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Abstract

The Wiener index has been studied for simply generated random trees, non-plane unlabeled random
trees and a huge subclass of random grid trees containing random binary search trees, random median-
of-(2k + 1) search trees, random m-ary search trees, random quadtrees, random simplex trees, etc. An
important class of random grid trees for which the Wiener index was not studied so far are random
digital trees. In this work, we close this gap. More precisely, we derive asymptotic expansions of
moments of the Wiener index and show that a central limit law for the Wiener index holds. These
results are obtained for digital search trees and bucket versions as well as tries and PATRICIA tries.
Our findings answer in affirmative two questions posed by Neininger.
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1 Introduction and Results

Topological indices of molecular graphs are of great importance in combinatorial chemistry and many
papers have been dedicated to them. One of the most well-known indices is the so-called Wiener index
which is defined as the sum of distances of all unordered pairs of nodes of a graph. This index was
proposed by Wiener in [52] in order to investigate the boiling point of alkanes. It has been intensively
studied, in particular for trees since trees arise as molecular graphs of acyclic organic molecules; see the
survey paper of Dobrynin, Entringer and Gutman [&] for many results and references.

Here, we are interested in the Wiener index of random trees. The first class of random trees for which
the Wiener index was studied were simply generated random trees. In [10], Entringer, Meir, Moon and
Székely showed that the mean of the Wiener index in a simply generated random tree of size n is of order
n°/2. The mean for families of random trees more relevant in chemistry has been investigated by Dobrynin
and Gutman in [9] and Wagner in [49], [50].

As for deeper stochastic properties, Neininger in [38] was the first who considered variance and limit
laws. More precisely, he showed for random binary search trees and random recursive trees that the mean
of the Wiener index is of order n?logn and the variance is of order n*. Moreover, he also proved a



bivariate limit law of the Wiener index and the total path length (which is defined as the sum of distances
of all nodes to the root). Janson in [25] then carried out a similar study for simply generated random trees
whose Wiener index has variance of order n° and again satisfies a bivariate limit law with the total path
length (however, the limiting distribution is quite different from the one found by Neininger for random
binary search trees and random recursive trees). The same results were very recently also proved to hold
for non-plane unlabeled trees by Wagner [51] (he considered both the rooted and unrooted case).

Finally, also very recently, Munsonius in [35] extended the above results of Neininger to the class of
random split trees which was introduced by Devroye in [5]. The class of split trees is a very large class of
random trees containing many important types of random trees as special cases, e.g., binary search trees,
m-ary search trees, median-of-(2k + 1) search trees, quadtrees, simplex trees, digital trees, etc. Munsonius
proved in [35] that for a huge subclass of the class of random split trees, the variance of the Wiener index
has order n* and a bivariate limit law with the total path length holds. The subclass he considered includes
most of the classes of random trees mentioned above but not the important class of digital trees. It is
the purpose of this work to fill this gap. Moreover, our work will answer in affirmative two questions
of Neininger from [38] who asked whether or not periodic oscillations are present in the moments of the
Wiener index for digital trees and whether or not the Wiener index is asymptotically normally distributed,
in contrast to all other classes of random trees studied before whose limit law was non-normal.

Before recalling the definition of digital trees and discussing our results in more details, we want to
mention that apart from limit laws, results about tail probabilities of the distribution of the Wiener index
have been proved as well; see Janson and Chassaing [26], Ali Khan and Neininger [3], Fill and Janson
[11] and Munsonius [36]. Moreover, a quantity which is closely related to the Wiener index is the distance
of two random nodes in a graph which was also extensively studied for many classes of random trees
(including digital trees); see Meir and Moon [34], Dobrow [7], Mahmoud and Neininger [33], Devroye
and Neininger [6], Panholzer [42], Panholzer and Prodinger [43], Christophi and Mahmoud [4], Aguech,
Lasmar and Mahmoud [ 1], [2] and Munsonius and Riischendorf [37].

Now, we turn to digital trees which are fundamental data structures in computer science; see for in-
stance the textbooks of Mahmoud [32] or Szpankowski [48]. They are built from data whose keys are
infinite 0-1 strings. We equip them with the so-called Bernoulli model which assumes that every bit is in-
dependent and has a Bernoulli distribution with the probability of 0 equal to p. For the sake of simplicity,
we consider in this paper only the unbiased Bernoulli model for which p = 1/2. The resulting random
trees are called symmetric random digital trees.

One important subclass of digital trees are digital search trees (DSTs). Here, the tree is constructed as
follows. The first key is placed in the root. Then, all other keys are distributed to the left or right subtree
according to whether their first bit is O or 1, respectively. Finally, the first bit of every key is removed
and the subtrees are constructed recursively using the same principle; see Figure 1. Digital search trees,
although less important from a practical point of view, are the mathematically most challenging class of
digital trees; see the paper of Hwang, Fuchs and Zacharovas [20] and references therein. We will discuss
results for the Wiener index and give detailed proofs for this class first. Then, in Section 3, we will briefly
discuss similar results for variants of digital search trees, namely, bucket digital search trees, tries and
PATRICIA tries (the definitions of these classes of digital trees will be postponed to this section).

Now, fix a random digital search tree of size n and denote by 7,, its total path length and by W, its
Wiener index. Then, we have the following result for first and second moments.

Theorem 1. We have for the mean of the total path length and the Wiener index of digital search trees,

E(T,) = nlogyn + nPi(logyn) + O(logn),
E(W,) = n*logyn + n?P;(logyn) — n? + O(nlogn),



R; = 000001 - --

Ry = 000110 - -
Ry = 110111 - - -
Ry = 011011 -
Rs = 100001 - - -
R = 111110 - -

Figure 1: A DST built from 6 keys with total path length = 8 and Wiener index = 32.

where Py (z) is a one-periodic function given in Remark 1 below. Moreover, variances and covariances of
the total path length and the Wiener index of digital search trees are given by
Var(T,,) = nPy(logyn) + O(1),
Cov(Ty,, W,) = n*Py(logyn) + O(nlogn),
Var(W,,) = n®Py(log,n) + O(n*logn),

where P,(2) is again a one-periodic function given in Remark 2 below.

Remark 1. The result for the mean of the total path length is not new and was obtained first by Knuth in
[30]; see also Flajolet and Sedgewick [14]. The periodic function is given by

P, - (=1 — 2kmiz
1(2) 10g2 sz IOgZZ ( Xk)e )

where ~y is Euler’s constant and x; = 2kmi/ log 2.

Note that the result for the mean of the Wiener index is also not new since it can be derived from the
result in [1].

Finally, we want to remark that with our method of proof, it is straightforward to compute longer
asymptotic expansions of the means.

Remark 2. Similar to the mean, the result about the variance of the total path length is also not new; see
Kirschenhofer, Prodinger and Szpankowski [29]. In [20], the following explicit expression was given for
the periodic function

1 G2(2+ Xk) okmi
P — N4
2(2) = fog2 2 T2+

where

(—1)j27( 2) L e
Go(2 + xx) :Qooj7;l20W<ﬂ(2+Xk;2 J=h 4 9=i l).

Here’ Qj = nglgj(]' _ 2*1)’ Qoo = hmg—)oo Q] and

(14 2°2((w—2)z + 1 —w))

W) = (z — 1)?sin(mw)
P ) = - 1)(w —2) ifr = 1.

2sin(7w)

, ifx # 1;




Moreover, it was proved in [29] that Py(log,n) > 0 for all n; see also Schachinger [46] for a more
elementary proof of this fact.

As for the covariance between total path length and Wiener index and the variance of the Wiener index,
these results are new. In particular, note that the variance is of order n® which is different from the order
obtained for other random split trees; see [35]. This smaller order is actually not too surprising since it has
been observed many times that random digital search trees are “less random” than other random split trees
(and this result gives further confirmation of this fact).

Again it is straightforward to obtain more terms in the asymptotic expansions of the variances and
covariance.

As a corollary of Theorem 1, we obtain the following result.

Corollary 1. For the correlation coefficient of the total path length and the Wiener index of digital search
trees, denoted by p(T,,, W,,), we obtain that lim,, . p(T,,, W,,) = 1.

This will allow us to prove the following result.

Theorem 2. We have,

VVar(T,) " \/Var(W,,)

. o . d
where X is a standard normal distributed random variable and — denotes weak convergence.

(Tn —E(T,)) W, — E(Wn)> 4 xx)

Remark 3. Again the central limit theorem for the total path length is not new; see Jacquet and Sz-
pankowski [23] and the discussion in Section 5 in [20]. In fact, our result will follow from Jacquet and
Szpankowski’s result and Corollary 1.

Next, we give a brief description of the method we will use in order to prove our results. First, note
that from the definition of the total path length and the Wiener index, we immediately get the following
distributional recurrences: for n > 0, we have

T LT, + T +1, (1)
Woi1 2 Wp, + Wi 5 + (Bo+ 1)(TF_p +n—B,)+ (n— By +1)(Ts, + By), 2)

where B, = Binomial(n,1/2), (T, W) denotes an independent copy of (7, W,,), and (T,,, W,,) and
(B,,) are independent. Also, note that initial conditions are given by 7, = Wy = 0.

This system of distributional recurrences will be the starting point of our analysis. In order to obtain the
moments, we will use the Poisson-Laplace-Mellin method from [20] which was a refinement of a previous
approach which used only two ingredients, namely, analytic depoissonization and Mellin transform; see
Jacquet and Szpankowski [24] for the former and Flajolet, Gourdon and Dumas [ | 3] for the latter. We will
give a brief review of this method at the beginning of the next section. Another key ingredient of our proof
is the use of poissonized variances and covariances which will be also explained in the next section (this
was also one of the key contributions in [20]).

It is interesting to point out that Schachinger in [47] studied a general distributional recurrence which
is very similar to the two recurrences above. More precisely, he investigated the distributional recurrence

Xy L Xp + X5 5 +T,

where notation is as above and 7, is a general random variable called foll function (this recurrence is
actually the same as encountered in the analysis of shape parameters in tries which behave similarly to
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digital search trees; see our results in Section 3). For the case 7}, = n®, a > 0, he proved that the limit law
is normal if and only if & < 3/2. In view of this result, it might come as a surprise that the Wiener index
is asymptotically normally distributed because the toll sequence in (2) should be roughly of order n? logn
(since the mean of T, is of order nlogn and the random variable B, is highly concentrated at n/2).
However, note that in Schachinger’s result 7}, is deterministic and hence independent of X,,, whereas in
our situation we have strong dependence.

We conclude the introduction with a sketch of the paper. In the next section, we will recall the Poisson-
Laplace-Mellin method from [20] and use it to prove Theorem 1 and Theorem 2. In Section 3, we will look
at variants of digital search trees and state similar results for the Wiener index for these variants. Proofs
are also similar to the digital search tree case and consequently we will not give details. However, we will
list necessary differential-functional equations (or functional equations in the cases of tries and PATRICIA
tries) for the proofs in an appendix. Finally, in Section 4, we will give some concluding remarks.

2 Wiener Index for Digital Search Trees

Here, we will prove Theorem 1 and Theorem 2 from the introduction. We will start with the result on
the moments. As explained in the introduction, we will use the method from [20]. Note that the total
path length was already analyzed in [20]. In fact, we will heavily rely on results from this analysis in our
derivation below (all these results will be carefully reviewed below; for more details see Section 2.5 and
Section 2.6 in [20]).

As promised in the introduction, we will first recall the Poisson-Laplace-Mellin method from [20]; see
Figure 7 in [20] for a flowchart depicting the method and a comparison with a closely related approach of
Flajolet and Richmond [12]. The method consists of the following steps.

— We first use Poisson-generating functions of means and second moments, where the Poisson-generating
function of a sequence f, is given by

~ . ik
f(z):=e Zf"ﬁ'

All Poisson-generating functions satisfy a differential-functional equation of the form

F(2)+ F'(z) = 2f(2/2) + 1(2), 3)
where #(z) is a suitable function.

— Next, we carefully define “poissonized” variances and covariances. This was also one of the crucial
steps in the analysis of [20] (see the explanation in the introduction of [20]). Poissonized variances
and covariances also satisfy a differential-functional equation of type (3).

— The next task is to asymptotically solve (3). Therefore, we first apply Laplace transform to (3) to get
rid of the differential operator. This yields the following functional equation

(1+5)L[f(2); 8] = 4Z[[ (2); 28] + LI[i(2); 5],

— Next, set

Qs) =1 = s/2)

Jj=1



and - -
Z1frs) = Ty 2l = G

Dividing the functional equation from the previous step by Q(—2s) yields the slightly simplified
functional equation

Lf(2);s] = 42[f(2); 25] + L[E(2); ).

— An asymptotic expansion of .Z[f(z); s] as s — 0 is derived by a standard application of the Mellin
transform; see [ 13].

— Inverse Laplace transform then yields an asymptotic expansion of f (z) as z — oo.

— Finally, depoissonization is used in order to get an asymptotic expansion of f,, from that of f (2); see
[23] and Section 2.3 in [20].

Now, we will start with our analysis. Therefore, set
f10 = 7ZZE and f01 = 7221[‘3
n>0 n>0

Then, from (1), (2) and a straightforward computation, one obtains
fro(2) + flo(2) = 2f10(2/2) + 2,
2
~ ~ ~ ~ z
foJ(Z) + f(/]’1<Z) = 2f0,1<2/2> + (Z + 2)f170<2/2> + ? + z (4)

with f1.0(0) = fo.1(0) = 0. Similarly, set
fro(z *ZZEW — *ZZETW — Joal ZEW? —
n>0 n>0 n>0
Then, again from (1), (2) with a slightly more involved computation,
f270(2) + féo(z) = 2]“:2,0(,2/2) + fo’o(z/Q) + 42]3170(2/2) + 22];{70(2;/2) +224z

Fia(2) + fla(z) = 2f11(2/2) + 2f1.0(2/2) for (2/2) + 2 fro(2/2) f10(2/2) + (2 + 2) fan(2/2)
2 FRale/2) + 25+ 59 (/D) + T R ) 4 25
23 +42%2 + 22
2

oale) + oale) = 2hoa e/ + (5 +35+2) R o/2) + 22+ Do (372)
@2 Dfin (2/2) o (/2 + 220 (2/2) o (2/2) + 201 (2/2)
+ (222 +42) fo1 (2/2) + (222 + 2z)f6’1 (z/2) + (% + 2z + 2) fro(2/2)?

+ Zfé,l(z/2) +

+ (2% +22)f10(2/2) flo (2/2) + %Qflo (2/2)* + (2* 4 62° + 62) fr,0 (2/2)

. 4
+ (2% + 52" 4+ 22) f1 4 (2/2) + ZZ +22% +42% + 2,



where fg,o(O) = f1,1<0) = fo}z(O) =0
Next, we define poissonized variances and covariances. In our context, it turns out that a good choice
is given by

(2) = fapo(z) — ]?1,0(»75)2 - Zf{,0(2)2>

(2) = f1,1(2) - f1,0(2>f0,1(2’) - Zf{,o(z)fé,l(z)v

(2) = f0,2(2) - f0,1(2)2 - Zf6,1(2)2-

The reason why we define them in this way will become clear in the depoissonization step; see also
the detailed description in the introduction of [20]. Using the above differential-functional equations, a

long computation (which can be done with Maple) gives the following differential-functional equation for
V(z),C(z) and W (2)

= <

V(z)+V'(2)
C(z) +C'(2) =

(2/2) + 2 f1o(2)%,
(2/2) + (2+2)V(Z/2)+Zf{’,o(2) fo1(2), (5)

W(z) +W'(2) = 2W(2/2) + (22 + 4)C(z/2) + (% + 3z + 2) V(2/2) + 22 f{ o(2/2)?

+222f1 0(2/2) + 2f§1(2)* + 22 (6)

2V
20

with V(0) = C(0) = W(0) = 0.
We will now apply the above approach to these differential-functional equations. We will start with the
mean value.

Mean Value of Wiener Index. We will start from (4). According to the above method, we first apply
Laplace transform which yields

(1+ S)g[fo’l(z);s] - 43[1;071( ); 28] — 2_ [fl 0(2); 2s] +4$[]E1,0(Z)328] + 1:;8.

Next, dividing by Q)(—2s) and setting

ar3 gl = g[f0,1<z);s] 5 oiﬂ[fl,o(z),s]
g[f011(2)7 ] Q(—S) ) [fl,O( ) ] Q<—28)
gives
2 f, 21 f 2 d S F 1+s
Llfor(2);8] = 4L foa1(2); 2] — 0(—25) ds ZLfr0(2); 28] + 4.2 fr0(2); 2s] + ERTEERE (7)
Observe that
L 2(fro(2):25] = Lo 25—+ L [ o(2);29). ®)

ds dsQ(—2s)  Q(— 25)

Moreover, logarithmic differentiation yields

50029 = Lo {og(Q(=29)} = Q-2 3 Ylog (14 57) = Q=29) 3 5~

Jj=0 j=0



Set A(s) = 3" .., 57— whose Maclaurin series is given by

7>0 2745
(_S>k ok+1
Als) = Z Z o(k+1); Z ok+1 _ 1 (—=9)".
>0 k>0 k>0
Next, _
d 1 1 d A(s 2 A(s
L Ay g A 0 9)

d&sQ(-2s)  Q(-2s)*ds Q=2s)  Q(-25) Q(-2)
where A(s) is the meromorphic extension of >, ., 2¥"1(—s)* /(28! — 1). Plugging (9) into (8) and (8) in
turn into (7) gives -

j[‘f071(2); s| = 4j[f071(z); 2s] — 2%3[]‘10(2); 2s] — 2[1(8).;?[]‘?1,0(2); 2s] + % (10)

The next step is to apply Mellin transform. Therefore, note that from [20], we know that

O (|s|2|1logs|), ass—0;
O (Is|™), as s — 00

j[fl,o(z);s] = {

uniformly for s with |arg(s)| < 7 — ¢, where b > 0 is an arbitrary large constant. Moreover, again from
[20], for Q(—2s) (and consequently also for A(s)), we have the bounds

Q(—25) = {1+O(!s!), as s — 0; Als) = {(9(|s]), as s — 0; an

O(|s|™?), ass—o0’ O(1), ass—

again uniformly for s with | arg(s)| < m — ¢, where b > 0 is an arbitrary large constant. As a consequence
of this and Ritt’s theorem (see Chapter 1, Section 4.3 in Olver [41]), the Mellin transform of

d
ds

Plfrol);29] + %,

which we denote by Sy 1 (w), exists for $(w) > 3 and the Mellin transform of

§071 (S) = -2

fo.1(s) = —2A(5)Z[f10(2); 2],

which we denote by Ty (w), exists for R(w) > 1. Moreover, by Proposition 5 in [13], we have, as
t] — oo,
S()’l (C + Zt) = O (ei(ﬂ'ie)‘tl) s T071(C -+ Zt) e O (ef(ﬂfe)m) (12)

for all ¢ € R contained in the fundamental strip. In fact, using the expression for the Mellin transform for
Z[f10(2); s] from [20], we obtain for Sy ; (w) the expression

QEPNwI(2—w) Q23 I'(w—1I'(2—w) n Q2 )M (w)I'(1 —w)
202773 — 1) Qoo Qoo |

Note that from this, it follows that (12) holds for all ¢ € R. Finally, by applying Mellin transform to (10),

5071((,0) =

_ Soq(w) + TO,l(W)‘

ML frolo] = 2



From this and the above explicit expression for Sy ; (w), we obtain by inverse Mellin transform

1
o5 2 T3+ XD (=1 = xe)s ™ + O (Js| % log s)) (13)

where ¢ = >, ., 1/(2¥ — 1), x was defined in Remark 1 in Section 1 and the above asymptotic expansion
holds uniformly as s — 0 with | arg(s)| < 7 — e. Moreover, due to (11), the same asymptotic expansion
holds for .Z[ f1(z); ] as well.

Next, we apply inverse Laplace transform. More precisely, we use Proposition 2.6 in [20] which we
first recall since there is a small mistake in the statement of [20] (|s + 1| on the right hand side of (29) in
[20] should be replaced by |s|). We only state the result for the transfer of O-bounds.

Proposition 1 (Hwang, Fuchs, Zacharovas; [20]). Let f (2) be a function whose Laplace transform exists
and is analytic in C \ (—oo, 0]. Assume that

Z[f(2);s] = O (|s| ™| log s|")

uniformly for s — oo with |arg(s)| < m — ¢, where « € R and m > 0 is an integer. Moreover, assume
that B
ZL[f(2);s] = O (|s|7)

uniformly for s — oo with | arg(s)| < m — e. Then,

f(z) = O (|2 |logz|")
uniformly as z — oo and |arg(z)| < m/2 — €

Remark 4. A similar result holds for the transfer of terms of the form cs~” (log(1/s))™, where ¢, 3 € C
and m > 0 is an integer. More precisely, under the same assumptions as above, we have

~ " ~ m o |
B - — .. B-1 m—y_~
Zf(2);s] =cs (logs) —  f(z)=cz Z (j)(logz) Jawj @) s
0<j<m
(Note that another small mistake in Proposition 2.6 in [20] is that |,,—z at the end of this formula is missing).

Applying this result to (13) yields
fo1(z) = 2%logy 2z + 22 Py (log, 2) — 22 + O(|zlog 2|) (14)

uniformly as z — oo with |arg(z)| < 7/2 — €, where P;(z) was introduced in Remark 1.

The final step is depoissonization which is done by using the tools from Section 2.3 in [20] which rest
on the notion of Jacquet-Szpankowski admissibility (JS-admissibility for short; see Definition 1 in that
section) and its closure properties. In particular, from Lemma 2.3 and Proposition 2.4 of that section, we
obtain that f;;(z) is JS-admissible. Hence,

E(W,) = foi(n) — g fo/1(n) + lower order terms.
Note that from (14) and Ritt’s theorem, we obtain that the second term on the right-hand side above is of
order O(nlogn). Consequently, the above gives the claimed expansion for the mean.
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Covariance of Total Path Length and Wiener Index. Here, we start from (5) and use the same method
as for the mean. First, in [20], we have proved that

flﬁo(z) = zlog, 2z + 2P (log, 2) + O(] log z|) (15)

uniformly as z — oo with |arg(z)| < m/2 — €. From this, (14) and Ritt’s theorem, we obtain the bounds

i ri O(’ZD? aSZ—>O;
_ 16
z 1,0(2) 0,1(2> {(9(]10g2|>7 as z — 0o )

uniformly for z with |arg(z)| < 7/2 —e.
Next, we apply Laplace transform to (5) and divide it by Q(—2s). Then, by similar manipulations as
for the mean, we obtain
- . d - - I
Z|0(2); 5] = 42[C(2); 28] = 22V (2); 28] = 2A(s5)Z[V (2); 28] + G1.4(5), (17)

S

where _ -
Lz {/0(2) 6,,1(2)§3]
Q(—2s) '

Before applying Mellin transform, we note that from [20], we have

gi1(s) =

anan={GEE T

uniformly for s with |arg(s)| < m — ¢, where b > 0 is an arbitrary large constant. Moreover, from (16)
and (11), we obtain

G (s) = O (|s|'1ogs|), ass—0;
gLs) = O (Is|™), as s — 0o

again uniformly for s with | arg(s)| < m — ¢, where b > 0 is an arbitrary large constant. Hence, the Mellin
transform of

_ d
S11(s) = —2£$[V(z); 2s],
which we denote by S; 1 (w), exists for #t(w) > 3 and the Mellin transform of
t11(s) = —2A(s)2[V(2); 25] + Gi.1(s),

which we denote by 77 ;(w), exists for #(w) > 1. Also, both Mellin transforms satisfy a bound of the
form (12) inside their fundamental strips. Moreover, in [20], we showed that

M2 W)ie] = 2D

where Go(w) is analytic for ®(w) > 0 and satisfies a bound of the form (12) in this half-plane. Conse-
quently, by applying Mellin transform to (17),

_ Suw) + Tia(w) _ 2279w —1)Gaw—1)  Ti1(w)
- 22 (1—2=)(1—22w) ' 1—22w

M L(C;w]
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From this by inverse Mellin transform

Z(0(2): 8] = @ S (24 x)Ga(2 + x5 + O (|s]2)

uniformly as s — 0 with | arg(s)| < 7 —e. For Gy(w), we showed in [20] the expressions given in Remark
2 in Section 1. Moreover, from (11), we get the same asymptotics for Z[C(z); s].

Applying Proposition 1 yields
C(z) = 22 Py(log, 2) + O(|z]) (18)

uniformly as z — oo and | arg(z)| < m/2 — €, where P,(z) is given in Remark 2 in Section 1.
_ The final step is depoissonization. Therefore, observe that by the results in Section 2.2 in [20],
f10(2), fo1(2) and fi 1(2) are all JS-admissible. Hence,

2 ~ ~
Cov(T,, W,) =C(n) — ﬁC’”(n) — % 1o(n)fo1(n) + lower order terms.
Note that due to Ritt’s theorem, the second term on the right hand side is O(n) and the third term is

O(nlogn). Hence, our claimed result for the covariance is proved.

Variance of Wiener Index. Next, we turn to the variance of the Wiener index. We start from (6) which
we rewrite as
~ Z2

W(z) 4+ W'(z) = 2W(2/2) + 22C(z/2) + 5 V(2/2) + Goa(z)

with
Jo2(2) =4C(2/2) + Bz + 2)V (2/2) + 22 f1 4(2/2)* + 22° f1 (2/2) + 2f§1(2)* + 2.
In [20], we proved that .
V(z) = zP2(log, 2) + O(1)
uniformly as z — oo with |arg(z)| < 7/2 — e. From this, (18), (15), (14) and Ritt’s theorem it follows

that
. O(|z]), as z — 0;
_ 19
Goal2) {O(|z|2|1ogz\2), as 2 = 00 ()

uniformly for z with | arg(z)| < 7/2 —e.
Next, applying Laplace transform to the above differential-functional equation and dividing by Q(—2s)
yields

1 d? ~

_ o 4 d
M@,,%[V(z), 25| + Go2(s), (20)

LW (2);s] = 4L[W (2);2s] — o0—25) g,ﬁf[é(z), 2s] +

where
) ~ ZlGos(2); 8]
P2l = ()

Using the same manipulations as for mean and covariance, we have

4 d ~ d - - .
— m@.,%w(z); 25| = —4£$[C(z); 2s] —4A(s)Z[C(2);2s]. 2D
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Moreover, observe that

& S 128 = 1 d_2 V(2): 28] — A(S)i V(2); 2s ~Z'Sd_2 !
@'Z[V(Z)ﬂ ] = 55 ds?g[v( ); 2] 2@(—23) dséf[v( ); 28] + Z[V(2);2 ]dSQ Q(—2s)
and note that
2 1 d Als)  A(s)*  B(s)

ds?Q(=2s)  dsQ(=2s) Q(-2s) Q(=2s)’

where B(s) is the meromorphic extension of
— Z kQ—m(_ )k
2k+2 1 S) .
k>0
This implies that

S CR d* -
M@;ﬂ[v(z); 2s] = @X[V(z); 25]+2A(s)

|

LV (2); 25]+(A(s)*+B(s))-Z [V (2);: 2] (22)

oL

S

and plugging (22) and (21) into (20) yields

N N 2

LW (2); 5] = 4L[W (2);2s] — 4%(@[0(2), 2s] + %j[f/(z), 2s] + 192(s)
with

toa(s) = —4A(s)2[6~’(2); 2s] + 2A(s)%$[f/(z); 2s] + (A(s)* + B(s))j[f/(z); 25| + goa(s).

Before we apply Mellin transform, note that from (19) and (11),

~ O(|s||log s]?), ass — 0;
Go2(s) = S
O(|s|™), as s — 0o

uniformly for s with | arg(s)| < m — ¢, where b > 0 is an arbitrary large constant. Moreover, similar as for
(1D),
o — 0;
B(S) _ { ( )7 as s )

O(]s|?|log s]?), ass — oo

again uniformly for s with | arg(s)| < 7 — e. From this and corresponding bounds for A(s),.Z [C(2); 5]
and .Z [V (z); s] obtained in the analysis of the mean and covariance, we see that the Mellin transform of
to.2(s), which we denote by Tj o(w), exists for R(w) > 3. Similarly, the Mellin transform of

2 ~

. d i~ 2
S02(s) = —4£$[C(z); 2s] + EX[V(Z'L 25,

which we denote by S o(w), exists for ®(w) > 4. Both of these Mellin transforms satisfy a bound of the
form (12) inside their fundamental strip. Moreover, observe that using the expressions from the analysis
of the covariance, Sy »(w) is given by

2279(2357% + 1) (w — 1)(w — 2)Ga(w — 2) N 257w — 1)1 (w—1)

Soz(w) = (1= 25-w)(1 — 21-w) 1— 25 ’

12



where G(w) is an analytic function for R(w) > 0, 7} ;(w) is an analytic function for R(w) > 1 and
both satisfy a bound of the form (12) in their half-plane of analyticity. Overall, we obtain for the Mellin
transform of Z[W (z); s]

_ SO’Q(CU) -+ T()Q((,d)

MLV ]

1 — 22w
_ 2279(2579 4+ 1) (w — 1) (w — 2)Ga(w — 2) N 257 (w — )Ty 1 (w — 1) N Too(w)
(1 —22-w)(1 — 23-w)(1 — 24-w) 1 — 23w 1 — 22w’

From this, by applying inverse Mellin transform

W ()is] = —

D BHxR)(2+ xp)Ga(2 + xi)s ™ T + O(]s| )

log 2 -

uniformly as s — 0 with | arg(s)| < 7 — e. Moreover, due to (11), the same is also true for Z[W (z); s].
Next, we apply Proposition 1 and obtain

W (z) = 2° Py(logy 2) + O(|[**)

uniformly as z — oo with | arg(z)| < 7/2 —e.
The final step is the depoissonization step where as above we use the results from Section 2.2 in [20].
By these results, fo2(z) and fo1(z) are both JS admissible. Consequently,

2
Var(W,) = W(n) — gW”(n) — % f/1(n)? + smaller order terms.

By Ritt’s theorem, the second term on the right-hand side is O(n?) and the third term is O(n?log®n).
From this our result follows (the claimed error term in Theorem 1 is obtained by a slightly refined analysis
which we leave as an exercise to the reader).

This concludes our proof of Theorem 1 and consequently also Corollary 1. We will use now the latter
to give a proof of Theorem 2. As a second ingredient, we need the following central limit theorem for the
total path length.

Theorem 3 (Jacquet and Szpankowski; [23]). We have,
T, — E(T,
1. —E(T.) 4y x

Var(T,)
where X has a standard normal distribution.
Proof of Theorem 2. First set
T, - E(T,)
o NVar(T,)
Then, by the above result
X, % X,

where X has a standard normal distribution. Consequently,
(X, X)) =5 (X, X).

13



Next, define
W, —E(W,) B T, — E(T,)

Var(W,,) /Var(T,,)

n

Note that

E(Wn — E(Wn))2 E(Tn — E(Tn))2 _ E((Wn — E(Wn))(Tn — E(Tn>>>
Var(W,,) Var (7)) \/Var(W,,)Var(T},)

E(Y?) =

n

=2—=2p(T,,W,).

Hence, by Markov’s inequality

E(Y;?)

n
62

P(lY,| > ¢€) < — 0, as n — oo.

Thus, Y, L5 0and consequently (0, Y},) N (0,0) (here, L denotes convergence in probability). Using
Slutsky’s theorem (also called Cramér’s theorem; see Theorem 11.4 in Gut [!7]) now implies

(Xn, X)) + (0,Y,) -L (X, X).

Since

(X0, X)) +(0,Y,) = <Tn —E(T,) W, — E(Wn))

VVar(T,) " V/Var(W,,)
this proves our claim. 1

Remark 5. Alternatively, one could define the random variable
U, =W, —nT, +n?

whose mean by Theorem 1 is of order O(nlogn). By the same result, also the order of the variance is
small:
Var(U,,) = Var(W,,) + n*Var(T,,) — 2nCov(T,,, W,,) = O(n*logn).

In particular, this is of a smaller order than the variance of W,,. Thus, again by Markov’s inequality,

U, — E(U,) _ W — EWn)  n(T, —E(Th)) P
Var(W,,) Var(W,,) Var(W,,) '

Consequently, Y;, from our above proof can be replaced by (U,, — E(U,,))/+/Var(W,,).

Overall, this suggests an alternative approach to Theorem 2 via a direct study of the moments of
U,. Such a study is possible with the same tools as above since U, is easily seen to satisfy a similar
distributional recurrence as the Wiener index.

3 Wiener Index for Variants of Digital Search Trees

In this section, we are going to discuss similar results as in Section 1 for variants of digital search trees.
Proofs of these results follow along the same lines (or are even easier since in some cases Laplace transform
is not needed) and will not be given. For the reader’s convenience, we will list the (differential-)functional
equations for poissonized mean, variances and covariances which are crucial to the proofs in the appendix.
Our results can be deduced from them with a similar approach as used in Section 2.

14



We start by defining the variants of digital search trees we want to investigate. The first variant are
bucket digital search trees where every node can hold up to b > 2 keys with all internal nodes (non-leaf
nodes) holding exactly b keys; for an example see Figure 2. Bucket digital search trees were discussed in
many papers; see [20] and references therein. Note that there are two types of total path length in bucket
digital trees: the sum of distances of all keys to the root and the sum of distances of all nodes to the root;
the former is called key-wise path length and the latter node-wise path length (see [20] for more details).
Accordingly, we also have a key-wise Wiener index and a node-wise Wiener index. Results for both Wiener
indices in random bucket digital search trees will be presented below.

Ry = 000001 - - -
Ry = 000110 - - -
Ry = 110111 - - -
Ry = 011011 - - -
Rs = 100001 - - -
R = 111110 - -

Figure 2: A bucket digital search tree with b = 2 built from 6 keys with key-wise path length = 5, key-wise
Wiener index = 19, node-wise path length = 4 and node-wise Wiener index = 10.

Another variant of digital search trees are tries (from the word data retrieval) which are one of the most
important data structures on words with numerous applications; see [37], [48] and Park, Hwang, Nicodeme
and Szpankowski [44] and references therein. For the reader’s convenience, we recall the definition. As
for digital search trees, start with a set of n data whose keys are infinite 0-1 strings. However, in contrast
to digital search trees, a binary tree is built with keys only stored in the leafs. This is done as follows:
whenever a new key is stored, we use it to search in the already existing trie until we encounter a leaf
(which already contains a key). Then, the leaf is replaced by an internal node and the two keys are
distributed to the two subtrees. If they go to the same subtree, then this procedure is repeated until both
keys go to different subtrees where they are stored as leafs; see Figure 3 for an example. Again there are
two types of total path length: the external path length (which uses the leaves) and the internal path length
(which uses the internal nodes whose number is random); see [15]. Hence, there are also two different
types of Wiener indices, namely, the external Wiener index and the internal Wiener index. Again both of
these Wiener indices will be discussed below.

As a final variant of digital search trees, we consider PATRICIA tries; see [48]. The construction
principle of PATRICIA tries is similar to that of tries with the only difference that one-way branching is
suppressed (or in other words, first a trie is build from the data and then all nodes with only one subtree are
deleted); see Figure 3 for an example. Again there are two Wiener indices, however, since the number of
internal nodes is now deterministic, they exhibit the same behavior. Therefore, we are going to give results
only for the external Wiener index (which subsequently will be called Wiener index for brevity).

As in Section 1, we will denote by 7,, the total path length and by W,, the Wiener index (both either
key-wise or node-wise or external or internal depending on the context). Moreover, for the node-wise
Wiener index and the internal Wiener index, we also need the number of nodes (internal in the case of
internal Wiener index) which will be denoted by V,,.

Key-wise Wiener Index of Bucket Digital Search Trees. Here, we have the following distributional
recurrences for 7}, and W,,: forn > 0,

15



Figure 3: A trie built from the data from Figure 2 with external path length = 18, external Wiener index
= 72, internal path length = 9 and internal Wiener index = 35. The corresponding PATRICIA trie is
depicted on the right with total path length = 16 and Wiener index = 64.

Toto < Tp, + T, 5, +n,
Wiy = W, +Wi_g + (By+1)(Ti_p, +n—= By) + (n = By +1)(Tp, + By),
where notation is as in Section 1 and initial conditions are given by Ty = --- =T,y = Wy = --- =

Wb,1 = 0
From these recurrences, we obtain the following results for mean and variance.

Theorem 4. We have for the mean of the key-wise path length and key-wise Wiener index of bucket digital
search trees,
E(T,) = nlogyn + nPi(logyn) + O(logn),
E(W,) = n*logy, n + n?P;(log, n) — n* + O(nlogn),

where Py (z) is a one-periodic function given in the remark below. Moreover, variances and covariances
of the key-wise path length and key-wise Wiener index of bucket digital search trees are given by

Var(T,,) = nPy(logyn) + O(1),
Cov(Ty, W,) = n*Py(logyn) + O(nlogn),
Var(W,) = n®Py(logy,n) + O(n*logn),
where P,(z) is again a one-periodic function given in the remark below.

Remark 6. The result for the mean and variance of the key-wise path length were first obtained by Hubalek
in [18]. In [20], the authors gave the following expressions for the periodic functions

-1 1 1 G1(2 :
Pl (Z) Y c Z 1( + Xk)e2k7rzz

- log 2 +§+10g2+log2k#0 (2 + xx)

16



where

Gl(w):/ooo %;)bds, e = lim (G () — 1/(w — 2))

d
" P (Z) - 1 Z G2(2 + Xk)emcm'z
2 log 2 — T2+ xx) ’
where o ot .
Go(w) :/0 m%} e **g(z)dzds
with
b i b i b o)
i(z) = (Z (.)f1<73<z>> +z(Z () ?731’(2)) -2 () (F2o(2) + 2f10(2)%)
0<5<b J 0<5<b J 0<5<b J

and f, o(z) denotes the Poisson generating function of E(T},).
Note that the result for the mean of the Wiener index also follows from [4].

Moreover, we have the following bivariate central limit theorem.

Theorem 5. We have,

(Tn — E(T,) W, —E(W,)

VVar(T,) " \/Var(W,,) ) — (XX,

. - . d
where X is a standard normal distributed random variable and — denotes weak convergence.

Remark 7. The central limit theorem for the key-wise path length was first proved by Hubalek, Hwang,
Lew, Mahmoud and Prodinger [19].

Node-wise Wiener Index of Bucket Digital Search Trees. Here, the distributional recurrences for
N,,, T, and W,, are given by: for n > 0,

Nn+b i NB’VL + N’;:—Bn + ]'7

Ty £ Tp, +TF_p + Np, + N,
Waih £ Wp, + Wi, + (Np, + D(Ti_p, + Ni_p) + (Ni_g, + 1)(Th, + Np,),

where B,, is as in Section 1, (N5, T'*, W) denotes an independent copy of (N,,, T,,, W,,) and (N, T,,, W,,)

is independent of (B,,). Initial conditions are givenby 7o = --- =T, 1 =Wy = =W, 1 = Ny =0
andN1:-~:Nb_1:1.
From this, we obtain the following result.

Theorem 6. We have for the mean of the number of nodes, node-wise path length and node-wise Wiener
index of bucket digital search trees,

E(N,) = nPi(logy,n) + O(1),
E(T5,) = n(logyn) Py (logyn) + O(n),
E(W,) = n2(log2 n) P (log, n)2 + O(nz)a
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where Py (z) is a one-periodic function given in the remark below. Moreover, variances and covariances
of the number of nodes, node-wise path length and node-wise Wiener index of bucket digital search trees
are given by

where Ps(z) is again a one-periodic function given in the remark below.

Remark 8. The results for the number of nodes were first proved in [19]. Moreover, the results were
reproved in [20] where the authors in addition also proved the results for the node-wise path length and
derived the following expressions for P;(z) and P»(2)

Pl (Z) 1 Z Gl (2 + Xk) €2km'z

:log2 - (2 + xx) ’
where o s
Gl(w):/() m(sﬂ)“ds
e Po(s) — 1 G2(2+ Xk) okriz
z(z)—IOgQZk: NCESRE
where
Y ¥ e ST (F)M26 =34 (b 1)s) )
Galw) —/0 Q(—2s) (/o §(z)dz+ (5127 )d
with
() = b 7). 2 . b R+ 2_ b\ [z R )
3(e) (Z (7) >> . (Z (5) 7 >) 3 (0) (e +<fuer)

and fi(z) denotes the Poisson generating function of E(T},).

Theorem 6 yields the following trivariate central limit theorem.

Theorem 7. We have,

(Nn —E(N,) T, —E(T,) W, —E(W,)

SVar(Ny) | NVar(Ty) | /Nar(W,) > — (5XX),

. o . d
where X is a standard normal distributed random variable and — denotes weak convergence.

Remark 9. The central limit theorem for the number of nodes was first proved in [19]. Also note that the
problem of proving a bivariate central limit law of number of nodes and node-wise path length was posed
as an open question in Section 5 of [20].
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External Wiener Index of Tries. Here, the distributional recurrences for 7;, and W,, are as follows: for
n > 2,

T, LTp +T 5 +n,

Wi £ Wy, +Wi_p, + Ba(Ti_p, +n = By) + (n = B,)(Ts, + By),

where notation is as in Section 1 and initial conditions are given by 17y =177 = Wy = W; = 0.
From this, we obtain the following theorem.

Theorem 8. We have for the mean of external path length and external Wiener index of tries,

E(T,) = nlogyn + nP;(logy n) + O(logn),
E(W,) = n*logyn + n?P;(logyn) — n? + O(nlogn),

where Py (z) is a one-periodic function given in the remark below. Moreover, variances and covariances
of the external path length and external Wiener index of tries are given by

Var(7,,) = nPy(logyn) + O(1),
Cov(T,,,W,) = n*Py(log,n) + O(nlogn),
Var(W,) = n*Py(logyn) + O(n*logn),

where Ps(2) is again a one-periodic function given in the remark below.

Remark 10. The result about the mean of the total path length was first obtained in [30]. A detailed analysis
of the variance of the total path length was first undertaken by Kirschenhofer, Prodinger and Szpankowski
[27] (see also Jacquet and Régnier [21] for preliminary results). In Hwang, Fuchs and Zacharovas [15],
the following expressions for the periodic functions were obtained

2 p2kmiz
Pi(z) = - r(—
1(2) = 1502 +3 2 log2 %

and
1

Pyf2) = log 2

Z Gz(—l . Xk)e%m‘z’
k

where

(l(w+1) — 1),

w w l w
Gz(w):F(w+1)(1— il +4> 22 JTw+i+1)

Qw3 l (2t —1)
>1
Note that the result about the mean of the Wiener index also follows from [4].

From the previous result, we again obtain the following theorem.

Theorem 9. We have,

T, —E(T,) W,—EW,)\
<\/Var(Tn)’ \/Var(W, ) — (XX,

. - . d
where X is a standard normal distributed random variable and — denotes weak convergence.

Remark 11. The central limit theorem for the external path length was first proved in [21].
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Internal Wiener Index of Tries. Here, the distributional recurrences for NV,,, T}, and W,, are as follows:
forn > 2,

Ny 2L Np, + N} 5 +1,
T, LTy +T 5 + Np, +N;_
W & Wp, + W5, + (N5, + 1><T;_Bn + Ni_g,) + (N3, +1)(Ts, + Na,),

where notation is as for the node-wise Wiener index and initial conditions are given by Ny = N; =T =
Tl - WO - Wl - O
Then, we have the following result for mean values, variances and covariances.

Theorem 10. We have for the mean of the number of internal nodes, internal path length and internal
Wiener index of tries,

E(N,) = nPi(logy,n) + O(1),
E(T5) = n(logy n) Pi(logy ) + O(n),
E(W,) = n*(logy n) Pi(logy n)* + O(n?),

where Py(z) is a one-periodic function given in the remark below. Moreover, variances and covariances
of the number of internal nodes, internal path length and internal Wiener index of tries are given by

Var(N,,) = nPy(logyn) + O(1),
Cov(N,, T,) = n(logyn)Py(logy n) + O(n),
Var(T,,) = n(log, n)*Py(logy, n) + O(nlogn),
Cov(Ny, Wn) = 2n* (logy n) Pi (log, n) Pa(logy 1) + O(n?),
COV(Tn, W,,) = 2n*(log, n)* Py (log, n) Py(logy, n) + O(n?logn),
Var(W,,) = 4n*(log, n)? Pi(log, n)* Py (log, n) + O(n? logn),

where Ps(2) is again a one-periodic function given in the remark below.

Remark 12. The result for the mean of the number of internal nodes was first proved in [30]. The variance
of the number of internal nodes was first derived by Régnier and Jacquet [45] (see also [21], [22]). In [15],
the authors derived the following expression for the periodic functions

1 1 ,
P, — (=1 — 2kmz.
M2 = i0g2 ¥ og2 Z}@éo L=l =xie

and
—1— 2k:7rzz
P(z) logQZ:G2
where
w? + 4w + 8 DUT(w + 1+ 1)
Go(w) = (w+ DHI'(w) (1—W) 22 (D@ 1) (llw+1+1)—1).

>1

The results for mean and variance of internal path length and covariance with the number of internal nodes
are due to Nguyen-The [40].
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As before, we have a central limit theorem which now reads as follows.
Theorem 11. We have,
N, —E(N,) T, —E(T,) W, —-EW,)
VVar(N,,) " /Var(T,) = /Var(W,,)

) 45 (X, X, X),

. o . d
where X is a standard normal distributed random variable and — denotes weak convergence.

Remark 13. The central limit theorem for the number of internal nodes was first proved in [21] and [22].
The bivariate central limit theorem for the number of internal nodes and the internal path length was
wrongly stated in [40] (the author of this work did not observe that the covariance matrix is singular
leading to a wrong proof).

Wiener Index of PATRICIA tries. Here, we have for T;, and W,,: for n > 2,

i Tp, +T, 5 +n, if B, #0or B, # n;
" T, otherwise,

w4 Wg, + Wy g +Bu(T;_p +n—DB,)+(n—DB,) T, +B,), if B, #0or B, #n;
" W, otherwise,

where notations is as in Section 1 and Ty, =717 = Wy = W; = 0.
Then, we have the following result.

Theorem 12. We have for the mean of the total path length and Wiener index of PATRICIA tries,
E(T,) = nlogyn + nP;(logy n) + O(logn),
E(W,) = n*logy n + n?P;(logyn) — n® + O(nlogn),
where Py(z) is a one-periodic function given in the remark below. Moreover, variances and covariances
of the total path length and Wiener index of PATRICIA tries are given by
Var(T,,) = nPy(logyn) + O(1),
Cov(Ty, W,) = n*Py(logyn) + O(nlogn),
Var(W,,) = n®Py(log,n) + O(n*logn),
where P (2) is again a one-periodic function given in the remark below.

Remark 14. The result for the mean of the external path length was first derived in [30]. The result for
the variance of the total path length is due to Kirschenhofer, Prodinger and Szpankowski [28]. In [15], the
authors deduced the following expressions for the period functions

71 1 Z 2k
P, — (= Tz
1(2) log2 = log2 o (=xx)e

and
1

Pz) = log 2

Z GQ(—l - Xk)e2kﬂiz7
k

where

o=l (0 2y~ )y LT 0
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The latter result again implies the following bivariate central limit theorem.

Theorem 13. We have,

(Tn — E(T,) W, —E(W,)

VVar(T,) T \/Var(W,,) ) — (XX,

. o . d
where X is a standard normal distributed random variable and — denotes weak convergence.

Remark 15. Up to our knowledge, the result for the total path length was first obtained by Neininger and
Riischendorf in [39].

4 Conclusion

In this paper we investigated the Wiener index which was previously studied for simply generated families
of random trees, non-plane unlabeled random trees and a huge subclass of random grid trees. A notable
family of random grid trees which was left open were random digital trees. It was the main purpose of this
paper to fill this gap.

We studied the Wiener index for various types of random digital trees, namely, random digital search
trees, random bucket digital search trees, tries and PATRICIA tries and proved (i) that moments exhibit
periodic fluctuations (a phenomena observed for many shape parameters of digital trees) and (ii) that the
Wiener index (suitably centralized and normalized) is asymptotically normally distributed. In particular,
the node-wise Wiener index was mentioned as an open problem in [35]. We solved this problem here for
random digital trees. Also, we note that one further notion of the Wiener index was treated recently by
Fuchs and Lee in [16] (see also the Ph.D. thesis of the second author [31]).

As for open problems, the most straightforward question is, how about the asymmetric case? In fact,
similar results can be proved for this case as well. We content ourselves with briefly explaining the results
and highlighting differences.

First, we consider random digital search trees. One difference for this class of digital trees is that the
Poisson-Laplace-Mellin method from [20] cannot be applied since the method only works for symmetric
digital search trees. However, one can still apply a combination of analytic depoissonization and Mellin
transform with the disadvantage that periodic functions in the results become less explicit. The asymptotic
expansions for mean of total path length and Wiener index are then essentially the same as in the symmetric
case (with a different period for the periodic functions which in addition become constant for log p/ log ¢
irrational where ¢ := 1 — p). Asymptotic expansions for variances and covariances are slightly different
since their order increases from n* to n* log n. More precisely, we have

pqlog®(p/q)

A TR

pqlog*(p/q)
h3

_ palog®(p/q)
h3

Var(T),) nlogn,

Cov(T,,, W,,) ~

n?logn,

Var(W,,) n?logn,

where h = —plogp — qlogq is the entropy; for the result for the total path length see for instance [23].
The periodic functions (in case log p/ log g is rational) are still present but constitute now the second order
terms of these expansions (again they are constant when log p/ log ¢ is irrational). From these expansions,
we again have Corollary 1 and Theorem 2. Moreover, these results also hold for the key-wise Wiener index
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of bucket digital search trees, the external Wiener index of tries and the Wiener index of PATRICIA tries,
where in the latter two cases, the periodic functions in the second order term can be made explicit with the
tools from [15].

Finally, for the node-wise Wiener index of bucket digital search trees and the internal Wiener index of
tries, there is no increase in the order and the asymptotic expansions from the symmetric case also hold
in the asymmetric case (again with a different period for the periodic functions which become constant
if log p/ log q is irrational; for the result for the number of nodes and the internal path length of tries see
[15]). Again, the result is less explicit for bucket digital search trees, but periodic functions can be made
explicit in the trie case with tools from [15].

Computations in all these case above are long and cumbersome, but still doable with the help of Maple.
However, the resulting expressions would fill many pages. This is why, in this paper, we decided to
concentrate entirely on the symmetric case.
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Appendix

We use the same notation for poissonized means, variances and covariances as in Section 2. In addition,
for the node-wise Wiener index of bucket digital search trees and the internal Wiener index for tries, we
denote by h;(z) the Poisson generating function of E(N,,) and

An() = () = a2 = B (),
Fir() = r(z) = ha(2)fralz) = =hi(2) o),
i (2) = G (2) = ha() o (2) = 234 ()30 (2),

where gy (2), gr(z) and gy (2) denote the Poisson generating function of E(N?), E(N,,T,,) and E(N,W,,),
respectively.

Key-wise Wiener Index of Bucket Digital Search Trees. We have,

> (5)78¢) = 2Aater) + =

(b> F(2) = 2fo1(2/2) + (2 + 2) fro(2/2) + % 4

—~\J
and
Z ()7 =20/ + (Z () ff?3<z>>2 v (Z () fﬂ0+1><z>>2
- Z (5) (roter + =dtote2) .

iy (Z () ?ir”(z)) (

J=0



b

p3 (5) (Rot@rioste) + 2050 )

Jj=
2

Z (b> WO (2) = 2W(2/2) 4 (22 + 4)C(2/2) + ( 5 +32+ 2) V(2/2) + 2% f14(2/2)?

+222f] 4 (2/2) + 22 + <Z; (?) i <z>>2 +2 (2: (?) féﬁ*”(z))z
i()(fm +Zf01()>(j)-

Node-wise Wiener Index of Bucket Digital Search Trees. We have,

Zb: @ PY(2) = 2k (2/2) + 1

=0
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and
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Internal Wiener Index of Tries. We have,
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Wiener Index of PATRICIA Tries. We have,
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