“Common Lisp Recipes” (ISBN 978-1-4842-1177-9)
Errata and Addenda

The newest version of this document is always available athttp://weitz.de/cl-recipes/; you'll
also find updated code downloads there.

Please report any errors not already listed here to edmund . weitz@haw-hamburg.de.

The MOBI version seems to deviate from the printed book and the PDF version (which to
my knowledge have exactly the same content). For example, footnotes 30 and 31 in chapter 1
contain slashes in places where backslashes should have been used.

Page XXI: “book” (end of second paragraph) should have been “books.”
Page XXVII: “execpt” should have been “except.”
Page 2: The definition of the P1 package should better look like this:

(defpackage :pi
(:intern :alpha)
(:use :cl) ;; <—— added
(:export :bravo :charlie))

The reason is that the list of packages that P1 will inherit from if :USE is not explicitly spec-
ified and thus implementation-defined. It will include (but will not necessarily be limited
to) the COMMON-LISP package in many Lisps, but not in all. For example, SBCL and ABCL
won’t automatically inherit from COMMON-LISP.

Page 16: Should be #p"/tmp/nanook. jpg" instead of #"/tmp/nanook. jpg"
Page 20: In the first box it should be:

CL-USER > (defpackage :quux (:use :cl))

#<The QUUX package, 0/16 internal, 0/16 external>
CL-USER > (in-package :quux)

#<The QUUX package, 0/16 internal, 0/16 external>

QUUX > (loop for s being each present-symbol collect s)

(COLLECT PRESENT-SYMBOL S BEING EACH FOR) ;3 <-— changed
QUUX > (loop for s being each symbol of (find-package "QUUX")

count t)
985

(The difference is that the book claims you should also see the symbol OF in the line marked
with a comment.)

Page 28: “succint” should have been “succinct.”

Pages 31 and 117: Lisp is not short for “LISt Processing,” but rather for “LISt Processor.”
See http://www-formal.stanford.edu/jmc/recursive.html.

Page 35: “the only compound objects in Lisp where conses” should have been “[...] were
conses,” of course.

Page 38: Here’s a better alternative to the “elegant” version of INTEGER-TO-BIT-LIST:

(defun integer-to-bit-list (x)
(check-type x (integer 0 *))
(reverse (map ’list ’digit-char-p (write-to-string x :base 2))))

Note how DIGIT-CHAR-P (look it up in the HyperSpec) is a predicate which uses the COM-
MON LISP concept of a generalized boolean in a helpful and clever way: if its argument, a


http://weitz.de/cl-recipes/
mailto:edmund.weitz@haw-hamburg.de
http://www-formal.stanford.edu/jmc/recursive.html

character, does not designate a digit, the return value is NIL, but if it does stand for a digit,
the return value is not just T but the digit’s numerical value.!

* Page 40: Note that transposing a matrix this way might fail for larger matrices if the value
of CALL-ARGUMENTS-LIMIT is too small. It can be as small as 50 and, for example, in GCL on
the ARM architecture the value is indeed only 64.

¢ Page 45: “But its complexity should better be hidden.”
e Page 52: There’s a superfluous word in the C code. Should be:

struct node {
int value;
struct node *left;
struct node *right;

3

* Page 80: “ACROSS works with arbitrary sequences (see Chapter 7)” should be “ACROSS works
with arbitrary vectors (see Chapter 5).” And “strings are sequences,” although technically
not wrong, should have been “strings are vectors” here (because AREF, of course, doesn’t
work with arbitrary sequences).

e Page 82: The second version of JOIN doesn’t handle empty lists properly.? If you need that,
the easiest way to fix it would be like so:

(defun join (separator list)
(with-output-to-string (out)
(loop (princ (or (pop list) "") out) ;3 <—— changed
(unless list (return))
(princ separator out))))

Or, a bit more chatty but avoiding the OR test inside the loop, like so:

(defun join (separator list)
(with-output-to-string (out)
(when list
(princ (pop list) out))
(loop (unless list (return))
(princ separator out)
(princ (pop list) out))))

Note that the point of this example in the book was to avoid the extended form of LOOP. If
you're not at war with LOOP, there are of course several other alternatives you could employ.

e Page 84: “and strings are enclosed in double quotes”

* Page 85: Replace the link in footnote 31 with this one: http://xach.com/rpw3/articles/
nsKdnbiN10uNCALcRVn-pQ%40speakeasy.net.html.

* Page 93: The example at the top of the page should look like so:

(defconstant +mod+ (expt 2 32))
(defun times-mod (x y) (mod (* x y) +mod+))
(defun times-rem (x y) (rem (* x y) +mod+))

If you call these functions with the arguments -58 and 74051161, then TIMES-REM yields -42
while TIMES-MOD gives you 4294967254.

You can, for example, also write a nicer version of DIGITAL-ROOT (page 79) using DIGIT-CHAR-P. For this and similar
improvements see the updated code examples at http://weitz.de/cl-recipes/code.zip.
2You won't get an error, but the return value will be the string "NIL", which is most likely not what you wanted to see.


http://xach.com/rpw3/articles/nsKdnbiNlOuNCdLcRVn-pQ%40speakeasy.net.html
http://xach.com/rpw3/articles/nsKdnbiNlOuNCdLcRVn-pQ%40speakeasy.net.html
http://weitz.de/cl-recipes/code.zip

* Page 98: “An integer, which is always smaller than the correct result” should be “an integer
that is always smaller than the correct result.”

¢ Page 109: Mathematically, there’s no difference, but in order to be in sync with the footnote,
the code at the top of the page should look like this:

(1+ (exp (* pi #c(0 1))))

¢ Page 113: The last line should be “SW, and NW.”

* Page 121: The initial value (see footnote 8) is not really necessary (although it of course
doesn’t hurt). REDUCE will do the right thing anyway becuase one is the identity element of
multiplication and thus (*) evaluates to 1.

e Page 131: It is of course array-row-major-index and not arrow-row-major-index.
* Page 133: Replace “suprise” with “surprise.”

¢ Page 138: In the REPL interaction, there’s one line missing;:

* (gethash ’superman *hx)
DUCKBURG
T ;3 <— this one

¢ Page 141: There’s a typo (a stray > sign) in the first example code. It should instead look like
this:

* (duckburg-species ’gyro-gearloose)
CHICKEN
T

¢ Page 147: The second sentence in the first paragraph should be: “You are not allowed to
add or remove entries while you're in the middle of an iteration through the hash table.”

e Page 151: You can use one of the standard hash tests, namely EQUALP. (But let’s, for the sake
of the example, assume you don’t want that, maybe for performance reasons.)

* Page 155: log; 5 % is approximately 27.2 and not 27 4.
* Page 193: Rows two and three were swapped in the first column of the table. They should

look like so:

(maplist f list-1 list-2) (loop for x-1 on list-1
for x-2 on list-2
collect (funcall f x-1 x-2))

(mapcan f list-1 list-2) (loop for x-1 in list-1
for x-2 in list-2
nconc (funcall f x-1 x-2))

¢ Page 199: At the first bullet point, make that “as it is obvious.”
¢ Page 213: Parts of the paragraphs at the end should be replaced with this text:

“[...] And names are, of course, syrnbols,3 so that, for example, the function defined with
DEFUN in the preceding example has as its name the symbol F0O.

But how do you get the actual function (as an object), given its name? That’s what (the spe-
cial operator) FUNCTION is for; it accepts as its only argument a function name* and returns
the corresponding function. [...]”

3But see also page 284 which shows another kind of function names.
41t'1l also accept lambda expressions, but you'll probably never need that. At least not explicitly. Implicitly, this is handled
by the LAMBDA macro, but that’s too much detail for this recipe.



¢ Page 218: It might be worth noting that WITH-STANDARD-IO-SYNTAX sets the global special
variable *READ-EVAL* (see Recipe 8-3) to its default value T. This can be a problem if you're
reading untrusted data—see the example at the end of page 110.

* Page 219-221: Replace (COPY-READTABLE) with (COPY-READTABLE NIL) (all occurrences).

* Page 238: “If your existing stream has a fill pointer” should be “if your existing string has a
fill pointer.”

e Page 246: "XZYWV" should be "XYZWV".

* Page 248: “For you own classes” should of course be “for your own classes.”
* Page 249: (SETQ *PRINT-READABLY* T) of course returns T and not NIL.

¢ Page 261: Replace “section 22.2.22” with “section 22.2.2.”

* Page 268: Replace “intos” with “into.”

* Page 273: “Keyword Dames” (first line of page) should obviously be “Keyword Names.”
(Yikes!)

e Page 274: Remove the “(the first time count is called)” part.

* Page 275: The first paragraph should be replaced with this one: “One subtle difference be-
tween C and the COMMON LISP code is that in Lisp the variable is initialized when the
function definition is loaded. This might be relevant if the initialization process is compli-
cated (which it can’t be in C), but there are, of course, ways to postpone initialization if
necessary.”

* Page 288: The symbol returned by the DEFUN form (penultimate line on the page) should, of
course, be CDR-ASSOC and not MY-CDR-ASSOC.

* Page 301: Replace the semicolon behind “standardized” with a comma.
e Page 350: Replace “fourty-two” with “forty-two.”
* Page 377: Replace “if we hadn’t use” with “if we hadn’t used.”

¢ Page 414: In the output of the last example on the page, the first three strings should end
with double quotes.

e Page 429: Replace PRINT-EQUAL-HASH-TABLE (twice) with PRINT-EQL-HASH-TABLE.

¢ Page 432: “Streams in COMMON LISP are instances of CLOS classes.” While this is techni-
cally not wrong,® it might be misleading: one might be tempted to think that streams are
instances of standard classes.

However, the result of evaluating

(with-input-from-string (s "Frunobulax")
(class-of (class-of s)))

will be the class STANDARD-CLASS in some implementations, whereas in some others it won't.
According to the HyperSpec, the class STREAM is a system class. See footnote 11 on page 368
of Common Lisp Recipes for more on this.

For a critique of Gray streams, see http://franz.com/support/documentation/current/
doc/streams.htm#tgray-stream-problems-2.

* Page 463: Replace “thatyou” with “that you.”

* Page 464: In order to avoid misunderstandings, I probably should have written that an
arrow means “contains.”

5Tt can’t really be wrong, because the wording is fuzzy to begin with. The term “CLOS” doesn’t even appear anywhere
in the standard (except for the historical remarks in section 1.1.2).


http://franz.com/support/documentation/current/doc/streams.htm#gray-stream-problems-2
http://franz.com/support/documentation/current/doc/streams.htm#gray-stream-problems-2

Page 475: Replace “youlove” with “you love.”
Page 477: The debugger should report the value of C as 529 and not as 0.
Page 487: In the footnote, replace “us” with “use.”

Page 503, footnote: The correct title of the book is Paradigms of Artifical Intelligence Program-
ming.

Page 508: See correction for page 503.
Page 515: The correct definitions for TEST-1 and TEST-2 should look like so:

(defun test-1 (max)
(loop for i below max
sum (aref *ax i)))

(defun test-2 (max)
(declare (optimize (safety 0)))
(loop for i below max
sum (aref *a* i)))

Page 522: Replace “serious” with “series.”
Page 529: Replace “This is for floats” with “This is correct for floats.”

Page 548: In the bottom left corner of the graph we should have 39 and 38 instead of 40
and 39.

Page 568: There’s a dot (full stop) missing at the end of the first paragraph.

Pages 586 and 587: The correct URLs to enter (bottom of page 586 and top of page 587) are
these two:

http://127.0.0.1:4242/fo0
http://127.0.0.1:4242/foobarbaz

Page 599: Replace “complete” with “completely.”

Page 613: Replace “At first, This might” with “At first, this might.”
Page 630: Replace “the number 3.14” with “the number 3.141.”
Page 635: See correction for page 503.

Page 678: Replace “the third argument to SB-POSIX:GETENV” with “the third argument to
SB-POSIX:SETENV.”

Page 681: The reference to Recipe 10-10 was meant to be a link to Recipe 22-1.

Thanks to Rainer Joswig, Philipp Marek, and Aaron Chen for many corrections and suggestions
and to Chun Tian (binghe), Tim Daly, Jens Teich, Arthur Lemmens, Sho Matsuoka, Pierre Neid-
hardt, Walter Pelissero, Matthieu Peeters, Douglas Fields, and Pierpaolo Bernardi.

Last update: March 10, 2024.



