control group serves as a counterfactual to account for natural fluctuations arising from seasonal or 

other pageview trends, leading to a simple DID style estimator: 

Table 6: Incoming traffic breakdown 

 Total incoming traffic internal traffic (𝑇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) external traffic (𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) 

 
17 We define an active incoming link as one that conveys at least 10 pageviews in a month. The monthly 

clickstream data snapshots filter out any (referrer, resource) pairs that do not meet this criterion.  



 Before After Δ Before After Δ Before After Δ 

Control 45.4 53.6 8.2 10.2 12.2 2.0 35.2 41.4 6.0 

Treated 44.7 59.3 14.6 10.2 14.0 3.8 34.4 45.2 10.8 

t-test (p-value) 0.85 - 0.01 0.97 - 0.05 0.80 - 0.03 

Notes: The values display under the columns “Before” and “After” are the average traffic per article per day in the 6 

months before and after the shock period.  Δ = After - Before. The values in the row “t-test” are p-values from a two-

sided t-test of the null hypothesis that control and treatment groups have the same mean. 

 

From Table 6, we see that the total incoming traffic increased by 14.6 pageviews per article per day for the 

treatment group relative to 8.2 for the control group. The extra 6.4 pageviews can be interpreted as the 

Average Treatment Effect on the Treated (ATT), which is about a 14% increase relative to the pre-shock 

average. This result is consistent with our prior estimates, which were based on article-level pageviews 

data. Hence, we demonstrate the impact of content shock using two different data sources (clickstream data 

and pageviews data) and find similar effect sizes. We can also see that both internal and external sources 

conveyed increased attention, indicating that content contributions yield attention gains from within the 

information network and from without. We suggest that attention gains from external sources are likely the 

result of increased visibility of the articles in search engine results18. Modern search engine algorithms are 

clearly sensitive to the recency of content changes. Though we do not know the actual details of search 

engine ranking algorithms (proprietary information), more incoming hyperlinks to a page convey a higher 

ranking in ordinary PageRank. We define the ratio of internal to external traffic as 𝑅(𝑇) =

𝑇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙/𝑇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 . New traffic has a higher ratio, (𝑅(Δ𝑇) = 0.4  ) relative to the pre-shock ratio 

(𝑅(𝑇𝐵𝑒𝑓𝑜𝑟𝑒) = 0.3), indicating that new traffic originates slightly more from internal sources.  

3.2. Attention Spillover 

The impact of content shocks is not limited to directly treated articles. Attention resulting from the shock 

can also spillover onto other downstream articles through the hyperlink network. Conceptually, we can 

 
18 Search engines traffic dominates other external sources such as external websites in external traffic. 



think of the spillover as a dyadic relationship between each source (directly treated or control) and target 

article. As our consideration of model-free evidence showed, new links, which build bridges between source 

and target articles, seem to play a critical role in facilitating spillover. It also seems plausible that the 

popularity of source and target articles may moderate the extent of the spillover. We test these hypotheses 

with the following model: 

𝑃𝑎𝑔𝑒𝑣𝑖𝑒𝑤𝑠𝑖𝑡 = 𝛽0𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑖𝑡 + 𝛽1𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑖𝑡 ∗ 𝑠𝑡𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖 + 𝛽2𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑖𝑡 ∗ 𝑛𝑒𝑤𝐿𝑖𝑛𝑘𝑖 

     + 𝛽3𝑃𝑜𝑠𝑡𝑆ℎ𝑜𝑐𝑘𝑖𝑡 ∗ 𝑠𝑡𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖 ∗ 𝑛𝑒𝑤𝐿𝑖𝑛𝑘𝑖  + 𝛾𝑖 + 𝛿𝑡 + 𝑒𝑖𝑡    (𝑒𝑞 5) 

Where 𝑖  is a target article and 𝑡  is the week. 𝑠𝑡𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖  is a 2-dimension vector 

(𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖) , representing the popularity of the source article (i.e., the 

treated article that received an exogenous content contribution) and the target article (that was linked to 

from the treated article), respectively. The indicator 𝑛𝑒𝑤𝐿𝑖𝑛𝑘𝑖 is equal to 1 if the link between source article 

and target article was added during the treatment period, 0 otherwise. The parameters of interest are 

𝛽1, 𝛽2, 𝛽3. We include each term in successive models gradually to investigate how they parcel out the 

overall spillover effect. The results are displayed in Table 7. 

 

 

 

 

 

Table 7: The Attention Spillover of Contribution Shock 

 Scaled pageviews 
 (1) (2) (3) (4) 

PostShock 0.008*** 0.027*** -0.006 -0.005 
 (0.003) (0.006) (0.004) (0.007) 

PostShock*popularTargetArticle  -0.013**  -0.004 
  (0.005)  (0.005) 

PostShock*popularSourceArticle  -0.016**  0.000 
  (0.007)  (0.007) 



PostShock*newLink   0.129*** 0.148*** 
   (0.012) (0.018) 

PostShock*popularTargetArticle*newLink    -0.138*** 
    (0.023) 

PostShock*popularSourceArticle*newLink    0.073*** 
    (0.023) 

Article fixed effect Yes Yes Yes Yes 

Time fixed effect Yes Yes Yes Yes 

Observations 6,862,648 6,862,648 6,862,648 6,862,648 

Adjusted R2 0.104 0.104 0.104 0.104 

Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 
 *Significant at the 10 percent level. 

We can see from column (1) of Table 7 that the overall effect (i.e., when averaged over all articles) is 

small but significant. This result is consistent with the model-free evidence and our intuition given the large 

heterogeneity across articles. Column (2) of Table 7 shows how the treatment effect varies with the 

popularity of source and target articles. Evidently, spillover from low popularity source articles to low 

popularity target articles yielded a 2.7% increase in pageviews (p<0.01). While this effect size may initially 

seem small, it is measured with respect to a single outgoing link from the treated article to one target article. 

In general, treated articles link to multiple downstream target articles, suggesting that the overall collective 

effect of spillover can be quite substantial. Interestingly, spillover is enhanced when both source and target 

articles are less popular, which is a typical scenario for underdeveloped pages, particularly in 

informationally impoverished regions in the Wikipedia network.  

A more interesting insight emerges when we consider whether the link between source and target 

articles was new. Surprisingly, for new links, the impact of the spillover can be as large as around 13%, 

which is close in magnitude to the average direct effect. As illustrated in our discussion of model-free 

evidence, the rationale is that a new link can “open the valve” between source and target article and convey 

both the preexisting and increased attention from the source to the target. We note that old links clearly 

convey attention (as the clickstream data illustrate). However, they convey only increased attention from 

the source to the target and we lack the statistical power to see it directly in this model. Finally, the attention 



spillover is even larger (14.8%) for new links between less popular source and target articles. As 

underdeveloped regions of information networks likely satisfy all these criteria (i.e. low popularity of 

articles and lack of preexisting link structures between articles), policies that focus on promoting such 

regions can benefit from strategies that harness spillover.  

4. Policy Simulation of Attention Contagion 

Our spillover results indicate that attention shocks in Wikipedia have a local network effect. Articles in 

the system benefit when upstream articles receive attention. Some spillovers direct attention to downstream 

articles that already receive significant exposure. On the other hand, some of this attention may increase 

exposure to underdeveloped articles. This begs the question: By focusing attention on connected sets of 

underdeveloped articles, can we optimally harness spillovers in order to redirect attention to articles that 

would benefit the most from increased exposure?  

To better understand this question, we conduct policy simulations in which we integrate our findings 

from the econometric estimates into an empirically-calibrated attention diffusion model and to guide policy 

decisions through the analysis of counterfactuals. We propose a policy in which editors are encouraged to 

focus their editorial efforts on a set of targeted underdeveloped articles that are intimately related to one 

another, in order to harness attention contagion and maximize joint exposure. Targeted sets of related 

articles will be well-connected either at the outset (i.e., a set of stub articles that are already well-connected 

but remain underdeveloped) or will become well-connected as a consequence of directed editorial efforts. 

That is, the links between sets of related articles need not exist prior to being edited but can arise as a 

consequence. The rationale is that attention spillovers to underdeveloped articles are more valuable to the 

platform (in terms of the information equity that they convey) than spillovers to articles that are already 

well-developed. 



4.1 Intuition – a Mean-field Estimation 

We begin by providing an intuition for how network structure can impact attention spillover using a mean-

field estimation. To represent a set of related and highly connected articles in a manner that is simple, we 

consider network cliques, defined as a set of  𝑛 completely connected nodes in a network. To demonstrate 

our intuition, we analytically calculate the spillover in cliques of size  𝑛 using mean-field assumptions. 

For an n-clique, assuming each node receives direct traffic 𝑇 and where spillover over a single step is 

given by 𝑇𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟 = 𝑓𝑇, the total spillover exposure gain is given by: ∑
𝒏!

(𝒏−𝒌)!
𝑓𝒌−𝟏 𝒏

𝒌=𝟐 . The summand 

represents all partial permutations of a set of at  𝑘  nodes, describing the paths of length 𝑘 − 1 that 

successive spillovers take (each contributing a multiplicative factor of 𝑓) from each starting node to each 

other ending node. Figure 7 displays the total spillover gain for all articles in the clique (i.e., the total 

additional exposure gained from spillover from each article in the clique onto all other articles). 

Figure 7 

For example, for a mean spillover of 𝑓 = 0.10 and for cliques of sizes n=3, 4, 5, the total spillover 

exposure gain is 0.66, 1.46, and 2.73, respectively, as measured in units of proportion of incident direct 

traffic. This estimate assumes constant spillover (𝑓), and equal traffic from any node in the clique to any 

other, which is unlikely to hold in the real world. Fortunately, we can relax these assumptions by using 

exact and fine-grained data on traffic flowing on all links in Wikipedia and traffic to all pages from external 

sources (e.g., traffic from search engines that arrive at Wikipedia pages) from the monthly Clickstream 



snapshots19. We leverage this data to estimate spillover and assess policies designed to capture spillover 

through empirically-calibrated simulations. 

4.2 Diffusion Simulation 

Our mean-field estimation is useful to obtain stylized estimates of policies that focus attention on clusters 

of well-connected articles and to develop an intuition about why this might work, but it does not account 

for real-world heterogeneity in actual traffic flow on the links between articles. To address this, we test 

policies more realistically and comprehensively through simulations of traffic flow that arise from attention 

perturbations. We define perturbations as increases in incident traffic from external sources. These policy 

simulations make use of highly detailed clickstream data for calibration, to ensure that traffic flow changes 

follow pathways in proportion to real-world patterns on Wikipedia. To accomplish this, we use a 

generalization of the personalized PageRank algorithm20. PageRank is widely recognized as one of the most 

important algorithms used for network-based information retrieval. It represents traffic flow as a random 

walk process on the information network, and is given in the iterative form by: 

 𝑟𝑡+1 = (1 − 𝛼)𝑟0 + 𝛼𝐺̇ ∙ 𝑟𝑡      (𝑒𝑞 6) 

Where 𝑟𝑡  is a vector of the traffic (attention) landing on article 𝑖 for the t-th iteration of the diffusion 

process; 𝑟0 is a vector of the initial distribution of traffic or whenever the process involves “hopping” rather 

than following a hyperlink from an article to a downstream article. The “hopping” occurs with probability 

(1 − 𝛼) – the so-called damping factor.  𝐺̇ is a matrix of normalized out-flow of traffic from any article 𝑖 

that hyperlinks to an article 𝑗. Convergence of the iterative form of PageRank is achieved for some 𝑟 ≡

𝑟𝑡+1  when |𝑟𝑡+1 − 𝑟𝑡| < 𝜖 , for a small choice of 𝜖 . The converged vector 𝑟  represents the normalized 

 
19 Ellery Wulczyn, Dario Taraborelli (2015). Wikipedia Clickstream. 

https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream  
20 Personalized PageRank has recently been formally related to the task of community detection in networks 

(Kloumann et al. 2016)  

https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream


accumulated traffic to each article 𝑖 that results from the simulated random walk process. We represent this 

simulation process functionally as: 𝑟 = 𝑃𝑅(𝑟0, 𝐺̇, 𝛼, 𝜖). 

Ordinary PageRank assumes an equal initial distribution of traffic, 𝑟0 = 1/𝑁 , and equal probability of 

out-flow along all links, 𝐺̇𝑖𝑗 = 𝐴𝑖𝑗/𝑘𝑗 where 𝐴𝑖𝑗 is the adjacency matrix and 𝑘𝑗 is the degree of article 𝑗. 

The damping factor is conventionally chosen as (1 − 𝛼) = 0.15 . Personalized PageRank relaxes the 

assumption of equal initial distribution of traffic for an arbitrary normalized 𝑟0. To guarantee realism, we 

relax these assumptions even further and leverage the clickstream data (see section 3, Sources of Increased 

Attention for a description) to empirically calibrate internal and external traffic flows in the simulation21. In 

personalized PageRank, we set the vector 𝑟0 to the normalized empirical distribution of external incident 

traffic on each article 𝑖, and the matrix 𝐺̇ to the normalized empirical distribution of out-flow traffic from 

article 𝑖  to article 𝑗 . Having defined the simulation process, we are now in a position to assess how 

perturbations to attention (i.e. increases in incident traffic from external sources—for example, arising from 

content contribution shocks) drive accumulated attention to all articles in the network. We represent a 

general perturbation to some set of articles 𝑆 as 𝑟0𝑝
𝑆 = 𝑟0 + 𝛿𝑟⃑⃑⃑⃑ 0⃑𝑝

𝑆  and set the perturbation according to: 

(𝛿𝑟0𝑝)𝑖
= (𝑟0)𝑖 {

𝑝, for 𝑖 𝜖 S 
0, otherwise

       (𝑒𝑞 7) 

where 𝑝 > 0 represents a constant percentage increase of attention shock to affected articles (those in the 

chosen perturbed set 𝑆). In other words, we create relative perturbations of attention that are correlated 

across a set 𝑆 of chosen articles. For each perturbation, we calculate the resultant PageRank vector 𝑟𝑝
𝑆 =

𝑃𝑅(𝑟0𝑝
𝑆 , 𝐺̇, 𝛼, 𝜖) and compare it to the unperturbed PageRank vector 𝑟 = 𝑃𝑅(𝑟0, 𝐺̇, 𝛼, 𝜖). Specifically, we 

are interested in the resultant excess attention (EA) received by underdeveloped articles which comprise 

the articles in the perturbed set: 

 
21 In prior research, others have calibrated PageRank with internal traffic from Wikipedia clickstream data (Dimitrov 

et al. 2017), but have not accounted for variation in external traffic. 



𝐸𝐴(𝑆, 𝑝) = ∑
𝑟𝑝,𝑖
𝑆 − 𝑟𝑖

𝑟𝑖
𝑖 𝜖 𝑆 

           (𝑒𝑞 8) 

Because any perturbation of a set of articles will result in those articles receiving excess attention, we 

compare excess attention across two different policies: i. an Attention Contagion Policy (ACP) where 

editorial efforts are focused on clusters of well-connected, underdeveloped articles; ii. an Undirected 

Attention Policy (UAP) where editorial efforts are focused on randomly chosen underdeveloped articles 

that are not necessarily (but may incidentally be) connected to one another. The random selection of 

underdeveloped articles under this latter UAP policy will lead to contributions to articles that are more 

spread out across the information network as compared to the ACP policy.22 The two policies are illustrated 

in Figure 8. The UAP policy represents a simple and useful baseline for comparison. It may be that without 

guidance editors already cluster their editorial focus to some extent. However, we do not parametrize 

clustering under UAP to avoid introducing unnecessary assumptions and additional complexity. 

 

 

 

 

 

 

 

 

Figure 8 

 
22 In fact, because UAP spreads out editorial focus through the network, it conveys excess attention to more unique 

articles. But, under ACP more articles receive a larger share of excess attention. For more details see Fig A11 and 

the related discussion in the Appendix. 



 
Figure 8 illustrates concentration of attention across network communities or cliques for the two 

policies. Red nodes receive increased attention (perturbed). Panel (a) illustrates the Attention 

Contagion Policy (ACP), where attention to red nodes (which constitute the perturbed set 𝑆𝑐
𝐴𝐶𝑃for a 

given clique or community, 𝑐) is clustered within a community or clique. Panel (b) illustrates the 

Undirected Attention Policy (UAP), where attention is spread out randomly across communities or 

cliques in the network. To compare policies fairly, red nodes in panel (a) are matched one-to-one to 

red nodes in panel (b), (comprising the set 𝑆𝑚𝑐
𝑈𝐴𝑃, as described in the text). 

 

To compare these two policies, we first need to identify sets of well-connected articles in Wikipedia 

that appear in clickstream data and are good empirical proxies for underdeveloped articles. Importantly, 

many actual sets of related, underdeveloped articles will likely lack the linking structure that would 

naturally arise from directed editorial focus. That is to say, while these underdeveloped pages are related to 

one another, they do not yet possess the linking structure to connect them. To avoid making unnecessary 

and potentially ill-informed assumptions about unobserved network structure and its relationship to content, 

we instead focus only on actual links that appear in the clickstream data and that experienced actual traffic 

flow. To accomplish this, we use the weighted directed graph of traffic flow between articles and seek 

tightly connected sets of nodes in the form of both cliques and communities. To find cliques, we computed 

a large sample of maximal cliques via depth-first-search with Bron-Kerbosh style pruning (Tomita et al. 

2006). To find communities, we modify the well-known label propagation algorithm (LBA) (Raghavan et 

al. 2007): to address the instability of the original LBA, we perform the algorithm 200 times and assign 

articles to the same community if and only if they were assigned to the same community in at least 95% of 

the runs. This approach produces stable, tightly connected communities with minimal noise. It is also 



efficient, fast and able to cope with networks of millions of nodes. We filter maximal cliques and 

communities and retain only those of small to moderate size (2 ≤ 𝑛 ≤ 6). For each such clique or 

community, we match each article to another article in a different clique or community with the closest 

external incident traffic. This yielded a set of well-connected articles to perturb according to the Attention 

Contagion Policy, 𝑆𝑐
𝐴𝐶𝑃, and a corresponding matched set of articles to be used in the Undirected Attention 

Policy, 𝑆𝑚𝑐
𝑈𝐴𝑃, where 𝑐 labels the clique or community and 𝑚𝑐 labels the matched set. Note that the articles 

in 𝑆𝑐
𝐴𝐶𝑃 belong to the same clique or community (𝑐), whereas articles in 𝑆𝑚𝑐

𝑈𝐴𝑃 can belong to many different 

cliques or communities. Because testing large numbers of perturbations is computationally intense, we 

select a random subset of 600 cliques and communities and, for each clique or community, we simulate the 

perturbations for both policies and compare the distribution of excess attention 𝐸𝐴(𝑆𝑐
𝐴𝐶𝑃 , 𝑝)  to 

𝐸𝐴(𝑆𝑚𝑐
𝑈𝐴𝑃 , 𝑝). The results are displayed in figure 9 for cliques (panel a) and communities (panel b) for 

simulation with 𝑝 = 0.1. 

Figure 9 

 
Figure 9 displays the distribution and kernel density estimates of Excess Attention for perturbative 

simulations (p=0.1) of the Attention Contagion Policy (ACP) and Undirected Attention Policy (UAP) for 

600 cliques (a) and communities (b). The ACP policy leads to significantly more excess attention. 

The Attention Contagion Policy clearly leads to significant excess attention directed towards 

underdeveloped pages as compared to the Undirected Attention Policy, yielding a relative increase of mean 

excess attention (ACP over UAP) of 106% for cliques and 44.2% for communities (p<1e-71 from two-



sided t-test)23. Because editors may already cluster their editorial attention to some extent even without a 

guidance policy, our results should be interpreted as an upper bound to the value conveyed by the Attention 

Contagion Policy. Excess attention scales linearly with the size of the perturbation, which follows from the 

definition of excess attention and the expansion of the iterative perturbed PageRank equation. The shape of 

the distributions of excess attention for either policy is determined entirely from the network structure 

around the perturbation set, implying that the results are identical up to a scale factor (𝑝) for different 

choices of perturbation size. Results are also robust to different random samples of cliques or communities 

(see Appendix for details).  

5. Conclusion 

Open collaborative platforms have fundamentally changed the way that knowledge is produced, 

disseminated and consumed in the digital era. This study directly contributes to our understanding of the 

interaction between production and consumption of information and the phenomenon of attention contagion 

on Wikipedia, arguably the largest and most successful example of such platforms. To conduct valid causal 

inference so that we can inform policy with high confidence, we employed a battery of methods including 

natural experiment, matching, econometric modeling, and empirically-informed simulation. We found that 

real-world exogenous contributions increase future attention by 12% on average with stronger impact for 

more significant contributions. They also increase future contribution by 3.6 more edits and 2 more unique 

editors to affected articles over a 6-month period. This impact is both economically significant and persists 

for a long time. In addition, we obtained causal estimates of the extent of spillover impact and identified 

characteristics of articles and links between them that receive the most benefit from spillovers. Specifically, 

we find that spillover is greatest across new links that point to less popular target articles, yielding an impact 

as high as 22% for new links from popular source articles to unpopular target articles and 15% for new 

links from less popular source articles to less popular target articles. 

 
23 Alternatively, two sample KS-tests reject the null hypothesis that the distributions are equal with p<1e-63 



Overall, our results confirm the existence of positive feedback loops of production and consumption of 

information on Wikipedia. This, unfortunately, also implies that underdeveloped articles experience a poor-

get-poorer phenomenon and are therefore naturally disadvantaged in the cumulative development process. 

This observation is deeply troubling because it suggests that impoverished regions in collaborative 

information systems will remain impoverished in the absence of policies that are specifically designed to 

address this problem. More importantly, because information poverty is often correlated with economic 

poverty (Forman et al. 2012, Graham et al. 2014, Norris 2001, Yu 2006), this phenomenon can act to 

exacerbate economic, social, political, and cultural inequalities. Fortunately, our findings suggest that less 

developed regions of information networks can benefit substantially from spillovers. We carry this insight 

further and propose and compare policies that drive editorial attention using diffusion simulations that are 

based on real-world traffic flows on Wikipedia. We evaluate the Attention Contagion Policy that leverages 

spillovers to stimulate development of impoverished regions. We find that this policy can yield up to a 

twofold increase in excess attention relative to the baseline Undirected Attention Policy. These results are 

directly relevant to concerns of information equity and have managerial implication for collaborative 

information platforms. Although we focus on Wikipedia, our findings are relevant to the uneven coverage 

problem that exists in many platforms that facilitate collaborative content production in domains such as 

open-source software creation (e.g., GitHub), knowledge markets (e.g., Stack Overflow or Quora), and 

product reviews (e.g., Amazon or Steam). 

Our results suggest that two policies can be effective for encouraging the development of 

underdeveloped articles or impoverished regions in the information network. First, editors may be 

encouraged to identify popular articles that should naturally (semantically) link to a focal underdeveloped 

article.  Our results show that creating such a link can harness the largest attention spillover (as much as 

22%).  Although care should be taken to ensure that added links are semantically meaningful.  Second, and 

perhaps more importantly, Wikipedia should consider encouraging coherent development of impoverished 

regions. Our results show that underdeveloped regions, which typically lack both attention and the linking 



structure to connect related articles, are precisely positioned to benefit from attention contagion policies. 

Currently, the quality and importance of Wikipedia articles is assessed through a tagging system 

implemented on talk pages. Tools exist that use these metrics to allow editors to search for specific articles 

that are both important and in need of attention. Additional features could be added to these tools to 

encourage a coherent focus for individual editors or even groups of editors. 

This work is not without limitations. This work tackles causality by leveraging a natural experiment, 

matching, econometric techniques and empirically-informed simulation. However, cleaner causal inference 

could be achieved in future work through controlled randomized experiments. As we examine attention 

spillover due to a second order shock to attention (that itself is driven by a contribution shock), we may 

miss subtle heterogeneous spillover effects. Future work could consider perturbations to link structure and 

real-world experimental tests of attention contagion policies. Furthermore, Wikipedia is subject to other 

natural experiments that may be discoverable. In particular, examination of clickstream data may permit 

the discovery of natural experiments that can help us better understand attention flow in information 

networks.  
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Appendix 
Data and Descriptive Statistics 

Table A1: Distribution of Article Characteristics 

Statistic N Min Pctl(25) Median Pctl(75) Max 

Popularity 5,532 2 96 392 1,617 48,850 

Size 5,532 19 3,678.8 8,788.5 22,122 147,469 

Tenure 5,532 18 422.8 538 627 808 

CharCount 2,766 501 1,331 3,180 7,292 159,912 

 
Note: 1. We display the min, max and each 25 percentile values for popularity, size, and tenure which are all pre-

shock article characteristics (in both treatment and matched control groups). Binary variables used in main analysis 

are binned by corresponding median values; 2. CharCount for control group is defined as zero and the distribution 

displayed above is only for articles in the treatment group. 

 

 

Table A2: Distribution of Traffic Flow of Matched Articles in Clickstream Data 

Statistic N Min Pctl(25) Median Pctl(75) Max 

Inbound 2,034 14 251.2 869 2,329.8 53,088 

Outbound 2,034 3 3 40 219.8 10,778 

Link Count 2,034 0 1 3 7 149 

Link Share 2,034 0.001 0.054 0.114 0.214 0.647 

Note: We display the min, max and each 25 percentile values for Inbound traffic, Outbound traffic, Link Count 

(number of incoming links), and Link Share (the proportion of link traffic in the inbound traffic). 

 

 

Table A3: Balance Checks for Clickstream Matching 

 Inbound Outbound Link Count Link Share 

Control 1916 192 5.5 0.15 

Treatment 1915 192 5.6 0.15 

t-test (p-value) 0.99 0.99 0.78 0.99 

Note: The table illustrates the quality of our matching procedure for clickstream data. “Inflow” and “Outflow” are 

traffic per month per article. “Link Count” is number of incoming links per article. “Link Share” is the proportion of 

link traffic in the total inflow traffic for each article. T-tests indicated that we cannot reject the null hypothesis that 

articles in treatment and control group have the same mean across all four characteristics. 

 

 

 

 

 

 



Matching on Article Topics 

The model-free plot in Figure 2 indicates that the control articles matched on pre-shock article 

characteristics closely mirror the treated articles in seasonality and natural time trends prior to the shock. 

This constitutes strong evidence that the controls serve as good counterfactuals for treated articles and 

capture what would have happened had they not received exogenous content contributions. Despite this, 

one may still have the concern that the topic distribution of treated and control groups may not be exactly 

the same. In this section, we reproduce our analysis with an alternative control sample that matches with 

treated articles on topics in addition to the other pre-shock article characteristics of popularity, size, and 

tenure. The results are qualitatively similar with only very small differences in magnitudes compared with 

the results presented in the main analysis of the paper, giving us strong confidence that our results are 

insensitive to matching procedure choices. The major challenge of topic matching is that each Wikipedia 

article is associated with multiple topics or categories and collectively the topic distribution of all treated 

articles resides in a high dimensional space. No traditional matching method is designed to deal with this 

problem. We adopt a novel two-step procedure to tackle this unconventional matching problem and ensure 

that we can match reasonably well on topics.  

In the first step, we construct a pool of candidate control articles to use for matching through a 

random sampling procedure that leverages the “Category” information associated with each article. Each 

Wikipedia article has a set of “Category” labels added by its editors. Because category labels are user-

defined, they are prone to errors and not subject to sanitization, e.g. very few articles have exactly the same 

set of labels and very few labels appear multiple times in a randomly selected set of articles. We adopt a 

strategy to leverage category information in our sampling procedure that avoids potential pitfalls. To do 

this, we randomly draw articles only from the categories to which our treated articles belong, where the 

number of draws from each category is proportional to the category frequency in the treated sample. This 

sampling procedure can achieve sample-level matching on categories but does not guarantee a direct 



correspondence between each individual control and treated article. For simplicity, we refer to this 

category-matched sample as “the control sample” in the remainder of this discussion. 

In the second step, to better account for direct topic matching, we turn to the popular text-mining 

technique of Latent Dirichlet Allocation (LDA) topic modeling. Topic modeling is a frequently used 

machine learning tool for discovering hidden semantic structures in a corpus of text. We use LDA topic 

modeling to discover the latent topics from the text of each article in an unsupervised fashion and then 

match each treated article with a control article in the latent topic space. We train our topic model with the 

complete text of English Wikipedia (about 5.3 million articles and 15 GB) extracted from the October 2018 

Wikipedia data dump. The number of topics is set to 100, though our method is robust to different choices. 

Manual inspection of word distribution of each topic indicates that our model captures coherent latent topics 

from the texts. Some example topics from our topic model are displayed in Figure A1. Next, we apply the 

topic model to treated and control articles to obtain their topic distribution in the latent topic space. Using 

this, we generate a tailored pool of candidate control articles 𝐶𝑖 for each treated article 𝑇𝑖 by searching for 

all articles in the control sample that are sufficiently similar on topic, according to the cosine similarity 

cos(𝑇𝑜𝑝𝑖𝑐⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ [𝐶𝑖], 𝑇𝑜𝑝𝑖𝑐⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ [𝑇𝑖]) > 0.6 . We experimented with different cosine similarity thresholds and the 

results are robust to the choice of threshold; naturally, the size of the matched sample monotonically 

decreases with a stricter similarity requirement. Finally, we use Coarsen Exact Matching on the treated and 

topically similar control samples to further match on the other pre-shock article characteristics of popularity, 

size, and tenure. We opt for a k-to-k matching solution by choosing the closest matched control article in 

terms of Euclidean distance. The above procedure yields 2,747 pairs of matched treated and control articles. 

For each article, we construct a panel of weekly pageviews from 26 weeks before the shock to 26 weeks 

after (excluding the shock period itself). Our final sample consists of a balanced panel of 52 periods for 

5,494 articles, or 285,688 observations at the article-week level. Finally, we redo our analysis of direct 

effect on this new sample -- the results are displayed in the table A4.  

 



Figure A1: Some Example Topics 

 

 

Table A4: Direct Effect with Matching on Topic 

 Scaled pageviews 
 (1) (2) (3) 

PostShock 0.106***   

 (0.016)   

PostShock*log(char count)  0.032*** 0.060*** 
  (0.004) (0.006) 

PostShock*old article   -0.060** 
   (0.024) 

PostShock*popular article   -0.116*** 
   (0.024) 

PostShock*long article   -0.030 
   (0.025) 

Article fixed effect Yes Yes Yes 

Time fixed effect Yes Yes Yes 

Observations 285,688 285,688 285,688 

Adjusted R2 0.172 0.172 0.174 

 Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 
 *Significant at the 10 percent level. 

 

 



  

Matching on Network Characteristics 

In this section, we replicated our analysis for direct effect of content contribution based on a sample 

that is matched on network characteristics. We note that the so-called curse of dimensionality affects every 

matching method - as the number of covariates over which we match grows, the chance of finding matches 

with similar values of all covariates rapidly goes to zero (King and Nielsen, 2019). Hence, we were very 

careful about selecting matching variables in the main analysis because adding variables to the matching 

procedure comes at a cost of lowering the chance of finding good matches and reducing the size of matched 

sample. We think the most important variable to match on is pre-popularity of an article as it conveys the 

information about how much attention an article receives prior to the treatment period and we want to 

compare the impact for treated and control articles that receive the similar amount baseline attention.  

Some of the network characteristics, e.g. in-degree, incoming internal traffic, or incoming external 

traffic, carry information about how the attention arrives at an article, not the amount of attention arriving, 

which is already accounted for by pre-popularity. We therefore regarded these to be less relevant to the 

matching procedure and analysis. Still, matching on in-degree and in-traffic might be appropriate, as it 

allows us to compare treated articles to control articles that receive attention at the same proportion through 

channels both internal and external to Wikipedia. We would like to demonstrate that our results are also 

robust to matching based on network characteristics.  

We conducted additional analysis and show that the results are very similar when we match on 

some of the network characteristics of the articles. We conducted Coarsened Exact Matching (CEM) on 

three network characteristics of an article, i.e. in-degree, average incoming external traffic, average 

incoming internal traffic. The matched sample consists of 2,058 treated articles and control article, 

respectively. We did a balance check and it shows that we cannot reject the null hypothesis that articles in 

treatment group and control group have the same mean values across number of incoming links, internal 

traffic from other pages in Wikipedia and external traffic (See Table A5). We replicated our analysis of 



direct effect with this new matched sample and the results are very similar as in the original (See Table A6). 

The original model, however, is preferable as: 1) we are matching on characteristics on which we evaluate 

heterogeneous treatment effects; and 2) pre-popularity is already a very good control for incoming traffic 

and in-degree. 

Table A5: Balanced Check for Matched Sample of Network Characteristics 

 Number of Incoming links Internal traffic/month External traffic/month 

Control 7.20 447 2014 

Treatment 7.20 446 2015 

t-test (p-value) 0.96 0.90 0.96 

Table A5 illustrates the quality of our matching procedure. It compares pre-shock network characteristics of articles 

in the matched groups. T-tests indicate that we cannot reject the null hypothesis that articles in treatment and control 

group have the same mean across all three network characteristics. 

 

Table A6: Direct Effect with Matching on Network Characteristics 

 Normalized pageviews 
 (1) (2) (3) 

PostShock 0.118***   

 (0.015)   

PostShock*log(char count)  0.037*** 0.068*** 
  (0.004) (0.006) 

PostShock*old article   -0.074*** 
   (0.026) 

PostShock*popular article   -0.140*** 
   (0.027) 

PostShock*long article   -0.023 
   (0.024) 

Article fixed effect Yes Yes Yes 

Week fixed effect Yes Yes Yes 

Observations 214,032 214,032 214,032 

Adjusted R2 0.138 0.139 0.141 

Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 
 *Significant at the 10 percent level. 



Checks of Modeling Assumptions for Multiplicative Interactions  

Binning Estimates  

The plots below serve as a diagnostic tool for two main modeling assumptions: common support and linear 

interaction effect. The distribution of the covariate presented at the bottom of each plot demonstrates that 

the assumption of common support, which is needed for a multiplicative interaction model, is satisfied. 

Moreover, the number of bins in the plot is two and equal-sized bins are created based on the distribution 

of each covariate. The plots confirm that using two bins to represent low/high values for the covariates is a 

reasonable choice. We provide a set of diagnostic statistics to further justify that choice in Table A7. 
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Figure A3

 

 

 

 

Figure A4 

 

 



Table A7: Model Estimates and Test Statistics of Binning Estimators 

 range  median coef se CI_lower CI_upper t-test  

log(popularity):high [0.23, 2.59] 1.980 0.133 0.021 0.093 0.173 
0.012 

log(popularity):low (2.59, 4.69] 3.209 0.064 0.019 0.027 0.099 

        

log(article size):high [1.28, 3.94] 3.566 0.143 0.018 0.108 0.177 
3e-04 

log(article size):low (3.94, 5.17] 4.345 0.048 0.020 0.009 0.087 

        

articlue tenure:high [18,538] 424 0.109 0.021 0.068 0.149 
0.09 

articlue tenure:low (538,808] 627 0.063 0.017 0.029 0.097 

Note: 1. The binning estimates for the three article characteristics correspond to the above three plots; 2. The column 

“t-test” displays the p-value of t-test for the two binning estimates. 

 

Kernel Estimates 

The kernel method produces non-linear marginal effects that are much more flexible and closer to the effects 

implied by the true data-generating process. The standard errors are produced by a non-parametric bootstrap. 

The below kernel plots show that covariates exhibit linear behavior over most of their range provide further 

evidence that our linear interaction model with two bins well approximates the more flexible models while 

also maintain good interpretability.  
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Figure A7 

 



Checks of Model Specification  

No Fixed Effect 

Because they do not account for heterogeneity across articles, models without fixed effects tend to 

overestimate effect sizes. However, we find that they lead to qualitatively similar results. We provide the 

model estimates as robustness checks in Tables A8-A9. 

Table A8: Direct impact of content shock -- No Fixed Effect 

 Scaled pageviews 
 (1) (2) (3) 

Post 0.062*** 0.056*** 0.062*** 

 (0.004) (0.004) (0.004) 

Treated 0.000 -0.006 0.000 

 (0.004) (0.004) (0.004) 

PostShock 0.111***   

 (0.005)   

PostShock*log(charCount)  0.035*** 0.062*** 
  (0.002) (0.002) 

PostShock*old article   -0.030*** 
   (0.006) 

PostShock*popular article   -0.150*** 
   (0.007) 

PostShock*long article   -0.010 
   (0.006) 

Article fixed effect No No No 

Week fixed effect No No No 

Observations 287,664 287,664 287,664 

Adjusted R2 0.009 0.010 0.013 

Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 
 *Significant at the 10 percent level. 

 

  



 

 

Table A9: Spillover Effect – No Fixed Effects 

 Scaled pageviews 
 (1) (2) (3) (4) 

Post 0.039*** 0.039*** 0.039*** 0.039*** 

 (0.001) (0.001) (0.001) (0.001) 

Treated 0.000 -0.000 -0.000 -0.000 

 (0.001) (0.001) (0.001) (0.001) 

PostShock 0.008*** 0.014*** -0.002 -0.002 
 (0.001) (0.002) (0.002) (0.003) 

PostShock*popularTargetArticle  -0.015*** -0.022*** -0.005*** 
  (0.002) (0.002) (0.002) 

PostShock*popularSourceArticle  -0.002 0.029*** 0.014*** 
  (0.002) (0.002) (0.003) 

PostShock*newLink   0.128*** 0.143*** 
   (0.002) (0.005) 

PostShock*popularTargetArticle*newLink    -0.137*** 
    (0.005) 

PostShock*popularSourceArticle*newLink    0.069*** 
    (0.005) 

Article fixed effect No No No No 

Week fixed effect No No No No 

Observations 6,862,648 6,862,648 6,862,648 6,862,648 

Adjusted R2 0.001 0.001 0.001 0.001 

Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 
 *Significant at the 10 percent level. 

 

 

 

Spillover models with treatment intensity 

Multiway interaction models require more restrictive modeling assumptions and are not easily interpretable. 

We did not incorporate the treatment intensity in our main spillover models for this reason. As a robustness 



check, we present the result for the spillover model that accounts for both treatment intensity and new link 

indicators. We did not estimate a model that simultaneously incorporates treatment intensity, new link 

indicators, and target and source popularity, as these would involve complex four-way interactions that are 

difficult to interpret. Estimates for this model are displayed in Table A10. 

 

Table A10: Spillover Model with Treatment intensity 

 Scaled pageviews 
 (1) (2) (3) 

PostShock*log(charCount) 0.002*** 0.008*** -0.002 
 (0.001) (0.002) (0.002) 

PostShock*log(charCount)*popularTargetArticle  -0.003**  

  (0.002)  

PostShock*log(charCount)*popularSourceArticle  -0.005***  

  (0.002)  

PostShock*log(charCount)*newLink   0.032*** 
   (0.004) 

Article fixed effect Yes Yes Yes 

Week fixed effect Yes Yes Yes 

Observations 6,862,648 6,862,648 6,862,648 

Adjusted R2 0.104 0.104 0.104 

Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 
 *Significant at the 10 percent level. 

 

Poisson and Negative Binomial Regression for Editing Behavior 

Editing behaviors (i.e. the number of total edits and number of unique editors) in a certain period (6 months) 

are counting processes. We show below that Poisson regression and Negative Binomial regression produce 

qualitatively  similar results as the linear regression that we use in the main analysis.    

 

 

 

 

 

 



Table A11: Number of Total Edits 

 Number of Total Edits 
 Poisson Regression Negative Binomial Regression 
 (1) (2) (3) (4) (5) (6) 

Postshock 0.278***   0.526***   

 (0.007)   (0.020)   

Postshock*log(charCount)  0.093*** 0.240***  0.157*** 0.191*** 
  (0.003) (0.006)  (0.006) (0.010) 

Postshock*old article   0.105***   0.093** 
   (0.020)   (0.046) 

Postshock*long article   -0.454***   -0.290*** 
   (0.022)   (0.046) 

Postshock*popular article   -0.292***   0.002 
   (0.025)   (0.051) 

Article Fixed Effect Yes Yes Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes Yes Yes 

Observations 10,964 10,964 10,964 10,964 10,964 10,964 

Log Likelihood -43,202.5 -43,060.7 -42,497.8 -35,368.3 -35,326.3 -35,303.4 

Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 
 *Significant at the 10 percent level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A12: Number of Unique Editors 

 Number of Unique Editors 
 Poisson Regression Negative Binomial Regression 
 (1) (2) (3) (4) (5) (6) 

Postshock 0.290***   0.411***   

 (0.016)   (0.015)   

Postshock*log(charCount)  0.090*** 0.178***  0.123*** 0.158*** 
  (0.003) (0.007)  (0.004) (0.008) 

Postshock*old article   0.059**   0.087** 
   (0.026)   (0.034) 

Postshock*long article   -0.301***   -0.234*** 
   (0.027)   (0.035) 

Postshock*popular article   -0.142***   -0.040 
   (0.031)   (0.039) 

Article Fixed Effect Yes Yes Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes Yes Yes 

Observations 10,964 10,964 10,964 10,964 10,964 10,964 

Log Likelihood -30,997.0 -30,928.4 -30,789.9 -30,230.1 -30,184.3 -30,154.1 

Notes: ***Significant at the 1 percent level. 
 **Significant at the 5 percent level. 
 *Significant at the 10 percent level. 

 

Robustness of Simulation 

The results on distribution of excess attention for the ACP and UAP policies are similar for different choices 

of cliques or communities. While we perturbed all 600 cliques that met our size criteria, there are 

significantly more communities that do so. We repeated the analysis for an alternate set of communities. 

Results are displayed in Figure A7 and are qualitatively similar to the main results. Differences in excess 

attention arise from differences in network structure, though ACP consistently captures more attention than 

UAP on average. 

 

 

 

 

 

 



Figure A8 

 

As described in the text, the shape of the distribution of excess attention is entirely a consequence of the 

network structure around the perturbation set, where the size of perturbation 𝑝 acts as a simple scaling 

factor.  This can be seen by iteratively expanding the PageRank equation and examining only the elements 

of the PageRank vector that correspond to the nodes of the perturbed set. For this set of nodes, 𝑝 is a 

common factor which can be factored out. We verify that our distributions are consistent with this reasoning 

by examining two other choices perturbation size 𝑝 = 0.25, 0.5 for the same set of chosen cliques or 

communities, as displayed in Figures A8, A9. 

Figure A9 

 



Figure A10 

 

Excess Attention Conveyed by ACP vs UAP 

The aim of the Attention Contagion Policy (ACP) is to bring attention to specific (underdeveloped) regions 

of the information network that could benefit from it the most. When editors cluster the focus of their 

editorial attention under ACP, spillovers compound, conveying excess attention locally. In contrast, the 

undirected - or essentially random – editorial focus of the Undirected Attention Policy (UAP) will convey 

excess attention more widely across the information network. In other words, UAP will convey significant 

excess attention to more unique articles overall. But, under ACP, more articles receive a larger share of 

excess attention.  This is illustrated in Figure A11, which shows the distribution of percentage increase in 

attention across all articles under both policies. It is clear that ACP shifts the weight of the distribution to 

the right relative to UAP.  

 

 

 

 

 



Figure A11 

 


