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The Wiener Index

Introduced by H. Wiener in 1947 to investigate the boiling point of alkanes.

Given a graph:

Wiener index=18

The Wiener index is the sum of distances between all unordered pairs of
nodes.

In this talk, we will consider the Wiener index of rooted trees (trees arise
as molecular graphs of acyclic organic molecules).
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Families of Random Trees

There are many families of random trees:

Random plane trees;

Random non-plane trees;

Random binary trees;

Random binary search trees;

Random median-of-(2k + 1) search trees;

Random quadtrees;

Random digital search trees;

Etc.

Question: How does the Wiener index behave for such random trees?
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Binary Search Trees

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2

4

1 7

3 6 8

2 5

Random model: Input is a random permutation of size n.
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Moments of Wiener Index

Tn . . . total path length.

Wn . . . Wiener index.

Theorem (Neininger 2002)

We have,
E(Wn) ∼ 2n2 log n

and

Var(Tn) ∼ 21− 2π2

3
n2,

Cov(Tn,Wn) ∼ 20− 2π2

3
n3,

Var(Wn) ∼ 20− 2π2

3
n4.
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Limit Law of Wiener Index

Theorem (Neininger 2002)

We have, (
Tn − E(Tn)

n
,
Wn − E(Wn)

n2

)
d−→ (T,W ),

where (T,W ) is a solution of(
X1

X2

)
d
= A

(
X1

X2

)
+B

(
X∗1
X∗2

)
+

(
b∗1
b∗2

)
with

A =

(
0 U
U2 U(1− U)

)
, B =

(
0 1− U

(1− U)2 U(1− U)

)
and b∗1, b

∗
2 are functions of U .
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Random Split Trees (i)

Consider b ≥ 2, s > 0 and s0, s1 with

0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0.

Moreover, consider a random vector

V = (V1, . . . , Vb) ∈ [0, 1]b

with
b∑
i=1

Vi = 1.

Assume that
Vi

d
= V1 := V 2 ≤ i ≤ b.

V is called splitter.
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Random Split Trees (ii)

n balls are distributed to the infinite b-ary tree.

If a ball is distributed to an internal node, choose the i-th subtree
with probability Vi and move the ball to the chosen subtree, continue
with the subtree;

If a ball is distributed to a leave containing < s balls, put it there;

If a ball is distributed to a full leave, randomly put s0 balls in the
leave, randomly put s1 balls in the subtrees, for the remaining balls
choose a subtree according to the splitter, continue with the subtrees.

The resulting tree is called random split tree of size n.
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Examples of Random Split Trees

Example 1: Binary search trees: b = 2, s = s0 = 1, s1 = 0 and V
uniformly distributed on [0, 1].

If b ≥ 2, s = s0 = b− 1, s1 = 0 and V = min{U1, . . . , Ub−1} with Ui
uniformly distributed on [0, 1], then b-ary search trees.

Example 2: Trie: b = 2, s = 1, s0 = s1 = 0 and V uniformly distributed
on {p, 1− p} with 0 < p < 1.

Assumption: V has Lebesgue density and the distribution function
satisfies FV (x) < 1 for all x < 1.

Satisfied by Example 1 but NOT Example 2.
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Moments of Wiener Index

Theorem (Munsonius 2012)

Under the assumption,

E(Wn) ∼ 1

µ
n2 log n

with µ = −bE(V log V ) and

Var(Tn) ∼ σ2Tn2,
Cov(Tn,Wn) ∼ σ2Cn3,

Var(Wn) ∼ σ2Wn4,

where σ2T , σ
2
C , σ

2
W > 0.
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Limit Law of Wiener Index

Theorem (Munsonius 2012)

We have, (
Tn − E(Tn)

n
,
Wn − E(Wn)

n2

)
d−→ (T,W ),

where (T,W ) is a solution of(
X1

X2

)
d
=

b∑
i=1

Ai

(
X

(i)
1

X
(i)
2

)
+

(
b∗1
b∗2

)
with

A =

(
0 Vi
V 2
i Vi(1− Vi)

)
,

and b∗1, b
∗
2 are functions of the splitter.
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Trie

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

0

1

0 1

1

0 1

0

1

0 1

0

011011
010101
101110
010000
101010
001100
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Why Studying Tries?

Numerous applications.

indexing sorted files, orthogonal range search, partial-match retrieval,
pattern matching, approximate string matching, IP address or routing
lookup, peer-to-peer lookup, data mining, dictionary-based syntactic
pattern recognition, policy representations for network firewalls,
syntactic pattern recognition, etc.

Many variants and related data structures.

Digital search trees, PATRICIA tries, radix sort, contention-resolution
tree algorithms, multi-access broadcast channels, leader election
algorithms, extendable hashing, polynomial factorization, etc.

Analysis of tries is interesting and challenging.
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Notation and Random Model

Two types of nodes:

Internal nodes: only used for branching;

External nodes: nodes which hold data.

Random Model:

Bits are independent Bernoulli random variables with mean p.

p = 1/2: symmetric digital search tree;

p 6= 1/2: asymmetric digital search tree.

Question: How does a random trie look like?
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Additive Shape Parameter Xn

Computed recursively as follows: compute it for the two subtrees and add
them up + add a toll.

Xn
d
= XBn +X∗n−Bn

+ Tn

Bn
d
= Binomial(n, p);

Xn
d
= X∗n;

Xn, X
∗
n, Bn independent.

Tn toll-function.

Root

Size:

Bn

Size:

n−Bn

0 1
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Size, Path Lengths and Wiener Indices

In this talk:

Size Sn:

number of internal nodes of a random trie;

External Path Length Kn:

sum of distances of all external nodes to the root in a random trie;

Internal Path Length Nn:

sum of distances of all internal nodes to the root in a random trie;

External Wiener Index KWn:

Wiener index of the external nodes in a random trie;

Internal Wiener Index NWn:

Wiener index of the internal nodes in a random trie.
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External Wiener Index KWn:

Wiener index of the external nodes in a random trie;

Internal Wiener Index NWn:

Wiener index of the internal nodes in a random trie.
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Distributional Recurrences

Size:
Sn

d
= SBn + S∗n−Bn

+ 1.

Path Lengths:

Kn
d
= KBn +K∗n−Bn

+ n;

Nn
d
= NBn +N∗n−Bn

+ SBn + S∗n−Bn
.

Wiener Indices:

KWn
d
= KWBn +KW ∗n−Bn

+Bn(K∗n−Bn
+ n−Bn) + (n−Bn)(KBn +Bn);

NWn
d
= NWBn +NW ∗n−Bn

+ (SBn + 1)(N∗n−Bn
+ S∗n−Bn

) + (Sn−Bn + 1)(NBn + SBn).
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Mean and Variance - An Overview

Shape parameter Mean Variance

Size Sn n n

EPL Kn n log n

{
p 6= q : n log n
p = q : n

IPL Nn n log n n log2 n

External Wiener Index KWn n2 log n

{
p 6= q : n3 log n
p = q : n3

Internal Wiener Index NWn n2 log n n3 log2 n
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Some Notation

We use the following notation:

Entropy: h = −p log p− q log q;

If log p/ log q ∈ Q, then

log p

log q
=
r

`
, gcd(r, `) = 1.

and
χk =

2rkπi

log p
, (k ∈ Z).

For a function G:

F [G](x) =

{
h−1

∑
k∈ZG(−1 + χk)e

2kπix, if log p/ log q ∈ Q;

h−1G(−1), if log p/ log q 6∈ Q.
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Variance of Size Sn

Theorem (Régnier & Jacquet 1989; Kirschenhofer & Prodinger 1991; F.,
Hwang, Zacharovas 2014)

We have,
Var(Sn) ∼ F [GS ](r log1/p n)n,

where

GS(−1 + χk) =χkΓ(−1 + χk)

(
1− χk + 3

21+χk

)
− 1

h

∑
j∈Z

Γ(χj + 1)Γ(χk−j + 1)

− 2
∑
j≥1

(−1)j(j + 1 + χk)Γ(j + χk)
(
pj+1 + qj+1

)
(j − 1)!(j + 1)(1− pj+1 − qj+1)

.
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Variance of EPL Kn

Theorem (Jacquet & Régnier 1986; Kirschenhofer, Prodinger, Szpankowski
1989; F., Hwang, Zacharovas 2014)

p 6= q:
Var(Kn) ∼ h−3pq log2(p/q)n log n;

p = q:
Var(Kn) ∼ F [GK ](r log1/p n)n

where

GK(−1 + χk) =Γ(χk)

(
1−

χ2
k − χk + 4

2χk+2

)
+ 2

∑
`≥1

(−1)`Γ(χk + `)(`(χk + `− 1)− 1)

`!(2` − 1)
.
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Variance and Limit Law of IPL Nn

Theorem (F., Hwang, Zacharovas 2014)

We have,
Cov(Sn, Nn) ∼ h−1F [GS ](r log1/p n)n log n

and
Var(Nn) ∼ h−2F [GS ](r log1/p n)n log2 n.

Theorem (F. & Lee 2015)

We have, (
Sn − E(Sn)√

Var(Sn)
,
Nn − E(Nn)√

Var(Nn)

)ᵀ
d−→ N (0, E2),

where E2 is the 2× 2 unit matrix.
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External Wiener Index KWn

Theorem (F. & Lee 2015)

p 6= q:

Cov(Kn,KWn) ∼ h−3pq log2(p/q)n2 log n;

Var(KWn) ∼ h−3pq log2(p/q)n3 log n.

p = q:

Cov(Kn,KWn) ∼ F [GK ](r log1/p n)n2;

Var(KWn) ∼ F [GK ](r log1/p n)n3

and (
Kn − E(Kn)√

Var(Kn)
,
KWn − E(KWn)√

Var(KWn)

)ᵀ
d−→ N (0, E2).
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Internal Wiener Index NWn

Theorem (F. & Lee 2015)

We have,

Cov(Sn, NWn) ∼ 2h−1F [GŜ ](r log1/p n)F [GS ](r log1/p n)n2 log n;

Cov(Nn, NWn) ∼ 2h−2F [GŜ ](r log1/p n)F [GS ](r log1/p n)n2 log2 n;

Var(NWn) ∼ 4h−2(F [GŜ ](r log1/p n))2F [GS ](r log1/p n)n3 log2 n.

Moreover,(
Sn − E(Sn)√

Var(Sn)
,
Nn − E(Nn)√

Var(Nn)
,
NWn − E(NWn)√

Var(NWn)

)ᵀ
d−→ N (0, E3),

where E3 is the 3× 3 unit matrix.
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Var(NWn) ∼ 4h−2(F [GŜ ](r log1/p n))2F [GS ](r log1/p n)n3 log2 n.

Moreover,(
Sn − E(Sn)√

Var(Sn)
,
Nn − E(Nn)√

Var(Nn)
,
NWn − E(NWn)√

Var(NWn)

)ᵀ
d−→ N (0, E3),

where E3 is the 3× 3 unit matrix.

Michael Fuchs (NCTU) Digital Trees June 21st, 2016 24 / 30



Size Sn and EPL Kn

Remark

We have,
ρ(Kn,KWn) ∼ 1

and

ρ(Sn, Nn) ∼ 1,

ρ(Sn, NWn) ∼ 1,

ρ(Nn, NWn) ∼ 1,

where ρ(·, ·) denotes the correlation coefficient.

Question: how about the correlation between Sn and Kn?
−→ one expects strong positive correlation!
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Covariance between Sn and Kn

Theorem (F. & Hwang 201?)

We have,
Cov(Sn,Kn) ∼ F [GSK ](r log1/p n)n,

where

GSK(−1 + χk) = Γ(χk)
(

1− χk + 2

2χk+1

)
− 1

h

∑
j∈Z\{0}

Γ(χk−j + 1)(χj − 1)Γ(χj)

− Γ(χk + 1)

h

(
γ + 1 + ψ(χk + 1)− p log2 p+ q log2 q

2h

)
+
∑
j≥2

(−1)j(2j2 − 2j + 1 + (2j − 1)χk)Γ(j − 1χk)(p
j + qj)

j!(1− pj − qj)
.
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Correlation Coefficient ρ(Sn, Kn)

Theorem (F. & Hwang 201?)

We have,

ρ(Sn,Kn) ∼

{
0, if p 6= q;

F (n), if p = q,

where

F (n) =
F [GSK ](r log1/p n)√

F [GS ](r log1/p n)F [GK ](r log1/p n)

is a periodic function with

average value = 0.927 · · · and amplitude ≤ 1.5× 10−5.

Question: can this behavior be ascribed to the weakness of Pearson’s
correlation coefficient?
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Limit Laws

Theorem (F. & Hwang 201?)

p 6= q: (
Sn − E(Sn)√

Var(Sn)
,
Kn − E(Kn)√

Var(Kn)

)ᵀ
d−→ N (0, I2),

where I2 is the 2× 2 identity matrix.

p = q:

Σ−1/2n

(
Sn − E(Sn)
Kn − E(Kn)

)
d−→ N2(0, I2),

where Σn is the (asymptotic) covariance matrix:

Σn := n

(
F [GS ](r log1/p n) F [GSK ](r log1/p n)

F [GSK ](r log1/p n) F [GK ](r log1/p n)

)
.
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Joint Distribution of Sn and Kn

Sn
Kn Sn

Kn Sn
Kn

Sn
Kn Sn

Kn Sn
Kn

Sn
Kn Sn

Kn Sn
Kn

p = 0.4 p = 0.5 p = 0.6

p = 0.1 p = 0.2 p = 0.3

Michael Fuchs (NCTU) Digital Trees June 21st, 2016 29 / 30



Summary

Full analysis of Wiener index of tries, thereby completing the study of
Wiener index of grid trees.

Similar results for other digital trees:

M. Fuchs and C.-K. Lee (2015). The Wiener index of random digital
trees, SIAM J. Discrete Math., 29:1, 586–614.

Surprising correlation result for size and external path length in tries
−→ better probabilistic explanation?

Similar surprising results for other shape parameters and other digital
trees:

M. Fuchs and H.-K. Hwang. Dependence between path length and
size in random digital trees, preprint.
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