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Abstract

In recent years, several different versions of the Shapley value have been introduced in phyloge-
netics for the purpose of ranking biodiversity data in order to decide whether to preserve the data or
not. Two of these Shapley values are the rooted and unrooted Shapley value which have been com-
pared with the fair proportion index since this index is easier to compute. In particular, it was proved
for the former that it is identical with the fair proportion index and numerical data was presented by
several authors that the latter is strongly correlated with the fair proportion index. In this paper, we
will prove a theoretical result which supports this observation. More precisely, we will prove that
in random phylogenetic trees under the [-splitting model, the correlation coefficient between the
unrooted Shapley value and the fair proportion index indeed tends to one for all 8 with 8 > —1. We
also present data which suggests that the convergence worsens as 3 is approaching —1.

1 Introduction and Main Result

Conservation decisions in biodiversity are usually based on indices which measure the biodiversity value
of the data. One such index is the Shapley value which was originally proposed as a measure of impor-
tance of each invidual player in a cooperative game. Recently, several versions of this value have been
introduced in biodiversity and the interconnection between these different versions has been investi-
gated; see Wicke and Fischer (2017); Fuchs and Jin (2015); Haake et al. (2008) and Hartmann (2013).
Before recalling these results, we give some basic definitions.

First, a rooted phylogenetic tree is a rooted tree which is binary, non-plane and leaf-labeled with
each leaf representing a taxon; see Figure 1 for one possible embedding of such a tree into the plane.
Moreover, edges of a rooted phylogenetic tree are often labeled where the labels represent evolutionary
information (such as, e.g., time); again see the tree in Figure 1 where we choose all weights equal to 1
since we will mainly consider this case in the sequel. Rooted phylogenetic trees have long been used to
visualize, understand and analyze evolutionary data; see, e.g, Steel (2016) and references therein.

Let now T be a fixed rooted phylogenetic tree and a one of its taxa. Then, the rooted Shapley value
is defined as follows

SV (a) = 37 (18]~ )it~ Is])t (PD(S) ~ PD(S\ {a})) ()
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leaf | SVI | svi
e | 3/2 | 26/15
f | 3/2 | 26/15
g | 11/6 | 91/60
ho| 11/6 | 91/60
i | 4/3 | 27/20

Figure 1: A rooted phylogenetic tree with rooted and unrooted Shapley value for each leaf.

where n is the number of taxa of 1" and the sum runs over all sets .S of taxa containing a. Moreover,
PD[;] (S) is the rooted biodiversity of S which is defined as the sum of all weights of the edges of the
minimal spanning tree containing .S and the root (this tree is usually called the ancestor tree of S in the
combinatorial literature). For instance, if we choose a = e in the tree from Figure 1, then we obtain
SV[qd (e) = 3/2. (The values for the other leaves are listed in the table in Figure 1.)

The above Shapley value has appeared under different names (see, e.g., Wicke and Fischer (2017)),
however, we prefer to add the prefix rooted because the above definition of the phylogenetic diversity
includes the root. In fact, there is a closely related notion of phylogenetic diversity which does not
include the root and this notion leads to what we will call unrooted Shapley value in this paper:

sVI(a) = =1 37 (151 - 1)t(n — |8 (PDE(S) ~ PDI (5 {a)))
S,aeS

where PD[TM (S) is the unrooted biodiversity of S which is defined as the sum of all weights of the edges
of the minimal spanning tree containing S (again there is a standard name in combinatorics for this tree,
namely, Steiner tree of S). Note that this Shapley value is also obtained by unrooting the tree 1" and
using the definition of the Shapley value for unrooted trees by Haake et al. (2008). Again, different
names have been used for it; see, e.g., Wicke and Fischer (2017). The values for this Shapley value for
the leaves of the tree from Figure 1 can also be found in the table in Figure 1.

Hartmann (2013) gave the definition (1), but (confusingly) used the unrooted Shapley value for his
results and numerical data. More precisely, Hartmann provided a heuristic and numeric explanation for
the fact that the Shapley value is closely related to the fair proportion index which is defined as

FPr(a) = Z%,

where the sum runs over all edges on the unique path from « to the root, A, is the weight of edge e and
D, denotes the number of taxa below edge e. Note that this index is a priori much easier to compute
than the (rooted or unrooted) Shapley values, which is the main reason why it is used in biodiversity
conservation projects.
Fuchs and Jin (2015) tried to give a theoretical justification of the data in Hartmann’s paper. How-
ever, the authors observed that
svll(a) = FPr(a)

for all rooted phylogenetic trees 1" and taxa a. Believing that Hartmann used a rooted version of the
Shapley value, Fuchs and Jin (2015) then defined a modified rooted Shapley value as follows:

SVr(a) = S (81— 1t~ [s)) (PD(S) ~ PDES\ {a})

" 19]>2,ae8



where the only difference to the definition of the rooted Shapley value is that the sum now runs over all
non-singleton sets of taxa. For this Shapley value, Fuchs and Jin (2015) then proved that for all weights
equal to one and under the uniform and Yule-Harding model (which are two standard random models
on rooted phylogenetic trees; see the next section)

p(SV,,FP,) — 1,  asn —s oo,

where p denotes the correlation coefficient and éY/n and FP,, are the random variables arising from the
modified rooted Shapley value and fair proportion index for a random rooted phylogenetic tree with n
taxa that is generated by the uniform resp. Yule-Harding model and the taxon is also chosen uniformly
at random. Fuchs and Jin (2015) considered this result to be a theoretical justification of the results in
Hartmann’s paper. However, as mentioned above, Hartmann used the unrooted Shapley value as Mike
Steel pointed out to us in an email communication (see also Wicke and Fischer (2017)).

The main purpose of this work is to investigate the relationship between the unrooted Shapley value
and the fair proportion index and give a theoretical result which shows that they are indeed highly
correlated. More precisely, the main result of the paper is the following theorem (for the definition of
the §-splitting model see the next section).

Theorem 1. Assume that a random phylogenetic tree with n taxa is generated by the B-splitting model
with B > —1 and choose a taxon uniformly at random. Then,

p(SVI FP,) — 1, asmn — oo,

where SVEL ] resp. FP,, denote the unrooted Shapley value resp. fair proportion index.

Note that this result contains the Yule-Harding model (3 = 0), but not the uniform model (3 =
—3/2). Moreover, the important case of 3 = —1 is also not covered (the importance of this case for
phylogenetic applications was discussed, e.g., by Blum and Francois (2006)). Whether or not our result
extends to these cases (especially § = —3/2) is not clear and also the data which we are going to present
in Section 5 does not really give a clue since the convergence slows down as 3 tends to —1.

We conclude the introduction with an outline of the proof of our main result and with a brief sketch
of the paper. Our main observation for the proof is that it will be sufficient to show that the variance
of the difference between the unrooted Shapley value and the fair proportion index tends to 0 (see
Proposition 4 below). Thus, we need a suitable expression for this difference and also suitable bounds
for it. The bounds will be in terms of moments of certain recursive parameters of rooted phylogenetic
trees under the (3-splitting model. Therefore, we have to study these moments and this we will do first
in Section 2 (the results in this section might be of independent interest because they are quite general).
Next, we will consider the difference between the unrooted Shapley value and the fair proportion index
and derive an expression for it. This is done in Section 3 and again the results of this sections are of
independent interest. In particular, they should be compared with the recent work by Stahn (2019) where
a similar expression for the difference was proved. However, whereas the expression given by Stahn is
useful from a linear algebra point of view, our expression is of combinatorial nature and will be useful
from a computational point of view. This expression will then be used in Section 4 together with the
results from Section 2 to prove our main theorem and in Section 5 to produce numerical results. We will
finish the paper with a conclusion in Section 6.

2 (-splitting Model and Shape Parameters

In this section, we recall the 3-splitting model which was proposed by Aldous (1996). Moreover, we
study properties of certain shape parameters that are defined on random trees generated by this model.



First, the random model by Aldous (1996) is defined as follows. Assume that the n taxa are points
which are chosen uniformly at random from the unit interval. Then, break the unit interval into two
pieces at a point x which is chosen randomly with a density function f(x) that satisfies the symmetry
condition f(z) = f(1 — z) for z € (0,1). If either one of the two intervals (0,z) and (z,1) does
not contain a taxon, repeat this step by independently choosing another point « with density f(x) until
both intervals contain at least one taxon. The resulting two intervals can be seen as the two subtrees of
the root and these subtrees will contain the taxa from the two respective intervals. Finally, repeat this
procedure independently with each subinterval scaled to the unit interval. Stop with intervals which only
contain one taxon.

Note that this procedure gives a random distribution on the set of rooted, binary, plane trees. How-
ever, if one forgets the embedding into the plane and labels the leaves with a random permutation of
{1,...,n}, one also gets a random distribution on rooted phylogenetic trees (where now and in the se-
quel we set all edge weights equal to one). Nevertheless, since we are interested in parameters on trees
which are only related to the shape and neither to the specific embedding of the tree nor to the labeling,
this final step just amounts to a “re-scaling” of the probability model. Thus, we can safely drop the last
step from all our subsequent discussions.

As for the choice of the density f(x), Aldous (1996) suggested to use a (symmetric) 3-distribution

The resulting model is called the §-splitting model. For this model, Aldous showed that the number of
taxa which fall into the interval (0, ) generated by the first split equals j with probability
i = 1 TB+ij+1)I(B+n—75+1)
"= u(B) i —)!

f(z)

) 1<j<n, 2)

where

en(B) = (1 P28+ 2T (B+n+ 1)> L(B+1)’T'(28 +n+2)
" LB+ 128 +n+2) n!['(28 + 2)
Note that the splitting probabilities p, ; completely describe the random process which generates the
random tree under the 3-splitting model (and also note that by (2), one can actually extend the range of
B to 8 > —2; however, we will not consider this extended range of /3 in this paper).
In the sequel, we will need an asymptotic expansion of p,, ;.

Lemma 1. We have,
I'(28 +2) —28-1.8 N 1 1
_ _ 1+0 (=
Dn,j F(B+1)2n 77 (n —7) + i + =)
where € > 0 is a sufficiently small constant.

Proof. For the proof, we use the well-known expansion

I'(z+a)

mzza_b(l—i_o(l/z))v asz — o0

which yields

FrB+j+)IB+n—j+1) TB+j+D)I(B+n—j+1)

Jl(n —j)! G+ 1)I'(n—75+1)

= jP(n—j)? <1+O<;+nij>)'




Similarly,

where e = min{0, 8} + 1. Multiplying the last two formulas gives the claimed result. 1

We fix now a random tree 7" of size n which was generated by the -splitting model (recall that the
tree is rooted, binary and plane). Then, we have the following two important properties:

e The distribution of the number I,, of taxa in the left subtree is given by the splitting probabilities,
ie.,
P(In =j) =pn;, forl<j<n-—L

e Given that I,, = j, left and right subtree of 71" are random trees of size j and n — j which are also
generated by the 3-splitting model; moreover, these two random trees are independent.

We next discuss certain shape parameters of 7" which can be computed recursively in a sense which
will become clear soon.

We start with the sum of all taxon-to-root distances which we denote by S,. This parameter is
important in phylogenetics where it is called the Sackin index and is used as a measure of imbalance of
T and also in computer science where it is called the fotal path length and used as a complexity measure
for algorithms on 7". From the above properties of the -splitting model, it is immediately clear that .S,,
can be computed recursively as follows

S LS, +5 , +n,  (n>2) 3)

with S; = 0, where the equality holds in distribution and S7; is an independent copy of \S,,. This follows
from the fact that the Sackin index equals the sum of the Sackin indices of left resp. right subtree plus
the left edge resp. right edge connecting the root with the left resp. right subtree for each taxa of the tree
(the latter gives the factor n).

Another shape parameter, which we will also need in the sequel and which is closely related to S,
is the distance of a random taxon to the root. We will denote this parameter by D,, and call it the depth
(this name is also borrowed from computer science). Again it can be computed recursively:

D;+1, with probability j/n;

: o , (n>2) “)
D,,_; +1, with probability (n — j)/n,

Dnlun:j)i{

with D; = 0. The two cases in the bracket above correspond to the case where the chosen taxon is in
the left or right subtree, respectively, and the 1s counts the contribution of the left resp. right edge that
connect the root to the left resp. right subtree.

Finally, note that the fair proportion index FP,, of a random taxon also allows a similar recursive
description:

FP, + 1/, with probability j/n;

. : . . (n>2) )
FP,_j+1/(n—j), withprobability (n—j)/n,

FP,|(I, = /) i{

with FP; = 0. (Note that the terms 1/ and 1/(n — j) are again coming from the left resp. right edge
that connects the root with the left resp. right subtree.)



We need in the sequel properties of the first two moments of these random variables. To obtain such
properties, it will turn out that these moments for S, satisfy a recurrence

n—1
an =2 pnjaj+bn,  (n>2) (6)
j=1

with a; = 0 and b, is a given sequence. Similarly, for D,, and FP,, they will satisfy a recurrence

n—1 .
Cp = 22}9”73%@ +dp, (n>2)
i=1

with ¢; = 0 and d,, is again a given sequence. Setting a,, := nc, and b, := nd,, shows that in fact we
only need to study the first recurrence.

We will prove two general results about a sequence a,, which satisfies (6). The first result is a version
of what computer scientists call a master theorem (see, e.g., Roura (2001) for similar results).

Proposition 1. Let a,, be sequence which satisfies (6) with
b, = O(n"(logn)°)
for non-negative integers vy and 6. Then, we have
(i) ify =1, then a, = O(n(logn)’*1);
(ii) if v > 1, then a,, = O(n" (logn)%).

Proof. We first prove part (i). By assumption, we have that b, < dn(logn)® for some d > 0. We
will proceed by induction and therefore assume that a;, < ck(logk)®+! for 1 < k < n with a suitable
constant ¢ > 0 (which can be chosen such that this holds up to some fixed n).

First, notice that by Lemma 1,

n—1 n—1

o A(26+2) 1 P . 1 1
2 Pn.ij(lo o+l _ B+tln — VB(lo T+ =+ —— )
; i (log j) SRS an;J (n - 5)”(log ) PRy

Next, observe that

1 n—1

. . S
7’L26+1 Z]ﬁ+1(n - j)'B(lOgj) i
j=1
1 n—1

= 1 24" (n— ) (logn + log (j/n))**!
j=1

~ (log n)mjzé (i)ﬁﬂ <1 — i)ﬁ + (6 + 1)(log n)‘sn_l1 <i>ﬁ+1 (1 - i)ﬁ log(j/n)

+0 | (1og n>5—1§1 ()7 (12 tostimy

From a standard application of the Euler-Maclaurin summation formula

S ) (1) = [ e oy

: D(3 4 20(5 + 1)
F(Qﬂ + 3)

+0O(n'79



and

n

ni <j>6+1 <1 _ i)ﬂ log(j /n) = n/ol P11 — 2) log(x)dz + O(n'—),

Jj=1

where € > 0 is a suitable small constant. Moreover, by replacing the sum by an integral,

> (j>5+l (1- ;)B (10g(i/m))* = O(n).

=1 N
The error terms in (7) can be treated in a similar way (where ¢ > 0 has to be chosen small enough such
that the integral which is used to upper bound the sum is convergent).
Overall, by combining everything, we obtain that

S s 2028+2)  (B+1T(B+1)?
2 ;pn,j] (log )0+t = RS . (25 2T @5+ 2)n(log n)?*1 + Kn(logn)® + o(n(logn)?)
= n(logn)’T! + Kn(logn)® + o(n(logn)?), (8)
where P28 +9) .
_l’_

In particular, note that K < 0.
Now, by plugging the assumption and the induction hypothesis into (6) and using (8),

n—1
an <20 pnjilog )’ + dn(logn)’
j=1
< en(logn)’ ™ + cKn(logn)® + cen(logn)® + dn(logn)®
< en(logn)?t,
where € > 0 is a sufficiently small constant (coming from the o-term in (8)) and the last step holds by
choosing ¢ such that ¢ > —d/(K + €) (which is possible since K < 0).
For the proof of part (ii), we proceed similarly. First, similar as above,

n—1
2 pni" (log )’ = Kn¥(logn)’ + o(n” (logn)’)
j=1
with
oo CBEATB+y+1) _ 11[ B+
CTE+DTRB+y+2) 128+ 1+0

where in the last step we used that I'(z 4+ 1) = 2I'(2). Since 5 > —1, the above product representation
shows that 0 < K < 1. Thus, again by the induction hypothesis,

n—1

an <2¢Y ppjj(logj)’ + dn’ (logn)°
j=1

< ¢Kn”(logn)® 4 cen? (logn)® + dn” (logn)°
< en”(logn)®,

where € > 0 is as in part (i) and the last step follows by choosing ¢ such that ¢ > d/(1 — K — €) (which
is possible since K < 1). This concludes the proof of part (ii) and thus also the proposition. |



As a consequence, we obtain the following bounds which will be needed in the proof of Theorem 1
(the bounds for the mean also follows from the results by Aldous (1996)).

Corollary 1. For the Sackin index Sy, under the B-splitting model, we have
E(S,) = O(nlogn) and E(S2) = O(n?(logn)?).

Proof. In order to prove this, we need to derive the recurrences satisfied by the mean and the second
moment of .S,,. To this end, we use the moment-generating function:

P,(u):=E (eS”u) .
Then, from (3),

n—1
P,(u) = an,jpj(u)Pn,j(u)e”“, (n>2)
j=1

with P (u) = 1.
Taking the derivative with respect to u and setting v = 0, then gives

n—1
E(Sn) =2 pnsE(S;) +n, (n>2)
j=1

with E(S7) = 0. This is (6) with b,, = n. Thus, from Proposition 1, we obtain that E(S,,) = O(nlogn)
as claimed.

For the second moment, we take the second derivative with respect to « and again set « = 0. Then,
we see that the second moment also satisfies (6) with

n—1 n—1
bn =12 +2>  pnB(S)E(Sn—;) + 40> pnE(S))
j=1 j=1

— O(n*(logn)?),

where the last estimate follows from that for the mean. Thus, again by Proposition 1, we obtain that
E(S2) = O(n?(log n)?) which concludes the proof. |

Corollary 2. For the depth D,, under the (-splitting model, we have
E(D,,) = O(logn) and  E(D?) = O((logn)?).
Proof. First by the additivity of the expected value, we have
E(S,) = nE(D,,)

and thus the claimed bound for the mean of the depth follows from that of the mean of the Sackin index
which was obtained in the corollary above.
As for the second moment, we again use a moment-generating function:

P,(u) :=E (eD"“) .

Then, from (4), we obtain that
nflj
=

8



with Pj(u) = 1. Taking the second derivative with respect to u and setting u = 0 shows that nE(D2)
satisfies (6) with

n—1

bp=n+4 anJjE(Dj) = O(nlogn).
j=1

Thus, Proposition 1 implies that nE(D?) = O(n(logn)?) from which the claimed result follows. 1

We also need a lower bound result on a,, satisfying (6). The next proposition provides such a result
by showing that if b,, is non-negative, then either a,, = 0 for all n or otherwise it grows at least linearly.

Proposition 2. Let a,, be a sequence which satisfies (6) with b,, non-negative and by, > 0 for at least
one ng. Then,
an, = Q(n).

Proof. Let ng be the smallest positive integer such that b,, > 0. Define

B 0, if 1 <n < ng;
bn+2pn,nobnoa ifn>mng+1

and denote by a,, the corresponding sequence which satisfies (6). Then, clearly a,, > a, and thus it
suffices to show that the claim holds for a,,. Also, note that

~ K
bo 2 Wnngbg 2 —giy. (n2mp+1) ©)

for some suitable constant K7 > 0 (this follows with similar arguments as in Lemma 1).
Now, we claim that
an > cn, (n>ng+1)

with a suitable constant ¢ > 0. We will prove this claim by induction where we can safely assume that
it holds for sufficiently large n by a suitable choice of c. Plugging now the induction hypothesis into (6)
gives for n sufficiently large:

n—1 no

K,

an 2 ZCZPn,jj - 2czpn,jj T BT
j=1 Jj=1
> CK2 K1
e T R
where we used:
n—1
2 an,jj =n
j=1
and .
0
K
QanJ] — npf+1
=1

which is proved as (9). Finally, choosing 0 < ¢ < K /K> gives a,, > cn which shows the claim. |

From this we obtain the following lower bound for the variance of the fair proportion index which
will also be needed in the proof of Theorem 1.

Corollary 3. For the fair proportion index ¥P,, under the [3-splitting model, we have

Var(FP,,) = Q(1).



Proof. First observe that it was proved by Fuchs and Jin (2015) that

2
E(FP,) =2—- =
n

which follows immediately from the (deterministic) identity
ZFPT(a) =2n—2,
a

where the sum runs over all taxa of 1.
In order to find a recurrence for the variance of FP,,, we use the moment-generating function:

Po(u) :==E (e<FPn—E<FPn>>u>

which by (5) satisfies the recurrence
n—1 j
P =23 Spu B (022
=

with Py (u) = 1, where A,, ; is defined as

)

1 2
A= i E(FP,) + E(FP;) = -

S| =

Taking the second derivative with respect to v and setting u = 0 gives

n—1 . n—1 .
_ Jo . J A2
Var(FP,,) = 2 Z; ~pnjVar(FP;) +2 z; o ORTACRE
J= J=

Thus, nVar(FP,,) satisfies (6) with
n—1
bn =2 ijn,in,j
j=1

which satisfies the assumptions from the Proposition 2. Consequently, nVar(FP,,) = Q(n) which is the
claimed result. |

Remark 1. In the special case of 5 = 0, we have p,; = 1/(n — 1). This is the so-called Yule-
Harding model; see, e.g., Steel (2016). Under this model, more precise results can be obtained either by
elementary means (see, e.g., Fuchs and Jin (2015)) or by using analytic combinatorics (see Flajolet and
Sedgewick (2009)).

3 Difference between Unrooted and Rooted Shapley Value

In this section, we consider the difference between unrooted and rooted Shapley value in a fixed rooted
phylogenetic tree T'. Let T, and 7, denote left and right subtree of the root of T, respectively. Also, let
a be a fixed taxon and assume w.l.0.g. that a € T}.

Before stating our result, we need some further notations. First, for a set of taxa S, we consider the
least common ancestor of S which is the smallest common ancestor of S under the order induced by T
where the root is the largest element. Define

X%l := sum of all least common ancestor to root distances for all sets S of taxa of size ¢

10



and

Y}i ] (a) :=sum of all distances between the least common ancestors of S and S U {a}

for all sets S of taxa of size i.

(Note that XFE,Z;] is related to the cophenetic value; see Sokal and Rohlf (1962).) Then, our main result in
this section is as follows.

Proposition 3. For the difference between unrooted and rooted Shapley value, we have

||

[ r 1 1 . . i Tr
sito-sutor 2o 3w on (s (7)
=1
1 |Te| -1
=1

where Dr(a) is the distance of a to the root and |T'| denotes the number of taxa of T.

Proof. In order to prove the result, we have to compare the difference of PDE}” (S) — PDgf](S \ {a})
and PD[;:}(S) - PD[;](S \ {a}) for all sets S of taxa with a € S. Fix such a set S and assume that
S ={a} US,US, where Sy are all the taxa of S except a from T and S, are all the taxa of .S from 7.
We have to distinguish between four cases.

e Case 1: Sy # (and S, # 0.

In this case, we have
PD(S) — PDY(S\ {a}) = PDY)(S) — PDY/(S\ {a})

since the smallest spanning tree of S and S \ {a} both contain the root. Thus, the contribution of
this case to the difference of the two Shapley values is zero.
e Case2: Sy =S, = (.
In this case, we have
PDF(8) ~ PDR(S \ {a}) = 0
and
PDY!(5) - PDY/(S'\ {a}) = Dr(a)
which gives the first term on the right hand side of (10).

e Case3: Sy =0 and S, # (.

Assume that S, has size ¢ and least common ancestor ¢,. Then, PD[%‘] (S) — PD[%” (S'\ {a}) and

PD[TT](S ) — PD[TT] (S'\ {a}) are explained in Figure 2. Moreover, the difference is explained on
the left of Figure 4. Overall, by summing over all sets of size i, we obtain the second term on the
right hand side of (10). (Note that the term ('C';T‘) comes from the contribution of the edge from to
the root to the right subtree of 7T'.)

e Case4: Sy # (0 and S, = ().

Assume that Sy has size ¢ and least common ancestor ¢,;. Moreover, denote the least common
ancestor of {a} U Sy by ¢ (note that ¢ = ¢, might be possible). Then, PDL}L] (S)— PD[;] (S\{a})
and PD[TT] (S) — PD[jf] (S'\ {a}) are explained in Figure 3. Moreover, the difference is explained
on the right of Figure 4. Overall, by summing over all sets of size ¢ and noting that sets Sy which
contain a do not contribute to YT[Z] (a), we obtain the final term on the right hand side of (10).

11



PDI (S PDI(5\ {a}) —PDM(S\ {a})
PDY)(5) DI(S\ {a}) PDII(S) — PDI(S\ {a})

Figure 2: Explanation of PD[;] (S) — PD[;](S \ {a}) for Case 3 in the proof of Proposition 3 where
* = u (first row) or x = r (second row). The bold parts in the trees visualize the subtree of relevance
for the computation of the quantity below the tree.

(s \ {a}) PDL)(S) — PDY (5 {a})

Figure 3: Explanation of PDgf] (S) — PD[;](S \ {a}) for Case 4 in the proof of Proposition 3 where
* = u (first row) or x = 7 (second row). The bold parts in the trees visualize the subtree of relevance
for the computation of the quantity below the tree.
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X

Figure 4: The contributions of Case 3 (left) and Case 4 (right) to the expression (10).

Combining all four cases concludes the proof. 1

Our result for the difference has to be compared with that from the recent work by Stahn (see at the
end of the introduction) which was useful from a linear algebra point of view. Our expression, on the
other hand, is of combinatorial nature and useful from a computational point of view.

To see this, recall that by Fuchs and Jin (2015), we have that Sng(a) = FPr(a) and the fair
proportion index can be computed recursively:

FP 1/1T, if Ty;
FPT(G):{ 7,(a) +1/|T¥], ifa € Ty

FPr (a) + 1/|T}|, ifaeT,

with FPp(a) = 0 when |T| = 1; compare with (5). Likewise, we have for Dy (a):

Dya)— {Pri(@+ 1, faeTy
a) =
T Dr(a) +1, ifacT,

with Dp(a) = 0 when |T'| = 1; see (4).
Moreover, we have also similar recurrences for Xj[ﬂ and YTM (a), namely,

i i i T T,
X = x4 x4 <\ Zgl) N <| i \)

with X1 = 0 for all 7 with |T| < i and

i i T, .
| Yil(a) + X3 + (' . '>, ifae Ty
Y(a) = ’ :
T vl [i] |T7| .
7. (a) + X7, + o) ifacT,

with YTM (a) = 0 for all T" with |T'| < 4. Here, note that in both cases, we only have to consider sets
of taxa which are either completely contained in the left or right subtree because all other sets of taxa

do not contribute to X j[f] and YTM (a). Moreover, again in both cases, the binomial coefficients count the
contribution of the edge connecting the root to the left and/or right right subtree.
These recurrences together with the above proposition lead to a (reasonable fast) recursive method

of computing SV[; ] (a). In particular, this method is faster than doing the computation directly from the

definition of SVFFL] (a). We will use it in order to produce some numerical results in Section 5.
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4 Proof of Theorem 1

In this section, we will prove our main result, namely, that the correlation coefficient of unrooted Shapley
value and fair proportion index tends to one. We will start by reducing this task to one which involves

the difference between these two indices.

Proposition 4. If
Var(SVIY — FP,) = o(1),

then
p(SV%]vFPn) ~ 1.

Proof. First consider

Cov(SVIY FP,) = Cov(SVI¥ — FP, + FP,,FP,,)
= Cov(SVI" — FP,,,FP,) 4 Var(FP,,).

Note that the first term in (11) can be bounded by Cauchy-Schwartz inequality as

Cov(SVI™ — FP,,FP,) < \/ Var(SVIY — FP,,) - Var(FP,,).

Also, recall that from Corollary 3,
Var(FP,,) > ¢,

where c is a suitable positive constant. Thus, from this, (12) and the assumption, we obtain that
Cov(SVI", FP,) = Var(FP,,)(1 + o(1)).
Next, consider

Var(SVI“) = Cov(SVIH, sviu)
= Cov(SVI" — FP, + FP,,SVY — FP, + FP,)
= Var(SV¥ — FP,)) 4+ 2Cov(SVI" — FP,,,FP,)) 4 Var(FP,,).

Then, by a similar line of reasoning as above
Var(SV[Y) = Var(FP,)(1 + o(1)).
Finally, by combining (13) and (14), we have

COV(SV%”} ,FP,)

p(SVI,FP,) =
Var(SVIY) - \/Var(FP,,)

_ Var(FP,)(1 + o(1))
\/Var(FP,)(1 + o(1))+/Var(FP,,)

=1+o0(1)

which is the claimed result. 1
Before we go on, we need the following simple inequality for conditional expectations.

Lemma 2. Let U be a discrete random variable and Ry, . . ., Ry be random variables. Then,

(e« )

14
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(12)

(13)
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Proof. This is an easy consequence of the Cauchy-Schwartz inequality for conditional expectations:

k 2 k
E (ZRZ) U | = > E(RR,|U)
i=1 2,7=1
k
<y VAE(Rguf)VﬁE(BEHY)
ij=1

This proves the claim. 1

Next, we will simplify the condition of Proposition 4 once more.
We first need some notations. Let the three terms on the right hand side of (10) for a random

phylogenetic tree of size n under the 3-splitting model with 5 > —1 and a random taxon a be Z,[Zl}, Z,[ZQ}
and Zq[@g}. Note that Proposition 3 actually gives conditional random variables:

ZW(Y, = (j,left)) = _ﬁ;
IS [ n—j
Z1(Y, = (left) = = il(n—i—1)! <Xn_.+( , ))
n! i=1 ! v
1 ]
210X = G lef) = — > it(n — i = )1,

i=1

where D, is the depth (see Section 2) and X T[f ] and Yry} denote the random versions of Xj[f} and Yq[j } (a).
(Note that we have replaced D,, by D; + 1 since the random taxon is in the left subtree which has size
j; compare with (4).)

The Y, in the expressions above is a random vector with values (j,z) where 1 < 57 < n — 1 and
x € {left, right}. Here, j is the size of the left subtree and x gives the location of a. Note that

P(Y, = (j, left)) = pn,j% (15)

and we have a similar expression if x = left is replaced by x = right (also for the Z,[f l's above we have
similar expressions in that case).
With these notations, we have the following proposition.

Proposition 5. If
E(E((Z})?[Y0)) = o(1) for £ = 1,2,3

then
Var(SV[" — FP,) = o(1).

Proof. First, note that

E(SVIY — FP,,)?

E(zM 4+ zP 4 zB1)?
EE(Z)) + 27 + 27 Y ).

Var(SV4 — Fp,) <

15



Applying Lemma 2 twice gives

3 2
Var(SVIY — FP,) <E (Z E((Z,L‘Z}PIYTL))
3(:1 )
< (Z VE(E((ZW\YM) :
(=1

From this the claim follows. 1
The hypothesis for £ = 1 in this proposition is easy to check.

Proposition 6. The following bound holds:

B(E(Z} 1)) = 0 (12 ”)2) .

n2

Proof. First,
E(D3) + 2E(D;) + 1
5 :

E((Z))?[Y0 = (. lef)) = -

Next, by Corollary 2,
E(D,,) = O(logn) and E(D?) = O((logn)?).
Thus,
E((ZD)2[Y, = (j.left)) = O <(10g3322“> .
A similar expression holds if = = left is replaced by x = right. Finally, from (15),
n—1

og 7)2 oo )2
EE(ZVPY) =03 jpn,jﬂgi{;ﬂ o ((1 &) >

n

Jj=1
as claimed. 1

The other two conditions of Proposition 5 are slightly harder to prove. First, we need the following
identity which is certainly well-known and can also be verified with, e.g., Maple. However, for the sake
of simplicity, we give an easy, elementary, and self-contained proof.

Lemma 3. The following identity holds:
n—j n _] n— ]

2.1 T

Proof. First, by the beta integral,

1 1 .
= (n+ 1)/ tH (1 —)n e,
(i+1) 0
Then, the above sum becomes
S I L P
, n+ 1) / t’+ — )" de.
P (Z+1)(z+1 i+ 1
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The sum inside can be simplified as

()

n—j
terl n i—1 /t <n_]>ui t)nfifldu
141
tn—Jj _
0

=(1—t)! /t ((u +1-t)"7 —(1—8)"7)du
0

1—¢)t 1—t)"
:( ) o ( i ) —(l—t)n_lt.
n—j+1 n—j74+1

=1

Plugging this into the integral above, we obtain that

U ]) A =(n+ 1)/01 <(1 _?)jil _u _.t>n -1 —t)”_1t> dt
+1

J
P z+1 n—j7+1 mn-—j+1

n—

1 1 1 1
:("+1)<(n—;+1)j_ (n—j+1)(n+1)_n+n+1>
B n—j  n—j
_(n+1)(n+1)nj - nj

This is the desired result. |

Now, we can verify the other two conditions from Proposition 5 which then completes the proof of
Theorem 1.

Proposition 7. The following bounds hold:

E(E((ZP)?Y,)) = © (nnln{mw}) if B #0;
n n (logn)3 .
kO ( n2 >’ ifB=0
and
< (logn)2

E(E((ZE)?[Y,)) = iy 0 FPFEL

if8=1.

Proof. We start with ZT[LQ]. First note that

. 2
1 n-—j : o
E((Z)2Y, = (1. 1ef) = —E ( it i =01 (x84 (" J)))
' i=1
2

n—j . 2
g% Zi!(n—i—l)!\/ﬂi< [’]]+<”;]>) ., (6)
To\i=l

where in the last step we used Lemma 2. What is under the square-root can be written as

. 2 . ) o 2
E< L”ﬁ(”?)) = E(x}] )’ +2<”;J>E<X51j)+<”ij> . (17)

17




In order to go on, we need the following bound for X,[ﬂ:

Xl < 1(”:11) S (1)

1

where S, is the Sackin index from Section 2. This upper bound is explained as follows: every taxon is
contained in (:‘:1) subsets of taxa of size 7. Thus,

1
n—1
(). w

is the sum of taxon-to-root distances for all taxa in all subsets of taxa of size i. Since X,[ﬂ is the sum of

the distance from the least common ancestor to the root of all subsets of taxa of size i, obviously 1/i-th

of (19) is at least as large as X}lﬂ.

Now, plugging (18) into (17) and using that
E(S,) = O(nlogn) and E(S?) = O(n*(logn)?),

which was obtained in Corollary 1, we have

E <X,[f]_j+ <”Z_‘7)>2 ~0 ((n;j)2(logn)2) .

Plugging this in turn into (16) gives

= " i n— 7)%(logn)?
E((Z2)?Y, = (j,left)) = O | (logn)? (Z M) _0 (( JT)L2§12 gn) > 7
=1 7

where in the last step we used Lemma 3. A similar expression holds if = left is replaced by = = right.
Finally, using (15) gives

N ()i
E(E((Z2)2Y,)) = O | (logn)? an’jTj
7=1
n—1
=0 |n 28 4(1Ogn)22j’3_1(n—j)5+2 :
7=1

where in the last step we used Lemma 1. From this the claimed result follows from the bounds

. Onft?),  if < 0;
> =) = { O(m*log ). it f =0
o O(n?$+2),  if > 0.

Next, for Z7[L3], the same method as above can be used since it trivially holds that
vl < x0,

In particular, we obtain that

2 ogn 2
E((ZBY2Y, = (j,left)) = O (M)
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and a similar result holds if z = left is replaced by « = right.
Thus, again by (15), we have

E(E((ZE)*Y0) = O | (logn)® Y puj 52—
= Tnn—j)
n—1
=0 [ n " ogn)® Y 570 (n — )"
j=1
from which the claim follows by the bounds

n-1 O 3),  ifB<1;

> i = )77 = { O(n'logn), if §=1;

7=1 O(n+2),  ifg > 1.

This concludes the proof. 1

5 Numerical Data

In this section, we present some numerical data to illustrate Theorem 1. For this data, we used the
splitting probabilities (2) to generate a random phylogenetic tree. Then, we picked a taxon uniformly at
random from all taxa and computed the corresponding pair of unrooted Shapley value and fair proportion
index. This was repeated five hundred times for each fixed choice of 5 and n. As for 3, we chose 8 = 0
(Yule-Harding model), 5 = —1/2 and § = —1; for n, we chose 40, 80 and 160.

The computation of the unrooted Shapley value and fair proportion index was done recursively as
outlined in Section 3. The recursions for FPr(a) and Dr(a), Xj[f] and Yq[f ] (a) yield a sufficiently fast
method for doing the computation. Our results can be found in Figure 5 and the code is available at

https://github.com/arpaningbatan/Shapley Value.

Note that the case 3 = —1 is not covered by Theorem 1. Indeed, one sees that whereas the con-
vergence of the data to the line y = x is very good for 5 = 0, it seems to slow down if § = —1/2
and 8 = —1. In fact, this is in accordance with the proof method of Theorem 1 from the previous

section which also gives a bound of the speed of convergence to 1. This bound is dominated by the
second bound in Proposition 7 which gets worse as 5 approaches —1. However, our bound might be too
conservative and it might be the case that the correlation also converges to 1 when 3 = —1. (Figure 5
seems to suggest that concentration on the line y = x also takes place in this case.)

6 Conclusion

In recent years, several versions of the Shapley value have been introduced in biodiversity and there has
been some confusion about which author used which value. The first author of this paper also added to
this confusion by defining in a joint paper with Jin the modified rooted Shapley value whose correlation
coefficient with the fair proportion index tends to 1 for a random phylogenetic tree under the Yule-
Harding model and uniform model where the taxon is also chosen uniformly at random. Fuchs and Jin
(2015) claimed that this explains the data presented by Hartmann (2013). However, it was pointed out
recently that Hartman used in fact the unrooted Shapley value. Consequently, we studied the correlation
of the unrooted Shapley value and fair proportion index in this paper.
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Figure 5: Numerical data for 5 = 0 (Yule-Harding model), 5 = —1/2 and = —1. For each choice
of B and n (indicated at the top of the plots), five hundred random trees were generated and for each
of them a taxon was picked uniformly at random from the set of all taxa. For these random taxa, the
corresponding pair of unrooted Shapley value and fair proportion index was computed by the recursive
method from Section 3 and then plotted. Note that points with small fair proportion index tend to be
above the line y = x whereas points with large fair proportion index tend to be below the line y = z.
This is explained by (10) since the only negative term on the right hand side is also small in the former
case and large in the latter case.
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Our main result states that the correlation coefficient of these two indices also tends to one as the
number of taxa tends to infinity. We proved this result for a random phylogenetic tree generated by
the S-splitting model with 5 > —1. The latter restriction is necessary for our method to work and
(unfortunately) excludes the important case 5 = —1; see Blum and Francois (2006). (Also, the case
B = —3/2is not covered which corresponds to the uniform model; see Aldous (1996) and Steel (2016).)

We briefly outline why our method cannot cover the case 3 = —1. First, in Section 2, we studied the
fundamental recurrence (6) only for 8 > —1. However, one could extend our analysis also to § = —1
where the splitting probabilities (2) take the form:

n 1

Pnj = . =, forl1<j<n-1
" anl ](n_])

with H,, = Z?Zl 1/j the n-th Harmonic number. Then, using similar methods as in Section 2, one
obtains, e.g., that

E(S,) = O(n(logn)?) and E(S2) = O(n*(logn)*).

From this, by using the same method as in Section 4, one obtains for the second bound in Proposition 7:

logn)! &~

EE((ZE)Y,) =0 | = | = O((logn)?).
BN =0 |z 3 gy | = Oltosm))
This bound is, however, too large and in particular does not tend to 0 anymore. (Note that the main
contribution clearly comes from the third term in (10) since a is likely to be chosen from the larger

subtree of the root and thus Xj[f}

. is expected to be small whereas YT[“Z ] (a) is not.)

Overall, a new method of proof is necessary if one wants to show that the conclusion of Theorem 1
also holds for § = —1. Indeed, proving such a result would be an important task since the 5-splitting
model with 5 = —1 has the best fit with many real-world applications (see Blum and Frangois (2006)).
Thus, such a result would really give strong support to the widely used practice in biodiversity to use the
fair proportion index instead of the Shapley value.

We conclude by briefly discussing another natural question arising from our study: what happens if
one allows weights which are not necessarily all equal to 17 However, in order to answer this question,
one first has to come up with a useful model of assigning weights to the edges of our random trees. In
fact, this point is crucial since we are not aware of any model in phylogenetics for this (all the standard
models produce random trees without weights). For instance, if one assign random weights independent
of the random process that generates the trees and independent of the number of taxa, then many of
the ideas of this paper should work as well. However, we suspect that weights which do depend on the
number of taxa are more interesting, but then again, it is not clear to us what a useful random model for
producing such weights should be.
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