WIENER INDEX AND DEPENDENCIES IN RANDOM DIGITAL TREES (joint with Hsien-Kuei Hwang and Chung-Kuei Lee)

Michael Fuchs

Department of Applied Mathematics National Chiao Tung University

June 21st, 2016

Introduced by H. Wiener in 1947 to investigate the boiling point of alkanes.

3

(日) (周) (日) (日)

Introduced by H. Wiener in 1947 to investigate the boiling point of alkanes.

Given a graph:

The Wiener index is the sum of distances between all unordered pairs of nodes.

Introduced by H. Wiener in 1947 to investigate the boiling point of alkanes.

Given a graph:

The Wiener index is the sum of distances between all unordered pairs of nodes.

Introduced by H. Wiener in 1947 to investigate the boiling point of alkanes.

Given a graph:

The Wiener index is the sum of distances between all unordered pairs of nodes.

In this talk, we will consider the Wiener index of rooted trees (trees arise as molecular graphs of acyclic organic molecules).

Image: Image:

Families of Random Trees

There are many families of random trees:

(日) (周) (日) (日)

Families of Random Trees

There are many families of random trees:

- Random plane trees;
- Random non-plane trees;
- Random binary trees;
- Random binary search trees;
- Random median-of-(2k + 1) search trees;
- Random quadtrees;
- Random digital search trees;
- Etc.

Families of Random Trees

There are many families of random trees:

- Random plane trees;
- Random non-plane trees;
- Random binary trees;
- Random binary search trees;
- Random median-of-(2k + 1) search trees;
- Random quadtrees;
- Random digital search trees;
- Etc.

Question: How does the Wiener index behave for such random trees?

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

・ロト ・四ト ・ヨト ・ヨト

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

4

・ロト ・四ト ・ヨト ・ヨト

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

(日) (同) (三) (三)

Example: Input: 4,7,6,1,8,5,3,2

(日) (同) (三) (三)

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

イロト イヨト イヨト イヨト

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

イロト イヨト イヨト イヨト

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

イロト イヨト イヨト イヨト

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

Random model: Input is a random permutation of size *n*.

Michae	Euchs	ÍNCTU	١
whichae	i i uciis	(11010	2

Image: A math a math

Moments of Wiener Index

 $T_n \ldots$ total path length. $W_n \ldots$ Wiener index.

Moments of Wiener Index

 $T_n \ldots$ total path length. $W_n \ldots$ Wiener index.

Theorem (Neininger 2002)

We have,

 $\mathbb{E}(W_n) \sim 2n^2 \log n$

and

$$\operatorname{Var}(T_n) \sim \frac{21 - 2\pi^2}{3} n^2,$$

 $\operatorname{Cov}(T_n, W_n) \sim \frac{20 - 2\pi^2}{3} n^3,$
 $\operatorname{Var}(W_n) \sim \frac{20 - 2\pi^2}{3} n^4.$

Michael Fuchs (NCTU)

- 34

<ロ> (日) (日) (日) (日) (日)

Limit Law of Wiener Index

Theorem (Neininger 2002)

We have,

$$\left(\frac{T_n - \mathbb{E}(T_n)}{n}, \frac{W_n - \mathbb{E}(W_n)}{n^2}\right) \xrightarrow{d} (T, W).$$

where (T, W) is a solution of

$$\left(\begin{array}{c} X_1\\ X_2 \end{array}\right) \stackrel{d}{=} A \left(\begin{array}{c} X_1\\ X_2 \end{array}\right) + B \left(\begin{array}{c} X_1^*\\ X_2^* \end{array}\right) + \left(\begin{array}{c} b_1^*\\ b_2^* \end{array}\right)$$

with

$$A = \left(\begin{array}{cc} 0 & U \\ U^2 & U(1-U) \end{array} \right), \quad B = \left(\begin{array}{cc} 0 & 1-U \\ (1-U)^2 & U(1-U) \end{array} \right)$$

and b_1^*, b_2^* are functions of U.

э

・ロト ・聞 ト ・ ヨト ・ ヨ

Consider $b \ge 2$, s > 0 and s_0, s_1 with

$$0 \le s_0 \le s, \qquad 0 \le bs_1 \le s+1-s_0.$$

Consider $b \ge 2$, s > 0 and s_0, s_1 with

$$0 \le s_0 \le s, \qquad 0 \le bs_1 \le s+1-s_0.$$

Moreover, consider a random vector

$$\mathbf{V} = (V_1, \ldots, V_b) \in [0, 1]^b$$

with

$$\sum_{i=1}^{b} V_i = 1.$$

(日) (周) (三) (三)

Consider $b \ge 2$, s > 0 and s_0, s_1 with

$$0 \le s_0 \le s, \qquad 0 \le bs_1 \le s+1-s_0.$$

Moreover, consider a random vector

$$\mathbf{V} = (V_1, \dots, V_b) \in [0, 1]^b$$

with

$$\sum_{i=1}^{b} V_i = 1.$$

Assume that

$$V_i \stackrel{d}{=} V_1 := V \qquad 2 \le i \le b.$$

V is called *splitter*.

3

(日) (同) (三) (三)

n balls are distributed to the infinite b-ary tree.

3

イロト イヨト イヨト イヨト

n balls are distributed to the infinite b-ary tree.

• If a ball is distributed to an internal node, choose the *i*-th subtree with probability V_i and move the ball to the chosen subtree, continue with the subtree;

n balls are distributed to the infinite b-ary tree.

- If a ball is distributed to an internal node, choose the *i*-th subtree with probability V_i and move the ball to the chosen subtree, continue with the subtree;
- If a ball is distributed to a leave containing < s balls, put it there;

n balls are distributed to the infinite b-ary tree.

- If a ball is distributed to an internal node, choose the *i*-th subtree with probability V_i and move the ball to the chosen subtree, continue with the subtree;
- If a ball is distributed to a leave containing < s balls, put it there;
- If a ball is distributed to a full leave, randomly put s_0 balls in the leave, randomly put s_1 balls in the subtrees, for the remaining balls choose a subtree according to the splitter, continue with the subtrees.

n balls are distributed to the infinite b-ary tree.

- If a ball is distributed to an internal node, choose the *i*-th subtree with probability V_i and move the ball to the chosen subtree, continue with the subtree;
- If a ball is distributed to a leave containing < s balls, put it there;
- If a ball is distributed to a full leave, randomly put s_0 balls in the leave, randomly put s_1 balls in the subtrees, for the remaining balls choose a subtree according to the splitter, continue with the subtrees.

The resulting tree is called *random split tree of size* n.

Example 1: Binary search trees: $b = 2, s = s_0 = 1, s_1 = 0$ and V uniformly distributed on [0, 1].

イロト 不得下 イヨト イヨト 二日

Example 1: Binary search trees: $b = 2, s = s_0 = 1, s_1 = 0$ and V uniformly distributed on [0, 1].

If $b \ge 2$, $s = s_0 = b - 1$, $s_1 = 0$ and $V = \min\{U_1, \ldots, U_{b-1}\}$ with U_i uniformly distributed on [0, 1], then *b*-ary search trees.

イロト イポト イヨト イヨト 二日

Example 1: Binary search trees: $b = 2, s = s_0 = 1, s_1 = 0$ and V uniformly distributed on [0, 1].

If $b \ge 2$, $s = s_0 = b - 1$, $s_1 = 0$ and $V = \min\{U_1, \ldots, U_{b-1}\}$ with U_i uniformly distributed on [0, 1], then *b*-ary search trees.

Example 2: Trie: $b = 2, s = 1, s_0 = s_1 = 0$ and V uniformly distributed on $\{p, 1-p\}$ with 0 .

Example 1: Binary search trees: $b = 2, s = s_0 = 1, s_1 = 0$ and V uniformly distributed on [0, 1].

If $b \ge 2$, $s = s_0 = b - 1$, $s_1 = 0$ and $V = \min\{U_1, \ldots, U_{b-1}\}$ with U_i uniformly distributed on [0, 1], then *b*-ary search trees.

Example 2: Trie: $b = 2, s = 1, s_0 = s_1 = 0$ and V uniformly distributed on $\{p, 1-p\}$ with 0 .

Assumption: V has Lebesgue density and the distribution function satisfies $F_V(x) < 1$ for all x < 1.

Example 1: Binary search trees: $b = 2, s = s_0 = 1, s_1 = 0$ and V uniformly distributed on [0, 1].

If $b \ge 2$, $s = s_0 = b - 1$, $s_1 = 0$ and $V = \min\{U_1, \ldots, U_{b-1}\}$ with U_i uniformly distributed on [0, 1], then *b*-ary search trees.

Example 2: Trie: $b = 2, s = 1, s_0 = s_1 = 0$ and V uniformly distributed on $\{p, 1-p\}$ with 0 .

Assumption: V has Lebesgue density and the distribution function satisfies $F_V(x) < 1$ for all x < 1.

Satisfied by Example 1 but NOT Example 2.

Moments of Wiener Index

Theorem (Munsonius 2012) Under the assumption, $\mathbb{E}(W_n) \sim \frac{1}{\mu} n^2 \log n$ with $\mu = -b\mathbb{E}(V \log V)$ and $\operatorname{Var}(T_n) \sim \sigma_T^2 n^2$, $\operatorname{Cov}(T_n, W_n) \sim \sigma_C^2 n^3$, $\operatorname{Var}(W_n) \sim \sigma_W^2 n^4$. where $\sigma_T^2, \sigma_C^2, \sigma_W^2 > 0$.

イロト イポト イヨト イヨト 二日

Limit Law of Wiener Index

Theorem (Munsonius 2012)

We have,

$$\left(\frac{T_n - \mathbb{E}(T_n)}{n}, \frac{W_n - \mathbb{E}(W_n)}{n^2}\right) \stackrel{d}{\longrightarrow} (T, W),$$

where (T, W) is a solution of

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \stackrel{d}{=} \sum_{i=1}^{b} A_i \begin{pmatrix} X_1^{(i)} \\ X_2^{(i)} \end{pmatrix} + \begin{pmatrix} b_1^* \\ b_2^* \end{pmatrix}$$

with

$$A = \begin{pmatrix} 0 & V_i \\ V_i^2 & V_i(1-V_i) \end{pmatrix},$$

and b_1^*, b_2^* are functions of the splitter.

・ロト ・四ト ・ヨト ・ヨト ・ヨ
Proposed by René de la Briandais in 1959.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

3

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

(人間) トイヨト イヨト

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

- N

A 🖓 h

3. 3

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

A 🖓

3. 3

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

Michael	Fuchs	(NCTU)
		`	

• Numerous applications.

indexing sorted files, orthogonal range search, partial-match retrieval, pattern matching, approximate string matching, IP address or routing lookup, peer-to-peer lookup, data mining, dictionary-based syntactic pattern recognition, policy representations for network firewalls, syntactic pattern recognition, etc.

(日) (周) (三) (三)

• Numerous applications.

indexing sorted files, orthogonal range search, partial-match retrieval, pattern matching, approximate string matching, IP address or routing lookup, peer-to-peer lookup, data mining, dictionary-based syntactic pattern recognition, policy representations for network firewalls, syntactic pattern recognition, etc.

• Many variants and related data structures.

Digital search trees, PATRICIA tries, radix sort, contention-resolution tree algorithms, multi-access broadcast channels, leader election algorithms, extendable hashing, polynomial factorization, etc.

(日) (周) (三) (三)

• Numerous applications.

indexing sorted files, orthogonal range search, partial-match retrieval, pattern matching, approximate string matching, IP address or routing lookup, peer-to-peer lookup, data mining, dictionary-based syntactic pattern recognition, policy representations for network firewalls, syntactic pattern recognition, etc.

• Many variants and related data structures.

Digital search trees, PATRICIA tries, radix sort, contention-resolution tree algorithms, multi-access broadcast channels, leader election algorithms, extendable hashing, polynomial factorization, etc.

Analysis of tries is interesting and challenging.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two types of nodes:

- Internal nodes: only used for branching;
- External nodes: nodes which hold data.

3

(日) (同) (三) (三)

Two types of nodes:

- Internal nodes: only used for branching;
- External nodes: nodes which hold data.

Random Model:

Bits are independent Bernoulli random variables with mean p.

- 4 同 6 4 日 6 4 日 6

Two types of nodes:

- Internal nodes: only used for branching;
- External nodes: nodes which hold data.

Random Model:

Bits are independent Bernoulli random variables with mean p.

- p = 1/2: symmetric digital search tree;
- $p \neq 1/2$: asymmetric digital search tree.

- 4 週 ト - 4 三 ト - 4 三 ト

Two types of nodes:

- Internal nodes: only used for branching;
- External nodes: nodes which hold data.

Random Model:

Bits are independent Bernoulli random variables with mean p.

- p = 1/2: symmetric digital search tree;
- $p \neq 1/2$: asymmetric digital search tree.

Question: How does a random trie look like?

< 回 ト < 三 ト < 三 ト

Additive Shape Parameter X_n

Computed recursively as follows: compute it for the two subtrees and add them up $+ \mbox{ add a toll.}$

3

(日) (同) (三) (三)

Additive Shape Parameter X_n

Computed recursively as follows: compute it for the two subtrees and add them up + add a toll.

$$X_n \stackrel{d}{=} X_{B_n} + X_{n-B_n}^* + T_n$$

• $B_n \stackrel{d}{=} \text{Binomial}(n, p);$

- $X_n \stackrel{d}{=} X_n^*;$
- X_n, X_n^*, B_n independent.
- T_n toll-function.

(日) (同) (三) (三)

In this talk:

・ロン ・四 ・ ・ ヨン ・ ヨン

In this talk:

• Size S_n :

number of internal nodes of a random trie;

3

(日) (同) (三) (三)

In this talk:

• Size S_n :

number of internal nodes of a random trie;

• External Path Length K_n :

sum of distances of all external nodes to the root in a random trie;

□ ▶ ▲ □ ▶ ▲ □

In this talk:

• Size S_n :

number of internal nodes of a random trie;

• External Path Length K_n :

sum of distances of all external nodes to the root in a random trie;

• Internal Path Length N_n:

sum of distances of all internal nodes to the root in a random trie;

In this talk:

• Size S_n :

number of internal nodes of a random trie;

• External Path Length K_n :

sum of distances of all external nodes to the root in a random trie;

• Internal Path Length N_n:

sum of distances of all internal nodes to the root in a random trie;

• External Wiener Index *KW_n*:

Wiener index of the external nodes in a random trie;

< 回 > < 三 > < 三 >

In this talk:

• Size S_n :

number of internal nodes of a random trie;

• External Path Length K_n :

sum of distances of all external nodes to the root in a random trie;

• Internal Path Length N_n:

sum of distances of all internal nodes to the root in a random trie;

• External Wiener Index *KW_n*:

Wiener index of the external nodes in a random trie;

• Internal Wiener Index NW_n:

Wiener index of the internal nodes in a random trie.

Distributional Recurrences

Size:

$$S_n \stackrel{d}{=} S_{B_n} + S^*_{n-B_n} + 1.$$

・ロト ・四ト ・ヨト ・ヨト

Distributional Recurrences

Size:

$$S_n \stackrel{d}{=} S_{B_n} + S_{n-B_n}^* + 1.$$

Path Lengths:

$$K_n \stackrel{d}{=} K_{B_n} + K_{n-B_n}^* + n;$$

$$N_n \stackrel{d}{=} N_{B_n} + N_{n-B_n}^* + S_{B_n} + S_{n-B_n}^*.$$

3

イロト イポト イヨト イヨト

Distributional Recurrences

Size:

$$S_n \stackrel{d}{=} S_{B_n} + S_{n-B_n}^* + 1.$$

Path Lengths:

$$K_n \stackrel{d}{=} K_{B_n} + K_{n-B_n}^* + n;$$

$$N_n \stackrel{d}{=} N_{B_n} + N_{n-B_n}^* + S_{B_n} + S_{n-B_n}^*.$$

Wiener Indices:

$$\begin{split} KW_n &\stackrel{d}{=} KW_{B_n} + KW_{n-B_n}^* \\ &+ B_n(K_{n-B_n}^* + n - B_n) + (n - B_n)(K_{B_n} + B_n); \\ NW_n &\stackrel{d}{=} NW_{B_n} + NW_{n-B_n}^* \\ &+ (S_{B_n} + 1)(N_{n-B_n}^* + S_{n-B_n}^*) + (S_{n-B_n} + 1)(N_{B_n} + S_{B_n}). \end{split}$$

イロト イヨト イヨト

Mean and Variance - An Overview

Shape parameter	Mean	Variance
Size S_n	n	n
$EPL\ K_n$	$n\log n$	$\left\{ \begin{array}{l} p \neq q: \ n \log n \\ p = q: \ n \end{array} \right.$
$IPL\ N_n$	$n\log n$	$n \log^2 n$
External Wiener Index KW_n	$n^2 \log n$	$\begin{cases} p \neq q: n^3 \log n \\ p = q: n^3 \end{cases}$
Internal Wiener Index NW_n	$n^2 \log n$	$n^3 \log^2 n$

We use the following notation:

3

<ロ> (日) (日) (日) (日) (日)

We use the following notation:

• Entropy:
$$h = -p \log p - q \log q$$
;

3

<ロ> (日) (日) (日) (日) (日)

We use the following notation:

- Entropy: $h = -p \log p q \log q$;
- If $\log p / \log q \in \mathbb{Q}$, then

$$\frac{\log p}{\log q} = \frac{r}{\ell}, \qquad \gcd(r, \ell) = 1.$$

and

We use the following notation:

- Entropy: $h = -p \log p q \log q$;
- If $\log p / \log q \in \mathbb{Q}$, then

$$\frac{\log p}{\log q} = \frac{r}{\ell}, \qquad \gcd(r, \ell) = 1.$$
$$\chi_k = \frac{2rk\pi i}{\log p}, \qquad (k \in \mathbb{Z}).$$

イロト 不得 トイヨト イヨト 二日

We use the following notation:

• Entropy:
$$h = -p \log p - q \log q$$
;

• If $\log p / \log q \in \mathbb{Q}$, then

and
$$\begin{aligned} \frac{\log p}{\log q} &= \frac{r}{\ell}, \qquad \gcd(r, \ell) = 1. \\ \chi_k &= \frac{2rk\pi i}{\log p}, \qquad (k \in \mathbb{Z}). \end{aligned}$$

• For a function G:

$$\mathcal{F}[G](x) = \begin{cases} h^{-1} \sum_{k \in \mathbb{Z}} G(-1 + \chi_k) e^{2k\pi i x}, & \text{if } \log p / \log q \in \mathbb{Q}; \\ h^{-1}G(-1), & \text{if } \log p / \log q \notin \mathbb{Q}. \end{cases}$$

3

(日) (周) (三) (三)

Variance of Size S_n

Theorem (Régnier & Jacquet 1989; Kirschenhofer & Prodinger 1991; F., Hwang, Zacharovas 2014)

We have,

$$\operatorname{Var}(S_n) \sim \mathcal{F}[G_S](r \log_{1/p} n) \boldsymbol{n},$$

where

$$G_{S}(-1+\chi_{k}) = \chi_{k}\Gamma(-1+\chi_{k})\left(1-\frac{\chi_{k}+3}{2^{1+\chi_{k}}}\right)$$
$$-\frac{1}{h}\sum_{j\in\mathbb{Z}}\Gamma(\chi_{j}+1)\Gamma(\chi_{k-j}+1)$$
$$-2\sum_{j\geq1}\frac{(-1)^{j}(j+1+\chi_{k})\Gamma(j+\chi_{k})\left(p^{j+1}+q^{j+1}\right)}{(j-1)!(j+1)(1-p^{j+1}-q^{j+1})}.$$

3

イロト イポト イヨト イヨト

Variance of EPL K_n

Theorem (Jacquet & Régnier 1986; Kirschenhofer, Prodinger, Szpankowski 1989; F., Hwang, Zacharovas 2014)

•
$$p \neq q$$
:
Var $(K_n) \sim h^{-3}pq \log^2(p/q)n \log n$;
• $p = q$:
Var $(K_n) \sim \mathcal{F}[G_K](r \log_{1/p} n)n$

3

(日) (周) (三) (三)

Variance of EPL K_n

Theorem (Jacquet & Régnier 1986; Kirschenhofer, Prodinger, Szpankowski 1989; F., Hwang, Zacharovas 2014)

•
$$p \neq q$$
:
• $p = q$:
• $p = q$:
Var $(K_n) \sim h^{-3}pq \log^2(p/q)n \log n$:
• $p = q$:
Var $(K_n) \sim \mathcal{F}[G_K](r \log_{1/p} n)n$

where

$$G_K(-1+\chi_k) = \Gamma(\chi_k) \left(1 - \frac{\chi_k^2 - \chi_k + 4}{2^{\chi_k + 2}} \right) + 2\sum_{\ell \ge 1} \frac{(-1)^\ell \Gamma(\chi_k + \ell)(\ell(\chi_k + \ell - 1) - 1)}{\ell!(2^\ell - 1)}.$$

3

(日) (周) (三) (三)
Variance and Limit Law of IPL N_n

Theorem (F., Hwang, Zacharovas 2014) We have, $\mathrm{Cov}(S_n,N_n)\sim h^{-1}\mathcal{F}[G_S](r\log_{1/p}n)n\log n$ and

$$\operatorname{Var}(N_n) \sim h^{-2} \mathcal{F}[G_S](r \log_{1/p} n) n \log^2 n.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Variance and Limit Law of IPL N_n

Theorem (F., Hwang, Zacharovas 2014)

We have,

$$\operatorname{Cov}(S_n, N_n) \sim h^{-1} \mathcal{F}[G_S](r \log_{1/p} n) n \log n$$

and

$$\operatorname{Var}(N_n) \sim h^{-2} \mathcal{F}[G_S](r \log_{1/p} n) n \log^2 n.$$

Theorem (F. & Lee 2015)

We have,

$$\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}}, \frac{N_n - \mathbb{E}(N_n)}{\sqrt{\operatorname{Var}(N_n)}}\right)^{\mathsf{T}} \longrightarrow \mathcal{N}(0, E_2),$$

where E_2 is the 2×2 unit matrix.

イロン 不聞と 不同と 不同と

External Wiener Index KW_n

Theorem (F. & Lee 2015) • $p \neq q$:

$$\operatorname{Cov}(K_n, KW_n) \sim h^{-3} pq \log^2(p/q) n^2 \log n;$$

$$\operatorname{Var}(KW_n) \sim h^{-3} pq \log^2(p/q) n^3 \log n.$$

• p = q:

$$\operatorname{Cov}(K_n, KW_n) \sim \mathcal{F}[G_K](r \log_{1/p} n) n^2;$$

$$\operatorname{Var}(KW_n) \sim \mathcal{F}[G_K](r \log_{1/p} n) n^3$$

Michael Fuchs (NCTU)

3

External Wiener Index KW_n

Theorem (F. & Lee 2015) • $p \neq q$:

$$\operatorname{Cov}(K_n, KW_n) \sim h^{-3} pq \log^2(p/q) n^2 \log n;$$

$$\operatorname{Var}(KW_n) \sim h^{-3} pq \log^2(p/q) n^3 \log n.$$

• p = q:

$$\operatorname{Cov}(K_n, KW_n) \sim \mathcal{F}[G_K](r \log_{1/p} n) n^2;$$

$$\operatorname{Var}(KW_n) \sim \mathcal{F}[G_K](r \log_{1/p} n) n^3$$

and

$$\left(\frac{K_n - \mathbb{E}(K_n)}{\sqrt{\operatorname{Var}(K_n)}}, \frac{KW_n - \mathbb{E}(KW_n)}{\sqrt{\operatorname{Var}(KW_n)}}\right)^{\mathsf{T}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, E_2).$$

3

Internal Wiener Index NW_n

Theorem (F. & Lee 2015)

We have,

$$Cov(S_n, NW_n) \sim 2h^{-1} \mathcal{F}[G_{\hat{S}}](r \log_{1/p} n) \mathcal{F}[G_S](r \log_{1/p} n) n^2 \log n;$$

$$Cov(N_n, NW_n) \sim 2h^{-2} \mathcal{F}[G_{\hat{S}}](r \log_{1/p} n) \mathcal{F}[G_S](r \log_{1/p} n) n^2 \log^2 n;$$

$$Var(NW_n) \sim 4h^{-2} (\mathcal{F}[G_{\hat{S}}](r \log_{1/p} n))^2 \mathcal{F}[G_S](r \log_{1/p} n) n^3 \log^2 n.$$

э

Internal Wiener Index NW_n

Theorem (F. & Lee 2015)

We have,

$$Cov(S_n, NW_n) \sim 2h^{-1} \mathcal{F}[G_{\hat{S}}](r \log_{1/p} n) \mathcal{F}[G_S](r \log_{1/p} n) n^2 \log n;$$

$$Cov(N_n, NW_n) \sim 2h^{-2} \mathcal{F}[G_{\hat{S}}](r \log_{1/p} n) \mathcal{F}[G_S](r \log_{1/p} n) n^2 \log^2 n;$$

$$Var(NW_n) \sim 4h^{-2} (\mathcal{F}[G_{\hat{S}}](r \log_{1/p} n))^2 \mathcal{F}[G_S](r \log_{1/p} n) n^3 \log^2 n.$$

Moreover,

$$\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}}, \frac{N_n - \mathbb{E}(N_n)}{\sqrt{\operatorname{Var}(N_n)}}, \frac{NW_n - \mathbb{E}(NW_n)}{\sqrt{\operatorname{Var}(NW_n)}}\right)^{\mathsf{T}} \longrightarrow \mathcal{N}(0, E_3),$$

where E_3 is the 3×3 unit matrix.

3

イロト イポト イヨト イヨト

Size S_n and EPL K_n

Remark

We have,

 $\rho(K_n, KW_n) \sim 1$

and

 $\rho(S_n, N_n) \sim 1,$ $\rho(S_n, NW_n) \sim 1,$ $\rho(N_n, NW_n) \sim 1,$

where $\rho(\cdot, \cdot)$ denotes the correlation coefficient.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Size S_n and EPL K_n

Remark	
We have,	$ \rho(K_n, KW_n) \sim 1 $
and	
	$ \rho(S_n, N_n) \sim 1, $
	$\rho(S_n, NW_n) \sim 1,$
	$\rho(N_n, NW_n) \sim 1,$
where $\rho(\cdot, \cdot)$ denotes the co	rrelation coefficient.

Question: how about the correlation between S_n and K_n ?

3

Size S_n and EPL K_n

Remark

and

Remark	
We have,	$\rho(K_n, KW_n) \sim 1$
and	
	$\rho(S_n, N_n) \sim 1,$
	$\rho(S_n, NW_n) \sim 1,$
	$\rho(N_n, NW_n) \sim 1,$

where $\rho(\cdot, \cdot)$ denotes the correlation coefficient.

Question: how about the correlation between S_n and K_n ?

 \rightarrow one expects strong positive correlation!

イロト 不得 トイヨト イヨト 二日

Covariance between S_n and K_n

Theorem (F. & Hwang 201?)

We have,

$$\operatorname{Cov}(S_n, K_n) \sim \mathcal{F}[G_{SK}](r \log_{1/p} n) \boldsymbol{n},$$

where

$$\begin{aligned} G_{SK}(-1+\chi_k) &= \Gamma(\chi_k) \Big(1 - \frac{\chi_k + 2}{2^{\chi_k + 1}} \Big) \\ &- \frac{1}{h} \sum_{j \in \mathbb{Z} \setminus \{0\}} \Gamma(\chi_{k-j} + 1)(\chi_j - 1) \Gamma(\chi_j) \\ &- \frac{\Gamma(\chi_k + 1)}{h} \Big(\gamma + 1 + \psi(\chi_k + 1) - \frac{p \log^2 p + q \log^2 q}{2h} \Big) \\ &+ \sum_{j \ge 2} \frac{(-1)^j (2j^2 - 2j + 1 + (2j - 1)\chi_k) \Gamma(j - 1\chi_k) (p^j + q^j)}{j! (1 - p^j - q^j)}. \end{aligned}$$

・ロト ・聞 ト ・ ヨト ・ ヨ

Correlation Coefficient $\rho(S_n, K_n)$

Theorem (F. & Hwang 201?) *We have.*

$$\rho(S_n, K_n) \sim \begin{cases} 0, & \text{if } p \neq q; \\ F(n), & \text{if } p = q, \end{cases}$$

where

$$F(n) = \frac{\mathcal{F}[G_{SK}](r \log_{1/p} n)}{\sqrt{\mathcal{F}[G_S](r \log_{1/p} n)\mathcal{F}[G_K](r \log_{1/p} n)}}$$

is a periodic function with

average value = $0.927 \cdots$ and amplitude $\leq 1.5 \times 10^{-5}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Correlation Coefficient $\rho(S_n, K_n)$

Theorem (F. & Hwang 201?) We have.

$$\rho(S_n,K_n) \sim \begin{cases} 0, & \text{if } p \neq q; \\ F(n), & \text{if } p = q, \end{cases}$$

where

$$F(n) = \frac{\mathcal{F}[G_{SK}](r \log_{1/p} n)}{\sqrt{\mathcal{F}[G_S](r \log_{1/p} n)\mathcal{F}[G_K](r \log_{1/p} n)}}$$

is a periodic function with

average value = $0.927 \cdots$ and amplitude $\leq 1.5 \times 10^{-5}$.

Question: can this behavior be ascribed to the weakness of Pearson's correlation coefficient?

Michael Fuchs (NCTU)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Limit Laws

Theorem (F. & Hwang 201?)

•
$$p \neq q$$
:

$$\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}}, \frac{K_n - \mathbb{E}(K_n)}{\sqrt{\operatorname{Var}(K_n)}}\right)^{\mathsf{T}} \longrightarrow \mathcal{N}(0, I_2),$$

where I_2 is the 2×2 identity matrix.

(日) (四) (三) (三) (三)

Limit Laws

Theorem (F. & Hwang 201?)

•
$$p \neq q$$
:

$$\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}}, \frac{K_n - \mathbb{E}(K_n)}{\sqrt{\operatorname{Var}(K_n)}}\right)^{\mathsf{T}} \longrightarrow \mathcal{N}(0, I_2),$$

where I_2 is the 2×2 identity matrix.

$$p = q:$$

$$\Sigma_n^{-1/2} \begin{pmatrix} S_n - \mathbb{E}(S_n) \\ K_n - \mathbb{E}(K_n) \end{pmatrix} \stackrel{d}{\longrightarrow} \mathcal{N}_2(0, I_2)$$

where Σ_n is the (asymptotic) covariance matrix:

$$\Sigma_n := n \begin{pmatrix} \mathscr{F}[G_S](r \log_{1/p} n) & \mathscr{F}[G_{SK}](r \log_{1/p} n) \\ \mathscr{F}[G_{SK}](r \log_{1/p} n) & \mathscr{F}[G_K](r \log_{1/p} n) \end{pmatrix}.$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Joint Distribution of S_n and K_n

Michael Fuchs (NCTU)

Digital Trees

June 21st, 2016 29 / 30

э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Full analysis of Wiener index of tries, thereby completing the study of Wiener index of grid trees.

3

(日) (同) (三) (三)

- Full analysis of Wiener index of tries, thereby completing the study of Wiener index of grid trees.
- Similar results for other digital trees:

- Full analysis of Wiener index of tries, thereby completing the study of Wiener index of grid trees.
- Similar results for other digital trees:

• Surprising correlation result for size and external path length in tries

- Full analysis of Wiener index of tries, thereby completing the study of Wiener index of grid trees.
- Similar results for other digital trees:

• Surprising correlation result for size and external path length in tries → better probabilistic explanation?

- Full analysis of Wiener index of tries, thereby completing the study of Wiener index of grid trees.
- Similar results for other digital trees:

- Surprising correlation result for size and external path length in tries → better probabilistic explanation?
- Similar surprising results for other shape parameters and other digital trees:

M. Fuchs and H.-K. Hwang. Dependence between path length and size in random digital trees, preprint.

(日) (同) (三) (三)