
Probabilistic Analysis of
Additive Shape Parameters

in
Random Digital Trees

A dissertation presented by

LEE, CHUNG-KUEI
to

Department of Applied Mathematics

in partially fulfillment of the requirement for the degree of
Doctor of Philosophy

supervised by Prof. Michael Fuchs

in the subject of

Applied Mathematics

National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

June 2014

1

1 The title page shows a random digital search tree with 1000 nodes. The tree was
taken from [74].

ii

Abstract

Analysis of Algorithms, created by D. E. Knuth in the early 60s and formed
into a powerful theory by Flajolet and his french school in the 70s and 80s,
is an area which lies in the overlap of mathematics and theoretical computer
science. The main aim of this area is to understand the stochastic behavior of
algorithms. Moreover, another important issue is to obtain asymptotic prop-
erties of data structures. In this thesis, we study one of the most often used
data structure, the digital tree family, through additive shape parameters.

The first part of this thesis is an introduction to the digital tree family,
including the construction, the random model we are going to use and a
survey of known results and related mathematical techniques. We also give
some examples to illustrate how these mathematical techniques have been
utilized in past researches of random digital trees.

The second part contains the new results we derived, including new ap-
plications of the Poisson-Laplace-Mellin method and general frameworks for
central limit theorems of additive shape parameters in random digital trees.
Most of the known applications of the Poisson-Laplace-Mellin method are
for shape parameters of linear order. In this thesis, we study many shape
parameters which are of sublinear and superlinear order via the Poisson-
Laplace-Mellin method and derive asymptotic expressions for the means and
variances of these shape parameters. We also establish frameworks which al-
lows us to prove central limit theorems of the shape parameters in an almost
automatic fashion.

i

ii

摘要

由圖靈獎得主高納德 (D. E. Knuth) 於 1963 年首開先河，演算法分析成為
了一個在數學和理論計算機科學中皆具相當重要性的研究領域。本領域的
主要目標之一在於取得對演算法之隨機行為的全面了解。除此之外，資料
結構的漸進性質也是演算法分析所關注的重要議題。數位樹家族是在計算
機和資訊科學中最常被使用的資料結構之一。在本論文中，我們藉由研究
數位樹的加法性構型參數探討了此一資料結構的眾多漸進性質。
本論文的第一部份是對數位樹家族進行一個完整的介紹。內容包括了

構造方式、我們將使用的隨機模型、已知的研究成果和相關的數學工具。
我們也將利用一些例子來解釋這些數學工具在過去的研究中是如何被使用
的。
第二部分則是我們新獲得的研究成果，包括了 Poisson-Laplace-Mellin

方法的新應用以及一套可用來證明隨機數位樹加法性構型參數的中央極限
定理的理論框架。過去使用 Poisson-Laplace-Mellin 方法所獲得的結果大多
數是有關線性成長的構型參數的，我們在本論文中運用 Poisson-Laplace-
Mellin 方法對許多非線性成長的構型參數進行了研究並且推導出了這些參
數的期望值和變異數的漸進表示。我們還建立了一套可以近乎”自動”證明
構型參數的中央極限定理的理論框架 − 只要此構型參數滿足一定條件，則
自動滿足一中央極限定理。

iii

iv

Contents

Abstract i

摘要 iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Random Digital Trees 7
2.1 The Origin and Applications of the Random Digital Trees . . 7
2.2 Random Model and Constructions for Random Digital Trees . 8

2.2.1 Tries . 9
2.2.2 PATRICIA Tries . 10
2.2.3 Digital Search Trees 12

2.3 Past Researches about Random Digital Trees 13

3 Related Mathematical Techniques 19
3.1 Rice Method . 19
3.2 Poissonization and Depoissonization 23
3.3 Mellin Transform . 26
3.4 Singularity Analysis . 33
3.5 Recently developed Methods 39

3.5.1 Poissonized Variance with Correction 40
3.5.2 Poisson-Laplace-Mellin Method 42
3.5.3 JS-admissibility . 43

3.6 Contraction Method . 45

v

4 New Applications of the Poisson-Laplace-Mellin Method 49
4.1 Approximate Counting . 49

4.1.1 Introduction . 49
4.1.2 Analysis of Approximate Counting 51
4.1.3 Average Value of GC(z) 56
4.1.4 Approximate Counting with m Counters and m-DSTs 59

4.2 Wiener Index . 62
4.2.1 Introduction . 62
4.2.2 Wiener Index for Digital Search Trees 66
4.2.3 Wiener Index for Variants of Digital Search Trees . . . 76

4.3 Steiner Distance . 86
4.3.1 Introduction . 86
4.3.2 k-th Total Path Length 89
4.3.3 Total Steiner k-distance 98

5 A General Framework for Central Limit Theorems 101
5.1 Framework for m-ary Tries . 101
5.2 Framework for Symmetric DSTs 110
5.3 Lower Bounds for the Variance 113
5.4 Internal Nodes of m-ary Tries with Specified Outdegree 116
5.5 2-Protected Nodes in Symmetric Digital Search Trees 124

6 Conclusion 129

Appendices

Appendix A 133

Appendix B 141

Bibliography 143

vi

List of Figures

2.1 A trie built from the keys S1, . . . , S8. The rectangle nodes rep-
resent the internal nodes while the circle ones are the external
nodes which store the keys. 10

2.2 A PATRICIA trie built from the keys S1, . . . , S8. Note that
all the internal nodes have two childs. 11

2.3 The process of building a DST from the keys S1, . . . , S8. Note
that if the order of the keys is different, the resulting DST
would be different. 12

2.4 A bucket digital search tree built from the keys S1, . . . , S8 with
bucket size b = 2. 13

5.1 Two tries with internal nodes black and external nodes white.
The trie on the left has all internal nodes of outdegree 2 except
the last which is of outdegree i; the trie on the right has all
internal nodes of outdegree 2 expect the last two which are of
outdegree i. 117

vii

viii

List of Tables

3.1 Functional properties of Mellin transform 27

ix

x

Chapter 1

Introduction

The word ”algorithm” is a distortion of the name of the 9th century Per-
sian scientist, astronomer and mathematician Abu Abdallah Muhammad
ibn Musa al-Khwarizmi. At al-Khwarizmi’s time, people used the term ”al-
gorism”, which is also a distortion of al-Khwarizmi’s name, to refer to system-
atic arithmetic methods which used Hindu-Arabic numerals to solve linear
and quadratic equations. These methods appeared in a book written by al-
Khwarizmi around the year 825 and the book was translated into Latin by
the 18th century. The word ”algorithm” came from a Latin translation of
al-Khwarizmi’s name.

The modern concept of algorithms was formalized in 1936 by A. Turing’s
Turing machines and A. Church’s lambda calculus, which in turn formed
the foundation of computer science. Although the formal definition of the
term ”algorithm” remains a challenging problem up to date [150], it can be
informally defined as a step-by-step computational procedure which takes a
set of values as input and produces a set of values as output [25].

Turing machine is the precursor of modern computers. Turing proved that
such machines would be capable of performing any conceivable mathematical
computation if it can be represented as an algorithm. With the computer
rapidly becoming the most important tool in almost every aspects of people’s
life, people started seeking more efficient algorithms which make computers
solve problems with less resources (time, storage spaces,…, etc.).

There are two different approaches to analyze the efficiency of an algo-
rithm. The first one is to evaluate the performance of an algorithm in the
worst-case senario. This kind of studies focus on the growth of resources an
algorithm need in the worst-case. One of the major goals of such studies
is to find an ”optimal algorithm” whose worst-case performance matches a
”lower bound” in the sense that any other algorithm for the same problem
requires at least the same amount of resources in the worst-case scenario.

1

This approach was popularized by A. V. Aho, J. E. Hopcroft and J. D. Ull-
man [4] and T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein [25].
P. Flajolet and R. Sedgewick use the term ”theory of algorithms” to refer to
this type of studies [192].

The second approach, started by D. E. Knuth, is to study the average-case
properties of algorithms. The average-case analysis works by first construct-
ing a suitable mathematical model for the input and then using probabilistic,
combinatorial and asymptotic methods to study the expected resource costs
of the algorithm given an input drawn from the model. In [192], the authors
described the goal of this approach as

....to be able to accurately predict the performance characteristics
of particular algorithms when run on particular computers, in
order to be able to predict resource usage, set parameters, and
compare algorithms.

To design efficient algorithms and get a throughout understanding of
them, both approaches are necessary. When a new algorithm appears, peo-
ple need a rough idea of how the algorithm might perform and a rough
comparison of this algorithm to other algorithms for the same problem. In
such cases, the first approach will be an adequate choice. However, the first
approach usually sacrifices many details and hence it provides less precision.
Therefore, to acquire more specified information and make more accurate
prediction of an algorithm, we need more details of the algorithm and the
mathematical properties of the data structures manipulated by the algo-
rithm. In such cases, the second approach plays an important role. Thus, a
complete analysis of a specified algorithm should be a study which combines
both approaches to get a full understanding of the algorithm. This leads to
the emergence of the area ”analysis of algorithms”.

The electronic journal Discrete Mathematics and Theoretical Computer
Science defines ”analysis of algorithms” as follows:

Analysis of Algorithms is concerned with accurate estimate of
complexity parameters of algorithms and aims at predicting the
behavior of a given algorithm run in a given environment. It de-
velops general methods for obtaining closed-form formulae, asymp-
totic estimates, and probability distributions for combinatorial or
probabilistic quantities, that are of interest in the optimization
of algorithms. Interest is also placed on the methods themselves,
whether combinatorial, probabilistic, or analytic. Combinato-
rial and statistical properties of discrete structures (strings, trees,

2

tries, dags, graphs, and so on) as well as mathematical objects
(e.g., continued fractions, polynomials, operators) that are rele-
vant to the design of efficient algorithms are investigated.

According to W. Szpankowski [201], the area of analysis of algorithms
was born on July 27, 1963 when D. E. Knuth wrote his ”Notes on Open
Addressing” on hashing tables with linear probing. In fact, using the term
”analysis of algorithms” to name the area was proposed by Knuth in his talk
”The Birth of the Giant Component” [63, 105] given during the first Average
Case Analysis of Algorithms Seminar in 1993. Knuth’s monumental series
The Art of Computer Programming [125, 126, 127, 128] enriched this area
and attracted many researchers devoting their effort to develop it. After
50 years of development and with the contributions from many researchers,
analysis of algorithms has became an area with much more abundant content.
Nowadays, analysis of algorithms is a field in the overlap of mathematics and
theoretical computer science which enjoys close relations to discrete mathe-
matics, combinatorial analysis, probability theory, analytic number theory,
asymptotic analysis and complexity theory.

Analysis of algorithms is a fruitful area because of the helps from a wide
range of mathematical tools. The development of analysis of algorithms also
motivated researches about many different areas in mathematics. The best
example might be the emerging of analytic combinatorics.

The major goal of analytic combinatorics is to precisely predict the prop-
erties of large structured combinatorial configurations, through an approach
based comprehensively on analytic methods. It starts from an exact enumer-
ative characterization of combinatorial structures by means of generating
functions. Then, generating functions are viewed as analytical objects which
map the complex plane into itself. Finally, techniques from complex analysis
are used to derive asymptotic properties of the combinatorial objects from
the generating functions.

The basic techniques and ideas of the theory of analytic combinatorics
appeared quite early. Since the 18th century, many mathematicians, includ-
ing L. Euler, A. Cayley, S. Ramanujan, G. Polya, and D. E. Knuth, have
made contributions to the theory. However, systematic study of the theory
started in the 1970s by P. Flajolet because of the need from analysis of al-
gorithms. As we have mentioned, combinatorial and statistical properties of
discrete structures are major topics in analysis of algorithms. The need of
mathematical tools for such topics fueled the development of analytic com-
binatorics. In this thesis, we will use techniques from analytic combinatorics
to study tree-based data structures.

Trees, defined as acyclic connected graphs, are fundamental objects in

3

graph theory. Moreover, they are also basic objects for data structures and
algorithms in computer science. Take binary search trees as an example,
which are a variant of the simplest tree structure, the binary trees, in graph
theory. Since invented in 1960 in a joint work of A. S. Douglas, P. F. Windley,
A. D. Booth, A. J. T. Colin and T. N. Hibbard [13, 45, 88, 215], binary search
trees became one of the most widely used data structures in computer science.
Consequently, researchers began to study the properties of binary search
trees. Started by Knuth [124], many different methods, including classical
combinatorics [17], probability theory [34] and analytic combinatorics [46],
have been used in related researches.

The purpose of this thesis is to study another widely used tree-based data
structure, the digital tree family. There are several outstanding books which
introduce some aspects of digital trees [48, 139, 202]. However, many im-
portant aspects of digital trees remain unknown and many problems are still
unanswered. Our goal is to solve some of these problems and broaden related
studies by introducing new ideas and using recently developed methods. For
this purpose, we will first review past researches and discuss the advantages
and disadvantages of the known mathematical techniques which have been
applied in previous studies. In the second half of this thesis, we will state
our new results.

The chapters of this thesis are arranged as follows. Chapter 2 is meant
to be a survey of known knowledge of digital trees. In this chapter, we first
give the formal definition and the construction of digital trees. Then, we are
going to explain the random model used in our studies. The final section of
Chapter 2 is a collection of the majority of previous researches from the last
several decades.

In Chapter 3, we are going to introduce the mathematical techniques
which have been used in the study of random digital trees. These methods are
from different areas of mathematics, including analytic combinatorics, com-
plex analysis, functional analysis and probability theory. For each method,
we will give examples to illustrate how the method was applied to random
digital trees.

We are going to show some new applications of the ”Poisson-Laplace-
Mellin” method and Poissonized variance with correction in Chapter 4. The
material of this chapter are from published papers by the author of this
thesis and his collaborators. Section 4.1 is based on [78]. In this section,
we will derive asymptotic expressions of mean and variance of approximate
counting. Section 4.2 gives the expressions of the first and second moment
and the limiting distribution of the Wiener index of random digital trees.
Results presented in this section are taken from [76, 77]. In Section 4.3, we
are going to discuss a generalization of the Wiener index, the total Steiner

4

distance. To analyze this parameter, we will also discuss the k-th total path
length. The results in this section are from [130].

The general topic of Chapter 5 is a framework for central limit theorems
of certain shape parameters in random digital trees. In the first two sections
of this chapter, we state the framework which allows one to prove central
limit theorems for shape parameters satisfying certain conditions. In the
third section, we introduce a useful lemma which proves lower bounds for
the variance of shape parameters and plays a key role in the framework.
The rest of this chapter are examples of shape parameters which fit into the
framework. These results can be found in [77] and [79].

We conclude the thesis with a summary of the main achievement and
some comments in Chapter 6.

5

6

Chapter 2

Random Digital Trees

2.1 The Origin and Applications of the Ran-
dom Digital Trees

Digital trees are an important class of random trees with numerous appli-
cations in computer science. In this thesis, we are mainly dealing with four
subclasses of digital trees, namely, Tries, PATRICIA Tries, Digital Search
Trees (DSTs) and Bucket Digital Search Trees (b-DSTs).

Tries, first introduced by R. de la Briandais [29] and named by E. Fred-
kin [72], are one of the most widely used data structure in computer science.
Tries were created for retrieving data more efficiently. They turn out to be
a huge success since they have many advantages over other already-existing
data structures such as binary search trees. For example, looking up data in
tries is faster in worst case comparing to binary search trees and the collision
of different keys is avoided. Nowadays, tries are applied in many areas such
as searching, sorting, dynamic hashing coding, polynomial factorizing, regu-
lar languages, contention tree algorithms, automatically correcting words in
texts, retrieving IP addresses and satellite data, internet routing and molec-
ular biology. For a more detailed introduction and more references, see [166].

Several variants of Tries have been considered. One of them is PATRI-
CIA Tries which were invented by D. R. Morrison [149] in 1986 (PATRICIA
is an acronym which stands for Practical Algorithm To Retrieve Information
Coded In Alphanumeric). D. R. Morrison proposed this data structure in
order to avoid an annoying flaw of tries, namely, one way branching of inter-
nal nodes. PATRICIA Tries share many advantages of Tries over balanced
trees and binary search trees. Moreover, they require less space for stor-
age. Because of this property, PATRICIA tries find particular application
in the area of IP routing, where the ability to contain large ranges of values

7

with a few exceptions is particularly suited to the hierarchical organization
of IP addresses. They are also used for inverted indexes of text documents
in information retrieval.

Another variant of tries are digital search trees. They were first intro-
duced by Coffman and Eve [24]. They have attracted considerable attention
due to their wide applications, especially their close connection to the fa-
mous Lempel-Ziv compression scheme [98]. The major difference between
DSTs and Tries is that for DSTs, the data are stored in the nodes while the
data only appears in the leaves of tries. Bucket digital search trees are a gen-
eralization of DSTs, they are sometimes also called generalized digital search
tree [90]. In b-DSTs, each node can store b keys. When b = 1, they corre-
spond to the original DST. The advantage of such ”bucketing” is multifold
such as reducing the root-to-node path lengths and improving the storage
utilization. Because bucketing is an important tool in many algorithm de-
signing problems ranging from hashing to computational geometry, b-DSTs
are related to many practical algorithms [33, 82, 126, 140, 171]. For example,
people use b-DSTs as a tool for memory management in UNIX [90].

General digital trees like tries, PATRICIA tries, DSTs and b-DSTs share
a nice property, namely, the average height of the trees is almost optimal.
This property ensures that the number of comparing operation during data
searching is almost minimal.

There are a great deal of studies about all kinds of properties of digital
trees. People study digital trees not only for the practical use we just dis-
cussed but also the analysis of digital trees poses mathematical challenges.
We will discuss the known properties and studies of digital trees in Section
2.3. However, before we do so, we will make precise the definition of the
digital trees discussed above.

2.2 Random Model and Constructions for Ran-
dom Digital Trees

In this section, we will give the construction and random model for each
variant of random digital trees. To make it easier to see the differences, we
will always use the same set of infinite binary strings as keys

S1 = 0011010 . . . S5 = 0000010 . . .

S2 = 0000110 . . . S6 = 0110101 . . .

S3 = 1110110 . . . S7 = 1000011 . . .

S4 = 1000100 . . . S8 = 0010011 . . .

8

to build the examples in the following sections. We will use the same random
model, the so-called Bernoulli model, for all the random digital trees we
discuss in this thesis. For the Bernoulli model, it is assumed that the letters
of each keys are generated independently.

In the binary case, the i-th key will be of the form

Ai,1, Ai,2, . . . , Ai,k, . . .

where for all 1 ≤ i ≤ n and j ∈ N, P(Ai,j = 0) = p and P(Ai,j = 1) = q = 1−p
with some 0 ≤ p ≤ 1.

For general m-ary cases, the i-th key is of the same form with Ai,j ∈ A =
{a1, . . . , am} for some alphabet A of the size m. Moreover, P(Ai,j = ak) = pk
for all 1 ≤ k ≤ m. Of course, we also have that

m∑
i=1

pi = 1 and 0 ≤ pi ≤ 1 for all 1 ≤ i ≤ m.

The Bernoulli model is the most simple model proposed. More realistic
models have been propose by B. Valleé [205] and analyzed by Bourdon [14]
and Valleé et. al. [23]. Although the Bernoulli model may seem too idealized
for practical applications, typical behaviors under this model often hold under
more general models such as Markovian or dynamical sources [96, 134, 202].

2.2.1 Tries
Here we describe how to build a binary trie. For m-ary tries, the procedures
are the same only the alphabet is expanded. We start with n data whose
keys are infinite 0-1 strings. In a trie, the keys are only stored in the leaves.
Whenever a new key is stored, we use it to search in the already existing trie
by its prefix until we encounter a leaf which already contains a key. Then,
the leaf is replaced by an internal node and the two keys are distributed to
the two subtrees. If the two keys go to the same subtree, then the procedure
is repeated until both keys go to different subtrees where they are stored in
the leaves.

To make this definition more precise, we give a more formal description.
Let {0, 1}∞ be the set of binary strings of infinite length, we define two
operations. The map

σ : {0, 1}∞ −→ {0, 1}

returns the first letter of a string. The shift function

T : {0, 1}∞ −→ {0, 1}∞

9

...........

S3

.

S6

..

S8

.

S1

.

S5

.

S7

.

S4

.

S2

.

0

.

1

.

1

.

0

.

0

.
0

.

0

.

1

.

1

.

0

.

0

.

1

.0 .1 .
0

.

0

.

1

Figure 2.1: A trie built from the keys S1, . . . , S8. The rectangle nodes rep-
resent the internal nodes while the circle ones are the external nodes which
store the keys.

returns the first suffix of a string. Then, the function T [a] is the restriction
of T to the set σ−1(a) of a word beginning with symbol a.

With any finite set S of infinite strings, we associate a trie, denoted by
TR(S), defined by the following recursive rules:

1. If S = ∅, then TR(S) is the empty tree.

2. If S = {s} has cardinality equal to one, then TR(S) consists of a single
leaf node containing s.

3. If |S| ≥ 2, then TR(S) is an internal node represented generically by
2 to which 2 subtrees are attached

TR(S) =< 2, TR(T [0]S), TR(T [1]S) > .

2.2.2 PATRICIA Tries
PATRICIA tries are tries without one-way branching. As Figure 2.1 shows,
tries may contain many internal nodes with only one child. To build a PA-
TRICIA trie, one may build a trie first and ”collapse” all the internal nodes

10

.........

S3

.
S7

.
S4

.

S6

.

S8

.

S1

.

S2

.

S5

.

0

.

0

.

1

.0 .1 .

1

.

0

.

1

.0 . 1.

0

.

1

.

0

.

1

Figure 2.2: A PATRICIA trie built from the keys S1, . . . , S8. Note that all
the internal nodes have two childs.

with only one child. To see the difference, compare Figure 2.1 and Figure
2.2.

Let PTR(S) be the PATRICIA trie associated to the finite set S of infinite
strings. PTR(S) is constructed by the following recursive rules:

1. If S = ∅, then PTR(S) is the empty tree.

2. If S = {s} has cardinality equal to one, then PTR(S) consists of a
single leaf node containing s.

3. If |S| ≥ 2, by the number of distinct symbols contained in the multiset
σ(S), there are two cases

(i) If σ(S) contains only one symbol, then

PTR(S) = PTR(TS).

(ii) Otherwise, TR(S) is an internal node represented generically by
2 to which 2 subtrees are attached

PTR(S) =< 2, PTR(T 0S), PTR(T 1S) > .

11

..

S1

.

S1

.

S2, S5, S6, S8

.

S3, S4, S7

.

S2

.

S3

.S5, S8

.S6

.S4, S7

.

S1

.

S2

.

S3

. S4

.

S7

. S6

. S5

.

S8

.

0

.

1

.

0

.
0

.
1

.

1

.
0

.

0

.
0

.

1

.
1

.

1

.
0

.

0

Figure 2.3: The process of building a DST from the keys S1, . . . , S8. Note
that if the order of the keys is different, the resulting DST would be different.

2.2.3 Digital Search Trees

Here, we demonstrate how to build a binary digital search tree. As for tries
and PATRICIA tries, we consider n keys which are infinite {0, 1} strings. If
n = 1, then the only key is put in a node and the building process is finished.
Otherwise, we go through the following steps:

1. Store the first key in a node (which will become the root of the tree).

2. Distribute the remaining keys into two sets according to the first letter
of the key. If the first letter is:

0: Put the keys to the left subtree.

1: Put the keys to the right subtree.

3. Remove all the first letters of the keys in the subtrees. Build the sub-
trees recursively according to the same rules.

For a bucket digital search tree with bucket size b, the building process
is almost the same as for digital search trees. Only in step one of the con-
struction, we put b keys in the node instead of only one node. It is easy to
see the differences by comparing Figure 2.3 and Figure 2.4.

12

..

S1, S2

.

S5, S6

.

S3, S4

.S8

.S7

.

0

.
0

.

1

.
0

Figure 2.4: A bucket digital search tree built from the keys S1, . . . , S8 with
bucket size b = 2.

2.3 Past Researches about Random Digital
Trees

Random digital trees have been studied from many different aspects. In this
section, we focus on shape parameters of random digital trees. For each
parameter, we will give the definition first and then explain the practical use
of the parameter. We will also give a list of references of known results of
the parameter.

Size

For random digital trees, the parameter size is the total number of internal
nodes. So, this parameter is only relevant for tries and PATRICIA tries.
People study this parameter because the number of internal nodes is pro-
portional to the number of pointer needed to store the data structure. The
less the number of internal nodes needed, the less the space required. Note
that binary PATRICIA tries have a constant size and hence this parameter
matters only for m-ary PATRICIA tries with m ≥ 3. For the study of size
of tries, see [23, 39, 93, 103, 107, 109, 112, 116, 139, 144, 154, 95, 193]. For
PATRICIA tries, see [14, 15, 38, 39, 145].

Depth

Depth is defined as the distance from the root to a randomly selected node
which normally contains data. Some researchers use the name depth of
insertion or successful search time. It is one of the most well-studied pa-
rameter since it provide a great deal of information for many applications.
For example, the depth of a node storing a key represents the search time

13

for the key in searching and sorting algorithms [127]. Depth also gives the
length of a conflict resolution session for tree-based communication proto-
cols. For compression algorithms, depth is the length of a substring that
may be occupied or compressed [7]. For the study of depth of tries, see
[31, 36, 37, 57, 92, 97, 114, 136, 168, 191, 195, 197]. For the study of
this parameter in PATRICIA tries, see [38, 39, 180]. Finally, for DSTs,
see [36, 135, 168, 175, 199, 139, 37, 30, 100, 102, 127, 113, 196].

Height

Height of a tree is the length of the longest path from the root to a leaf. It can
also be understood as the maximum value of the depth. Height in digital trees
reflects the the longest common prefix of words stored in a digital tree and is
directly related to many important operations such as hashing in computer
programming. See [23, 32, 36, 37, 38, 60, 71, 92, 167, 168, 200] for studies of
the height tries. See [36, 38, 39, 68, 111, 127, 167, 169, 170, 198, 200, 203]
for PATRICIA tries and [122, 35, 37, 47, 139, 168] for digital search trees.

Shortest path length

This parameter is the length of the shortest path from the root to the leaves.
It was studied for tries by B. Pittel in [167, 168]. He considered this parameter
in order to derive the depth and height of a random trees.

Saturation level

Sometimes also called fill-up level. The levels of a tree are the set of nodes
which are of the same distance from the root. The saturation levels are the
full levels in a tree. Researcher have investigate the number of saturation
levels, the maximum level which is full and so on. This parameter was firstly
studied for the purpose of understanding the behavior of the parameter height
[35]. However, it found also other applications in improving the efficiency
of algorithms for IP address lookup problem [123]. For more details, see
[35, 123, 168].

Stack size

In the definition of the height, every edge contributes one when counting the
distance. Stack size is a kind of ”biased” height with the edges whose label
is the last symbol in the alphabet (for binary case, the edges labeled by 1)
make no contribution when counting the distance. For general m-ary tries
and PATRICIA tries, if the order of the symbols in the alphabet is given,

14

a preorder traversals of the corresponding trie or PATRICIA trie gives the
list of the words stored in the lexicographical order. When the traversal
is implemented in a recursive way, the height measures the recursion-depth
needed. However, in many cases the recursion is removed or a technique
called end-recursion removal is used to save recursion calls. In those cases, the
amount of memory space is no longer measured by the height and hence the
parameter stack-size is introduced. For stack size of tries, see [16, 156, 157].
For the PATRICIA tries case, L. Devroye gave a method to compute this
quantity in [39], however, without giving an explicit result.

Horton-Strahler number

The Horton-Strahler is defined similar to stack size for similar purposes.
It specifies the recursion-depth needed for a traversal when pre-recursion
removal is applied and the subtree is visited in an order chosen to minimize
the recursion depth (this order is fixed for stack-size). Related study for tries
can be found in [16, 41, 155, 156, 157]. In [39], the author gave a bound for
Horton-Strahler number of PATRICIA tries.

One-sided path length

One-sided path length is length of the path with all edges labeled by the
same symbol. This parameter is directly related to a widely used algorithm
called leader (or loser) selection. For the algorithm and its applications, see
[59]. Because of its recursive nature, the algorithm will generate a tree which
has a similar structure as tries during the selecting process. As as result,
the one-sided path length of tries will directly reflect the efficiency of the
algorithm. Related studies can be found in [59, 106, 173, 211, 213].

Occurrence of certain pattern

People may interested in nodes of the digital trees satisfying certain prop-
erties or the number of certain specified subgraphs in a digital tree. For
example, the so-called 2-protected nodes, the nodes which are neither the
leaves nor parents of a leaf, is a type of nodes which has been studied. For
more researches of this kind, see [60, 114, 116, 161, 191, 197, 168, 199, 89,
90, 98, 114, 121, 127]

External path length

This parameter is the sum of distances between leaves and the root. In the
case of trie data structures of hashing schemes, this parameter represents the

15

processing time in central unit. However, this parameter has drawn a lot of
interests not because of its practical use but for an interesting phenomenon.
It is easy to see that the mean of the external path length can be derived
directly from the mean of the depth. Therefore, people expected that the
variance of the external path length can also be directly derived from the
variance of the depth. However, this is not the case [118]. This parameter has
been studied for tries [94, 99, 119, 166] and PATRICIA tries [14, 39, 118, 198].

Internal path length

Internal path length is defined as the sum of distances between internal nodes
and the root. In contrast to tries and PATRICIA tries which store data in the
leaves, digital search trees store data in the internal nodes. Thus, the internal
path length can be seen as the counterpart of the external path length in
digital search trees. L. Devroye studied this parameter for PATRICIA tries in
[38]. Later, Fuchs, Hwang and Vytas gave a general framework for parameters
with similar properties of the internal path length in [75]. Researches about
internal path length of digital search trees can be found in [199, 89, 172, 90,
117, 121, 98, 191, 159, 74].

Distances

This parameter refers to the distance between two randomly selected nodes
in a digital tree. It can be seen as a measure of how ”diverse” a tree is. R.
Neininger studied this parameter to get better understanding of the Wiener
index (which will be discussed later) of recursive trees [158]. After Neininger’s
work, this parameter was studied for many different classes of trees. For the
study of distances of tries, see [1, 3, 22]. The study of distance of digital
search trees can be found in [1, 2].

Number of unary nodes in tries

Unary nodes are the nodes with exactly one child. PATRICIA tries are the
tries with unary nodes ”collapsed”. Therefore, studying the number of unary
nodes may gives us an estimation how much space is ”saved” in PATRICIA
tries comparing to tries. Besides comparing the two variations of random
digital trees, S. Wagner studied this parameter in [209] in order to get a
better understanding of the efficiency of contention tree algorithms. Related
studies can be found in [18, 204, 209]

16

Node profile

The node profile of a random digital tree is a parameter which represents the
number of nodes at the same distance from the root. This parameter has
drawn a lot of attention because many fundamental parameters, including
size, depth, height, shortest path length, internal path length and satura-
tion level can be uniformly analyzed and expressed in terms of node profiles.
Although node profile are of great importance, there are not too many re-
searches about it until very recently. See [166] for the node profile of tries,
[38, 39] for node profile of PATRICIA tries and [48, 50, 129, 135, 51] for node
profile of digital search trees.

Partial match queries

Multidimensional data retrieval is an important issue for the design of data
base system. Partial match retrieval is a widely used method of retrieval
which found many applications, especially in geographical data and graphic
algorithm. For more detailed introduction of partial retrieval operation, see
[65] and the references within. Because of the importance of this method,
the performance of partial match retrieval on digital trees received a lot of
interests. For the analysis of partial match retrieval on tries, PATRICIA
tries and bucket-digital search trees, see [39, 42, 65, 73, 120, 189, 190].

Peripheral path length

This parameter was proposed by W. Szpankowski and M. D. Ward in [133,
210, 212] with the name w-parameter. This parameter was originally applied
in the study of Lempel-Ziv’77 data compression algorithm on uncompressed
suffix trees. In [74], the authors renamed this parameter as the peripheral
path length. The fringe-size of a leaf node is defined to be the size of the
subtree rooted as its parent node. The peripheral path length is then defined
to be the sum of the fringe-size of all leaves of the tree. Peripheral path
length has been studied for tries, PATRICIA tries and digital search trees.
For related researches, see [49, 74, 133, 210, 212].

Weighted path length

Let lj be the distance of the j-th node to the root and wj be the weight
attached to the j-th node, the weighted path length is defined to be

Wn =
n∑

j=1

wjlj

17

for a tree with n nodes. For many real life applications, people need to assign
a weight to each edge or node of a graph. Weighted path length arises for
these applications. For more details, see [74].

Differential path length

Also called the colless index, it inspects the internal nodes of trees. We
partition the leaves descend end from internal nodes into two groups of sizes
L and R. The differential path length is the sum over all absolute values
|L−R| for all ancestors. This parameter is investigated in the system biology
literature [11]. M. Fuchs et. al. studied this parameter for symmetric random
digital search trees [74].

Type of nodes in bucket digital search trees

Because of the construction, a bucket digital search tree with bucket size
b ≥ 2 may have nodes containing different number of keys. The authors of
[90] proposed a multivariate frame to study the number of each type of nodes
in bucket digital search trees.

Key-wise path length

Since a node of a bucket digital search tree with b ≥ 2 may contain more
than one key, the distance of two keys stored in a b-DST could be 0 in some
cases. Therefore, researchers defined two different types of path length to
study b-DSTs, key-wise path length and node-wise path length. The key-
wise path length is defined as the sum of the distances between keys and the
root. Related researches can be found in [74, 89].

Node-wise path length

Node-wise path length of b-DSTS is defined to be the sum of all distances
between nodes and the root. See [74, 90] for more details.

18

Chapter 3

Related Mathematical
Techniques

3.1 Rice Method
Rice method, sometimes also called the Nörlund-Rice integral or Rice inte-
gral, is named in honor of Niels Erik Nörlund and Stephen O. Rice. It is a
fruitful method for finding the asymptotic expansion of sums of the form

n∑
k=n0

(
n

k

)
(−1)kf(k). (3.1)

The formulae of Rice integral is given by

n∑
k=n0

(
n

k

)
(−1)kf(k) =

(−1)n

2πi

∮
C
f(z)

n!

z(z − 1) · · · (z − n)
dz,

where C is a positive oriented closed curve encircling the points n0, n1, . . . , n
and f(z) is understood to be analytic within C. The integral can also be
written as

n∑
k=n0

(
n

k

)
(−1)kf(k) =

−1

2πi

∮
C
B(n+ 1,−z)f(z)dz,

where C is the contour mentioned before and B(a, b) is the beta function.
Now we give a formal statement of the two formulaes.

Lemma 3.1.1. Let f(z) be analytic in a domain that contains the half-line

19

[n0,+∞). Then, we have the representation
n∑

k=n0

(
n

k

)
(−1)kf(k) =

(−1)n

2πi

∮
C
f(z)

n!

z(z − 1) · · · (z − n)
dz

=
−1

2πi

∮
C
B(n+ 1,−z)f(z)dz,

where C is a positively oriented closed curve that lies in the domain of an-
alyticity of f(z), encircles [n0, n], and does not include any of the integers
0, 1, . . . , n0 − 1.

Proof. The proof of these two equalities is omitted here since it is a simple
application of residue theorem. For the complete proof, see [69].

Suppose we have a finite differences sum of the form in (3.1), the Rice
method allows us to compute an asymptotic expansion by the following steps:

Step 1. Extend f(k) which is originally defined on integers to an appropriate
meromorphic function f(z).

Step 2. Choose a suitable contour C which encircles the points n0, . . . , n
and consider the Rice integral

∆ =
(−1)n

2πi

∮
C

f(z)
n!

z(z − 1) · · · (z − n)
dz.

Step 3. Residue theorem yields that

∆ =
n∑

k=n0

(
n

k

)
(−1)kf(k) + {contribution from other poles inside C}.

Step 4. Estimate ∆.

Remark 1. The most difficult step of the Rice method is usually Step 1.
Finding the meromorphic extension of f(k) is usually quite tricky. Also,
to carry out Step 4 one needs growth properties of f(z), e.g. f(z) is of
polynomial growth.

Rice method has been used in many researches about shape parameters
of random digital trees. For example, P. Kirschenhofer, H. Prodinger and
W. Szpankowski used it to derive the mean and variance of the internal
path length of symmetric DSTs [114, 117, 121]. Here, we use the mean of
the internal path length of DSTs as an instance to illustrate how the Rice
method works.

20

We let Sn be the expectation of the internal path length of a symmetric
DST built on n strings. Then, under the Bernoulli mode, from the definition
of the internal path length, we have the recurrence

Sn+1 = n+ 21−n

n∑
k=0

(
n

k

)
Sk, (n ≥ 0),

where the initial condition is given by S0 = 0. After some manipulations of
generating functions, we get that

Sn =
n∑

k=2

(
n

k

)
(−1)kQk−2.

Example 3.1.2. Consider the sum

Sn =
n∑

k=2

(
n

k

)
(−1)kQk−2, (3.2)

where Qn =
∏n

j=1(1− 2−j).

Step 1. We introduce the function

Q(s) =
∏
n≥1

(
1− s

2n

)
,

then the constant Qn can be expressed as Qn = Q(1)/Q(2−n). Note
that Q(1) is finite and numerical results give us Q(1) ≃ 0.288788 · · · .
Moreover, Q(1)/Q(22−z) is analytic on [2,∞). Thus, we get the needed
extension.

Step 2. We choose the contour C to be{
z = x+ iy :

(
x− 1

2

)2

+y2 = N2, x ≥ 1

2

}
∪{

z = x+ iy : x =
1

2
,−N ≤ y ≤ N

}
,

and consider the integral

∆ =
(−1)n

2πi

∮
C

Q(1)

Q(22−z)

n!

z(z − 1) · · · (z − n)
dz.

21

Step 3. To compute the residues, we need to find the poles of Q(1)/Q(22−z).
The poles occur at z = 1+2kπi/ log 2 and hence the integral has a double
pole at z = 1 and simple poles at z = 1 + 2kπi/ log 2 with k ∈ Z \ {0}.
To compute the contribution from the double pole, we derive the series
expansion

(−1)nn!

z(z − 1) · · · (z − n)
=

−1

z(z − 1)

n∏
j=2

(
1− z

j

)−1

=− n

z − 1
− n(Hn−1 − 1) +O(z − 1)

and
Q(1)

Q(21−z)
=Q(1)

∏
j≥0

(
1− 2−(z+j)

)−1

=1− α(z − 1) log 2 +O
(
(z − 1)2

)
,

where α =
∑

n≥1
1

2n−1
. Combining the expansions, we get

Q(1)

Q(22−z)

(−1)nn!

z(z − 1) · · · (z − n)
=

(
1

(z − 1) log 2 +
1

2
+O(z − 1)

)
×
(
1− α(z − 1) log 2 +O

(
(z − 1)2

))
×
(
− n

z − 1
− n(Hn−1 − 1) +O(z − 1)

)
.

From the above expansion, we get the residue at z = 1 as

− n

log 2(Hn−1−1)+n

(
α− 1

2

)
= −n log2 n−n

(
γ − 1

log 2 − α +
1

2

)
+O(1).

The poles at 1 + 2kπi/ log 2 with k ∈ Z \ {0} make contributions δ(n)
[68], where

δ(n) = − 1

log 2
∑

k∈Z\{0}

Γ

(
−1− 2kπi

log 2

)
e2kπi log2 n.

Step 4. On the right semi-circle, ∆ converges to 0 as n grows since∣∣∣∣ 1

Q(22−z)

∣∣∣∣ = O(1) as |z| → ∞.

On the left line, we have the bound

O
(∫ ∞

−∞

Γ(n+ 1)Γ(1
2
+ iy)

Γ(n+ 1
2
− iy)

dy

)
= O(n1/2).

22

Combining all the above steps, we have

Sn = n log2 n+ n

(
γ − 1

log 2 − α +
1

2
+ σ(n)

)
+O(n1/2). (3.3)

The internal path length of DSTs is not the only shape parameter which
has been analyzed by the Rice method. For example, the external path length
of tries and PATRICIA tries under the Bernoulli model can also be analyzed
by the Rice method [118, 119].

However, there are several other mathematical tools which can be used
to analyze these shape parameters and they are sometimes more useful than
the Rice method. In the following sections, we will introduce these tools. We
begin with a standard tool which can transfer a problem under the Bernoulli
model into a problem under the so-called Poisson model in which we have
many useful tools to conquer the problem.

3.2 Poissonization and Depoissonization
In combinatorics and the analysis of algorithms, a Poisson version of a prob-
lem (henceforth called Poisson model or poissonization) is often easier to
solve than the original one, which we name here the Bernoulli model. Pois-
sonization is a technique that replaces the original input by a poisson process.
This technique was first introduced by Marc Kac [108] in 1949. Recently,
this technique flourished in the community of analysis of algorithms and ran-
dom combinatorial structures. See [99] for a comprehensive survey and many
references.

We first introduce the formal definition of analytical poissonization (which
is also called Poisson Transform by G. Gonnet and J. Munro [83]).

Definition 3.2.1. Let {gn} be a sequence, then the Poisson transform G̃(z)
of {gn} is defined as

G̃(z) = e−z
∑
n≥0

gn
zn

n!

for arbitrary complex z. G̃(z) is also called the Poisson generating func-
tion.

If G̃(z) is known, we can extract the coefficient gn = n![zn]G̃(z)ez. How-
ever, in most situations G̃(z) satisfies a complicated functional/differential
equation that is difficult to solve exactly. Fortunately, we have many tools,
Mellin transform for example, to find the asymptotic expansion of G̃(z).

23

Therefore, the natural next step is to find a method to derive asymptotic
expansion of gn from the asymptotic expansion of G̃(z). This step is called
analytical depoissonization. To explain the theory of analytical depoissoniza-
tion, we give some definitions first.

Definition 3.2.2. (i) A linear cone is defined as the region in the complex
plane satisfying

Lθ = {z : | arg z| ≤ θ},

where |θ| ≤ π/2.

(ii) A polynomial cone L(D, δ) is defined as

L(D, δ) = {z = x+ iy : |y| ≤ Dxδ, 0 < δ ≤ 1, D > 0}.

We consider now a sequence {gn}n≥0 and its Poisson generating function
G̃(z) = e−z

∑
n≥0 gnz

n/n!. Our goal is to derive the asymptotic expansion of
gn from G̃(z). By Cauchy’s formula, we have

gn =
n!

2πi

∮
G̃(z)ez

zn+1
dz =

n!

nn2π

∫ π

−π

G̃(neit) exp(neit)e−nitdt.

The depoissonization result will follow from the above by careful estimation
of the integral using the saddle point method. Because the complete proof
of depoissonization is rather long and technical, we omit it here. For the
complete proof, see [99]. Here we only state the results.

Theorem 3.2.3. (Basic depoissonization lemma) Let G̃(z) be the Poisson
generating function of a sequence {gn} that is assumed to be an entire function
of z. Suppose that in a linear cone Lθ both of the following two conditions
hold for some numbers A,B,R > 0, β and α < 1.

1. For z ∈ Lθ and |z| > R

|G̃(z)| ≤ B|z|β;

2. For z ̸∈ Lθ and |z| > R

|G̃(z)ez| ≤ Aeα|z|.

Then,
gn = G̃(n) +O(nβ−1)

for large n.

24

The above theorem can be generalized in several different directions. In
[99], the authors gave three generalized versions. Here we give the one which
is most often used.

Theorem 3.2.4. (General depoissonization lemma) Consider a polynomial
cone L(D, δ) with 1/2 < δ ≤ 1. Let the following two conditions hold for
some numbers A,B,R > 0 and α > 0, β and γ:

1. For z ∈ L(D, δ) and |z| > R

|G̃(z)| ≤ B|z|βΨ(|z|),

where Ψ(z) is a slowly varying function, that is, a function for which
for fixed t, we have that limz→∞ Ψ(tz)/Ψ(z) = 1;

2. For all z = ρeiθ with θ ≤ π such that z ̸∈ L(D, δ) and ρ = |z| > R

|G̃(z)ez| ≤ Aργeρ(1−αθ2).

Then, for every nonnegative integer m

gn =
m∑
i=0

i+m∑
j=0

bijn
iG̃(j)(n) +O(nβ−(m+1)(2δ−1)Ψ(n))

= G̃(n) +
m∑
k=1

k∑
j=1

bi,k+in
iG̃(k+i)(n) +O(nβ−(m+1)(2δ−1)Ψ(n)),

where bij are the coefficients of ex log(1+y)−xy at xiyj, that is∑
i≥0

∑
j≥0

bijx
iyj = ex log(1+y)−xy.

Let us take the external path length of tries, which has been mentioned at
the end of Section 3.1 as an example. We denote by Pn the random variable
of the external path length of random tries built on n records. Then, under
the Bernoulli model, we have

Pn
d
= PBn + Pn−Bn + n, (n ≥ 2), (3.4)

where Bn = Binomial(n, p) with p ∈ (0, 1) and P0 = P1 = 0. Let

f̃(z) = e−z
∑
n≥0

E(Pn)
zn

n!

25

be the Poisson generating function of the mean of Pn. Then from (3.4), we
get the functional equation

f̃(z) = f̃(pz) + f̃(qz) + z(1− e−z). (3.5)

One can now check by induction that f̃(z) satisfies the assumptions of The-
orem 3.2.3 (see also Section 3.5.2 for a more systematic method of checking
this). Then, this result implies that

E(Pn) = f̃(n) +O(nϵ), (3.6)

where ϵ can be arbitrarily small. Thus, the natural next step is to find more
information about the asymptotic behavior of f̃(z). For this purpose, we
introduce one of the most often used tools under such circumstance, the
Mellin transform.

3.3 Mellin Transform
Mellin transform is the most popular integral transform in the analysis of
algorithms. Its first occurrence is in a memoir of Riemann in which he
used it to study the famous Zeta function. However, the transform gets
its name from the Finish mathematician Hjalmar Mellin who did the first
systematic study of the transform and its inverse. See [132] for a summary
of his works. Nowadays, the Mellin transform is used in complex analysis,
number theory, applied mathematics and analysis of algorithms. Apart from
these applications in mathematics, the Mellin transform has also been applied
in many different areas such as physics and engineering.

In the analysis of algorithms, the Mellin transform is mostly used to derive
asymptotic expansions. The transform is defined in the following:
Definition 3.3.1. Let f(z) be a function which is locally Lebesque integrable
over (0,+∞). The Mellin transform of f(z) is defined by

M [f(z); s] = f ∗(s) =

∫ ∞

0

f(z)zs−1dz.

The largest open strip ⟨α, β⟩ in which the integral converges is called the
fundamental strip. To determine the fundamental strip, we have the following
lemma.
Lemma 3.3.2. If the function f(z) satisfies

f(z) =

{
O(zu), z → 0+;
O(zv), z → +∞,

then M [f(z); s] exists in the strip ⟨−u,−v⟩ and is analytic there.

26

f(z) f ∗(s) < α, β >
F1 zνf(z) f ∗(s+ ν) < α− ν, β − ν >
F2 f(zρ) 1

ρ
f ∗(s/ρ) < ρα, ρβ > ρ > 0

f(1/z) −f ∗(−s) < −β,−α >
F3 f(µz) 1

µsf
∗(s) < α, β > µ > 0∑

k λkf(µkz) (
∑

k λkµ
−s
k)f ∗(s) < α, β >

F4 f(z) log z d
ds
f ∗(s) < α, β >

F5 Θf(z) −sf ∗(s) < α′, β′ > Θ = z d
dz

d
dz
f(z) −(s− 1)f ∗(s− 1) < α′ − 1, β′ − 1 >∫ z

0
f(t)dt −1

s
f ∗(s+ 1)

Table 3.1: Functional properties of Mellin transform

Before we start to develop a systematic theory of the Mellin transform,
we give an easy example to show how the transform works.

Example 3.3.3. For f(z) = e−z, it is obvious that

f(z) =

{
O(z0), z → 0+;
O(z−b), z → +∞,

where b is an positive real number which can be arbitrarily large. As a result,

M [f(z); s] = Γ(s)

is defined in ⟨0,+∞⟩ and analytic there.

Simple changes of variables in the definition of Mellin transforms yields
many useful functional properties summarized in Table 3.1.

Similar to other integral transformations, the Mellin transform has an
inverse. For a given function f(z) and its Mellin transform f ∗(s), we let
s = σ + 2πit and z = e−y. Then, the Mellin transform becomes a Fourier
transform

f ∗(s) =

∫ ∞

0

f(z)zs−1dz =

∫ ∞

−∞
f(e−y)e−σye−2πitydy = F [f(e−y)e−σy; t],

where F [f(z); t] denotes the Fourier transform of f(z). As a result, the
inversion theorem for the Mellin transform follows from the corresponding
one for the Fourier transform. If f̂(t) = F [f ; t] is the Fourier transform,
then the original function is recovered by

f(z) =

∫ ∞

−∞
f̂(t)e2πitzdt.

27

Thus,
f(e−y)e−σy =

∫ ∞

−∞
f ∗(σ + 2πit)e2πitydt.

Changing the variables y back to z, we get

f(z) = z−σ

∫ ∞

−∞
f ∗(σ + 2πit)z−2πitdt.

Finally, by replacing σ + 2πit by s, we have

f(z) =
1

2πi

∫ c+i∞

c−i∞
f ∗(s)z−sds.

Theorem 3.3.4. Let f(z) be integrable with fundamental strip ⟨α, β⟩. If c
is such that α < c < β and f ∗(c+ it) is integrable, then the equality

1

2πi

∫ c+i∞

c−i∞
f ∗(s)z−sds = f(z)

holds almost everywhere. Moreover, if f(z) is continuous, then the equality
holds everywhere on (0,+∞).

As we mentioned before, the major application of the Mellin transform
in the analysis of algorithms is to derive asymptotic expansions. This appli-
cation comes from the correspondence between the asymptotic expansion of
a function at 0 (and ∞), and poles of its Mellin transform in a left (resp.
right) half-plane. Before we explain the correspondence, we introduce the
singular expansion of a function.
Definition 3.3.5. Let ϕ(s) be meromorphic with poles in Ω. The singular
expansion of ϕ(s) is

ϕ(s) ≍
∑
s0∈Ω

∆(s; s0),

where ∆(s, s0) is the principal part of the Laurent expansion of ϕ around the
pole s = s0.
Example 3.3.6. Given ϕ(s) = 1

s2(s+1)
, since

1

s2(s+ 1)
=

1

s+ 1
+O(1) as s→ −1

and
1

s2(s+ 1)
=

1

s2
− 1

s
+O(1),

we have
ϕ(s) ≍

[
1

s+ 1

]
s=−1

+

[
1

s2
− 1

s

]
s=0

.

28

With the help of the singular expansion of a function, we now give the
correspondence.

Theorem 3.3.7. (Direct mapping) Let f(z) be a function with transform
f ∗(s) in the fundamental strip ⟨α, β⟩.

(i) Assume that, as z → 0+, f(z) admits a finite asymptotic expansion of
the form

f(z) =
∑

(ξ,k)∈A

cξ,kz
ξ(log z)k +O(zγ),

where −γ < −ξ ≤ α and the k′s are nonnegative. Then f ∗(s) is
continuable to a meromorphic function in the strip ⟨−γ, β⟩ where it
admits a singular expansion

f ∗(s) ≍
∑

(ξ,k)∈A

cξ,k
(−1)kk!

(s+ ξ)k+1
, s ∈ ⟨−γ, β⟩.

(ii) Similarly, assume that as z → +∞, f(z) admits a finite asymptotic
expansion of the same form where now β ≤ −ξ < −γ. then f ∗(s) is
continuable to a meromorphic function in the strip ⟨α,−γ⟩ where

f ∗(s) ≍ −
∑

(ξ,k)∈A

cξ,k
(−1)kk!

(s+ ξ)k+1
, s ∈ ⟨α,−γ⟩.

The direct mapping theorem gives a connection from the asymptotic ex-
pansion of the function to the singular expansion of the Mellin transform.
Thus, the natural question is whether or not there is a way to get the asymp-
totic expansion from the singular expansion. The answer is yes, when the
Mellin transform is small enough at ±i∞. More precisely, we have the fol-
lowing result.

Theorem 3.3.8. (Converse mapping) Let f(z) be continuous in [0,+∞)
with Mellin transform f ∗(s) having a nonempty fundamental strip ⟨α, β⟩.

(i) Assume that f ∗(s) admits a meromorphic continuation to the strip
⟨γ, β⟩ for some γ < α with a finite number of poles there, and is
analytic on ℜ(s) = γ. Assume also that there exists a real number
η ∈ (α, β) such that

f ∗(s) = O(|s|−r) with r > 1,

29

when |s| → ∞ in γ ≤ ℜ(s) ≤ η. If f ∗(s) admits the singular expansion
for ℜ(s) ∈ ⟨γ, α⟩,

f ∗(s) ≍
∑

(ξ,k)∈A

dξ,k
1

(s− ξ)k
,

then an asymptotic expansion of f(z) at 0 is

f(z) =
∑

(ξ,k)∈A

dξ,k
(−1)k−1

(k − 1)!
z−ξ(log z)k−1 +O(z−γ).

(ii) Similarly assume that f ∗(s) admits a meromorphic continuation to
⟨α, γ⟩ for some γ > β and is analytic on ℜ(s) = γ. Assume also
that

f ∗(s) = O(|s|−r) with r > 1,

for η ≤ ℜ(s) ≤ γ with η ∈ (α, β). If f ∗(s) admits the singular expansion
of the same form for ℜ(s) ∈ ⟨η, γ⟩, then an asymptotic expansion of
f(z) at ∞ is

f(z) = −
∑

(ξ,k)∈A

dξ,k
(−1)k−1

(k − 1)!
z−ξ(log z)k−1 +O(z−γ).

Note that to apply Theorem 3.3.8, we need the condition

f ∗(s) = O(|s|−r) with r > 1,

for s in a suitable strip. In other words, we need the Mellin transforms to
be sufficiently small along an vertical line. It is well-known that the small-
ness of a Mellin transform is directly related to the degree of ”smoothness”
(differentiability, analyticity) of the original function. Here we introduce
two theorems which are useful in determining the ”smallness” of the Mellin
transforms.
Theorem 3.3.9. Let f(x) ∈ Cr with fundamental strip ⟨α, β⟩. Assume that
f(x) admits an asymptotic expansion as x→ 0+ (x→ ∞) of the form

f(x) =
∑

(ξ,k)∈A

cξ,kx
ξ(logx)k +O(xγ) (3.7)

where the ξ satisfy −α ≤ ξ < γ (γ < ξ ≤ −β). Assume also that each
derivative f (j)(x) for j = 1, . . . , r satisfies an asymptotic expansion obtained
by termwise differentiation of (3.7). Then the continuation of f ∗(s) satisfies

f ∗(σ + it) = o(|t|−r) as |t| → ∞

uniformly for σ in any closed subinterval of (−γ, β) ((α,−γ)).

30

Theorem 3.3.9 shows that smoothness implies smallness. The strongest
possible form of smoothness for a function is analyticity. The following the-
orem shows that the Mellin transform of an analytic function will decay
exponentially in a quantifiable way.
Theorem 3.3.10. Let f(z) be analytic in a sector Sθ which is defined as

Sθ = {z ∈ C|0 < |z| <∞ and | arg(z)| ≤ θ} with 0 < θ < π.

Assume that for f(z) = O(|z|−α) as |z| → 0 in Sθ, and f(z) = O(|z|−β) as
|z| → ∞ in Sθ. Then

f ∗(σ + it) = O(e−θ|t|) (3.8)
uniformly for σ in every closed subinterval of (α, β).

Note that a polynomial bound with positive power is enough for Theorem
3.3.8 while (3.8) provides an exponential bound. In fact, if the assumption

f ∗(s) = O(|s|−r) with r > 1,

in Theorem 3.3.8 is replaced by

f ∗(σ + it) = O(e−θ|t|),

we will get a stronger version of the converse mapping theorem as follows.
Theorem 3.3.11. Let f(z) be continuous in [0,+∞) with Mellin transform
f ∗(s) having a nonempty fundamental strip ⟨α, β⟩.

(i) Assume that f ∗(s) admits a meromorphic continuation to the strip
⟨γ, β⟩ for some γ < α with a finite number of poles there, and is
analytic on ℜ(s) = γ. Assume also that there exists a real number
η ∈ (α, β) such that

f ∗(σ + it) = O(e−θ|t|), 0 < θ < π

when |t| → ∞ in γ ≤ ℜ(s) ≤ η. If f ∗(s) admits the singular expansion
for ℜ(s) ∈ ⟨γ, α⟩,

f ∗(s) ≍
∑

(ξ,k)∈A

dξ,k
1

(s− ξ)k
,

then an asymptotic expansion of f(z) at 0 is

f(z) =
∑

(ξ,k)∈A

dξ,k
(−1)k−1

(k − 1)!
z−ξ(log z)k−1 +O(z−γ)

and the asymptotic expansion holds in the cone

Sθ = {z ∈ C|0 < |z| <∞ and | arg(z)| ≤ θ} with 0 < θ < π.

31

(ii) Similarly assume that f ∗(s) admits a meromorphic continuation to
⟨α, γ⟩ for some γ > β and is analytic on ℜ(s) = γ. Assume also
that

f ∗(s) = O(|s|−r) with r > 1,

for η ≤ ℜ(s) ≤ γ with η ∈ (α, β). If f ∗(s) admits the singular expansion
of the same form for ℜ(s) ∈ ⟨η, γ⟩, then an asymptotic expansion of
f(z) at ∞ is

f(z) = −
∑

(ξ,k)∈A

dξ,k
(−1)k−1

(k − 1)!
z−ξ(log z)k−1 +O(z−γ)

and the asymptotic expansion holds in the cone

Sθ = {z ∈ C|0 < |z| <∞ and | arg(z)| ≤ θ} with 0 < θ < π.

The advantage of asymptotic expansions holding in a cone in the complex
plane is that asymptotic expressions of the derivative are obtained by term-
by-term differentiation (the same is not true for asymptotic expansions which
just hold on the real line). The justification of this follows from a useful
theorem due to J. Ritt [162].

Theorem 3.3.12. Let f(z) be analytic in an annular sector SR which is
defined as

SR = {z ∈ C|R < |z| <∞ and θ1 < arg(z) ≤ θ2} for some θ1, θ2 and 0 ≤ R.

If for some fixed real number p, we have

f(z) = O(zp) (or f(z) = o(xp)) as z → ∞ in SR,

then
f (m)(z) = O(zp−m) (or f (m)(z) = 0(xp−m)) as z → ∞

in any closed annular sector properly interior to SR.

Now, with the knowledge of the Mellin transform, we can handle the
functional equation (3.5). From the assumptions of Theorem 3.2.3 and the
fact that P0 = P1 = 0, we have that

f̃(z) =

{
O(z2), as z → 0+,
O(z1+ϵ), as z → ∞.

Now, applying the Mellin transform on (3.5), we obtain for ℜ(s) ∈ ⟨−2,−1−
ϵ⟩

f̃ ∗(s) =
−Γ(s+ 1)

1− p−s − q−s
. (3.9)

32

For the sake of simplicity, we assume that p = q = 1/2, then (3.9) become

f̃ ∗(s) =
−Γ(s+ 1)

1− 2s+1
.

We let χk = 2kπi/ log 2 for k ∈ Z. By a simple computation, we get

f̃ ∗(s) ≍ 1

(s+ 1)2
1

log 2 − 1

s+ 1

(
γ

log 2 +
1

2

)
− 1

log 2
∑

k∈Z\{0}

Γ(χk)

s+ 1− χk

.

From [54], we have that the gamma function admits a bound

|Γ(σ + it)| = O
(
|t|σ−1/2e−π|t|/2) , as |t| → ∞.

Thus, we can apply Theorem 3.3.8. This plus the result from depoissonization
in (3.6) yields

E(Pn) = f̃(n) = n log2 n+ n

(
γ

log 2 +
1

2
+ P (log2 n)

)
+ o(n),

where P (t) is a 1-periodic function with the Fourier expansion given by

P (t) =
∑

k∈Z\{0}

Γ(−χk)

log 2 e2kπit.

With the mean of the external path length of symmetric tries solved, let
us turn our attention back to the internal path length of symmetric DSTs.
Apart from the Rice method, P. Flajolet and B. Richmond proposed another
method to handle such problems in [66]. The Flajolet-Richmond method is a
combination of the Euler transform, the Mellin transform and the singularity
analysis. Before we explain their approach, we introduce singularity analysis.

3.4 Singularity Analysis
It has been recognized for a long time that generating function’s dominant
singularities (the ones with smallest modulus) contains a great deal of infor-
mation on the coefficients. Therefore, studying the singularities of generating
function may give us how the number of objects which the generating func-
tion is counting will behave in the long term. Although the idea has been
recognized a long time ago, there was no systematical research about this
subject until P. Flajolet and A. M. Odlyzko constructed the theory of singu-
larity analysis [64]. Nowadays, singularity analysis is one the the most often

33

used techniques in the analysis of algorithms. Here, we will briefly explain
how to apply this method. For a more comprehensive introduction to the
whole theory, see [70].

Many combinatorial counting problems with a solution an depending on
n and satisfying certain recursion relation can be solved by introducing the
generating function

f(z) =
∑
n≥0

anz
n.

Then, the desired result can be retrieved by

an = [zn]f(z).

There are many methods to retrieve the coefficient. A method which is
much more productive than elementary real analysis techniques is to use the
Cauchy’s coefficient formula:

[zn]f(z) =
1

2πi

∫
γ

f(z)

zn+1
dz.

As an example, we use f(z) = (1 − z)−α with α > 0 to illustrate the idea.
We choose the contour γ at a distance 1/n from the singularity z = 1.
Then, by using the change of variables z = 1 + t/n, we get that dz = dt

n
,

(1− z)−α = nα(−t)−α and

1

zn+1

n→∞−−−→ e−t.

This gives us (for a rigorous proof, see [70])

[zn](1− z)−α ∼ gan
α−1, where ga :=

1

2πi

∫
H
e−t(−t)−αdt,

with H being the Hankel contour. We recall the Hankel’s integral represen-
tation of Γ(α):

1

Γ(α)
=

1

2πi

∫
H
e−t(−t)−αdt.

Thus,

[zn](1− z)−α ∼ nα−1

Γ(α)
.

Utilizing the same idea for logarithmic factors with singularities at 1, we get
the following theorem.

34

Theorem 3.4.1. Let α be an arbitrary complex number in C\Z≤0 and β ∈ R.
The coefficient of zn in the function of the form

f(z) = (1− z)−α

(
1

z
log 1

1− z

)β

admits for large n a full asymptotic expansion in descending power of logn,

fn ≡ [zn]f(z) ∼ nα−1

Γ(α)
(logn)β

[
1 +

C1

logn +
C2

log2 n
+ . . .

]
,

where
Ck =

(
β

k

)
Γ(α)

dk

dsk
1

Γ(s)

∣∣∣∣
s=α

.

Remark 2. In many situations, the location of the dominating singularity
will not be at 1. However, we can easily shift the location of the dominating
singularity to 1 and then apply Theorem 3.4.1. Suppose that

f(z) =

(
1− z

ξ

)−α
(
ξ

z
log 1

1− z
ξ

)β

,

then we have

f(ξz) = (1− z)−α

(
1

z
log 1

1− z

)β

and hence

[zn]f(z) = ξ−n[zn]f(ξz) = ξ−n[zn](1− z)−α

(
1

z
log 1

1− z

)β

.

Example 3.4.2. Planted trees, sometimes also called Catalan trees, are
rooted trees where each node has an arbitrary number of children and subtrees
have a natural left-to-right-order. Let fn be the number of planted trees with
n nodes and f(z) =

∑
n≥0 fnz

n. It is well known that

f(z) =
1−

√
1− 4z

2
.

By Theorem 3.4.1, we get

[zn]f(z) = 4n[zn]f
(z
4

)
= 4n[zn]

−
√
1− z

2
∼ 4n−1n

−3/2

√
π
.

35

Theorem 3.4.1 gives us a way to derive asymptotic expansions of the
coefficients of generating functions satisfying a certain form. However, gen-
erating functions do not always admit such an elegant expression in practical
cases. For general use, we usually expand the generating function f(z) near
the dominant singularity in the form

f(z) = g(z) +O(h(z)) or f(z) = g(z) + o(h(z)),

where h̃(z) is a function of the above form and g(z) is written as a linear
combination of functions of the above form. What is required at this stage
is a way to extract coefficients of error terms. For this purpose, assumptions
on h(z) are necessary.

One such assumption is to assume that h(z) is analytic in the complex
plane slit at the half line R≥1. In fact, weaker conditions suffice: any do-
main whose boundary makes an acute angle with the half line appears to be
suitable.

Definition 3.4.3. Given two number ϕ, R with R > 1 and 0 < ϕ < π
2
, the

open domain ∆(ϕ,R) is defined as

∆(ϕ,R) = {z : |z| < R, z ̸= 1, | arg(z − 1)| > ϕ}.

A domain is a ∆-domain at 1 if it is a ∆(ϕ,R) for some R and ϕ. For
a complex number ζ ̸= 0, a ∆-domain at ζ is the image by the mapping
z 7→ ζz of a ∆-domain at 1. A function is ∆-analytic if it is analytic in
some ∆-domain.

With the definitions of ∆-domain and ∆-analytic, we may now introduce
the transfer theorem for the error terms.

Theorem 3.4.4. Let α, β be arbitrary real numbers, α, β ∈ R and let f(z)
be a function that is ∆-analytic.

(i) Assume that f(z) satisfies in the intersection of a neighborhood of 1
with its ∆-domain the condition

f(z) = O

(
(1− z)−α

(
log 1

1− z

)β
)
.

Then, one has
[zn]f(z) = O(nα−1(logn)β).

36

(ii) Assume that f(z) satisfies in the intersection of a neighborhood of 1
with its ∆-domain the condition

f(z) = o

(
(1− z)−α

(
log 1

1− z

)β
)
.

Then, one has
[zn]f(z) = o(nα−1(logn)β).

Example 3.4.5. We let fn be the number of labeled 2-regular graphs with n
vertices and f(z) =

∑
n≥0

fn
n!
zn be the exponential generating function of fn.

Then, by symbolic combinatorics (for more details, see [70]), we get

f(z) =
exp(−2z−z2

4
)

√
1− z

.

Expanding the numerator around z = 1, we have

f(z) = e−3/4(1− z)−1/2 +O
(
(1− z)1/2

)
.

Now, an application of Theorem 3.4.1 and Theorem 3.4.4 yields

fn
n!

= [zn]f(z) =
e−3/4

√
nπ

+O(n−3/2).

In Example 3.1.2, we derived the asymptotic expression of the total path
length of symmetric DSTs via the Rice method. Now, as promised in the
previous sections, we display how the Flajolet-Richmond approach works by
deriving the asymptotic expression of the total path length of symmetric
DSTs again.

Example 3.4.6. (Flajolet-Richmond approach for the total path length of
DSTs)
As in Example 3.1.2, we let Sn be the mean of the total path length of
symmetric DSTs built on n strings. We also let A(z) :=

∑
n Snz

n. Now, we
apply the Flajolet-Richmond approach to derive the asymptotic expression of
Sn by the following steps:

(1) Euler Transform. We apply the Euler transform on A(z) by letting

Â(s) =
1

s+ 1
A

(
1

s+ 1

)
.

Then, from (3.2), we get

(s+ 1)Â(s) = 4Â(2s) + s−2. (3.10)

37

(2) Normalization. We denote by Ā(s) = Â/Q(−s), where Q(−s) is de-
fined in Step 2 of Example 3.1.2. Dividing both sides of (3.10) by
Q(−2s), we get

Ā(s) = 4Ā(2s) +
1

s2Q(−2s)
. (3.11)

(3) Mellin Transform. By applying Mellin transform on (3.11) and the
results in [68], for ℜ(ω) > 2, we have

M [Ā;ω] =
GE(ω)

1− 22−ω
,

where

GE(ω) =
Q(2ω−2)

Q(1)
Γ(ω)Γ(1− ω).

Then, the inverse Mellin transform yields as s→ 0

Ā(s) =s−2 log2

1

s
+

1

s2

(
1

2
− α

)
+

1

log 2
∑

k∈Z\{0}

GE(2 + χk)s
−2−χk +O(|s|−1), (3.12)

where α is defined as in Example 3.1.2 and χk = 2kπi/ log 2.

(4) Asymptotic for the Ordinary Generating Function. We multiply
both sides of (3.12) by Q(−2s) and reverse the Euler transform by

A(z) =
1

z
Â

(
1− z

z

)
.

From the fact that Q(−2s) = 1 +O(|s|), we get

A(z) =
z

(1− z)2
log2

z

1− z
+

z

(1− z)2

(
1

2
− α

)
+

∑
k∈Z\{0}

GE(2 + χk)

log 2
z1+χk

(1− z)2+χk
+O(|1− z|−1). (3.13)

(5) Singularity Analysis. Now, we handle the terms in (3.13) individu-

38

ally. First,

z

(1− z)2
log2

z

1− z
=

z

(1− z)2

(
log2 z + log2

1

1− z

)
=
1− (1− z)

(1− z)2

(
1− (1− z)

log 2

(
1

z
log 1

1− z

)
+O((1− z)−1)

)
=

1

log 2(1− z)−2

(
1

z
log 1

1− z

)
− 2

log 2(1− z)−1

(
1

z
log 1

1− z

)
+O((1− z)−1).

By Theorem 3.4.1, we get that

[zn]
z

(1− z)2
log2

z

1− z
= n log2 n+ n

γ − 1

log 2 +O(n1−ϵ).

Similarly, we get

[zn]
z

(1− z)2
=[zn](1− z)−2(1− (1− z)) = n+O(n1−ϵ)

[zn]
z1+χk

(1− z)2+χk
=

n1+χk

Γ(2 + χk)
+O(n1−ϵ)

and
O([zn]|1− z|−1) = O(1).

By substituting them back into (3.13), we get

Sn =n log2 n+ n

(
γ − 1

log 2 +
1

2
− α

)
+

n

log 2
∑

k∈Z\{0}

GE(2 + χk)

Γ(2 + χk)
nχk +O(n1−ϵ).

Note that the asymptotic expression coincides with (3.3) which was
derived by the Rice method.

3.5 Recently developed Methods
In the last several sections, we have introduced four often used methods.
We also demonstrated how the methods work by working out asymptotic

39

expressions of the mean for two shape parameters of digital trees. So, it is
natural to ask whether or not the variance and higher moments can be derived
by the methods as well. The answer is yes. However, the computation can
be extremely complicated and tricky.

For example, assume that we try to derive the asymptotic expression of
the variance for the total path length of symmetric DSTs. Let Pn be the
total path length of symmetric DSTs built on n strings. Then we can use the
introduced methods to derive asymptotic expressions for E(Pn) and E(P 2

n)
and then compute E (P 2

n)−E(Pn)
2. However, the order of E(Pn)

2 is n2(logn)2
while the order of the variance is n (see [121]). This implies that the first
several terms of E(Pn)

2 and E (P 2
n) will be canceled. If we do not know the

right order of the variance (which normally is the case), we will have to derive
very long asymptotic expressions and face many cancelations. This would
be extremely difficult not only because deriving long asymptotic expressions
can be complicated, but also because the cancelation part often needs some
deep knowledge on all kinds of constants, Fourier series and q-analysis.

To avoid such disadvantages and derive the variance more efficiently, a
new set of mathematical tools has been proposed by M. Fuchs, H.-K. Hwang
and V. Zacharovas in [74]. In this section, we will introduce these tools.

3.5.1 Poissonized Variance with Correction
For a given random variable Xn, we let

f̃1(z) = e−z
∑
n≥0

E(Xn)
zn

n!

and
f̃2(z) = e−z

∑
n≥0

E(X2
n)
zn

n!
.

Then, from the definition of the variance and analytical depoissonization,
one may guess that if f̃1(z) and f̃2(z) are smooth enough, then

V(Xn) = E(X2
n)− (E(Xn))

2 ∼ f̃2(n)− f̃1(n)
2. (3.14)

This asymptotic equivalent holds for many cases. However, for a large class
of problems, f̃2(n)− f̃1(n)

2 is not asymptotically equivalent to the variance.
One class of such problem are those with mean and variance satisfying

lim
n→∞

logE(Xn)

logn = 1 and lim
n→∞

logV(Xn)

logn = 1. (3.15)

40

Examples of these problems are the two shape parameters we discussed be-
fore.

To solve this problem, H.-K. Hwang, M. Fuchs and V. Zacharovas pro-
posed the poissonized variance with correction

Ṽ (z) := f̃2(z)− f̃2(z)
2 − zf̃ ′(z)2 (3.16)

in [74]. For the problems satisfying (3.15), we have that

V(Xn) = Ṽ (n) +O ((logn)c)

for some c ≥ 0 under suitable assumptions. Comparing (3.14) and (3.16),
the difference is the appearance of the term zf̃ ′(z)2. To see why this term is
necessary, we introduce the following lemma :

Lemma 3.5.1. Let f̃(z) = e−z
∑
n≥0

an
zn

n!
. If f̃(z) is an entire function, then

an =
∑
j≥0

f̃ (j)(n)

j!
τj(n), (3.17)

where

τj(n) := n![zn](z − n)jez =

j∑
k=0

(
j

k

)
(−1)j−k n!n

j−k

(n− k)!
.

Now we let D̃(z) := f̃2(z)− f̃1(z)
2. By the above lemma we get that

V(Xn) = E(X2
n)− (E(Xn))

2

=
∑
j≥0

f̃
(j)
2 (n)

j!
τj(n)−

(∑
j≥0

f̃
(j)
1 (n)

j!
τj(n)

)2

= D̃(n)− nf̃ ′(n)2 − n

2
D̃′′(n) + smaller order terms.

For the case f̃1(n) ≍ n logn, we find that nf̃ ′
1(n)

2 ≍ n(logn)2 is of larger
order than D̃(n).

Comparing to other methods like the second moment approach (using
f̃2(z)) or usage of D̃(z), one of the major advantages of using the poissonized
variance with correction is that the computation is largely simplified. Analyt-
ical poissonization transfers a problem from Bernoulli model to the Poisson
model. While the other approaches apply the analytical depoissonization first
and then dealt with many cancelations, the poissonized variance with cor-
rections has already incorporated all the cancelations in the poisson model.
See [74] for more comparison between poissonized variance with corrections
and other methods.

41

3.5.2 Poisson-Laplace-Mellin Method
The Poisson-Laplace-Mellin method was developed together with poissonized
variance with correction in [74] to deal with shape parameters of symmetric
random digital search trees. As its name implies, this approach combines
poissonization, Laplace transform and Mellin transform. Before we explain
this method step by step, we first need an important lemma.

Lemma 3.5.2. Let f̃(z) be a function whose Laplace transform exists and
is analytic in C \ (−∞, 0]. Assume that

L [f̃(z); s] =

{
O (|s|−α| log s|m) ,
cs−β

(
log
(
1
s

))m
,

uniformly for s→ ∞ with | arg(s)| ≤ π − ϵ, where α ∈ R, β ∈ C and m ≥ 0
is an integer. Moreover, assume that

L [f̃(z); s] = O(|s|−1−ϵ)

uniformly for s→ ∞ with | arg(s)| ≤ π − ϵ. Then,

f̃(z) =

O(|z|α−1| log z|m),

czβ−1

m∑
j=0

(
m

j

)
(log z)m−j ∂

j

∂ωj

1

Γ(ω)

∣∣∣∣
ω=β

,

uniformly as z → ∞ and | arg(z)| ≤ π
2
− ϵ.

Now, we give a step by step description of how the Poisson-Laplace-Mellin
method work:

1. Use the Poisson generating functions of the first and second moment.
The Poisson generating function of both the mean and the variance
will satisfy a differential-functional equation of the form

f̃(z) + f̃ ′(z) = 2f̃(z/2) + t̃(z), (3.18)

where t̃(z) is some suitable function.

2. Substitute the Poisson generating function of the first and second mo-
ment into the formula of poissonized variance with correction. The
poissonized variance with corrections will also satisfy a differential-
functional equation of the type (3.18).

42

3. Now, we have to asymptotically solve two differential-functional equa-
tions of the form in (3.18). We apply Laplace transform to (3.18) to
get rid of the differential operator. The resulting functional equation
will be

(1 + s)L [f̃(z); s] = 4L [f̃(z); 2s] + L [t̃(z); s]. (3.19)

4. We let

Q(s) =
∏
k≥1

(
1− s

2k

)
, L̄ [f̃(z); s] =

L [f̃(z); s]

Q(−s)
,

and
L̄ [t̃(z); s] =

L [t̃(z); s]

Q(−2s)
.

Dividing both sides of (3.19) by Q(−2s), we will get a simplified func-
tional equation

L̄ [f̃(z); s] = 4L̄ [f̃(z); 2s] + L̄ [t̃(z); s]. (3.20)

5. Apply the Mellin transform to (3.20), which yields

M [L̄ [f̃(z); s];ω] =
M [L̄ [t̃(z); s];ω]

1− 22−ω
.

By the standard theory of inverse Mellin transform which we have intro-
duced in Section 3.3, we derive an asymptotic expansion of L̄ [f̃(z); s]
as s→ 0.

6. Applying Lemma 3.5.2 to the asymptotic expansion of L̄ [f̃(z); s] will
give an asymptotic expansion of f̃(z) as z → ∞.

7. The last step is to apply analytical depoissonization in order to get the
desired results from the asymptotic expansions of f̃(z). For this, one
may use the standard method from [99] or the theory of JS-admissiblility
which will be explained below.

3.5.3 JS-admissibility
For analytical depoissonization, the standard theory by P. Jacquet and W.
Szpankowski was introduced in Section 3.2. However, there are many com-
plicated conditions to be checked before using the depoissonization lemmas
from Section 3.2 and similar results in [99]. Thus, the authors of [74] pro-
posed a systematic method for this which they called the JS-admissibility.
We start with the following definition which arises from Theorem 3.2.4.

43

Definition 3.5.3. We let ϵ, ϵ′ ∈ (0, 1) be arbitrarily small numbers. An
entire function f̃ is said to be JS-admissible, denoted by f̃ ∈ J S , if the
following two conditions hold for |z| ≥ 1.

(I) There exists α, β ∈ R such that uniformly for | arg(z)| ≤ ϵ,

f̃(z) = O
(
|z|α(log+ |z|)β

)
,

where log+ x := log(1 + x).

(O) Uniformly for ϵ ≤ | arg(z)| ≤ π,

f(z) := ezf̃(z) = O
(
e(1−ϵ′)|z|

)
.

Then Theorem 3.2.4 can be reformulated as follows.

Lemma 3.5.4. Assume f̃ ∈ J S . Let f(z) = ezf̃(z), then we have that

an := f (n)(0) = n![zn]f(z) = n![zn]ezf̃(z)

=
2k∑
j=0

f̃ (j)(n)

j!
τj(n) +O

(
nα−k(logn)β

)
for k = 1, 2,

The real advantage of introducing admissibility is that it opens the pos-
sibility of developing closure properties as we discuss here.

Lemma 3.5.5. Let m be a nonnegative integer and α ∈ (0, 1), we have the
following properties.

1. zm, e−αz ∈ J S .

2. If f̃ ∈ J S , then f̃(αz), zmf̃ ∈ J S .

3. If f̃ , g̃ ∈ J S , then f̃ + g̃ ∈ J S .

4. If f̃ ∈ J S and P̃ is a polynomial, then the product P̃ f̃ ∈ J S .

5. If f̃ , g̃ ∈ J S , then h̃(z) = f̃(αz)g̃ ((1− α)z) ∈ J S .

6. If f̃ ∈ J S , then f̃ ′ ∈ J S and thus f̃ (m) ∈ J S .

In the last step of the Poisson-Laplace-Mellin method we have mentioned
that the depoissonization step can be finished by JS-admissibility. Here we
use the closure properties together with the following Proposition.

44

Proposition 3.5.6. Let f̃ and g̃ be entire functions satisfying

f̃(z) + f̃ ′(z) = 2f̃(z/2) + g̃(z),

with f̃(0) = 0, then

g̃ ∈ J S if and only if f̃ ∈ J S .

With this proposition, for all differential functional equation of the form
of (3.18), we only need to check whether t̃(z) is JS-admissible to finish the
depoissonization step.

3.6 Contraction Method
Since introduced in the 1960s by Knuth [125, 126, 127], probabilistic analysis
of algorithms has been mostly depending on analytic techniques for gener-
ating functions. However, over the last decade of the 20th century, among
other probabilistic techniques, the so called contraction method has been
developed. The contraction method was first proposed by Rösler to ana-
lyze Quicksort [184]. It was then further developed independently by Rösler
[185] and Rachev and Rüschendorf [179], and later on in Rösler [186] and
Neininger and Rüschendorf [159, 160]. See also the survey article by Rösler
and Rüschendorf [182].

The contraction method is used to prove that certain sequences of random
variables which satisfies a distributional recurrences will converge to a fixed
point which is then shown to be the limiting distribution. The method was
first used for univariate cases and then generalized to multivariate cases.
Here we will introduce the multivariate version with the univariate version
as a special case. Before we discuss the settings, we need some definitions.

Definition 3.6.1. We denote by Md the space of all probability measures
on Rd. For µ, ν ∈ Md with X ∼ µ and Y ∼ ν, the Zolotarev metric ζs with
s > 0 is defined by

ζs(µ, ν) = sup
f∈Fs

|E(f(X)− f(Y))| ,

where s = m+ α, 0 < α ≤ 1, m ∈ N0, and

Fs :=
{
f ∈ Cm(Rd,R) : |f (m)(x)− f (m)(y)| ≤ ∥x− y∥α

}
.

Here, Cm(Rd,R) denotes the space of m times differentiable functions.

45

Let us now consider a sequence of d-dimensional random vectors {Yn}n≥0

which satisfy the distributional recursion

Yn
d
=

k∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0,

where

1. I(n)r is a vector of random cardinalities with I
(n)
r ∈ {0, . . . , n}

2.
(
A1(n), . . . , Ak(n), bn, I

(n)
1 , . . . , I

(n)
k

)
, (Y

(1)
n), . . . , (Y

(k)
n), (Yn) are indepen-

dent,

3. A1(n), . . . , Ak(n) are random d× d matrices,

4. bn is a random d-dimensional vector,

5. (Y
(1)
n), . . . , (Y

(k)
n) are identically distributed as (Yn).

The symbol d
= denotes equality in distribution and we have n0 ≥ 0.

Next, we normalize the Yn by

Xn := C−1/2
n (Yn −Mn) , n ≥ n0,

where Mn ∈ Rd and Cn is a positive-definite square matrix. In the case
2 < s ≤ 3, we assume that Cov(Yn) is positive definite for n ≥ n1 ≥ n0. Our
eventual goal is to prove that Xn converges to a fixed point in Md

s(0, Idd).
If the first and second moments of Yn are finite, we choose Mn and Cn for
different s as follows.

Mn :=

 E(Yn), Cn :=

{
Idd, for 0 ≤ n < n1,
Cov(Yn), for n ≥ n1,

if 2 < s ≤ 3,

E(Yn), Cn is any positive definite matrix, if 1 < s ≤ 2,

The normalized quantities Xn then satisfy the modified recurrence

Xn
d
=

k∑
r=1

Ar(n)X
(r)

I
(n)
r

+ b(n), n ≥ n0,

with

A(n)
r := C−1/2

n Ar(n)C
1/2

I
(n)
r

, b(n) := C−1/2
n

(
bn −Mn +

k∑
r=1

Ar(n)MI
(n)
r

)
and the independence relations are as for Yn. The normalized quantities will
converge in ζs under suitable conditions.

46

Theorem 3.6.2. Let (Xn) be normalized as before and s-integrable and 0 <
s ≤ 3. Assume that as n→ ∞,

1.
(
A

(n)
1 , . . . , A

(n)
k , bn

)
Ls−→ (A∗

1, . . . , A
∗
k, b

∗),

2. E
k∑

r=1

∥A∗
r∥

s
op < 1, and

3. E
[
1{I(n)

r ≤l}∪{I(n)
r =n}∥A

(n)
r ∥sop

]
→ 0 for all l ∈ N and r = 1, . . . , k.

Then (Xn) converges to a limit X,

ζs(Xn, X) → 0, n→ ∞.

Proof. The proof is quite long and technical and hence we omit it here. See
[159] for the complete proof.

There are many variants of the contraction method for different cases,
here we give a specialized version which is very useful for proving central
limit theorems.

Corollary 3.6.3. (Central Limit Theorem) Let (Yn) be s-integrable, s > 2
and satisfies the recurrence

Yn
d
=

k∑
r=1

Y
(r)

I
(n)
r

+ bn, n ≥ n0

with

E(Yn) = f(n) + o(g1/2(n)) and Var(Yn) = g(n) + o(g(n)),

where g(n) > 0 for all n huge enough. Assume for all r = 1, . . . , k and some
2 < s ≤ 3,

1.
(
g(I

(n)
r)

g(n)

)1/2

Ls−→ A∗
r,

2. 1

g1/2(n)

(
bn − f(n) +

k∑
r=1

f(I(n)r)

)
Ls−→ 0,

3.
k∑

r=1

(A∗
r)

2 = 1, P(∃r : A∗
r = 1) < 1.

47

Then
Yn − f(n)

g1/2(n)

L−→ N (0, 1),

where N (0, 1) denotes the standard normal distribution.
Example 3.6.4. We let Yn be the size of random m-ary search tree (see
[139]) containing n data. Then Yn satisfies the recursion

Yn
d
=

m∑
r=1

Y
(r)

I
(n)
r

+ 1, n ≥ m

with initial conditions Y0 = 0 and Y1 = · · · = Ym−1 = 1. We let V =
(U(1), U(2)−U(1), . . . , 1−U(m−1)) denote the vector of spacings of independent
Unif[0,1] random variables U(1), . . . , U(m−1). Then we have

1

n
(I

(n)
1 , . . . , I(n)m)

L1+ϵ−→ V.

From [9, 20, 127, 141], we have that for 3 ≤ m ≤ 26,

E(Yn) =
n

2(Hm − 1)
+O(1 + nα−1), Var(Yn) = nγm + o(n),

where Hm is the m-th harmonic number, γm > 0 and α < 3/2 are constants
depending on m. To apply Corollary 3.6.3, we choose

f(n) =
n

2(Hm − 1)
and g(n) = γmn.

Then,
g(I

(n)
r)

g(n)
=
I
(n)
r

n

Ls→ U(r) − U(r−1) = (A∗
r)

2

and
1√
g(n)

(
bn − f(n) +

k∑
r=1

f(I(n)r)

)

=
1

√
nγm

(
1− n

2(Hm − 1)
+
n− 1−m

2(Hm − 1)

)
→ 0 as n→ ∞.

Finally,
m∑
r=1

(A∗
r)

2 = U(1) +
m−1∑
r=2

(
U(r) − U(r−1)

)
+ 1− U(m−1) = 1

and
P(A∗

r = 1) < 1 for all r.
Thus, all conditions of Corollary 3.6.3 are satisfied and hence we rederived
the limit law (see [9, 131, 141]) for Yn.

48

Chapter 4

New Applications of the
Poisson-Laplace-Mellin Method

4.1 Approximate Counting
4.1.1 Introduction
Approximate counting, an algorithm proposed by Morris [148] in 1978, is used
for counting within a certain error tolerance a huge amount of objects with
very limited space. The algorithm has found many applications such as in
the analysis of the Webgraph, monitoring network traffic, finding patterns in
protein and DNA sequencing, computing frequency moments of data streams,
data storage in flash memory, and many variants and improvements have
been proposed; see Csűrös [27], Mitchell and Day [146], Gronemeier and
Sauerhoff [84], Aspnes and Censor [8], Cichoń and Macyna [21] and references
therein.

Here, we are going to revisit the analysis of the classical algorithm which
is described as follows: a counter Cn is maintained with initial value C0 = 0.
After “counting n objects”, a random decision based only on the current
content of the counter determines whether or not the counter should be
increased when “counting the n + 1-st object”. More precisely, the counter
obeys the following rule

Cn+1 =

{
Cn + 1, with probability qCn ;

Cn, with probability 1− qCn ,
, (4.1)

where 0 < q < 1 is fixed. Hence, (Cn)n≥0 is a Markov chain describing
a pure birth process. The same chain was also encountered in a couple of
other problems: width of greedy decomposition of random acyclic digraphs

49

into node-disjoint paths (see Simon [194]), size of greedy independent set and
greedy clique in random graphs (see Simon [194]) and length of the leftmost
path in digital search trees (see below).

We mention in passing that many variants of the above Markov chain
have been investigated as well; e.g. see Crippa and Simon [26], Louchard
and Prodinger [138], Bertoin, Biane and Yor [10] and Guillemin, Robert and
Zwart [86]. Applications range from Computer Science over Particle Physics
to Molecular Biology; see the detailed discussion in [26].

As for the classical chain Cn, the first detailed analysis was given by Fla-
jolet in [61] who used Mellin transform (see also Prodinger [172] for a similar
analysis). Other approaches have been given by Kirschenhofer and Prodinger
[115] via Rice method, Prodinger [174] via Euler transform, Louchard and
Prodinger [137] via analysis of extreme value distributions, Rosenkrantz [183]
via martingale theory and Robert [181] via probabilistic tools. Here, we are
going to use the ”Poisson-Laplace-Mellin” method described in Section 3.5.2
to analyze approximate counting via the connection between the algorithm
and shape parameters of digital search trees.

We now explain the connection between approximate counting and digital
search trees equipped with the Bernoulli model (introduced in Chapter 2) in
more details. The parameter which is related to approximate counting is
the number of vertices on the leftmost path from the root to the leftmost
leaf. We denote this length in a random digital search tree of size n by Xn.
Obviously, Xn satisfies the following distributional recurrence

Xn+1
d
= XBn + 1, (n ≥ 0) (4.2)

with X0 = 0 and Bn
d
= Binom(n, q). This recurrence just reflects the trivial

fact that Xn can be computed by starting from the root (which counts as 1)
and then moving on to the left subtree (which has size Bn) where the same
procedure is repeated. Now, a moment’s reflection reveals that Cn is related
to Xn as

Cn
d
= Xn.

This relation will be the starting point of our analysis. We will use it to
derive asymptotic expansions for mean and variance of Cn.

Apart from the original approximate counting algorithm, we will also dis-
cuss extensions and variations of approximate counting. One such extension
was proposed in [21] where instead of one counter, m counters C(1)

n , . . . , C
(m)
n

were used (m fixed). Then, when “counting the n + 1-st object”, one of
the counters is chosen uniformly at random and increased according to the
stochastic rule (4.1).

50

The m-counter problem has been analyzed in [176], where mean and
variance of Dn := C

(1)
n + · · · + C

(m)
n were derived. For this variant, we

will show that the ”Poisson-Laplace-Mellin” method will greatly simplify the
analysis since the case ofm counters can be reduced to the case of one counter.
Moreover, similar simplifications can also be achieved for shape parameters
in m-DST trees recently introduced in [177].
Remark 3. Before stating our new result, we explain what is known about
Cn. Flajolet in [61] showed that, as n→ ∞,

E(Cn) ∼ log1/q n+ FC(log1/q n),

where FC(z) =
∑

k fke
2kπi is a 1-periodic function with Fourier coefficients

f0 =
γ

log(1/q) +
1

2
− α, fk =

Γ(−χk)

log(1/q) (k ̸= 0),

where γ is Euler’s constant, α =
∑

l≥1 q
l/(1 − ql) and χk = 2kπi/ log(1/q).

As for the variance, he showed that, as n→ ∞,

Var(Cn) ∼ GC(log1/q n),

where GC(z) =
∑

k gke
2kπi is again a 1-periodic function with computable

Fourier coefficients. Moreover, he gave the following expression for the aver-
age value of GC(z)

g0 =
π2

6 log2(1/q)
− α− β +

1

12
− 1

log(1/q)
∑
l≥1

1

l sinh(2lπ2/ log(1/q)) ,

where β =
∑

l≥1 q
2l/(1− ql)2.

4.1.2 Analysis of Approximate Counting
The starting point of our analysis will be (4.2).

Poissonization and depoissonization. First define

P̃ (y, z) = e−z
∑
n≥0

E(eXny)
zn

n!
.

Then, from (4.2), we obtain

P̃ (y, z) +
∂

∂z
P̃ (y, z) = eyP̃ (y, qz)

51

with P̃ (y, 0) = exp(−z).
From this, by differentiation with respect to y and setting y = 0, we

obtain for the Poisson generating functions of the first and second moment
of Xn (denoted by f̃1(z) and f̃2(z), respectively)

f̃1(z) + f̃ ′
1(z) = f̃1(qz) + 1, (4.3)

f̃2(z) + f̃ ′
2(z) = f̃2(qz) + 2f̃1(qz) + 1,

with f̃1(0) = f̃2(0) = 0. Moreover, as poissonized variance with corrections
we introduced in Section 3.5.1 Ṽ (z) := f̃2(z) − f̃ 2

1 (z). Then, the above two
relations in turn yield

Ṽ (z) + Ṽ ′(z) = Ṽ (qz) + f̃ ′
1(z)

2 (4.4)

with Ṽ (0) = 0.
By Proposition 3.5.6, we have that f̃1(z) and f̃2(z) are both JS-admissible.

Depoissonization then yields, as n→ ∞,

E(Xn) ∼ f̃1(n) and Var(Xn) ∼ Ṽ (n).

Thus, we only have to find asymptotics of f̃1(z) and Ṽ (z).

Analysis of the Mean. Here, we analyze the mean, where we start from
(4.3). Since f̃1(z) is JS-admissible, we may apply Laplace transform on it to
get rid of the differential operator and obtain

(s+ 1)L [f̃1; s] =
1

q
L [f̃1;−s/q] + 1/s. (4.5)

Next, we derive an exact expression for the mean. By iterating the above
functional equation, we get

L [f̃1; s] =
1

s

∑
j≥0

1

(s+ 1)(sq−1 + 1) · · · (q−js+ 1)

=
1

s

∑
j≥0

∑
0≤l≤j

(−1)j−lq(
j−l+1

2)

(q−ls+ 1)QlQj−l

=
1

s

∑
l≥0

1

Ql(q−ls+ 1)

∑
j≥0

(−1)jq(
j+1
2)

Qj

=
Q∞

s

∑
l≥0

1

Ql(q−ls+ 1)
,

52

where Qj and Q∞ have been defined in the introduction. So, by inverse
Laplace transform,

f̃1(z) = Q∞
∑
l≥0

1

Ql

(1− e−qlz)

and hence
E(Xn) = Q∞

∑
l≥0

1

Ql

(1− (1− ql)n).

We record this result for future reference.

Proposition 4.1.1. We have,

E(Xn) = Q∞
∑
l≥0

1

Ql

(1− (1− ql)n).

Next, we derive an asymptotic expansion. Set L̄ [f̃1; s] = L [f̃1; s]/Q(−s),
where

Q(−s) =
∞∏
i=1

(
1 + sqi

)
.

Then, by dividing (4.5) by Q(−s/q),

L̄ [f̃1; s] =
1

q
L̄ [f̃1; s/q] +

1

sQ(−s/q)
.

From the fact that f̃1(z) is JS-admissible and properties of the well-studied
function Q(−s/q) [5], L̄ [f̃1; s] admits a polynomial bound as s tends to both
zero and ∞. Therefore, we may apply Mellin transform and obtain

M [L̄ ;ω] =
M1(ω)

1− qω−1
, (ℜ(ω) > 1),

where
M1(ω) =

∫ ∞

0

sω−2

Q(−s/q)
ds = Q(q1−ω)

Q∞
Γ(ω + 1)Γ(−ω).

Next, from the exponential decay of the Gamma function along vertical lines,
we have M1(c + it) = O(e−(π−ϵ)|t|) for c > 1 and |t| large. Thus, M1(ω) is
integrable and hence the inverse Mellin transform exists for | arg(s)| ≤ π− ϵ.
Using inverse Mellin transform, we obtain that for | arg(s)| ≤ π − ϵ and
|s| → 0,

L̄ [f̃1; s] ∼
1

s
log1/q

1

s
+

1

s

(
1

2
− α +

1

L

∑
k ̸=0

M1(1 + χk)s
−χk

)
,

53

where notations are as in the introduction. Thus, for | arg(s)| ≤ π − ϵ and
|s| → 0,

L [f̃1; s] ∼
1

s
log1/q

1

s
+

1

s

(
1

2
− α +

1

L

∑
k ̸=0

M1(1 + χk)s
−χk

)
,

By Lemma 3.5.2, we may apply inverse Laplace transform and we obtain
that for | arg(z)| ≤ π

2
− ϵ, as |z| → ∞,

f̃1(z) ∼ log1/q z +
γ

L
+

1

2
− α+

1

L

∑
k ̸=0

M1(1 + χk)

Γ(1 + χk)
zχk

= log1/q z +
γ

L
+

1

2
− α− 1

L

∑
k ̸=0

Γ(−χk)z
χk .

The same asymptotic expansion also holds for E(Xn) by depoissonization.

Analysis of the Variance. For an asymptotic expansion of the variance,
we start from (4.4) and proceed by a similar method as above. We already
know that f̃1(z) is JS-admissible and Ṽ (z) satisfies the functional equation
(4.4). Because f̃1(z) is entire and JS-admissible, f̃ ′

1(z)
2 admits a polynomial

bound by Ritt’s Theorem (Theorem 4.2 of [162]). Therefore, we have the
following rough bounds for Ṽ (z):

Ṽ (z) =

{
O(z), |z| → 0;
O(zϵ), |z| → ∞.

Consequently, we may apply Laplace transform to (4.4) and it yields

(s+ 1)L [Ṽ ; s] =
1

q
L [Ṽ ; s/q] + g̃(s), (4.6)

where g̃(s) = L [f̃ ′2
1 ; s]. Again, from the polynomial bound for f̃1

′
(z)2, we

get bounds for g̃(z):

g̃(s) =

{
O(s), s→ 0;
O(s−1), s→ ∞.

Next, set L̄ [Ṽ ; s] = L [Ṽ ; s]/Q(−s). Dividing both sides of (4.6) by Q(−s/q)
yields

L̄ [Ṽ ; s] =
1

q
L̄ [Ṽ ; s/q] + g̃(s)/Q(−s/q).

54

Again, by the same reason as for the mean, we may apply Mellin transform
and obtain

M [L̄ ;ω] =
M2(ω)

1− qω−1
, (ℜ(ω) > 1),

where
M2(ω) =

∫ ∞

0

sω−1

Q(−s/q)

∫ ∞

0

e−zsf̃ ′
1(z)

2dzds.

By the bounds for g̃(s) above, we have that M2(ω) is analytic in the half
plane ℜ(ω) ∈ (−1,∞). Because L̄ [Ṽ ; s] admits a polynomial bound, the
inverse Mellin transform of M [L̄ ;ω] exists by Proposition 5 of [62]. The
rest of the analysis is as for the mean and we obtain, as z → ∞,

Ṽ (z) ∼ 1

L

∑
k∈Z

M2(1 + χk)

Γ(1 + χk)
zχk .

By depoissonization, the same holds for Var(Xn) as well.
We conclude by simplifying M2(1 + χk). Therefore, we use that

f̃ ′
1(z) = Q∞

∑
l≥0

ql

Ql

e−zql

and
1

Q(−s/q)
=

1

Q∞

∑
j≥0

(−1)jq(
j
2)

Qj(s+ q−j)
.

Plugging this into the above integral yields

M2(1 + χk) = Q∞
∑

h,l,j≥0

(−1)jq(
j
2)+l+h

QhQlQj

∫ ∞

0

sχk

(s+ q−j)(s+ qh + ql)
ds.

Denote by

φ(χ;x) :=

{
π(xχ − 1)/(sin(πχ)(x− 1)), if x ̸= 1,

πχ/ sin(πχ), if x = 1.

Then,

M2(1 + χk) = Q∞
∑

h,l,j≥0

(−1)jq(
j
2)+(χk−1)j+l+h

QhQlQj

φ(χk, q
h+j + ql+j).

55

4.1.3 Average Value of GC(z)

We will use the abbreviations Q = 1/q and L = logQ. Furthermore, in order
to be closer to the q-hypergeometric world and the identities of relevance
(see the book of Andrews-Askey-Roy [6]), we use the classical notation (q)n
instead of Qn.

In [115], the alternative expression

P :=
log 2
L

− α− β +
2

L
τ with τ :=

∑
k≥1

(−1)k−1

k(Qk − 1)

was given for the constant in the variance, and we will show now the equality
of this and

F :=
(q)∞
L

∑
j,l,h≥0

(−1)jq(
j+1
2)+l+h

(q)j(q)l(q)h

log(qh+j + ql+j)

qh+j + ql+j − 1
.

In this expression, we have replaced the ψ function by what it is; in some
exceptional cases a limit has to be taken.

We use the symmetry in l and h and set l = h + d with d ≥ 0; then we
have to take the sum over h, d ≥ 0 twice, and subtract the sum for h ≥ 0
and d = 0. Therefore

F = 2
∑

j,h,d≥0

· · · −
∑

j,h≥0, d=0

· · · .

We think about d as being fixed, set h = N − j and fix N as well: This leads
to

(q)∞[−LN + log(1 + qd)]

L

N∑
j=0

(−1)jq(
j+1
2)+2(N−j)+d

(q)j(q)N−j+d(q)N−j

1

qN + qN+d − 1
.

By automatic summation (q-Zeilberger’s algorithm) we have the simplifica-
tion

N∑
j=0

(−1)jq(
j+1
2)+2(N−j)+d

(q)j(q)N−j(q)N+d−j

1

qN + qN+d − 1
=

qN
2+dN

(q)N(q)N+d

.

Consequently,

F =2(q)∞
∑
N,d≥0

−NL+ log(1 + qd)

L

qN
2+dN

(q)N(q)N+d

+ (q)∞
∑
N≥0

NL− log 2
L

qN
2

(q)N(q)N
.

56

We will soon show that

(q)∞
∑
N,d≥0

log(1 + qd)

L

qN
2+dN

(q)N(q)N+d

=
τ

L
+

log 2
L

, (4.7)

which leaves us to prove that

2(q)∞
∑
N,d≥0

NqN
2+dN

(q)N(q)N+d

− (q)∞
∑
N≥0

(N − log 2
L

)qN
2

(q)N(q)N
=

log 2
L

+ α + β.

Because of the identity [6] ∑
N≥0

qN
2

(q)2N
=

1

(q)∞
,

this leaves us with

2(q)∞
∑
N,d≥0

NqN
2+dN

(q)N(q)N+d

− (q)∞
∑
N≥0

NqN
2

(q)N(q)N
= α + β. (4.8)

Now, expanding log(1 + qd), (4.7) is proved once we can prove that

(q)∞
∑

N≥0, d≥1

qN
2+dN+dk

(q)N(q)N+d

=
1

Qk − 1
.

But this follows from∑
N≥0, d≥1

1

(q)d

qN
2+dN+dk

(q)N(qd+1)N
=
∑
d≥1

qdk

(q)d

1

(qd+1)∞
=

1

(q)∞

1

Qk − 1
.

We have used here the classical identity (Cauchy’s identity) [6]∑
n≥0

xnqn
2

(q)n(xq)n
=

1

(xq)∞
.

In order to prove (4.8), we will show that

−(q)∞
∑
N≥0

NqN
2

(q)N(q)N
=
∑
r≥1

(−1)rq(
r+1
2)

1− qr
, (4.9)

(q)∞
∑
N,d≥0

NqN
2+dN

(q)N(q)N+d

= −
∑
r≥1

(−1)rq(
r+1
2)

(1− qr)2
. (4.10)

57

Since in [121, (3.16)], it was proved that

∑
r≥1

(−1)rq(
r+1
2)

1− qr
− 2

∑
r≥1

(−1)rq(
r+1
2)

(1− qr)2
= α + β,

that would finish the proof. We start from∑
n≥0

xnqn
2

(q)n(xq)n
=
∑
n≥0

xnqn
2

(q)n(xq)∞
(xqn+1)∞ =

1

(xq)∞
,

which is equivalent to∑
n≥0

xnqn
2

(q)n

∑
k≥0

(−1)kq(
k
2)xkq(n+1)k

(q)k
= 1.

Now differentiate this, and then set x = 1:∑
n≥0

nqn
2

(q)2n
+

1

(q)∞

∑
n≥0

qn
2

(q)n

∑
k≥0

(−1)kq(
k
2)kq(n+1)k

(q)k
= 0.

Rearranging,

∑
n≥0

nqn
2

(q)2n
+

1

(q)∞

∑
N≥1

N∑
n=0

qn
2

(q)n

(−1)N−nq(
N−n

2)(N − n)q(n+1)(N−n)

(q)N−n

= 0,

and again by a mechanical proof,∑
n≥0

nqn
2

(q)2n
+

1

(q)∞

∑
N≥1

(−1)Nq(
N+1

2)

1− qN
= 0.

This is (4.9). Now let us plug in x = qd after differentation (instead of x = 1,
as before):

∑
n≥0

nqd(n−1)qn
2

(q)n

∑
k≥0

(−1)kq(
k
2)qkdq(n+1)k

(q)k

+
∑
n≥0

qdnqn
2

(q)n

∑
k≥0

(−1)kq(
k
2)kq(k−1)dq(n+1)k

(q)k
= 0.

After some simplifications (using Rothe’s identity [6]), this leads to

(q)∞
∑
n≥0

nqdnqn
2

(q)n(q)n+d

+
∑
N≥1

(−1)Nq(
N+1

2)+dN

1− qN
= 0.

58

Now sum this on d:

(q)∞
∑
n,d≥0

nqdnqn
2

(q)n(q)n+d

+
∑
N≥1

(−1)Nq(
N+1

2)

(1− qN)2
= 0,

which is (4.10).

4.1.4 Approximate Counting with m Counters and m-
DSTs

Approximate Counting with m Counters. I. Here, we consider ap-
proximate counting with m counters as discussed in the introduction. Recall
that Dn denotes the sum of the counters after counting n objects. Then, we
have

Dn
d
= C

(1)
I1

+ · · ·+ C
(m)
Im

,

where C(1)
n , . . . , C

(m)
n are independent copies of Cn and

P (I1 = n1, . . . , Im = nm) =

(
n

n1, . . . , nm

)
1

mn

with n1 + · · ·+ nm = n. Now, set

Q̃(y, z) = e−z
∑
n≥0

E(eDny)
zn

n!
, P̃ (y, z) = e−z

∑
n≥0

E(eCny)
zn

n!
.

Then, by a straightforward computation

Q̃(y, z) = P̃ (y, z/m)m.

From this, we can derive the following relations for the Poisson generat-
ing functions of the first and second moment of Dn and Cn (denoted by
g̃1(z), g̃2(z) for the former and as above for the latter)

g̃1(z) = mf̃1(z/m),

g̃2(z) = m(m− 1)f̃1(z/m)2 +mf̃2(z/m).

Moreover, again consider the poisson variance W̃ (z) := g̃2(z)− g̃1(z)2. Then,

W̃ (z) = mṼ (z/m).

Now, it follows from the closure properties of JS-admissibility that both g̃1(z)
and g̃2(z) are JS-admissible. Hence, we only have to concentrate on g̃1(z)
and W̃ (z) whose asymptotic expansions, due to the above formulas, follow
from the case m = 1.

59

m-DSTs. m-DSTs have been introduced in [177]. They are defined as
follows: again we start with n keys, but they are now stored in m DSTs. For
every key, one of the m DSTs is chosen uniformly and at random and the
key is then stored in the chosen tree.

Clearly, the previous analysis also gives the sum of the lengths of the
leftmost path in m-DSTs. Similarly, one can consider other shape parameters
in DSTs and extend them linearly to m-DSTs. Our method above can then
be applied to such parameters as well and again the analysis will be reduced
to the case m = 1.

We give two examples. The first example is the depth of a random node
which was discussed in [177]. As a second example, consider the total path
length Tn in a random digital search tree of size n which is the sum over all
distances of nodes to the root. The mean of this parameter has already been
computed in Example 3.4.6. The result is

E(Tn) ∼ n log2 n+ n

(
γ − 1

log 2 +
1

2
− α

)
+

n

log 2FT (log2 n),

where FT (z) is a 1-periodic function with its Fourier coefficients given in Ex-
ample 3.4.6. For the variance, it was proved that for q = 1/2 (see Kirschen-
hofer, Prodinger and Szpankowski [121] and [74]), as n→ ∞,

Var(Tn) ∼ nGT (log2 n),

where GT (z) are 1-periodic functions with computable Fourier coefficients.
Similar results are known for the case q ̸= 1/2 as well. Now, denote by Un the
sum of all total path lengths in an m-DST. Then, with the same approach
as above, we have the following result.

Theorem 4.1.2. For the total path length in m-DSTs, we have, as n→ ∞,

E(Un) ∼ (n/m) log2(n/m) + (n/m)FT (log2(n/m)),

Var(Un) ∼ (n/m)GT (log2(n/m)).

Approximate Counting with m Counters. II. Here, we again consider
approximate counting with m counters, but this time we label them from 1
to m. First, we use the first counter until it will be increased, then we use the
second one until it will be increased, etc. until the last counter is increased
then we return to the first one and repeat this procedure.

Let again Dn denote the sum of the m counters after counting n objects.
This clearly corresponds to the length of the leftmost path in random digital
search trees, where every node can hold up to m keys, namely, the bucket

60

digital search trees discussed in Section 2.2.3 (here, the length is the sum
of all nodes on the leftmost path weighted by the number of keys the nodes
contain). Consequently, Dn

d
= Xn+1, where Xn satisfies

Xn+m
d
= XBn +m, (n ≥ 0)

with Xi = i, 0 ≤ i ≤ m − 1. The Poisson-Laplace-Mellin approach can be
applied to this sequence as well. We only sketch some details.

First, for the poisson generating functions of the first and second moment
and the poissonized variance (again denoted by f̃1(z) and Ṽ (z)) respectively,
we have

m∑
i=0

(
m

i

)
f̃
(i)
1 (z) = f̃1(qz) +m

and
m∑
i=0

(
m

i

)
Ṽ (i)(z) = Ṽ (qz) + g̃(z).

Where g̃(z) is of the form

g̃(z) = 2m
m∑
i=0

(
m

i

)
f̃1

(i)
(z) +

(
m∑
i=0

(
m

i

)
f̃1

(i)
(z)−m

)2

+
z

q

(
m∑
i=0

(
m

i

)
f̃1

(i+1)
(z)−m

)2

+m2 −
m∑
i=0

(
m

i

)(
f̃1(z)

2
)(i)

Applying the Poisson-Laplace-Mellin method then yields asymptotic ex-
pansion of mean and variance. We content ourself with stating the result for
the variance. As usual, we check JS-admissibility of f̃1(z) first. By similar
methods as in the proof of Proposition 3.2 in [74], we can easily verify the JS-
admissibility of f̃1(z) and hence the existence of the Laplace transform and
Mellin transform below are ensured by the same argument as in Section 4.1.2.
We apply the Laplace transform and divide it by Q(−s/q) =

∏
l≥1(1+ q

ls)m:

L̄ [Ṽ ; s] =
1

q
L̄ [Ṽ ; s/q] +

L [g̃; s]− p(s)

Q(−s/q)

where

p(s) =
m∑

n=0

n−1∑
k=0

(
m

n

)
sn−1−k

(
2k
(
k

2

)
− k2

)
Then the Mellin transform gives us

M [L̄ ;ω] =
M(ω)

1− qω−1
, (ℜ(ω) > 1),

61

where

M(ω) =

∫ ∞

0

sω−1

∫ ∞

0

e−sz

Q(s/q)
(g̃(z)dz − p(s)) ds = M [

L [g̃; s]− p(s)

Q(−s/q)
;ω].

Finally, by reversing the above process, we obtain

Ṽ (z) ∼ 1

L

∑
k

M(ωk)

Γ(ωk)
zωk−1.

where ωk = 1 + 2kπi
log(1

q
)
, k ∈ Z.

Theorem 4.1.3. For approximate counting with m-counters, where counters
are chosen cyclically, we have, as n→ ∞,

Var(Dn) ∼ GD(log1/q n),

where GD(z) =
∑

k gke
2kπi is a 1-periodic function with Fourier coefficients

gk =
M(ωk)

LΓ(ωk)

4.2 Wiener Index
4.2.1 Introduction
Topological indices of molecular graphs are of great importance in combi-
natorial chemistry and many papers have been dedicated to them. One of
the most well-known index is the so-called Wiener index which is defined as
the sum of distances of all unordered pairs of nodes of a graph. This index
was proposed by Wiener in [214] in order to investigate the boiling point of
alkanes. It has been intensively studied, in particular for trees since trees
arise as molecular graphs of acyclic organic molecules; see the survey paper
of Dobrynin, Entringer and Gutman [43] for many results and references.

Here, we are interested in the Wiener index of random trees. The first
class of random trees for which the Wiener index was studied were simple
generated random trees. In [53], Entringer, Meir, Moon and Székely showed
that the mean of the Wiener index in a simple generated random tree of
size n is of order n5/2. The mean for families of random trees more relevant
in chemistry has been investigated by Dobrynin and Gutman in [44] and
Wagner in [206], [207].

As for deeper stochastic properties, Neininger in [158] was the first who
considered variance and limit laws. More precisely, he showed for random

62

binary search trees and random recursive trees that the mean of the Wiener
index is of order n2 logn and the variance is of order n4. Moreover, he also
proved a bivariate limit law of the Wiener index and the total path length.
Janson in [101] then carried out a similar study for simple generated random
trees whose Wiener index has variance of order n5 and again satisfies a bivari-
ate limit law with the total path length (however, the limiting distribution
is quite different from the one found by Neininger for random binary search
trees and random recursive trees). The same results were very recently also
proved to hold for non-plane unlabeled trees by Wagner [208] (he considered
both the rooted and unrooted case).

Finally, also very recently, Munsonius in [152] extended the above results
of Neininger to the class of random split trees which was introduced by
Devroye in [37]. The class of split trees is a very large class of random trees
containing many important types of random trees as special cases, e.g., binary
search trees, m-ary search trees, median-of-(2k + 1) search trees, quadtrees,
simplex trees, digital trees, etc. Munsonius proved in [152] that for a huge
subclass of the class of random split trees, the variance of the Wiener index
has order n4 and a bivariate limit law with the total path length holds. The
subclass he considered includes most of the classes of random trees mentioned
above but not the important class of random digital trees. We will derive the
stochastic properties of Wiener index for random digital trees in this section.
The result will answer two questions of Neininger from [158] in affirmative
who asked whether or not periodic oscillations are present in the moments
of the Wiener index for digital trees and whether or not the Wiener index is
asymptotically normal distributed.

Before discussing our results in more details, we want to mention that
apart from limit laws, results about tail probabilities of the distribution of
the Wiener index have been proved as well; see Janson and Chassaing [104],
Ali Khan and Neininger [110], Fill and Janson [58] and Munsonius [153].

Now, fix a symmetric random digital search tree of size n and denote by
Tn its total path length and by Wn its Wiener index. Then, we have the
following result for first and second moments.

Theorem 4.2.1. We have for the mean of the total path length and the
Wiener index of digital search trees,

E(Tn) = n log2 n+ nP1(log2 n) +O(logn),
E(Wn) = n2 log2 n+ n2P1(log2 n)− n2 +O(n logn),

where P1(z) is a one-periodic function given in Remark 4 below. Moreover,
variances and covariances of the total path length and the Wiener index of

63

digital search trees are given by

Var(Tn) = nP2(log2 n) +O(1),

Cov(Tn,Wn) = n2P2(log2 n) +O(n logn),
Var(Wn) = n3P2(log2 n) +O(n2 logn),

where P2(z) is again a one-periodic function given in Remark 5 below.

Remark 4. The result for the mean of the total path length has already been
introduced in Example 3.4.6. The periodic function is given by

P1(z) =
γ − 1

log 2 +
1

2
−
∑
k≥1

1

2k − 1
+

1

log 2
∑
k ̸=0

Γ(−1− χk)e
2kπiz,

where γ is Euler’s constant and χk = 2kπi/ log 2.
Note that the result for the mean of the Wiener index is also not new

since it can be derived from the result in [2].
Finally, we want to remark that with our method of proof it is straight-

forward to compute longer asymptotic expansions.
Remark 5. Similar to the mean, the result about the variance of the total
path length is also not new; see Kirschenhofer, Prodinger and Szpankowski
[121]. In [74] the following explicit expression was given for the periodic
function

P2(z) =
1

log 2
∑
k

G2(2 + χk)

Γ(2 + χk)
e2kπiz,

where

G2(2 + χk) = Q∞
∑

j,h,l≥0

(−1)j2−(
j+1
2)

QjQhQl2h+l
φ(2 + χk; 2

−j−h + 2−j−l).

Here, Qj =
∏

1≤l≤j(1− 2−l), Q∞ = limj→∞Qj and

φ(ω;x) =

π(1 + xω−2((ω − 2)x+ 1− ω))

(x− 1)2 sin(πω) , if x ̸= 1;

π(ω − 1)(ω − 2)

2 sin(πω) , if x = 1.

Moreover, it was proved in [121] that P2(log2 n) > 0 for all n; see also
Schachinger [188] for a more elementary proof of this fact.

As for the covariance between total path length and Wiener index and
the variance of the Wiener index, these results are new. In particular, note

64

that the variance is of order n3 which is different from the order obtained for
other random split trees; see [152]. This is actually not surprising since it
is well-known that random digital search trees are “less random” than other
random split trees.

Again it is straightforward to obtain more terms in the asymptotic ex-
pansion.

As a corollary of Theorem 4.2.1, we obtain the following result.

Corollary 4.2.2. For the correlation coefficient of the total path length and
the Wiener index of digital search trees, denoted by ρ(Tn,Wn), we obtain that

lim
n→∞

ρ(Tn,Wn) = 1.

This will allow us to prove the following result.

Theorem 4.2.3. We have,(
Tn − E(Tn)√

Var(Tn)
,
Wn − E(Wn)√

Var(Wn)

)
d−→ (X,X),

where X is a standard normal distributed random variable and d−→ denotes
weak convergence.

Remark 6. Again the central limit theorem for the total path length is not
new; see Jacquet and Szpankowski [98] and the discussion in Section 5 in
[74]. In fact, our result will follow from Jacquet and Szpankowski’s result
and Corollary 4.2.2.

Next, we give a brief description of the method we will use in order
to prove our results. First, note that from the definition of the total path
length and the Wiener index, we immediately get the following distributional
recurrences: for n ≥ 0, we have

Tn+1
d
=TBn + T ∗

n−Bn
+ n, (4.11)

Wn+1
d
=WBn +W ∗

n−Bn
+ (Bn + 1)(T ∗

n−Bn
+ n−Bn)

+ (n−Bn + 1)(TBn +Bn), (4.12)

where Bn = Binomial(n, 1/2), (T ∗
n ,W

∗
n) denotes an independent copy of

(Tn,Wn), and (Tn,Wn) and (Bn) are independent. Also, note that initial
conditions are given by T0 =W0 = 0.

65

Remark 7. It is interesting to point out that Schachinger in [191] studied a
general distributional recurrence which is very similar to the two recurrences
above. More precisely, he investigated the distributional recurrence

Xn
d
= XBn +X∗

n−Bn
+ Tn,

where notation is as above and Tn is a general random variable called toll
function. For the case Tn = nα, α > 0, he proved that the limit law is
normal if and only if α ≤ 3/2. In view of this result, it might come as a
surprise that the Wiener index is asymptotically normal distributed since
the toll sequence in (4.12) should be roughly of order n2. However, note
that in Schachinger’s result Tn is deterministic and hence independent of Xn

whereas in our situation we have strong dependence.

4.2.2 Wiener Index for Digital Search Trees
In order to obtain the moments, we will use the Poisson-Laplace-Mellin
method. Here, we will prove Theorem 4.2.1 and Theorem 4.2.3. Note that
the total path length is already analyzed in [74]. In fact, we will heavily use
results from this analysis in our derivation below (for the relevant results see
Section 2.5 and Section 2.6 in [74]).

Now, we will start with our analysis. Therefore, set

f̃1,0(z) = e−z
∑
n≥0

E(Tn)
zn

n!
and f̃0,1(z) = e−z

∑
n≥0

E(Wn)
zn

n!
.

Then, from (4.11), (4.12) and a straightforward computation, one obtains

f̃1,0(z) + f̃ ′
1,0(z) = 2f̃1,0(z/2) + z,

f̃0,1(z) + f̃ ′
0,1(z) = 2f̃0,1(z/2) + (z + 2)f̃1,0(z/2) +

z2

2
+ z (4.13)

with f̃1,0(0) = f̃0,1(0) = 0. Similarly, set

f̃2,0(z) = e−z
∑
n≥0

E(T 2
n)
zn

n!
, f̃1,1(z) = e−z

∑
n≥0

E(TnWn)
zn

n!
,

and
f̃0,2(z) = e−z

∑
n≥0

E(W 2
n)
zn

n!
.

66

Then, again from (4.11), (4.12) with a slightly more involved computation,

f̃2,0(z) + f̃ ′
2,0(z) =2f̃2,0(z/2) + 2f̃ 2

1,0(z/2) + 4zf̃1,0(z/2) + 2zf̃ ′
1,0(z/2)

+ z2 + z

f̃1,1(z) + f̃ ′
1,1(z) =2f̃1,1(z/2) + 2f̃1,0(z/2)f̃0,1(z/2) + zf̃1,0(z/2)f̃

′
1,0(z/2)

+ (z + 2)f̃2,0(z/2) + (z + 2)f̃ 2
1,0(z/2)

+ (2z2 + 5z)f̃1,0(z/2) +
3z2 + 4z

2
f̃ ′
1,0(z/2) + 2zf̃0,1(z/2)

+ zf̃ ′
0,1(z/2) +

z3 + 4z2 + 2z

2

f̃0,2(z) + f̃ ′
0,2(z) =2f̃0,2 (z/2) +

(
z3

2
+ 3z + 2

)
f̃2,0 (z/2)

+ (2z + 4)f̃1,1 (z/2) + (2z + 4)f̃1,0 (z/2)

+ f̃0,1 (z/2) + 2zf̃1,0 (z/2) f̃
′
0,1 (z/2) + 2f̃0,1 (z/2)

2

+ (2z2 + 4z)f̃0,1 (z/2) + (2z2 + 2z)f̃ ′
0,1 (z/2)

+

(
z2

2
+ 2z + 2

)
f̃1,0 (z/2)

2 + (z2 + 2z)f̃1,0 (z/2) f̃
′
1,0 (z/2)

+
z2

2
f̃ ′
1,0 (z/2)

2 + (z3 + 6z2 + 6z)f̃1,0 (z/2)

+ (z3 + 5z2 + 2z)f̃ ′
1,0 (z/2) +

z4

4
+ 2z3 + 4z2 + z,

where f̃2,0(0) = f̃1,1(0) = f̃0,2(0) = 0.
Next, we define poissonized variances and covariances by using the pois-

sonized variance with corrections which was introduced in Section 3.5.1.

Ṽ (z) + Ṽ ′(z) = 2Ṽ (z/2) + zf̃ ′′
1,0(z)

2,

C̃(z) + C̃ ′(z) = 2C̃(z/2) + (z + 2)Ṽ (z/2) + zf̃ ′′
1,0(z)f̃

′′
0,1(z), (4.14)

W̃ (z) + W̃ ′(z) = 2W̃ (z/2) + (2z + 4)C̃(z/2) +

(
z2

2
+ 3z + 2

)
Ṽ (z/2)

+ z2f̃ ′
1,0(z/2)

2 + 2z2f̃ ′
1,0(z/2) + zf̃ ′′

0,1(z)
2 + z2 (4.15)

with Ṽ (0) = C̃(0) = W̃ (0) = 0.
We will now apply the ”Poisson-Laplace-Mellin” method to these differential-

functional equations. We will start with the mean value.

67

Mean Value of Wiener Index. We will start from (4.13). We first apply
Laplace transform which yields

(1+s)L [f̃0,1(z); s] = 4L [f̃0,1(z); 2s]−2
d
dsL [f̃1,0(z); 2s]+4L [f̃1,0(z); 2s]+

1 + s

s3
.

Next, dividing by Q(−2s) and setting

L̄ [f̃0,1(z); s] =
L [f̃0,1(z); s]

Q(−s)
, L̄ [f̃1,0(z); s] =

L [f̃1,0(z); s]

Q(−s)

gives

L̄ [f̃0,1(z); s] =4L̄ [f̃0,1(z); 2s]−
2

Q(−2s)

d
dsL [f̃1,0(z); 2s] + 4L̄ [f̃1,0(z); 2s]

+
1 + s

s3Q(−2s)
. (4.16)

Observe that

d
dsL̄ [f̃1,0(z); 2s] = L [f̃1,0(z); 2s]

d
ds

1

Q(−2s)
+

1

Q(−2s)

d
dsL [f̃1,0(z); 2s].

(4.17)
Moreover, logarithmic differentiation yields

d
dsQ(−2s) =

d
ds exp{log(Q(−2s))} = Q(−2s)

d
ds
∑
j≥0

log
(
1 +

s

2j

)
= Q(−2s)

∑
j≥0

1

2j + s
.

Set A(s) =
∑

j≥0
1

2j+s
whose Maclaurin series is given by

A(s) =
∑
j≥0

∑
k≥0

(−s)k

2(k+1)j
=
∑
k≥0

2k+1

2k+1 − 1
(−s)k.

Next,

d
ds

1

Q(−2s)
= − 1

Q(−2s)2
d
dsQ(−2s) = − A(s)

Q(−2s)

= − 2

Q(−2s)
− Ā(s)

Q(−2s)
, (4.18)

68

where Ā(s) =
∑

k≥1 2
k+1(−s)k/(2k+1 − 1). Plugging (4.18) into (4.17) and

(4.17) in turn into (4.16) gives

L̄ [f̃0,1(z); s] =4L̄ [f̃0,1(z); 2s]− 2
d
dsL̄ [f̃1,0(z); 2s]− 2Ā(s)L̄ [f̃1,0(z); 2s]

+
1 + s

s3Q(−2s)
. (4.19)

The next step is to apply Mellin transform. Therefore, note that from
[74], we know that

L̄ [f̃1,0(z); s] =

{
O (|s|−2| log s|) , as s→ 0;

O
(
|s|−b

)
, as s→ ∞

uniformly for s with | arg(s)| ≤ π − ϵ, where b > 0 is an arbitrary large
constant. Moreover, again from [74], for Q(−2s) (and consequently also for
Ā(s)), we have the bounds

Q(−2s) =

{
1 +O(|s|), as s→ 0;

O(|s|−b), as s→ ∞
, Ā(s) =

{
O(|s|), as s→ 0;

O(|s|−b), as s→ ∞
(4.20)

again uniformly for s with | arg(s)| ≤ π − ϵ, where b > 0 is an arbitrary
large constant. As a consequence of this and Ritt’s theorem (see Chapter 1,
Section 4.3 in Olver [162]), the Mellin transform of

s̃0,1(s) = −2
d
dsL̄ [f̃1,0(z); 2s] +

1 + s

s3Q(−2s)
,

which we denote by S0,1(ω), exists for ℜ(ω) > 3 and the Mellin transform of

t̃0,1(s) = −2Ā(s)L̄ [f̃1,0(z); 2s],

which we denote by T0,1(ω), exists for ℜ(ω) > 1. Moreover, by Proposition
5 in [62], we have, as |t| → ∞,

S0,1(c+ it) = O
(
e−(π−ϵ)|t|) , T0,1(c+ it) = O

(
e−(π−ϵ)|t|) (4.21)

for all c ∈ R contained in the fundamental strip. In fact, using the expression
for the Mellin transform for L [f̃1,0(z); s] from [74], we obtain for S0,1(ω) the
expression

S0,1(ω) =
Q(2ω−3)Γ(ω)Γ(2− ω)

2Q∞(2ω−3 − 1)
+
Q(2ω−3)Γ(ω − 1)Γ(2− ω)

Q∞

+
Q(2ω−2)Γ(ω)Γ(1− ω)

Q∞
.

69

Note that from this, it follows that (4.21) holds for all c ∈ R. Finally, by
applying Mellin transform to (4.19), we have

M [L̄ [f̃1,0];ω] =
S0,1(ω) + T0,1(ω)

1− 22−ω
.

From this and the above explicit expression for S0,1(ω), we obtain by inverse
Mellin transform

L̄ [f̃1,0(z); s] = 2s−3 log2

1

s
+

(
1

log 2 − 1− 2c

)
s−3

+
1

log 2
∑
k ̸=0

Γ(3 + χk)Γ(−1− χk)s
−3−χk +O

(
|s|−2| log s|

)
where c =

∑
k≥1 1/(2

k−1), χk was defined in Remark 4 and the above asymp-
totic expansion holds uniformly as s → 0 with | arg(s)| ≤ π − ϵ. Moreover,
due to (4.20), the same asymptotic expansion holds for L [f̃1,0(z); s] as well.

Next, we apply inverse Laplace transform and obtain

f̃0,1(z) = z2 log2 z + z2P1(log2 z)− z2 +O(|z log z|) (4.22)

uniformly as z → ∞ with | arg(z)| ≤ π/2− ϵ, where P1(z) was introduced in
Remark 4.

The final step is depoissonization which is done by the closure properties
of JS-admisibility. Hence,

E(Wn) = f̃0,1(n)−
n

2
f̃ ′′
0,1(n) + lower order terms.

Note that from (4.22) and Ritt’s theorem, we obtain that the second term
on the right-hand side above is of order O(n logn). Consequently, the above
gives the claimed expansion for the mean.

Covariance of Total Path Length and Wiener Index. Here, we start
from (4.14) and use the same method as for the mean. First, from [74], we
have that

f̃1,0(z) = z log2 z + zP1(log2 z) +O(| log z|) (4.23)

uniformly as z → ∞ with | arg(z)| ≤ π/2 − ϵ. From this, (4.22) and Ritt’s
theorem, we obtain the bounds

zf̃ ′′
1,0(z)f̃

′′
0,1(z) =

{
O(|z|), as z → 0;

O(| log z|), as z → ∞
(4.24)

70

uniformly for z with | arg(z)| ≤ π/2− ϵ.
Next, we apply Laplace transform to (4.14) and divide it by Q(−2s).

Then, by similar manipulations as for the mean, we obtain

L̄ [C̃(z); s] = 4L̄ [C̃(z); 2s]− 2
d
dsL̄ [Ṽ (z); 2s]− 2Ā(s)L̄ [Ṽ (z); 2s] + ḡ1,1(s),

(4.25)
where

ḡ1,1(s) =
L [zf̃ ′′

1,0(z)f̃
′′
0,1(z); s]

Q(−2s)
.

Before applying Mellin transform, we note that from [74], we have

L̄ [Ṽ (z); s] =

{
O (|s|−2) , as s→ 0;

O
(
|s|−b

)
, as s→ ∞

uniformly for s with | arg(s)| ≤ π − ϵ, where b > 0 is an arbitrary large
constant. Moreover, from (4.24) and (4.20), we obtain

ḡ1,1(s) =

{
O (|s|−1| log s|) , as s→ 0;

O
(
|s|−b

)
, as s→ ∞

again uniformly for s with | arg(s)| ≤ π− ϵ, where b > 0 is an arbitrary large
constant. Hence, the Mellin transform of

s̃1,1(s) = −2
d
dsL̄ [Ṽ (z); 2s],

which we denote by S1,1(ω), exists for ℜ(ω) > 3 and the Mellin transform of

t̃1,1(s) = −2Ā(s)L̄ [Ṽ (z); 2s] + ḡ1,1(s),

which we denote by T1,1(ω), exists for ℜ(ω) > 1. Also, both Mellin transforms
satisfy a bound of the form (4.21) inside their fundamental strips. Moreover,
in [74], we showed that

M [L̄ [Ṽ];ω] =
G2(ω)

1− 22−ω
,

where G2(ω) is analytic for ℜ(ω) > 0 and satisfies a bound of the form (4.21)
in this half-plane. Consequently, by applying Mellin transform to (4.25),

M [L̄ [C̃];ω] =
S1,1(ω) + T1,1(ω)

1− 22−ω
=

22−ω(ω − 1)G2(ω − 1)

(1− 23−ω)(1− 22−ω)
+

T1,1(ω)

1− 22−ω
.

71

From this by inverse Mellin transform

L̄ [C̃(z); s] =
1

log 2
∑
k

(2 + χk)G2(2 + χk)s
−3−χk +O

(
|s|−2

)
uniformly as s→ 0 with | arg(s)| ≤ π − ϵ. (For G2(ω), the expressions given
in Remark 5 was proved in [74]) From (4.20), we get the same asymptotic
for L [C̃(z); s].

Inverse Laplace transform yields

C̃(z) = z2P2(log2 z) +O(|z|) (4.26)

uniformly as z → ∞ and | arg(z)| ≤ π/2− ϵ, where P2(z) is given in Remark
5.

The final step is depoissonization. Therefore, observe that f̃1,0(z), f̃0,1(z)
and f̃1,1(z) are all JS-admissible. Hence,

Cov(Tn,Wn) = C̃(n)− n

2
C̃ ′′(n)− n2

2
f̃ ′′
1,0(n)f̃

′′
0,1(n) + lower order terms.

Note that due to Ritt’s theorem, the second term on the right hand side is
O(n) and the third term is O(n logn). Hence, our claimed result for the
covariance is proved.

Variance of Wiener Index. Next, we turn to the variance of the Wiener
index. We start from (4.15) which we rewrite as

W̃ (z) + W̃ ′(z) = 2W̃ (z/2) + 2zC̃(z/2) +
z2

2
Ṽ (z/2) + g̃0,2(z)

with

g̃0,2(z) = 4C̃(z/2)+(3z+2)Ṽ (z/2)+z2f̃ ′
1,0(z/2)

2+2z2f̃ ′
1,0(z/2)+zf̃

′′
0,1(z)

2+z2.

From [74], we have that

Ṽ (z) = zP2(log2 z) +O(1)

uniformly as z → ∞ with | arg(z)| ≤ π/2−ϵ. From this, (4.26), (4.23), (4.22)
and Ritt’s theorem it follows that

g̃0,2(z) =

{
O(|z|), as z → 0;

O(|z|2| log z|2), as z → ∞
(4.27)

72

uniformly for z with | arg(z)| ≤ π/2− ϵ.
Next, applying Laplace transform to the above differential-functional

equation and dividing by Q(−2s) yields

L̄ [W̃ (z); s] =4L̄ [W̃ (z); 2s]− 4

Q(−2s)

d
dsL [C̃(z); 2s]

+
1

Q(−2s)

d2

ds2L [Ṽ (z); 2s] + ḡ0,2(s), (4.28)

where
ḡ0,2(s) =

L [g̃0,2(z); s]

Q(−2s)
.

Using the same manipulations as for mean and covariance

− 4

Q(−2s)

d
dsL [C̃(z); 2s] = −4

d
dsL̄ [C̃(z); 2s]− 4A(s)L̄ [C̃(z); 2s]. (4.29)

Moreover, observe that

d2

ds2 L̄ [Ṽ (z); 2s] =
1

Q(−2s)

d2

ds2L [Ṽ (z); 2s]− 2
A(s)

Q(−2s)

d
dsL [Ṽ (z); 2s]

+ L [Ṽ (z); 2s]
d2

ds2
1

Q(−2s)

and note that

d2

ds2
1

Q(−2s)
= − d

ds
A(s)

Q(−2s)
=

A(s)2

Q(−2s)
− B(s)

Q(−2s)
,

where
B(s) = −

∑
k≥0

k2k+2

2k+2 − 1
(−s)k.

This implies that

1

Q(−2s)

d2

ds2L [Ṽ (z); 2s] =
d2

ds2 L̄ [Ṽ (z); 2s] + 2A(s)
d
dsL̄ [Ṽ (z); 2s]

+ (A(s)2 +B(s))L̄ [Ṽ (z); 2s] (4.30)

and plugging (4.30) and (4.29) into (4.28) yields

L̄ [W̃ (z); s] = 4L̄ [W̃ (z); 2s]− 4
d
dsL̄ [C̃(z); 2s] +

d2

ds2 L̄ [Ṽ (z); 2s] + t̃0,2(s)

73

with

t̃0,2(s) =− 4A(s)L̄ [C̃(z); 2s] + 2A(s)
d
dsL̄ [Ṽ (z); 2s]

+ (A(s)2 +B(s))L̄ [Ṽ (z); 2s] + ḡ0,2(s).

Before we apply Mellin transform, note that from (4.27) and (4.20),

ḡ0,2(s) =

{
O(|s|−3| log s|2), as s→ 0;

O(|s|−b), as s→ ∞

uniformly for s with | arg(s)| ≤ π − ϵ, where b > 0 is an arbitrary large
constant. Moreover,

B(s) =

{
O(1), as s→ 0;

O(|s|−b), as s→ ∞

again uniformly for s with | arg(s)| ≤ π − ϵ, where b > 0 is an arbitrary
large constant. From this and corresponding bounds for A(s), L̄ [C̃(z); s]
and L̄ [Ṽ (z); s] obtained in the analysis of the mean and covariance, we see
that the Mellin transform of t̃0,2(s), which we denote by T0,2(ω), exists for
ℜ(ω) > 3. Similarly, the Mellin transform of

s̃0,2(s) = −4
d
dsL̄ [C̃(z); 2s] +

d2

ds2 L̄ [Ṽ (z); 2s],

which we denote by S0,2(ω), exists for ℜ(ω) > 4. Both of these Mellin
transforms satisfy a bound of the form (4.21) inside their fundamental strip.
Moreover, observe that using the expressions from the analysis of the covari-
ance, S0,2(ω) is given by

S0,2(ω) =
22−ω(23−ω + 1)(ω − 1)(ω − 2)G2(ω − 2)

(1− 23−ω)(1− 24−ω)
+

23−ω(ω − 1)T1,1(ω − 1)

1− 23−ω
,

where G2(ω) is an analytic function for ℜ(ω) > 0, T1,1(ω) is an analytic
function for ℜ(ω) > 1 and both satisfy a bound of the form (4.21) in their
half-plane of analyticity. Overall, we obtain for the Mellin transform of
L̄ [W̃ (z); s]

M [L̄ [W̃];ω] =
S0,2(ω) + T0,2(ω)

1− 22−ω

=
22−ω(23−ω + 1)(ω − 1)(ω − 2)G2(ω − 2)

(1− 22−ω)(1− 23−ω)(1− 24−ω)

+
23−ω(ω − 1)T1,1(ω − 1)

1− 23−ω
+

T0,2(ω)

1− 22−ω
.

74

From this, by applying inverse Mellin transform

L̄ [W̃ (z); s] =
1

log 2
∑
k

(3 + χk)(2 + χk)G2(2 + χk)s
−4−χk +O(|s|−3−ϵ)

uniformly as s→ 0 with | arg(s)| ≤ π− ϵ. Moreover, due to (4.20), the same
is also true for L [W̃ (z); s].

Again, we apply inverse Laplace transform and obtain

W̃ (z) = z3P2(log2 z) +O(|z|2+ϵ)

uniformly as z → ∞ with | arg(z)| ≤ π/2− ϵ.
The final step is the depoissonization step where as above we use the

closure properties of JS-admissiblity. By these results, f̃0,2(z) and f̃0,1(z) are
both JS-admissible. Consequently,

Var(Wn) = W̃ (n)− n

2
W̃ ′′(n)− n2

2
f̃ ′′
0,1(n)

2 + smaller order terms.

By Ritt’s theorem, the second term on the right-hand side is O(n2) and the
third term is O(n2 log2 n). From this our result follows (the claimed error
term in Theorem 4.2.1 is obtained by a slightly refined analysis which we
leave as an exercise to the reader).

This concludes our proof of Theorem 4.2.1 and consequently also Corol-
lary 4.2.2. We will use now the latter to give a proof of Theorem 4.2.3. As a
second ingredient, we need the following central limit theorem for the total
path length.

Theorem 4.2.4 (Jacquet and Szpankowski; [98]). We have,

Tn − E(Tn)√
Var(Tn)

d−→ X,

where X has a standard normal distribution.

Proof of Theorem 4.2.3. First set

Xn =
Tn − E(Tn)√

Var(Tn)
.

Then, by the above result
Xn

d−→ X,

where X has a standard normal distribution. Consequently,

(Xn, Xn)
d−→ (X,X).

75

Next, define
Yn =

Wn − E(Wn)√
Var(Wn)

− Tn − E(Tn)√
Var(Tn)

.

Note that

E(Y 2
n) =

E(Wn − E(Wn))
2

Var(Wn)
+

E(Tn − E(Tn))2

Var(Tn)
− 2

E(Wn − E(Wn))(Tn − E(Tn))√
Var(Wn)Var(Tn)

= 2− 2ρ(Tn,Wn).

Hence, by Markov’s inequality

P (|Yn| ≥ ϵ) ≤ E(Y 2
n)

ϵ
−→ 0, as n→ ∞.

Thus, Yn
P−→ 0 and consequently (0, Yn)

P−→ (0, 0) (here, P−→ denotes conver-
gence in probability). Using Slutsky’s theorem (also called Cramér’s theorem;
see Theorem 11.4 in Gut [87]) now implies

(Xn, Xn) + (0, Yn)
d−→ (X,X).

Since

(Xn, Xn) + (0, Yn) =

(
Tn − E(Tn)√

Var(Tn)
,
Wn − E(Wn)√

Var(Wn)

)
this proves our claim.

4.2.3 Wiener Index for Variants of Digital Search Trees
In this section, we are going to discuss similar results as in Section 4.2.2 for
other digital trees. Proofs of these results follow along the same lines (or
are even easier since in some cases Laplace transform is not needed) and will
not be given). For the reader’s convenience, we will list the (differential-
)functional equations for poissonized mean, variances and covariances which
are crucial to the proofs in the Appendix A. Our results can be deduced from
them with a similar approach as used in Section 4.2.2.

The first member of the digital tree family we are going to discuss is
the bucket digital search trees. Note that there are two types of total path
length in bucket digital trees: the sum of distances of all keys to the root and
the sum of distances of all nodes to the root; the former is called key-wise
path length and the latter node-wise path length (see [74] for more details).
Accordingly, we also have a key-wise Wiener index and a node-wise Wiener

76

index. Results for both Wiener indices in random bucket digital search trees
will be presented below.

Another member of the digital tree family are tries. Note that for tries,
the number of leaves is n whereas the number of internal nodes is random.
Hence, there are again two different types of Wiener indices, namely, the ex-
ternal Wiener index which only uses external nodes and the internal Wiener
index where internal nodes are used. Again both of these Wiener indices will
be discussed below.

As a final member of the digital tree family, we consider PATRICIA tries.
For binary PATRICIA tries, the number of internal nodes is not random and
hence there is only external Wiener index which make sense. However, for
m-ary PATRICIA tries with m > 2, the number of internal nodes is no longer
definite and hence the internal Wiener index is well-defined. We will give the
results of internal Wiener index for m-ary PATRICIA tries in the end of this
section.

As in Section 4.2.2, we will denote by Tn the total path length (either
key-wise or node-wise or external or internal depending on the context) and
by Wn the Wiener index (again either key-wise or node-wise or external or
internal). Moreover, for the node-wise Wiener index and the internal Wiener
index, we also need the number of nodes (internal in case of the internal
Wiener index) which will be denoted by Nn.

Key-wise Wiener Index of Bucket Digital Search Trees. Here, we
have the following distributional recurrences for Tn and Wn: for n ≥ 0,

Tn+b
d
=TBn + T ∗

n−Bn
+ n,

Wn+b
d
=WBn +W ∗

n−Bn
+ (Bn + 1)(T ∗

n−Bn
+ n−Bn)

+ (n−Bn + 1)(TBn +Bn),

where notation is as in Section 1 and initial conditions are given by T0 =
· · · = Tb−1 = W0 = · · · =Wb−1 = 0.

From these recurrences, we obtain the following results for mean and
variance.

Theorem 4.2.5. We have for the mean of the key-wise path length and
key-wise Wiener index of bucket digital search trees,

E(Tn) = n log2 n+ nP1(log2 n) +O(logn),
E(Wn) = n2 log2 n+ n2P1(log2 n)− n2 +O(n logn),

77

where P1(z) is a one-periodic function given in the remark below. Moreover,
variances and covariances of the key-wise path length and key-wise Wiener
index of bucket digital search trees are given by

Var(Tn) = nP2(log2 n) +O(1),

Cov(Tn,Wn) = n2P2(log2 n) +O(n logn),
Var(Wn) = n3P2(log2 n) +O(n2 logn),

where P2(z) is again a one-periodic function given in the remark below.

Remark 8. The result for the mean and variance of the key-wise path length
were first obtained by Hubalek in [89]. In [74], we gave the following expres-
sions for the periodic functions

P1(z) =
γ − 1

log 2 +
1

2
+

c

log 2 +
1

log 2
∑
k ̸=0

G1(2 + χk)

Γ(2 + χk)
e2kπiz,

where

G1(ω) =

∫ ∞

0

sω−3

Q(−2s)b
ds, c = lim

ω→2
(G1(ω)− 1/(ω − 2))

and
P2(z) =

1

log 2
∑
k

G2(2 + χk)

Γ(2 + χk)
e2kπiz,

where
G2(ω) =

∫ ∞

0

sω−1

Q(−2s)b

∫ ∞

0

e−zsg̃(z)dzds

with

g̃(z) =

(∑
0≤j≤b

(
b

j

)
f̃
(j)
1,0 (z)

)2

+ z

(∑
0≤j≤b

(
b

j

)
f̃
(j+1)
1,0 (z)

)2

−
∑
0≤j≤b

(
b

j

)(
f̃ 2
1,0(z) + zf̃ ′

1,0(z)
2
)(j)

and f̃1,0(z) denotes the Poisson generating function of E(Tn).
Note that the result for the mean of the Wiener index also follows from

[22].
Moreover, we have the following bivariate central limit theorem.

78

Theorem 4.2.6. We have,(
Tn − E(Tn)√

Var(Tn)
,
Wn − E(Wn)√

Var(Wn)

)
d−→ (X,X),

where X is a standard normal distributed random variable and d−→ denotes
weak convergence.
Remark 9. The central limit theorem for the key-wise path length was first
proved in [90].

Node-wise Wiener Index of Bucket Digital Search Trees. Here, the
distributional recurrences for Nn, Tn and Wn are given by: for n ≥ 0,

Nn+b
d
=NBn +N∗

n−Bn
+ 1,

Tn+b
d
=TBn + T ∗

n−Bn
+NBn +N∗

n−Bn
,

Wn+b
d
=WBn +W ∗

n−Bn
+ (NBn + 1)(T ∗

n−Bn
+N∗

n−Bn
)

+ (N∗
n−Bn

+ 1)(TBn +NBn),

where Bn is as in Section 1, the triplet (N∗
n, T

∗
n ,W

∗
n) denotes an independent

copy of (Nn, Tn,Wn) and (Nn, Tn,Wn) is independent of (Bn). Initial con-
ditions are given by T0 = · · · = Tb−1 = W0 = · · · = Wb−1 = N0 = 0 and
N1 = · · · = Nb−1 = 1.

From this, we obtain the following result.
Theorem 4.2.7. We have for the mean of the number of nodes, node-wise
path length and node-wise Wiener index of bucket digital search trees,

E(Nn) = nP1(log2 n) +O(1),

E(Tn) = n(log2 n)P1(log2 n) +O(n),

E(Wn) = n2(log2 n)P1(log2 n)
2 +O(n2),

where P1(z) is a one-periodic function given in the remark below. Moreover,
variances and covariances of the number of nodes, node-wise path length and
node-wise Wiener index of bucket digital search trees are given by

Var(Nn) = nP2(log2 n) +O(1),

Cov(Nn, Tn) = n(log2 n)P2(log2 n) +O(n),

Var(Tn) = n(log2 n)
2P2(log2 n) +O(n logn),

Cov(Nn,Wn) = 2n2(log2 n)P1(log2 n)P2(log2 n) +O(n2),

Cov(Tn,Wn) = 2n2(log2 n)
2P1(log2 n)P2(log2 n) +O(n2 logn),

Var(Wn) = 4n3(log2 n)
2P1(log2 n)

2P2(log2 n) +O(n3 logn),

79

where P2(z) is again a one-periodic function given in the remark below.
Remark 10. The results for the number of nodes were first proved in [90].
Moreover, the results were reproved in [74] where in addition we also proved
the results for the node-wise path length and gave the following expressions
for P1(z) and P2(z)

P1(z) =
1

log 2
∑
k

G1(2 + χk)

Γ(2 + χk)
e2kπiz,

where
G1(ω) =

∫ ∞

0

sω−2

Q(−2s)b
(s+ 1)b−1ds

and
P2(z) =

1

log 2
∑
k

G2(2 + χk)

Γ(2 + χk)
e2kπiz,

where
G2(ω) =

∫ ∞

0

sω−1

Q(−2s)b

(∫ ∞

0

e−zsg̃(z)dz +H(s)

)
ds

with
H(s) =

(s+ 1)b−1 − (−1)b(2b− 3 + (b− 1)s)

(s+ 2)2

and

g̃(z) =

(∑
0≤j≤b

(
b

j

)
f̃
(j)
1,0 (z)

)2

+ z

(∑
0≤j≤b

(
b

j

)
f̃
(j+1)
1,0 (z)

)2

−
∑
0≤j≤b

(
b

j

)(
f̃ 2
1,0(z) + zf̃ ′

1,0(z)
2
)(j)

and f̃1,0(z) denotes the Poisson generating function of E(Tn).
Theorem 4.2.7 yields the following trivariate central limit theorem.

Theorem 4.2.8. We have,(
Nn − E(Nn)√

Var(Nn)
,
Tn − E(Tn)√

Var(Tn)
,
Wn − E(Wn)√

Var(Wn)

)
d−→ (X,X,X),

where X is a standard normal distributed random variable and d−→ denotes
weak convergence.
Remark 11. The central limit theorem for the number of nodes was first
proved in [90]. Also note that we posed the problem of proving a bivariate
central limit law of number of nodes and node-wise path length in Section 5
of [74].

80

External Wiener Index of Tries. Here, the distributional recurrences
for Tn and Wn are as follows: for n ≥ 2,

Tn
d
= TBn + T ∗

n−Bn
+ n,

Wn
d
=WBn +W ∗

n−Bn
+Bn(T

∗
n−Bn

+ n−Bn) + (n−Bn)(TBn +Bn),

where notation is as in Section 1 and initial conditions are given by T0 =
T1 = W0 = W1 = 0.

From this, we obtain the following theorem.
Theorem 4.2.9. We have for the mean of external path length and external
Wiener index of tries,

E(Tn) = n log2 n+ nP1(log2 n) +O(logn),
E(Wn) = n2 log2 n+ n2P1(log2 n)− n2 +O(n logn),

where P1(z) is a one-periodic function given in the remark below. Moreover,
variances and covariances of the external path length and external Wiener
index of tries are given by

Var(Tn) = nP2(log2 n) +O(1),

Cov(Tn,Wn) = n2P2(log2 n) +O(n logn),
Var(Wn) = n3P2(log2 n) +O(n2 logn),

where P2(z) is again a one-periodic function given in the remark below.
Remark 12. The result about the mean of the total path length was first
obtained in [127]. A detailed analysis of the variance of the total path length
was first undertaken by Kirschenhofer, Prodinger and Szpankowski [119] (see
also Jacquet and Régnier [94] for preliminary results). In Hwang, Fuchs
and Zacharovas [75], we obtained the following expressions for the periodic
functions

P1(z) =
γ

log 2 +
1

2
− 1

log 2
∑
k ̸=0

Γ(−χk)e
2kπiz

and
P2(z) =

1

log 2
∑
k

G2(−1− χk)e
2kπiz,

where

G2(ω) =Γ(ω + 1)

(
1− ω2 + ω + 4

2ω+3

)
+ 2

∑
l≥1

(−1)lΓ(ω + l + 1)

l!(2l − 1)
(l(ω + l)− 1).

81

Note that the result about the mean of the Wiener index also follows from
[22].

From the previous result, we again obtain the following theorem.

Theorem 4.2.10. We have,(
Tn − E(Tn)√

Var(Tn)
,
Wn − E(Wn)√

Var(Wn)

)
d−→ (X,X),

where X is a standard normal distributed random variable and d−→ denotes
weak convergence.

Remark 13. The central limit theorem for the key-wise path length was first
proved in [94].

Internal Wiener Index of Tries. Here, the distributional recurrences for
Nn, Tn and Wn are as follows: for n ≥ 2,

Nn
d
=NBn +N∗

n−Bn
+ 1,

Tn
d
=TBn + T ∗

n−Bn
+NBn +N∗

n−Bn
,

Wn
d
=WBn +W ∗

n−Bn
+ (NBn + 1)(T ∗

n−Bn
+N∗

n−Bn
)

+ (N∗
n−Bn

+ 1)(TBn +NBn),

where notation is as for the node-wise Wiener index and initial conditions
are given by N0 = N1 = T0 = T1 = W0 = W1 = 0.

Then, we have the following result for mean values, variances and covari-
ances.

Theorem 4.2.11. We have for the mean of the number of internal nodes,
internal path length and internal Wiener index of tries,

E(Nn) = nP1(log2 n) +O(1),

E(Tn) = n(log2 n)P1(log2 n) +O(n),

E(Wn) = n2(log2 n)P1(log2 n)
2 +O(n2),

where P1(z) is a one-periodic function given in the remark below. Moreover,
variances and covariances of the number of internal nodes, internal path

82

length and internal Wiener index of tries are given by

Var(Nn) = nP2(log2 n) +O(1),

Cov(Nn, Tn) = n(log2 n)P2(log2 n) +O(n),

Var(Tn) = n(log2 n)
2P2(log2 n) +O(n logn),

Cov(Nn,Wn) = 2n2(log2 n)P1(log2 n)P2(log2 n) +O(n2),

Cov(Tn,Wn) = 2n2(log2 n)
2P1(log2 n)P2(log2 n) +O(n2 logn),

Var(Wn) = 4n3(log2 n)
2P1(log2 n)

2P2(log2 n) +O(n3 logn),

where P2(z) is again a one-periodic function given in the remark below.

Remark 14. The result for the mean of the number of internal nodes was
first proved in [127]. The variance of the number of internal nodes was first
derived by Régnier and Jacquet [95] (see also [94], [93]). In [75], we gave the
following expression for the periodic functions

P1(z) =
1

log 2 +
1

log 2
∑
k ̸=0

χkΓ(−1− χk)e
2kπiz.

and
P2(z) =

1

log 2
∑
k

G2(−1− χk)e
2kπiz,

where

G2(ω) =(ω + 1)Γ(ω)

(
1− ω2 + 4ω + 8

2ω+3

)
+ 2

∑
l≥1

(−1)llΓ(ω + l + 1)

(l + 1)!(2l − 1)
(l(ω + l + 1)− 1).

The results for mean and variance of internal path length and covariance
with the number of internal nodes are due to Nguyen-The [161].

As before, we have a central limit theorem which now reads as follows.

Theorem 4.2.12. We have,(
Nn − E(Nn)√

Var(Nn)
,
Tn − E(Tn)√

Var(Tn)
,
Wn − E(Wn)√

Var(Wn)

)
d−→ (X,X,X),

where X is a standard normal distributed random variable and d−→ denotes
weak convergence.

83

Remark 15. The central limit theorem for the number of internal nodes was
first proved in [93] and [94]. The bivariate central limit theorem for the
number of internal nodes and the internal path length was wrongly stated in
[161] (the author of this work did not observe that the covariance matrix is
singular leading to a wrong proof).

External Wiener Index of Binary PATRICIA tries. Here, we have
for Tn and Wn: for n ≥ 2,

Tn
d
=

{
TBn + T ∗

n−Bn
+ n, if Bn ̸= 0 or Bn ̸= n;

Tn, otherwise,

Wn
d
=

WBn +W ∗

n−Bn
+Bn(T

∗
n−Bn

+ n−Bn)
+(n−Bn)(TBn +Bn),

if Bn ̸= 0 or Bn ̸= n;

Wn, otherwise,
where notations is as in Section 1 and T0 = T1 =W0 =W1 = 0.

Then, we have the following result.

Theorem 4.2.13. We have for the mean of the total path length and Wiener
index of PATRICIA tries,

E(Tn) = n log2 n+ nP1(log2 n) +O(logn),
E(Wn) = n2 log2 n+ n2P1(log2 n)− n2 +O(n logn),

where P1(z) is a one-periodic function given in the remark below. More-
over, variances and covariances of the total path length and Wiener index of
PATRICIA tries are given by

Var(Tn) = nP2(log2 n) +O(1),

Cov(Tn,Wn) = n2P2(log2 n) +O(n logn),
Var(Wn) = n3P2(log2 n) +O(n2 logn),

where P2(z) is again a one-periodic function given in the remark below.

Remark 16. The result for the mean of the external path length was first
derived in [127]. The result for the variance of the total path length is due
to Kirschenhofer, Prodinger and Szpankowski [118]. In [75], we obtained the
expressions for the period functions

P1(z) =
γ − 1

log 2 +
1

log 2
∑
k ̸=0

Γ(−χk)e
2kπiz

84

and
P2(z) =

1

log 2
∑
k

G2(−1− χk)e
2kπiz,

where

G2(ω) =Γ(ω + 1)

(
2ω+1(ω + 2)− ω2 + 3ω + 6

4

)
+ 2ω+2

∑
l≥1

(−1)lΓ(ω + l + 2)

(l − 1)!(2l − 1)
.

The latter result again implies the following bivariate central limit theo-
rem.

Theorem 4.2.14. We have,(
Tn − E(Tn)√

Var(Tn)
,
Wn − E(Wn)√

Var(Wn)

)
d−→ (X,X),

where X is a standard normal distributed random variable and d−→ denotes
weak convergence.

Remark 17. Up to our knowledge, this result was first obtained by Neininger
and Rüschendorf in [159].

Internal Wiener Index of m-ary PATRICIA tries. First, observe
that the internal path length and internal Wiener index satisfy the following
distribution recurrences for n ≥ 2

Nn
d
=

{ ∑m
i=1N

(i)

I
(i)
n

+ 1, if I(i)n ̸= n for all i,
Nn, otherise,

(4.31)

Tn
d
=

{∑m
i=1

(
T

(i)

I
(i)
n

+N
(i)

I
(i)
n

)
, if I(i)n ̸= n for all i;

Tn, otherwise
(4.32)

and

Wn
d
=

∑m

i=1

(
W

(i)

I
(i)
n

+ T
(i)

I
(i)
n

+N
(i)

I
(i)
n

)
+
∑

(i,j)∈S2
N

(i)

I
(i)
n

(
T

(j)

I
(j)
n

+N
(j)

I
(j)
n

) , if I(i)n ̸= n for all i,

Wn, otherwise,

(4.33)

where notation is as in Section 4.2.1, S2 = {(i, j) : 1 ≤ i,≤ m, i ̸= j} and
T0 = T1 =W0 = W1 = 0.

85

Theorem 4.2.15. Consider m-ary PATRICIA tries built on strings with
digits from alphabet S = {a1, . . . , am}. Suppose that the probability for a digit
of the random string being ai is pi for all 1 ≤ i ≤ m. Set h = −

∑m
i=1 pi log pi,

then we have that for the mean of internal nodes, internal path length and
internal Wiener index of m-ary PATRICIA tries, as n→ ∞,

E(Nn) ∼ nP1(log1/a n),

E(Tn) ∼ h−1n lognP1(log1/a n),

E(Wn) ∼ h−1n2 lognP1(log1/a n)
2,

where P1(z) is a one-periodic function. Moreover, variances and covariances
of the number of internal nodes, internal path length and internal Wiener
index of m-ary PATRICIA tries are given by

Var(Nn) ∼ nP2(log1/a n),

Cov(Nn, Tn) ∼ h−1n lognP2(log1/a n),

Var(Tn) ∼ h−2n log2 nP2(log1/a n),

Cov(Nn,Wn) ∼ 2h−1n2 lognP1(log1/a n)P2(log1/a n),

Cov(Tn,Wn) ∼ 2h−2n2 log2 nP1(log1/a n)P2(log1/a n),

Var(Wn) ∼ 4h−2n3 log2 nP1(log1/a n)
2P2(log1/a n),

where Q(z) is again a one-periodic function. In particular,

ρ(Nn, Tn) −→ 0, ρ(Nn,Wn) −→ 0, ρ(Tn,Wn) −→ 0,

where ρ(·, ·) denotes the correlation coefficient.

Theorem 4.2.16. We have,(
Nn − E(Nn)√

Var(Nn)
,
Tn − E(Tn)√

Var(Tn)
,
Wn − E(Wn)√

Var(Wn)

)
d−→ (X,X,X).

4.3 Steiner Distance
4.3.1 Introduction
In this section, we are interested in two parameters, the k-th total path length
and the total Steiner k-distance, which have not been analyzed for digital
trees. We start with the definition of these two parameters.

For a given tree T with vertex set V and a subset M ⊂ V , the smallest
spanning tree containing M is called the Steiner tree for M in T while the

86

smallest subtree containing M and the root is the so-called ancestor-tree for
M in T . The size of the Steiner tree for M in T (denoted by SM(T)) and
the size of the ancestor-tree for M in T (denoted by DM(T)) are called the
Steiner distance and the |M |-th path length, respectively. Furthermore, for
the given tree T and integer k ∈ N, the k-th total path length Pk(T) and the
Steiner k-distance Wk(T) are defined as

Pk(T) =
∑
|M |=k

DM(T) and Wk(T) =
∑
|M |=k

SM(T).

Steiner trees and ancestor trees have many real-life applications, e.g. in
transportation and multiprocessor networks [165], circuit layouts, internet
communication [178] and many others. Consequently, the Steiner distance
and the |M |-th path length are useful statistics. For example, when com-
paring the efficiency of communication potential of different networks, the
Steiner distance can be used [28]. Moreover, the Steiner distance and k-th
total path length have also applications to Multiple Quickselect algorithm
[165] and the efficiency of certain traceroute algorithms [85].

In the last decade, several papers dedicated to the analysis of the two
parameters in various random trees, including random increasing tree [165],
random binary search tree [147], generalized random m-ary search tree [164],
recursive trees [151, 163] and random simply generated trees [151, 163] have
been published. As mentioned in [151], the size of a Steiner tree is related
to the communication potential of its nodes. Thus, it is of interest to study
the Steiner k-distance of different data structures, such as DSTs.

In this section, we again use the ”Poisson-Laplace-Mellin Method” to
obtain the means, variances and covariances of the k-th total path length and
the total Steiner k-distance for symmetric DSTs under the Bernoulli model.
Limit laws for the two parameter are derived as well. In the remainder of
this section, we use P [k]

n and S
[k]
n to denote the k-th total path length and

total k-th Steiner distance of symmetric random digital search trees built on
n strings, respectively. Also, we use the common notation for the constant
Qm =

∏m
j=1 (1− 2−j) and Q∞ = limm→∞Qm. The main results are:

Theorem 4.3.1. We have that for k ≥ 2,

E
(
P [k]
n

)
∼ E

(
S[k]
n

)
∼ nk log2 n

(k − 1)!
.

87

Moreover, the variance and covariance of P [k]
n and S[k]

n are given by

Var
(
P [k]
n

)
∼ Var

(
S[k]
n

)
∼n2k−12

2−2k

Q2
k−1

(Ckps +ϖkps(log2 n)) ,

Cov
(
P [k1]
n , P [k2]

n

)
∼Cov

(
S[k1]
n , P [k2]

n

)
∼nk1+k2−1 22−k1−k2

Qk1−1Qk2−1

(Ckps +ϖkps(log2 n)) .

where the expressions of Ckps and ϖkps can be derived from the results in
Remark 5.
Theorem 4.3.2. Let

X [k]
n =

P
[k]
n − E(P [k]

n)√
Var(P [k]

n)

and Y [k]
n =

S
[k]
n − E(S[k]

n)√
Var(S[k]

n)

.

We have that for any k ≥ 2,(
X [1]

n , . . . , X
[k−1]
n , Y [k]

n

) d−→ (X, . . . , X),

where X is the standard normal distributed random variable and d−→ denotes
weak convergence.
Remark 18. The asymptotics of S[k]

n can be explained intuitively. It is well-
known that the expected value of the depth of a node is of order log2 n. For
a Steiner tree, the size will be more or less the sum of the depth of the k
chosen nodes. Thus, for k chosen nodes, the expected size of the Steiner tree
will be of order k log2 n. Since there are

(
n
k

)
ways to choose the k nodes, the

mean of the total Steiner k-distance will be roughly
(
n
k

)
k log2 n ∼ nk log2 n

(k−1)!
.

Remark 19. As we have seen, the leading terms for the asymptotics of k-th
total path length and Steiner k-distance are the same. This is not surpris-
ing, intuitively speaking, because the k-subsets which are most relevant are
those contain vertices from both subtrees for which the ancestor tree and the
Steiner tree will be the same. This is similar to the distance between two
random nodes (see [1, 3]) which is also twice the depth, because the most
relevant cases are again those include the root.
Remark 20. In fact, we can find more terms in the asymptotic of the means,
variances and covariances for P [k]

n and S
[k]
n by the same method applied in

the following sections. For example, let χm = 2mπi/ log 2, we have that
E
(
P [k]
n

)
∼ E

(
S[k]
n

)
+D[k]nk

∼ nk logn
(k − 1)!

+
nk

(k − 1)!

ck + ek
k

+
1

log 2
∑

m∈Z\{0}

Gk(χm)n
χm

Γ(k + 1 + χm)

 .

88

where

Gk(χm) = Γ(k + 1− χm)Γ(−1− χm), D[k] =
1

k!(2k−1 − 1)

and the constant ck is given by

ck =
γ − 1

log 2 +
1

2
−
∑
j≥1

(k − 1)!

2j − 1
+

(k − 1)!dk
log 2 .

In the expression, dk is defined recursively as d1 = 0 and

dk =
1

2k−1 − 1

k−1∑
r=1

dk−r

r!
− 2k−1

2k−1 − 1

log 2
(k − 1)!

.

Also, the sequence {ek}k≥1 is defined recursively as e1 = 0 and

ek =
1

2k−1 − 1

k−2∑
r=1

k!

r!
ek−r +

2k − 1

2k−1 − 1
, for k ≥ 2.

We state the main result in the form of Theorem 1 because the leading term
is the most interesting part and it would be enough for proving the central
limit theorem. Also, computing more terms can be extremely complicated.
As we see from the above statements, the difference between the asymptotics
of the two shape parameters is nk

k!(2k−1−1)
. This can be explained heuristically.

Let d[k]n be the difference of the two shape parameters, then d[k]n ∼ 2d
[k]
n/2+2

(n
2
k

)
since the size of both subtrees will be roughly n/2 under the Bernoulli model.
Iterating it, we get d[k]n = Θ(nk), which matches the difference above.

Remark 21. Note that the Steiner k-distance is a generalization of the Wiener
index, namely, for k = 2 we obtain the Wiener index. Thus, Theorem 4.2.1
is actually a special case of Theorem 4.3.1 with k = 2.

4.3.2 k-th Total Path Length
In this section, we start with the recurrence under the Bernoulli model and
then use it to get the differential-functional equation of the Poisson model.
The rest of the analysis will focus on the Poisson model, since the depois-
sonization is standard with the language of JS-admissible.

89

Mean of the k-th Total Path Length of DSTs

First, we start with deriving a distributional recurrence relation for the k-th
total path length. Recall the notation P [k]

n for the k-th total path length from
the introduction. Moreover, we will use the notation Bn

d
=Binom(n, 1

2
). Let

a DST with n + 1 nodes given. Depending on how the k nodes are chosen,
there are 4 cases:
1. All k nodes are from one subtree.

The contribution to the k-th total path length will be

P
[k]
Bn

+ P
[k]∗
n−Bn

+

(
Bn

k

)
+

(
n−Bn

k

)
,

where P [k]
Bn

is independent of P [k]∗
n−Bn

and P
[k]
Bn

d
=P

[k]∗
n−Bn

.

2. The k nodes are chosen from both subtrees and the root is not chosen.

We will have the contribution
k−1∑
r=1

((
n−Bn

k − r

)
P

[r]
Bn

+

(
Bn

r

)
P

[k−r]∗
n−Bn

+ 2

(
Bn

r

)(
n−Bn

k − r

))
.

3. The root is chosen, the other k − 1 nodes are all from one subtree.

It will contribute

P
[k−1]
Bn

+ P
[k−1]∗
n−Bn

+

(
n−Bn

k − 1

)
+

(
Bn

k − 1

)
.

4. The root is chosen, the other k − 1 nodes are from both subtrees.

The contribution will be
k−2∑
r=1

((
n−Bn

k − r − 1

)
P

[r]
Bn

+

(
Bn

r

)
P

[k−r−1]∗
n−Bn

+ 2

(
Bn

r

)(
n−Bn

k − r − 1

))
.

Combining all four cases, we get that for n+ 1 ≥ k ≥ 1:

P
[k]
n+1

d
=P

[k]
Bn

+ P
[k]∗
n−Bn

+ P
[k−1]
Bn

+ P
[k−1]∗
n−Bn

+
k−1∑
r=1

((
n−Bn

k − r

)
P

[r]
Bn

+

(
Bn

r

)
P

[k−r]∗
n−Bn

)

+ 2

(
n

k

)
+ 2

(
n

k − 1

)
+

k−2∑
r=1

((
n−Bn

k − r − 1

)
P

[r]
Bn

+

(
Bn

r

)
P

[k−r−1]∗
n−Bn

)
−
(
n−Bn

k

)
−
(
Bn

k

)
−
(
n−Bn

k − 1

)
−
(
Bn

k − 1

)
.

90

Note that from the above equation, we see that the k-th total path length
depends on the 1-st, 2-nd,. . . , (k−1)-th total path length. Thus, we actually
have a system of recurrences. The initial conditions are P [0]

n = 0 for all n
and P

[k]
n = 0 for all k > n.

Let f̃ [k](z) = e−z
∑
n≥0

E(P [k]
n)

zn

n!
which is the mean in the Poisson model.

Then, from the recurrence relation above, we get

f̃ [k](z) + f̃ [k]′(z) =2f̃ [k]
(z
2

)
+ 2f̃ [k−1]

(z
2

)
+ 2

k−1∑
r=1

(
z
2

)r
r!

f̃ [k−r]
(z
2

)
+ 2

k−2∑
r=1

(
z
2

)r
r!

f̃ [k−r−1]
(z
2

)
+ 2

(
zk − (z

2
)k

k!
+
zk−1 − (z

2
)k−1

(k − 1)!

)
.

Note that when k = 1, the above equation will be exactly the same as the one
derived in [74] and hence the order of f̃ [1](z) is known. Thus, by induction
and the closure properties of JS-admissibility from [74], we get that

f̃ [k](z) =

{
O(zk+ϵ), as z → ∞;
O(zk), as z → 0+

uniformly for z with | arg z| ≤ π
2
− ϵ, where ϵ > 0 is an arbitrary small con-

stant. Applying Laplace transform, we get the differential-functional equa-
tion

(1 + s)L [f̃ [k]; s] =4L [f̃ [k]; 2s] + 4L [f̃ [k−1]; 2s] + 4
k−1∑
l=1

(−1)l

l!
L (l)[f̃ [k−l]; 2s]

+ 4
k−2∑
l=1

(−1)l

l!
L (l)[f̃ [k−l−1]; 2s] + 2

(
1 + s

sk+1
− 1 + 2s

2ksk+1

)
,

where L (l)[f̃ [k−l]; s] is the l-th differentiation of L [f̃ [k−l]; s]. Let

Q(−s) =
∏
j≥1

(
1− s

2j

)
and L̄ [f̃ [k]; s] =

L [f̃ [k]; s]

Q(−s)

91

and divide both sides of above equation by Q(−2s). This yields

L̄ [f̃ [k]; s] =4L̄ [f̃ [k]; 2s] + 4L̄ [f̃ [k−1]; 2s] + 4
k−1∑
l=1

(−1)l

l!
L̄ (l)[f̃ [k−l]; 2s]

+ 4
k−2∑
l=1

(−1)l

l!
L̄ (l)[f̃ [k−l−1]; 2s] + 2

(
1

sk+1Q(−s)
− 1 + 2s

2ksk+1Q(−2s)

)

− 4
k−1∑
l=1

l−1∑
r=0

(−1)l

r!(l − r)!
2r−lL (r)[f̃ [k−l]; 2s]h(l−r)(s)

− 4
k−2∑
l=1

l−1∑
r=0

(−1)l

r!(l − r)!
2r−lL (r)[f̃ [k−l−1]; 2s]h(l−r)(s),

where h(s) = 1
Q(−2s)

and h(n)(s) is the n-th derivative of h(s). From the
bound for 1/Q(−2s) obtained in [74]

1

Q(−2s)
=

{
O(s−b), as s→ ∞;
O(1), as s→ 0,

where b can be arbitrarily large, we obtain the bounds

L̄ [f̃ [k]; s] =

{
O(|s|−b), as s→ ∞;
O(|s|−(k+1+ϵ)), as s→ 0+,

and

h(n)(s) =

{
O(|s|−b), as s→ ∞;
O(1), as s→ 0+,

uniformly for s with | arg(s)| ≤ π − ϵ. We let

R[k](s) =− 4
k−1∑
l=1

l−1∑
r=0

(−1)l

r!(l − r)!
2r−lL (r)[f̃ [k−l]; 2s]h(l−r)(s)

− 4
k−2∑
l=1

l−1∑
r=0

(−1)l

r!(l − r)!
2r−lL (r)[f̃ [k−l−1]; 2s]h(l−r)(s).

Then, by Ritt’s Theorem (Theorem 4.2 of [162]), we derive the bounds

R[k](s) =

{
O(|s|−b), as s→ ∞;
O(|s|−(k+ϵ)), as s→ 0+

92

uniformly for s with | arg z| ≤ π − ϵ. Thus, we may apply the Mellin trans-
form:

M [L̄ [k];ω] =
22−ω

1− 22−ω
M [L̄ [k−1];ω]

+
22−ω

1− 22−ω

k−1∑
l=1

∏l
i=1(ω − i)

l!
M [L̄ [k−l];ω − l]

+
22−ω

1− 22−ω

k−2∑
l=1

∏l
i=1(ω − i)

l!
M [L̄ [k−l−1];ω − l]

+
2

1− 22−ω

Q(2ω−k−1)

Q(1)
Γ(k − ω)Γ(ω − k + 1)(1− 2−k)

+
2

1− 22−ω

Q(2ω−k)

Q(1)
Γ(k + 1− ω)Γ(ω − k)(1− 21−k)

+
M [R[k];ω]

1− 22−ω
,

where for convenience, we use the notation M [L̄ [k];ω] for M [L̄ [f̃ [k]; s];ω].
The fundamental strip of the above expression will be the half plane ℜ(ω) >
k + 1. To apply the inverse Mellin transform, we need to figure out all the
singularities of the above expression. Since the case k = 1 is already solved
in [74] and the general case k will be determined by 1, . . . , k− 1, we get that
for k ≥ 2 the expression can be simplified as

M [L̄ [k];ω] =
22−ω

1− 22−ω

k−1∑
r=1

∏r
i=1(ω − i)

r!
M [L̄ [k−r];ω − r]

+
1

1− 22−ω

Q(2ω−k−1)

Q(1)
Γ(k − ω)Γ(ω − k + 1)(2− 21−k) + ḡk(ω)

where ḡk(ω) is the sum of all the remaining terms in the expression. From the
bound we derived for R[k](s) and L̄ [f̃ [k]; s] and the properties of the Mellin
transform [62], we get that if α is a singularity of ḡk(ω), then ℜ(α) ≤ k.
From [74], we have that

M [L̄ [1];ω] =
G1(ω)

1− 22−ω
,

where
G1(ω) =

Q(2ω−2)

Q(1)
Γ(ω)Γ(1− ω).

93

Plugging this into the recurrence and iterating, we get that for k ≥ 2

M [L̄ [k];ω] =

∏k−1
i=1 (ω − i)

1− 2k+1−ω
G1(ω− k+1)Ak(ω)+Tk(ω)G1(ω− k+1)+ gk(ω)

where gk(ω) is defined recursively by g1(ω) = 0, g2(ω) = ḡ2(ω) and

gk(ω) =
22−ω

1− 22−ω

k−1∑
r=1

∏r
i=1(ω − i)

r!
gk−r(ω − r) + ḡk(ω).

Again, by similar argument as above, we have that if α is a singularity of
gk(ω), then ℜ(α) ≤ k. The function Ak(ω) is defined recursively as A1(ω) =

1, A2(ω) =
1

2ω−2 − 1
and

Ak(ω) =
22−ω

1− 22−ω

k−1∑
r=1

Ak−r(ω − r)

r!
.

Also, Tk(ω) is defined recursively as T1(ω) = 0, T2(ω) = 6
4(1−22−ω)

and

Tk(ω) =
22−ω

1− 22−ω

k−1∑
r=1

∏k−1
i=1 (ω − i)

r!
Tk−r(ω − r) +

2(1− 2−k)

1− 22−ω
.

Note that one can easily prove that

Ak(k + 1 + χm) = Ak(k + 1) =
1

(k − 1)!

for χm =
2iπm

log 2 , m ∈ Z by induction. Moreover, the Laurent series of Ak(ω)

at ω = k + 1 + χr is given as

Ak(ω) =
1

(k − 1)!
+ dk(ω − k − 1) +O((ω − k − 1)2),

where {dk}k≥1 is a sequence which is defined recursively as d1 = 0 and

dk =
1

2k−1 − 1

k−1∑
r=1

dk−r

r!
− 2k−1

2k−1 − 1

log 2
(k − 1)!

.

Because we have the explicit form of G1(ω), we rewrite the expression as

M [L̄ [k];ω] =
Q(2ω−k−1)

(1− 2k+1−ω)Q(1)
Γ(ω)Γ(k − ω)Ak(ω) + gk(ω).

94

Finally, applying the inverse Mellin transform and collecting residues, we get
that

L̄ [f̃ [k]; s] =ks−(k+1) log2

1

s
+ s−(k+1)

c′k + ek +
1

log 2
∑

m∈Z\{0}

Gk(χm)

(k − 1)!
s−χm

+O(|s|−k−ϵ)

where Gk(χm) is introduced in previous section, ek = Tk(k + 1) and

c′k = k

(
Hk − 1

log 2 +
1

2
−
∑
j≥1

(k − 1)!

2j − 1
+

(k − 1)!dk
log 2

)
.

Note that the asymptotic hold uniformly as |s| → 0 with | arg(s)| ≤ π − ϵ.
Finally, we apply Proposition 1 of [74] and obtain that, as z → ∞,

f̃ [k](z) =
zk log z
(k − 1)!

+
zk

(k − 1)!

ck + ek
k

+
1

log 2
∑

m∈Z\{0}

Gk(χm)z
χm

Γ(k + 1 + χm)

+O(zk−1+ϵ).

Variance and Covariance of the k-th Total Path Length

Next, let us consider the variance. Here we introduce the poissonized variance
and covariance as

Ṽ [k](z) =f̃
[k]
2 (z)− f̃ [k](z)2 − zf̃ [k]′(z)2,

C̃ [k1,k2](z) =f̃
[k1,k2]
2 (z)− f̃ [k1](z)f̃ [k2](z)− zf̃ [k1]′(z)f̃ [k2]′(z),

where

f̃
[k]
2 (z) = e−z

∑
n≥0

E
(
P [k]2
n

) zn
n!

and f̃
[k1,k2]
2 (z) = e−z

∑
n≥0

E
(
P [k1]
n P [k2]

n

) zn
n!
.

For detailed explanation of why we choose them this way, see [74]. Note
that when k1 = k2 = k, Ṽ [k](z) = C̃ [k1,k2](z). Thus, we will consider only
C̃ [k1,k2](z) in this section.

From the given definition, we derive that

C̃ [k1,k2](z) + C̃ [k1,k2]′(z) =f̃
[k1,k2]
2 (z) + f̃

[k1,k2]′

2 (z)− f̃ [k1](z)f̃ [k2](z)

− zf̃ [k1]′(z)f̃ [k2]′(z)− f̃ [k1]′(z)f̃ [k2](z)

− f̃ [k1](z)f̃ [k2]′(z)− f̃ [k1]′(z)f̃ [k2]′(z)

− zf̃ [k1]′′(z)f̃ [k2]′(z)− zf̃ [k1]′(z)f̃ [k2]′′(z).

95

From the recurrence of P [k]
n+1, we derive the differential-functional equations

of f̃ [k]
2 and f̃ [k1,k2]

2 and plug them into the above equation. Thus, by the same
argument we used in the mean case, we find the bounds

C̃ [k1,k2](z) =

{
O(zk1+k2−1+ϵ), as z → ∞;
O(zmax{k1,k2}), as z → 0+

uniformly for z with | arg z| ≤ π
2
− ϵ. With the help of computer algebra

systems, we get that

C̃ [k1,k2](z) + C̃ [k1,k2]′(z) =2

k1∑
r1=1

k2∑
r2=1

(z
2

)k1+k2−r1−r2
C̃ [k1,k2]

(z
2

)
+ g̃[k1,k2](z).

Because the exact expression of g̃[k1,k2]2 (z) is way too complicated, we do not
list the whole expression here. For the later computation, we only need the
property that g̃[k1,k2]2 (z) = O(zk1+k2−2) as z → ∞. Similar to our analysis of
the mean, we apply Laplace transform to the differential-functional equations
and divide both sides by Q(−2s). Let k′ = k1 + k2, then

L̄ [C̃ [k1,k2]; s] =4

k1∑
r1=1

k2∑
r2=1

(−1)k
′−r1−r2L̄ (k′−r1−r2)[C̃ [r1,r2]; 2s] +R

[k1,k2]
2 (s),

where

R
[k1,k2]
2 (s) =(−1)k

′ L [g̃
[m1,m2]
2 ; s]

Q(−2s)

− 4

k1∑
r1=1

k2∑
r2=1

k′−r1−r2∑
j=1

(−1)k
′−r1−r2

(
k′ − r1 − r2

j

)
h(j)(s)

2j
L(s)

with the function L(s) defined as

L(s) = L (k′−r1−r2−k)[C̃ [r1,r2]; 2s].

Before we proceed to apply the Mellin transform, we derived similar bounds
as in the analysis of the mean:

L̄ [C̃ [k1,k2]; s] =

{
O(|s|−b), as s→ ∞;
O(|s|−(k′+ϵ)), as s→ 0+,

where b is a constant which can be arbitrarily large. Note that the bounds
hold uniformly for | arg s| ≤ π − ϵ. Now, we apply the Mellin transform on
both sides of the above equalities.

96

Again, we use the simplified notation M [L̄ [k1,k2];ω] = M [L̄ [C̃ [k1,k2]];ω].
Then, the equation becomes

M [L̄ [k1,k2];ω] =22−ω

k1∑
r1=1

k2∑
r2=1

M [L̄ [r1,r2];ω + r1 + r2 − k′]

k′−r1−r2∏
i=1

(ω − i)

+ M [R
[k1,k2]
2 ;ω]

for ℜ(ω) > k′. From [74], we already have that

M [L̄ [1]; s];ω] =
H1(ω)

1− 22−ω
,

where

H1(ω) = Q∞
∑

j,h,l≥0

(−1)j2−(
j+1
2)+j(ω−2)

QjQhQl2h+l
φ(ω; 2−j−h + 2−j−l)

with

φ(ω;x) =

∫ ∞

0

sω−1

(s+ 1)(s+ x)2
ds

=

π(1 + xω−2((ω − 2)ζ + 1− ω))

(x− 1)2 sin(πω) , if x ̸= 1;

π(ω − 1)(ω − 2)

2 sin(πω) , if x = 1.

Consequently, we can express M [L̄ [k1,k2];ω] in terms of H1(ω)

M [L̄ [k1,k2];ω] = Ak1,k2(ω)
H1(ω + 2− k′)

1− 2k′−ω

k′−2∏
i=1

(ω − i) + ḡ
[k1,k2]
2 (ω),

where Ar1,r2(ω) satisfies the recurrence

Ak1,k2(ω) =
22−ω

1− 22−ω

(
k1∑

r1=1

k2∑
r2=1

Ar1,r2(ω + r1 + r2 − k′)

)

with the initial condition A1,1(ω) = 1. Note that ḡ[k1,k2]2 (ω) has no singulari-
ties with real part larger than k′ − 1. From above recurrence, we can easily
prove that for all k ∈ Z

Ak1,k2(k1 + k2 + χk) =
2(k1−1)(k1−2)/2∏k1−1

j=1 (2j − 1)

2(k2−1)(k2−2)/2∏k2−1
i=1 (2i − 1)

=
22−k′

Qk1−1Qk2−1

97

by induction. For convenience, we set Ck1,k2 = Ak1,k2(k1 + k2). Applying the
inverse Mellin transform and collecting residues, we get

L̄ [C̃ [k1,k2];ω] =
s−k′

log 2
∑
r∈Z

Ck1,k2H1(2 + χr)s
−χr

k1+k2−1∏
i=2

(i+ χr) +O(|s|1−k′)

uniformly as |s| → 0 with | arg s| ≤ π − ϵ. Finally, we apply inverse Laplace
transform and Proposition 1 of [98] and obtain that, as z → ∞,

C̃ [k1,k2](z) = zk1+k2−1Ck1,k2 (Ckps +ϖkps(log2 n)) +O(|z|k1+k2−2+ϵ).

In particular,

Ṽ [k](z) =
z2k−1

log 2 Ck,k (Ckps +ϖkps(log2 n)) +O(|z|2k−2+ϵ)

as z → ∞.
Remark 22. Note that from the expression of Ck1,k2 , we have C2

k1,k2
= Ck1,k1Ck2,k2 .

Thus,

ρ(P [k1]
n , P [k2]

n) =
Cov(P [k1]

n , P
[k2]
n)√

Var(P [k1]
n)Var(P [k2]

n)

∼

√
n2k1+2k2−2C2

m,m−1 (Ckps +ϖkps(log2 n))
2

n2k1+2k2−2Cm,mCm−1,m−1 (Ckps +ϖkps(log2 n))
2 = 1.

Remark 23. Since we already know that P [1]
n satisfies a central limit theo-

rem [98], together with the result in the above remark and applying similar
argument as of [76], we obtain thatP [1]

n − E(P [1]
n)√

Var(P [1]
n)

, . . . ,
P

[k]
n − E(P [k]

n)√
Var(P [k]

n)

 d−→ (X, . . . , X),

where X is a standard normal distributed random variable and d−→ denotes
weak convergence.

4.3.3 Total Steiner k-distance
Let S[k]

n be the Steiner k-distance. Then, using the same idea as for the k-th
total path length, we consider four cases:

98

1. All k nodes are from one subtree.
S
[k]
Bn

+ S
[k]∗
n−Bn

.

2. The k nodes are chosen from both subtrees and the root is not chosen.

k−1∑
l=1

((
n−Bn

k − l

)
P

[l]
Bn

+

(
Bn

l

)
P

[k−l]∗
n−Bn

+ 2

(
Bn

l

)(
n−Bn

k − l

))
.

3. The root is chosen, the other k − 1 nodes are all from one subtree.

P
[k−1]
Bn

+ P
[k−1]∗
n−Bn

+

(
n−Bn

k − 1

)
+

(
Bn

k − 1

)
.

4. The root is chosen, the other k − 1 nodes are from both subtrees.

k−2∑
l=1

((
n−Bn

k − l − 1

)
P

[l]
Bn

+

(
Bn

l

)
P

[k−l−1]∗
n−Bn

+ 2

(
Bn

l

)(
n−Bn

k − l − 1

))
.

Note that as for the k-th total path length, here we have a system of recur-
rences for the Steiner k-distance. Similar to the analysis of the k-th total
path length, we let g̃[k](z) be the Poisson generating function of the mean of
the total Steiner k-distance, W̃ [k1,k2](z) be the Poissonized covariance of the
total k1-th Steiner distance and the total k2-th total path length and Ṽ [k]

S (z)
be the variance of the k-th Steiner distance. With the help from computer
algebra systems, we get the differential-functional equations

g̃[k](z) + g̃[k]
′
(z) =2g̃[k]

(z
2

)
+ 2f̃ [k−1]

(z
2

)
+ 2

k−1∑
r=1

(z
2
)r

r!
f̃ [k−r]

(z
2

)
+ 2

k−2∑
r=1

(z
2
)r

r!
f̃ [k−r−1]

(z
2

)
+

2zk − 4(z
2
)k

k!

+
2zk−1 − 2(z

2
)k−1

(k − 1)!
,

W̃ [k1,k2](z) + W̃ [k1,k2]′(z) =2

k2∑
r=1

(z
2

)k2−r

W̃ [k1,r]
(z
2

)
+ 2

k1−1∑
r1=1

k2∑
r2=1

(z
2

)k′−r1−r2
C̃ [r1,r2]

(z
2

)
+ h̃

[k1,k2]
2 (z)

99

and

Ṽ
[k]
S (z) + Ṽ

[k]′

S (z) =2Ṽ
[k]
S

(z
2

)
+ 4

k−1∑
r=1

(z
2

)k−r

W̃ [k,r]
(z
2

)
+ 4

k−1∑
r=1

(z
2

)k−r

W̃ [k,r]
(z
2

)
+ 2

k−1∑
r1=1

k−1∑
r2=1

(z
2

)2k−r1−r2
C̃ [r1,r2]

(z
2

)
+ h̃

[k]
S (z).

We use h̃[k1,k2]2 (z) and h̃
[k]
S (z) to denote the lower order terms. Because the

rest of the analysis will be very similar to the one with the k-th total path
length, we skip the details and list only the results

E
(
S[k]
n

)
=
nk logn
(k − 1)!

+
nk

(k − 1)!

(
ck +

ek
k

−D[k]
)

+
nk

(k − 1)!

1

log 2
∑

r∈Z\{0}

Gk(χr)n
χr

Γ(k + 1 + χr)

+O(nk−1+ϵ),

Cov
(
S[k1]
n , P [k2]

n

)
=
nk1+k2−1

log 2 Ck1,k2 (Ckps +ϖkps(log2 n)) +O(nk1+k2−2),

Var
(
S[k]
n

)
=
n2k−1

log 2 Ck,k (Ckps +ϖkps(log2 n)) +O(n2k−2).

Since the leading terms are exactly the same as for the k-th total path length,
the same arguments as for P [k]

n gives us the results stated in Theorem 4.3.1.

100

Chapter 5

A General Framework for
Central Limit Theorems

5.1 Framework for m-ary Tries
In this section, we will discuss a general framework for the limiting distribu-
tion of additive shape parameters in random digital trees. For m-ary tries
and PATRICIA tries, an additive shape parameter is defined as follows: Xn

is a sequence of random variables satisfying the distributional recurrence

Xn
d
=

m∑
r=1

X
(r)

I
(r)
n

+ Tn, (n ≥ n0), (5.1)

where n0 ≥ 0 is an integer, Xn, X
(1)
n , . . . , X

(m)
n , (I

(1)
n , . . . , I

(m)
n), Tn are inde-

pendent and X
(i)
n has the same distribution as Xn. The random model we

are using is the Bernoulli model which is introduced in Chapter 2. For digital
search trees and bucket digital search trees, the distributional recurrence will
be

Xn+b
d
=

m∑
r=1

X
(r)

I
(r)
n

+ Tn+b, (n ≥ n0), where b ≥ 1 is an integer. (5.2)

The remaining notations are as in the trie case.
Because of the development of related mathematical techniques, including

poissonization, poissonized variance with correction, Mellin transform and
contraction method, we have many tools to characterize the asymptotics of
additive shape parameters under the Bernoulli model. The authors of [77]
and [75] proposed a systematical way to derive the asymptotics for mean and
variance and the limit laws of additive shape parameters of random tries. It

101

turns out that the same method works for random digital search trees as
well.
Definition 5.1.1. If a set P = {p1, . . . , pm} satisfies that pi ∈ (0, 1) for all
1 ≤ i ≤ m and

∑
i pi = 1, then we say P is a probability family.

For a probability family P = {p1, . . . , pm}, if there exists a constant a ∈ R
and a sequence {ki}mi=1, ki ∈ N for all 1 ≤ i ≤ m such that pi = aki for all i,
then we say P is periodic. Otherwise, P is said to be aperiodic.

For a probability family P = {p1, . . . , pm}, we define a function
Λ(s) = 1− p−s

1 − · · · − p−s
m .

We let Z be the set of roots of Λ(s) = 0 and define the following notations
Z<α = Z ∩ {ℜ(z) < α} and Z=α = Z ∩ {ℜ(z) = α}.

Then from [55] and [67], we have the following properties
Theorem 5.1.2. Depending on the real part of the solutions of Λ(s), we
have three cases:

(i) If ℜ(s) < −1, then Λ(s) has no solutions. In other words, Z<−1 = ∅.

(ii) If ℜ(s) = −1, then Z=−1 = {−1} ∪ S where

S =

{−1 + χk|χk = 2kπi/ log a, k ∈ Z \ {0}} , Pis periodic;

∅, P is aperiodic.

(iii) If ℜ(s) > −1, then there exists a positive constant η such that for any
solutions ω1, ω2, we have |ω1 − ω2| > η.

Lemma 5.1.3. Let f̃(z) and h̃(z) be entire functions satisfying a functional
equation of the form

f̃(z) =
m∑
r=1

f̃(prz) + h̃(z) (5.3)

where {p1, . . . , pm} forms a probability family. We denote by h = −
m∑
r=1

pr log pr.

If h̃(z) ∈ J S α,γ with 0 ≤ α < 1 and f̃(0) = f̃ ′(0) = 0, then

f̃(z) =
1

h

∑
ωk∈Z<−α−ϵ

G(ωk)z
−ωk +O(zα+ϵ),

where the sum expression is infinitely differentiable and

G(ω) =

∫ ∞

0

zω−1h̃(z)dz = M [h̃;ω].

102

Proof. Since h̃(z) ∈ J S α,γ with 0 ≤ α < 1, by a similar proof as of
Proposition 3.3 in [75], we get that f̃(z) = O(z) as z → ∞. At the same
time, the assumptions that f̃(0) = f̃ ′(0) = 0 imply that f̃(z) = O(z2) as
z → 0. Thus, the Mellin transform of f̃(z) exists in the strip ⟨−2,−1⟩ and
from (5.3), we get

M [f̃ ;ω] =
G(ω)

Λ(ω)
, for − 2 < ℜ(ω) < −1.

By the converse mapping theorem, Theorem 3.3.10 and Theorem 5.1.2, we
get the desired result.

Now, we consider the moment generating function of Xn

Mn(y) := E
(
eXny

)
.

Then, by (5.1), we get that

Mn(y) = E
(
eTny

) ∑
j1+···+jm=n

πj1,...,jmMj1(y) · · ·Mjm(y), (n ≥ n0),

where
πj1,...,jm =

(
n

j1 · · · jm

)
pj11 · · · pjmm .

Let µn = E(Xn) and sn = E (X2
n), then from the definition of the moment

generating function, we get that

µn =M ′
n(0) =

∑
j1+···+jm=n

πj1,...,jm

m∑
r=1

µjr + E(Tn),

sn =M ′′
n(0) =

∑
j1+···+jm=n

πj1,...,jm

m∑
r=1

(sjr + 2E(Tn)µjr)

+
∑
r ̸=s

∑
j1+···+jm=n

πj1,...,jmµjrµjs + E(T 2
n). (5.4)

For the sake of simplicity, from now on, we assume that X0 = X1 = 0 and
n0 = 2. For more general cases, our method will also apply with slight
modifications.

Now, we utilize the idea of Poissonization which was already used in
previous sections. We let

f̃1(z) = e−z
∑
n≥0

E(Xn)
zn

n!
, f̃2(z) = e−z

∑
n≥0

E(X2
n)
zn

n!

h̃1(z) = e−z
∑
n≥0

E(Tn)
zn

n!
, h̃2(z) = e−z

∑
n≥0

E(T 2
n)
zn

n!
,

103

then (5.4) yields that

f̃1(z) =
m∑
r=1

f̃1(prz) + h̃1(z),

f̃2(z) =
m∑
r=1

f̃2(prz) +
∑
r ̸=s

f̃1(prz)f̃1(psz) + h̃2(z) + g̃(z), (5.5)

where

g̃(z) = 2e−z
∑
n≥0

∑
j1+···+jm=n

πj1,...,jmE(Tn)

(
m∑
r=1

µjr

)
zn

n!
.

Next, we utilize the idea of Poissonized variance with correction and let

ṼX(z) = f̃2(z)− f̃1(z)
2 − zf̃ ′

1(z)
2,

ṼT (z) = h̃2(z)− h̃1(z)
2 − zh̃′1(z)

2.

From (5.5), we derive that

ṼX(z) =
m∑
r=1

ṼX(prz) + ṼT (z) + ϕ̃1(z) + ϕ̃2(z), (5.6)

where

ϕ̃1(z) =g̃(z)− 2h̃1(z)
m∑
r=1

f̃1(prz)− 2zh̃′1(z)
m∑
r=1

prf̃
′
1(prz),

ϕ̃2(z) =z
∑
r<s

prps

(
f̃ ′
1(prz)− f̃ ′

1(psz)
)2
.

Before we go on to derive asymptotic expressions, we introduce the Hadamard
product of Poisson generating functions.

Definition 5.1.4. Given two Poisson generating functions

F̃1(z) = e−z
∑
n≥0

an
n!
zn and F̃2(z) = e−z

∑
n≥0

bn
n!
zn,

we define the Hadamard product of these two functions as

F̃3(z) := F̃1(z)⊙ F̃2(z) = e−z
∑
n≥0

anbn
n!

zn.

104

Note that the definition is different from the usual one since we consider
the exponential generating function.

Subsequently, we will use Hadamard products to handle the function ϕ̃1

in (5.6). For this, we will need the following theorem which shows that
JS-admissibility is closed under the Hadamard product.

Theorem 5.1.5. If F̃1 ∈ J S α1,β1
and F̃2 ∈ J S α2,β2

, then F̃3 ∈ J S α1+α2,β1+β2
.

More precisely, we have

F̃3(z) = F̃1(z)F̃2(z) + zF̃ ′
1(z)F̃

′
2(z) +O

(
|z|α1+α2−2(log+ |z|)β1+β2

)
,

uniformly as |z| → ∞ and | arg(z)| ≤ θ, where 0 < θ < π/2.

Proof. See the proof of Proposition 3.5 of [75].

We now can state the result on asymptotic expressions of mean and vari-
ance. (This result was first obtained by Fuchs et al. in [75].)

Proposition 5.1.6. If h̃1(z) ∈ J S α1,γ1
with 0 ≤ α1 < 1, then

E (Xn) =
1

h

∑
ωk∈Z<−α1−ϵ

GE(ωk)n
−ωk +O(nα1+ϵ),

where the sum expression is infinitely differentiable and

GE(ω) = M [h̃1;ω] =

∫ ∞

0

h̃(z)zω−1dz.

Moreover, if ṼT (z) ∈ J S α2,γ2
with 0 ≤ α2 < 1 and h̃2(z) ∈ J S , then

Var (Xn) ∼
1

h

∑
ωk∈Z=−1

GV (ωk)n
−ωk ,

where the sum expression is infinitely differentiable and

GV (ω) = M [ṼT + ϕ̃1 + ϕ̃2;ω] =

∫ ∞

0

(
ṼT (z) + ϕ̃1(z) + ϕ̃2(z)

)
zω−1dz.

Proof. The expression of the mean follows directly from (5.5), Lemma 5.1.3
and depoissonization.

105

For the variance, we start from (5.6). We apply Theorem 5.1.5 to g̃(z),
which yields

g̃(z) =2e−z
∑
n≥0

∑
j1+···+jm=n

πj1,...,jmE(Tn)

(
m∑
r=1

µjr

)
zn

n!

=2e−z
∑
n≥0

∑
j1+···+jm=n

πj1,...,jmE(Tn) (µn − E(Tn))
zn

n!

=2f̃1(z)⊙ h̃1(z)− 2h̃1(z)⊙ h̃1(z)

=2h̃1(z)

(
m∑
r=1

f̃1(prz) + h̃1(z)

)
+ 2zh̃′1(z)

(
m∑
r=1

prf̃
′
1(prz) + h̃′1(z)

)
− 2h̃1(z)

2 − 2zh̃′1(z)
2 +O(1)

=2h̃1(z)
m∑
r=1

f̃1(prz) + 2zh̃′1(z)
m∑
r=1

prf̃
′
1(prz) +O(1).

Plugging the result into the expression of ϕ̃1(z), we get that ϕ̃1(z) = O(1).
Now, we turn to ϕ̃2(z). First, by applying the Mellin transform to (5.5),

we get that for −2 < ℜ(ω) < −1,

M [f̃1;ω] =
GE(ω)

Λ(ω)
.

Thus, from inverse Mellin transform,

f̃ ′
1(z) =

d

dz
f̃1(z) =

1

2iπ

∫
(−1−ϵ)

GE(ω)

Λ(ω)

(
d

dz
z−ω

)
dz

=
−1

2iπ

∫
(−1−ϵ)

GE(ω)

Λ(ω)
ωz−ω−1dω.

Therefore, we get

f̃ ′
1(prz)− f̃ ′

1(psz) =
−1

2iπ

∫
(−1−ϵ)

GE(ω)ω

Λ(ω)

(
p−ω−1
r − p−ω−1

s

)
z−ω−1dω

=o(1),

where the latter follows from the fact that the integral has no poles at ℜ(ω) =
−1. As a result, ϕ̃2(z) = o(|z|) as z → ∞ which in turn shows that M [ϕ̃2;ω]
has no poles at ℜ(ω) = −1. Now, the converse mapping theorem proves the
claimed expansion for Ṽ (z). Moreover, by JS-admissibility, the expansion
holds for Var(Xn), as well.

106

Now, we can state the general central limit theorem.

Theorem 5.1.7. Suppose that h̃1(z) ∈ J S α1,γ1
with 0 ≤ α1 < 1/2, h̃2(z) ∈

J S and ṼT (z) ∈ J S α2,γ2
with 0 ≤ α2 < 1. Moreover, we assume that

∥Tn∥s = o(
√
n) with 2 < s ≤ 3 and V(Xn) ≥ cn for all n large enough and

some c > 0. Then, as n→ ∞,

Xn − E(Xn)√
V(Xn)

d−→ N (0, 1).

Proof. From Proposition 5.1.6, we get that

E(Xn) =
1

h

∑
ωk∈Z<−α1−ϵ

GE(ωk)n
−ωk +O(nα1+ϵ),

V(Xn) ∼
1

h

∑
ωk∈Z=−1

GV (ωk)n
−ωk .

From the assumption, we can choose ϵ such that α1 + ϵ < 1/2. Next, we set

ϖ1(x) =
∑

ωk∈Z<−α1−ϵ

G1(ωk)

h
x−ωk ,

ϖ2(x) =
∑

ωk∈Z=−1

G2(ωk)

h
x−ωk−1.

To apply the contraction method, we need to verify the following conditions:

(a) (
I
(r)
n ϖ2(I

(r)
n)

nϖ2(n)

)1/2

Ls−→ Ar,

m∑
r=1

A2
r = 1 and P(∃r : Ar = 1) < 1.

(b)

(nϖ2(n))
−1/2

(
Tn −ϖ1(n) +

m∑
r=1

ϖ1(I
(r)
n)

)
Ls−→ 0.

We begin with the verification of (a). By the strong law of large number and
the dominating converge theorem,

I(r)n

Lp−→ pr, 1 ≤ r ≤ m. (5.7)

107

Moreover, by the definition of ϖ2(x), we have that

ϖ2(prn) = ϖ2(n) for all 1 ≤ r ≤ m and ϖ′
2(n) = O(n−1).

By the Taylor series expansion of ϖ2:

ϖ2(I
(r)
n) = ϖ2(n) +O

(∣∣∣∣∣I(r)n

n
− pr

∣∣∣∣∣
)

for 1 ≤ r ≤ m.

This implies that

ϖ2(I
(r)
n)

ϖ2(n)
− 1 =

1

ϖ2(n)
O

(∣∣∣∣∣I(r)n

n
− pr

∣∣∣∣∣
)

a.s−→ 0 (5.8)

Combining (5.7) and (5.8), we get(
I
(r)
n

n

ϖ2(I
(r)
n)

ϖ2(n)

)1/2

Ls−→ p1/2r = Ar.

Moreover,
m∑
r=1

A2
r =

m∑
r=1

pr = 1 and P(∃r : Ar = 1) < 1

and hence the condition (a) is verified.
Now, we turn to the verification of condition (b). Note that from the

assumption on ∥Tn∥s and V(Xn), the term Tn can be dropped from (b).
Therefore, we only need to check that

(nϖ2(n))
−1/2

(
m∑
r=1

ϖ1(I
(r)
n)−ϖ1(n)

)
Ls−→ 0. (5.9)

We let
An =

m∩
r=1

{∣∣I(r)n − prn
∣∣ ≤ prn

2/3
}

and χAn be the indicator function of An. We also let p′ = min
1≤r≤m

pr. Then
Chernoff’s bound yields that

P(Ac
n) = O

(
exp

(
−p′n1/3

3

))
.

Thus, it suffices to show (5.9) on An. From the way ϖ1 was chosen, we have
that ϖ1(n) = O(n) and ϖ′′

1(n) = O(n−1).

108

Again, we compute the Taylor expansion of ϖ1 (on An):

ϖ1(I
(r)
n) = ϖ1(prn) +ϖ′

1(prn)
(
I(r)n − prn

)
+O

(
(I

(r)
n − prn)

2

n

)

for all 1 ≤ r ≤ m. Consequently,∥∥∥∥∥(nϖ2(n))
−1/2

(
m∑
r=1

ϖ1(I
(r)
n)−ϖ1(n)

)
χAn

∥∥∥∥∥
s

≤

∥∥∥∥∥(nϖ2(n))
−1/2

m∑
r=1

ϖ′
1(prn)

(
I(r)n − prn

)∥∥∥∥∥
s

+

∥∥∥∥∥(nϖ2(n))
−1/2

m∑
r=1

O

(
(I

(r)
n − prn)

2

n

)∥∥∥∥∥
s

. (5.10)

We estimate the terms in (5.10) individually. First, we consider

ϖ′
1(prn)−ϖ′

1(psn) =
∑

ωk∈Z<−α1−ϵ

G1(ωk)

h
(−ωk)n

−ωk−1(p−ωk−1
r −p−ωk−1

s) = o(n).

Together with the assumption on V(Xn), we get∥∥∥∥∥(nϖ2(n))
−1/2

m∑
r=1

ϖ′
1(prn)

(
I(r)n − prn

) ∥∥∥∥∥
s

=

∥∥∥∥∥(nϖ2(n))
−1/2

m−1∑
r=1

(ϖ′
1(prn)−ϖ′

1(pmn))
(
I(r)n − prn

)∥∥∥∥∥
s

≤o(1)
m−1∑
r=1

∥∥∥∥∥I(r)n − prn√
n

∥∥∥∥∥
s

=o (∥N (0, 1)∥s) = o(1). (5.11)

Similarly, we also have∥∥∥∥∥(nϖ2(n))
−1/2

m∑
r=1

O

(
(I

(r)
n − prn)

2

n

)∥∥∥∥∥
s

= O
(
∥N (0, 1)2∥s√

n

)
= o(1).

(5.12)
Substituting (5.11) and (5.12) back into (5.9) shows that (b) holds.

109

5.2 Framework for Symmetric DSTs
In the previous section, we have established a framework for central limit
theorems of shape parameter ofm-ary tries satisfying recurrence (5.1). In this
section, we are going to establish a similar framework for shape parameters
of symmetric DSTs satisfying (5.2). For the sake of simplicity, we will only
consider the case b = 1 and m = 2. However, more general cases can be
obtained by similar methods. The structure of both frameworks are quite
alike and the proofs are more or less the same. Thus, we will only display
the proofs which are different. First, we start with an analogue of Lemma
5.1.3.

Lemma 5.2.1. Let f̃(z) and h̃(z) be entire functions satisfying a differential
functional equation of the form

f̃(z) + f̃ ′(z) = 2f̃
(z
2

)
+ h̃(z),

where f̃(0) = 0 and h̃(z) ∈ J S α,γ with 0 ≤ α < 1, then

f̃(z) =
z

log 2
∑
k∈Z

G(2 + χk)

Γ(2 + χk)
nχk +O(zα+ϵ),

where χk = 2kπi/ log 2 and

G(ω) =

∫ ∞

0

sω−1

Q(−2s)

(∫ ∞

0

e−szh̃(z)dz

)
ds.

Proof. First, we apply Laplace transform to the differential functional equa-
tion. This yields

(1 + s)L [f̃ ; s] = 4L [f̃ ; 2s] + L [h̃; s].

Because h̃(z) ∈ J S α,γ, from the proof of Proposition 2.4 of [74], we get
that

f̃(z) =

{
O(z1), if z → 0+;
O(z1+ϵ), if z → ∞,

where ϵ > 0 can be arbitrarily small. Therefore,

L [f̃ ; s] =

{
O(s−2), as s→ ∞;
O(s−2−ϵ), as s→ 0+.

Now, divide both sides by Q(−2s) and denote L [f̃ ; s]/Q(−2s) by L̄ [f̃ ; s].
This gives

L̄ [f̃ ; s] = 4L̄ [f̃ ; 2s] +
L [h̃; s]

Q(−2s)
. (5.13)

110

From [74], we have

logQ(−2s) =
(log s)2

log 2 +
log s
2

+
∑
k∈Z

qks
−χk +O(|s|−1) (5.14)

uniformly for |s| → ∞ and | arg(s)| ≤ π − ϵ, where χk = 2kπi/ log 2,

q0 =
log 2
12

+
π2

6 log 2 and qk =
1

2k sinh(2kπ/ log 2) (for k ̸= 0).

From (5.14) and the Taylor series expansion

Q(−2s) = 1 +O(|s|), (|s| → 0),

we get

L̄ [f̃ ; s] =

{
O(s−M), as s→ ∞
O(s−2−ϵ), as s→ 0+,

where M can be arbitrarily large. Thus, we may apply Mellin transform on
both sides of (5.13). Then, we get that for ℜ(ω) > 2

M [L̄ [f̃ ; s];ω] =
G(ω)

1− 22−ω
,

where

G(ω) = M

[
L [h̃; s]

Q(−2s)
;ω

]
=

∫ ∞

0

sω−1

Q(−2s)

(∫ ∞

0

s−szh̃(z)dz

)
ds.

Since h̃(z) ∈ J S α,γ with 0 ≤ α < 1, G(ω) is analytic on the half plane
ℜ(ω) > α + 1. As a result, inverse Mellin transform gives

L̄ [f̃ ; s] =
s−2

log 2
∑
k∈Z

G(2 + χk)s
−χk +O(|s|−α−1−ϵ).

Finally, by Theorem 3.5.2, we get that

f̃1(z) =
z

log 2
∑
k∈Z

G(2 + χk)

Γ(2 + χk)
zχk +O(|z|α+ϵ).

This proves the claimed result.

111

As in the previous section, we use the notations

f̃1(z) = e−z
∑
n≥0

E(Xn)
zn

n!
, f̃2(z) = e−z

∑
n≥0

E(X2
n)
zn

n!
,

τ̃1(z) = e−z
∑
n≥0

E(Tn)
zn

n!
, τ̃2(z) = e−z

∑
n≥0

E(Tn)
zn

n!
.

Moreover, again similar to the previous section, we assume that X0 = X1 = 0
and n0 = 2 to simplify the computation. More general cases can be handled
by the same method with slight modifications.

By a similar computation, we get the following differential functional
equations

f̃1(z) + f̃ ′
1(z) =2f̃1

(z
2

)
+ τ̃1(z),

f̃2(z) + f̃ ′
2(z) =2f̃2

(z
2

)
+ 2f̃1

(z
2

)2
+ τ̃2(z) + λ̃(z), (5.15)

where

λ̃(z) =2e−z
∑
n≥0

E(Tn)2−n
∑

0≤k≤n

(
n

k

)
(E(Xk) + E(Xn−k))

zn

n!

=2τ̃1(z)⊙ f̃1(z) + 2τ̃1(z)⊙ f̃ ′
1(z)− 2τ̃1(z)⊙ τ̃1(z).

Moreover, we again use the Poissonized variance with correction and obtain
that

Ṽ (z) + Ṽ ′(z) =2Ṽ
(z
2

)
+ ṼT (z) + λ̃(z)− 4τ̃1(z)f̃1

(z
2

)
− 2zτ̃ ′1(z)f̃

′
1

(z
2

)
+ zf̃ ′′

1 (z)
2 (5.16)

where ṼT (z) = τ̃2(z)− τ̃1(z)
2 − zτ̃ ′1(z)

2.
We apply Theorem 5.1.5 to (5.16). By similar arguments as in the proof

of Proposition 5.1.6, we get the following analogue.

Proposition 5.2.2. Let all the functions be defined as above. If τ̃1(z) ∈
J S α1,γ1

with 0 ≤ α1 < 1, then

E(Xn) =
n

log 2
∑
k∈Z

GE(2 + χk)

Γ(2 + χk)
nχk +O(nα+ϵ),

where the sum expression is infinitely differentiable and

GE(ω) =

∫ ∞

0

1

Q(−2s)

(∫ ∞

0

e−sz τ̃1(z)dz

)
ds.

112

In addition, if ṼT (z) ∈ J S α2,γ2
with 0 ≤ α2 < 1 and τ̃2(z) ∈ J S , then

V(Xn) ∼
n

log 2
∑
k∈Z

GV (2 + χk)

Γ(2 + χk)
nχk ,

where the sum expression is infinitely differentiable and

GV (ω) =

∫ ∞

0

1

Q(−2s)

(∫ ∞

0

e−szR̃(z)dz

)
ds

with

R̃(z) = ṼT (z) + λ̃(z)− 4τ̃1(z)f̃1

(z
2

)
− 2zτ̃ ′1(z)f̃

′
1

(z
2

)
+ zf̃ ′′

1 (z)
2.

Finally, we give the general central limit theorem of shape parameters for
DSTs. The proof of the following Theorem is similar to Theorem 5.1.7 (even
easier since DSTs are binary and we only consider the symmetric case here)
and hence skipped.

Theorem 5.2.3. Suppose τ̃1(z) ∈ J S α1,γ1
with 0 ≤ α1 < 1/2, τ̃2(z) ∈

J S and ṼT (z) ∈ J S α2,γ2
with 0 ≤ α2 < 1. Moreover, we assume that

∥Tn∥s = o(
√
n) with 2 < s ≤ 3 and V(Xn) ≥ cn for all n large enough and

some c > 0. Then, as n→ ∞

Xn − E(Xn)√
V(Xn)

d−→ N (0, 1).

5.3 Lower Bounds for the Variance
Note that in the statement of Theorem 5.1.7 and Theorem 5.2.3, we require
that V(Xn) = Ω(n). Here we introduce a useful lemma which helps us to
establish lower bounds for recurrences of some specific form. This lemma
can be used to check the assumption V(Xn) = Ω(n) in Theorem 5.1.7 and
Theorem 5.2.3. The proof of the following lemma is largely based on ideas
of Schachinger in [188].

Lemma 5.3.1. Consider two nonnegative sequence {αi} and {βi} satisfying
a recurrence of the form

αn+1 =
m∑
i=1

ai

n∑
j=0

f(n, j, pi)αj + βn, (n ≥ n0),

113

where a1, . . . , am are positive real numbers, pi ∈ (0, 1) for all 1 ≤ i ≤ m
and f(n, j, p) is a nonnegative-valued function. We assume that there exists
some j′ ≥ n0 such that βj′ > 0. We also assume that f(n, j, p) satisfies that∑n

j=0 f(n, j, p) = 1 and there exists n1 ≥ n0 such that for all n > n1 and
p < 1, ∑

|j−pn|>pnτ

f(n, j, p) = O(nτ−1)

for some constant 1 > τ > 0, then αn = Ω(nλ) with λ being the unique real
root of F (z) = 1−

∑m
i=1 aip

z
i .

Proof. Let Cn = αn/n
λ. We may rewrite the recurrence as

Cn+1 =
m∑
i=1

ai

n∑
j=0

f(n, j, pi)

(
j

n+ 1

)λ

Cj +
βn

(n+ 1)λ
.

We set Cn = min
j′+1≤n̂≤n

Cn̂ and N = {n ∈ N|Cn < Cn−1}.
If |N | <∞, we get the desired result. Otherwise, we let n′ = n+nτ and

n′′ = n− sgn(λ)nτ . For all 1 ≤ i ≤ m, we can find n2 ≥ n1 such that for all
n ≥ n2

n∑
j=0

f(n, j, pi)

(
j

n+ 1

)λ

Cj ≥
∑

|j−pin|≤pinτ

f(n, j, pi)

(
j

n+ 1

)λ

Cj

≥
∑

|j−pin|≤pinτ

f(n, j, pi)

(
pin

′′

n+ 1

)λ

C⌈pin′⌉

≥C⌈pin′⌉

(
pin

′′

n+ 1

)λ
1−

∑
|j−pin|>pinτ

f(n, j, pi)

≥C⌈pin′⌉

(
pin

′′

n+ 1

)λ (
1− F ′nτ−1

)
for some constant F ′. We choose p′ = max

1≤i≤m
pi and p′′ = 1+p′

2
, then there

exists n3 ≥ n2 and a constant c such that ⌈pin′⌉ ≤ ⌊p′′n⌋ for all n ≥ n3 and(
pin

′′

n+ 1

)λ

≥ pλi
(
1− |c|nτ−1

)
for all 1 ≤ i ≤ m.

Let F = |c|+ F ′. Then, we get that
n∑

j=0

f(n, j, pi)

(
j

n+ 1

)λ

Cj ≥ C⌊p′′n⌋p
λ
i (1− Fnτ−1)

114

and hence Cn+1 ≥ C⌊p′′n⌋
(
1− Fnτ−1

)
.

Now we construct an increasing sequence {Ni}i≥0 by letting N0 = n3 and

Ni+1 = max{(n+ 1) ∈ N|Cn > Cn+1, C⌊p′′n⌋ ≥ CNi
}.

Note that Ni+2 >
Ni

p′′
. As a result, we get that

∏
j≥0

(
1− FN τ−1

j

)
is convergent

and hence we can find j0 big enough such that∏
j≥j0

(
1− FN τ−1

j

)
≥ 1

2
.

Finally,

CNm
≥ Cj0

m∏
j=j0+1

(
1− FN τ−1

j

)
≥ 1

2
Cj0 .

This implies that Cn = Ω(1) and the result follows.

Now, we explain how to use this lemma. First, we let µn = E(Xn) and

Mn(y) = E
(
e(Xn−µn)y

)
. (5.17)

Note that M ′′
n(0) = E ((Xn − µn)

2) = V(Xn).
For the trie case, we substitute (5.1) into (5.17), then for n ≥ n0

Mn(y) =
∑

j1+···+jm=n

πj1,...,jmMj1(y) · · ·Mjm(y)

E
(
e(Tn−µn+

∑
i µji

)y|I(1)n = j1, . . . , I
(m)
n = jm

)
,

where
πj1,...,jm =

(
n

j1, · · · , jm

)
pj11 · · · pjmm .

Let σ2
n =M ′′

n(0) and differentiate the equation, we get

σ2
n =

m∑
i=1

n−1∑
k=0

(
n
k

)
pki (1− pi)

n−k

1−
∑m

r=1 p
n
r

σ2
k + ηn, (5.18)

where

ηn =
∑

j1+···+jm=n

πj1,...,jmE

(
(Tn − µn +

∑
i

µji)
2|I(1)n = j1, . . . , I

(m)
n = jm

)
.

115

Choose

f(n, j, p) =

(
n
j

)
pj(1− p)n−j

1−
∑m

r=1 p
n
r

.

Then, by Lemma 5.3.1, V(Xn) = Ω(n) if ηn′ > 0 for some n′ ≥ n0.
For symmetric DSTs, we substitute (5.2) into (5.17). By similar compu-

tations, we get that for n ≥ n0

σ2
n = 2

n−1∑
k=0

21−n

(
n− 1

k

)
σ2
k + ϑn, (5.19)

where

ϑn =
n−1∑
k=0

21−n

(
n− 1

k

)
E
(
(Tn−1 + µk + µn−k−1 − µn)

2|In−1 = k
)
. (5.20)

To apply Lemma 5.3.1, we choose f(n, j, p) = 21−n
(
n−1
j

)
and check whether

ϑn′ > 0 for some n′ ≥ n0.

5.4 Internal Nodes of m-ary Tries with Spec-
ified Outdegree

As an application of the framework introduced in Section 5.1, we will con-
sider the number of internal nodes of outdegree k in a random trie of size
n which will be denoted by N

(k)
n . (This is a refinement of the size of tries

and PATRICIA tries; see Corollary 5.4.4 below.) We will give a multivariate
study of these parameters by considering

Zn =
m∑
k=1

akN
(k)
n ,

where a1, . . . , am are arbitrary real number with ai ̸= (i−1)a2 for some i (this
is to make sure that Zn is not deterministic; see Lemma 5.4.1 and the remark
succeeding it). Note that a similar multivariate framework was considered
in Hubalek et al. [90] for shape parameters in digital search trees. However,
our analysis will take into account many tools developed after [90]. Before
we state the main result about Zn, we need some preparation.

Lemma 5.4.1. Zn is not deterministic for n large enough.

116

...............

···

.............

···

....

···

.

Figure 5.1: Two tries with internal nodes black and external nodes white.
The trie on the left has all internal nodes of outdegree 2 except the last which
is of outdegree i; the trie on the right has all internal nodes of outdegree 2
expect the last two which are of outdegree i.

Proof. First, observe that the claim is trivial if a1 ̸= 0. Thus, we may assume
that m ≥ 3 and ai ̸= (i − 1)a2 for i ≥ 3. For this case, consider the two
tries from Figure 5.1. For the first trie, we have Zn = (n− i)a2 + ai; for the
second, we have Zn = (n− 2i+ 1)a2 + 2ai. From our assumption, these two
values are different. This concludes the proof.

Remark 24. If ai = (i−1)a2 for all i, then it is easy to see that Zn = a2(n−1)
for all n.

Proposition 5.4.2. We have, Var(Zn) ≥ cn with c > 0 for all n large
enough.

Proof. First, observe that Zn is an additive shape parameter satisfying a
recurrence of type (5.1). In order to see this, note that

N (k)
n

d
=

m∑
i=1

(N
(k)

I
(i)
n

)(i) + T (k)
n , (n ≥ 2),

with the initial conditions N (k)
0 = N

(k)
1 = 0 and

T (k)
n =

{
1, if #{1 ≤ i ≤ m : I

(i)
n ̸= 0} = k;

0, otherwise.

Consequently,

Zn
d
=

m∑
i=1

Z
(i)

I
(i)
n

+ Tn, (n ≥ 2), (5.21)

117

where Z0 = Z1 = 0 and

Tn =
m∑
k=1

akT
(k)
n . (5.22)

Now, to apply Lemma 5.3.1, we derive the recurrence for Var(Zn). Set
µn = E(Zn) and

Mn(y) = E
(
e(Zn−µn)y

)
.

Then, from (5.21), similar computation as in Section 5.3 yields that

Var(Zn) = σ2
n =

m∑
i=1

n∑
j=0

(
n

j

)
pji (1− pi)

n−jσ2
j + ηn, (n ≥ 2),

where σ2
0 = σ2

1 = 0 and

ηn =
∑

j1+···+jm=n

πj1,...,jmE
((
Tn − µn +

∑
i

µji

)2|I(1)n = j1, . . . , I
(m)
n = jm

)
.

From the last expression, we see that ηn ≥ 0. Consequently, by Lemma 5.3.1,
either Var(Xn) grows at least linearly or equals zero for all n. The latter,
however, is impossible by Lemma 5.4.1.

With the preparation work done, we now state the main result about Zn.
Theorem 5.4.3. We have, as n→ ∞,

E(Zn) ∼ nP (log1/a n), Var(Zn) ∼ nQ(log1/a n),

where a > 0 is a suitable constant and P (z), Q(z) are infinitely differentiable,
1-periodic functions (possibly constant). Moreover, Var(Zn) > 0 for all n
large enough and

Zn − E(Zn)√
Var(Zn)

d−→ N(0, 1).

Proof. We are going to use the results of Proposition 5.1.6 and Theorem
5.1.7 to prove this theorem. Note, however, that Tn is not independent
of (I(1)n , . . . , I

(m)
n) and hence, strictly speaking, the two propositions do not

apply. However, it is easily checked that the proofs of the propositions still
work for the current situation under the same assumptions; see Section 5.4
in [75] for a similar example.

Now, we will check that the assumptions of the propositions hold. This
is not complicated since h̃1(z) and h̃2(z) are easily computed. For instance,
to compute h̃1(z), note that

E
(
T (k)
n

)
=

∑
{i1,...,ik}⊆S

∑
ji1+···+jik=n
ji1 ,...,jik≥1

(
n

ji1 , . . . , jik

)
p
ji1
i1

· · · pjikik
.

118

Consequently, for k ≥ 2,

e−z
∑
n≥2

E
(
T (k)
n

) zn
n!

=
∑

{i1,...,ik}⊆S

e−z
(
e
pji1

z − 1
)
· · ·
(
e
pjik

z − 1
)

and similar for k = 1. From this, we obtain h̃1(z) by (5.22) and linearity of
the mean.

In particular, we see that h̃1(z) is a linear combination of functions of the
form e−az with a ≥ 0. Hence, from the closure properties from Section 3.5.3,
we have that h̃1(z) ∈ J S 0,0. The same result is also easily verified to hold
for h̃2(z). Thus, the claims about mean and variance in Theorem 5.4.3 follow
from Proposition 5.1.6.

Next, we turn to the limit law. We are going to apply Theorem 5.1.7.
The only assumption of this theorem which needs further explanation is
the assumption on the positiveness of the variance (or more precisely, the
assumption of the at least linear growth of the variance). By Proposition
5.4.2, this assumption is verified and the result follows.

As a consequence, we consider the size of tries and PATRICIA tries

N (T)
n =

m∑
k=1

N (k)
n , N (P)

n =
m∑
k=2

N (k)
n .

Note that N (P)
n equals n − 1 if m = 2 and this case was excluded from our

definition of Zn. We have the following consequence of Theorem 5.4.3.

Corollary 5.4.4. For m ≥ 2, as n→ ∞,

N
(T)
n − E(N (T)

n)√
Var(N (T)

n)

d−→ N(0, 1)

and for m ≥ 3, as n→ ∞,

N
(P)
n − E(N (P)

n)√
Var(N (P)

n)

d−→ N(0, 1).

The result for the size of tries with m = 2 is classical; see [93] for an
analytic proof and Neininger and Rüschendorf [159] for a proof using the
contraction method.

Note that the covariance ofN (k1)
n andN (k2)

n can be obtained from Theorem
5.4.3 via the relation

2Cov
(
N (k1)

n , N (k2)
n

)
= Var

(
N (k1)

n +N (k2)
n

)
− Var

(
N (k1)

n

)
− Var

(
N (k2)

n

)
.

119

By this relation and Theorem 5.4.3, we obtain

Cov(N (k1)
n , N (k2)

n) ∼ nQ(k1,k2)(log1/a n) (5.23)

for all 1 ≤ k1, k2 ≤ m, where Q(k1,k2)(z) is an infinitely differentiable, 1-
periodic function (possibly constant). Set

Var(N (k1)
n) ∼ nQ(k1)(log1/a n), Var(N (k2)

n) ∼ nQ(k2)(log1/a n)

and
Σn =

(
nQ(k1)(log1/a n) nQ(k1,k2)(log1/a n)

nQ(k1,k2)(log1/a n) nQ(k2)(log1/a n)

)
.

Then, we are going to show a bivariate limit law

Σ−1/2
n

(
N

(k1)
n − E(N (k1)

n)

N
(k2)
n − E(N (k2)

n)

)
d−→ N(0, I2).

Similar to Theorem 5.4.3, we need some preparation before proving the limit
law.

First, we have to show for normalization purposes that Σn is positive
definite. We will do this again in two steps. From now on, we will assume
that (k1, k2,m) ̸∈ {(1, 2, 2), (2, 3, 3)}. (Otherwise, Σn is not positive definite,
see Remark 25 below.)

Lemma 5.4.5. The correlation coefficient ρ(N (k1)
n , N

(k2)
n) is not −1 or 1 for

all n large enough.

Proof. We use proof by contradiction. Thus, assume that ρ(N (k1)
n , N

(k2)
n) ∈

{−1, 1} which implies that for some an, bn ∈ R with an ̸= 0, we have that

N (k1)
n = anN

(k2)
n + bn.

Obviously this cannot hold if k1 = 1. Thus, we may assume that k1 ≥ 2.
First, consider k1 = 2 and set i ̸= k2 (this is possible due to the assumption
on (k1, k2,m)). Then, we get a contradiction from the two tries in Figure
1 (since N

(2)
n decreases, whereas N (k2)

n remains constant). Next, consider
k1 > 2 and set i = k2. Then, again a contradiction is obtained from Figure
1 (now, N (k1)

n remains constant, whereas N (i)
n increases).

Remark 25. (k1, k2,m) = (1, 2, 2) is the only case where the correlation co-
efficient is not defined (N (2)

n is deterministic in this case; see Remark 24).
If (k1, k2,m) = (2, 3, 3), then N

(2)
n = n − 1 − 2N

(3)
n (again by Remark 24).

Hence, in this case ρ(N (2)
n , N

(3)
n) = −1.

120

Proposition 5.4.6. Σn is positive definite for all n large enough.

Proof. It is sufficient to show that det(Σn) > 0 for all n large enough. For
the proof of this, we will need some notation. First,

µ(k1)
n = E(N (k1)

n), µ(k2)
n = E(N (k2)

n).

Moreover,

ξn = Var(N (k1)
n), νn = Cov(N (k1)

n , N (k2)
n), κn = Var(N (k2)

n).

Then, by setting

Fn(u, v) = E
(
e(N

(k1)
n −µ

(k1)
n)u+(N

(k2)
n −µ

(k2)
n)v

)
and arguing as in Section 5.3, we obtain (after a lengthy computation)

ξn1κn2 + ξn2κn1 − 2νn1νn2

=
∑

j1+···+jm=n1

∑
l1+···+lm=n2

πj1,...,jmπl1,...,lm

m∑
i=1

m∑
u=1

(ξjiκlu + ξluκji − 2νjiνlu)

+ τn1,n2 (5.24)

for n1, n2 ≥ 2 and all initial conditions equal to 0. In order to describe τn1,n2

set

αj1,...,jm = E
((
T (k1)
n − µ(k1)

n +
∑
i

µ
(k1)
ji

)2|I(1)n = j1, . . . , I
(m)
n = jm

)
,

βj1,...,jm = E
((
T (k2)
n − µ(k2)

n +
∑
i

µ
(k2)
ji

)2|I(1)n = j1, . . . , I
(m)
n = jm

)
.

Then,

τn1,n2

=
∑

j1+···+jm=n1

∑
l1+···+lm=n2

πj1,...,jmπl1,...,lm (Θj1,...,jm,l1,...,lm + Ξj1,...,jm,l1,...,lm) ,

where
Θj1,...,jm,l1,...,lm = (αj1,...,jmβl1,...,lm − αl1,...,lmβj1,...,jm)

2

and

Ξj1,...,jm,l1,...,lm =
m∑
i=1

E
(
αl1,...,lm(N

(k1)
ji

− µ
(k1)
ji

)− βl1,...,lm(N
(k1)
ji

− µ
(k2)
ji

)
)2

+
m∑

u=1

E
(
αj1,...,jm(N

(k2)
lu

− µ
(k2)
ju

)− βj1,...,jm(N
(k1)
lu

− µ
(k1)
lu

)
)2
.

121

Now, note that τn1,n2 ≥ 0 for all n1, n2. Using a similar argument as in
the proof of Lemma 5.3.1 for (5.24) twice, one obtains that

ξn1κn2 + ξn2κn1 − 2νn1νn2

is either identical zero for all n1, n2 or ≥ cn1n2 with c > 0. The former is
however impossible due to Lemma 5.4.5. Finally, by setting n1 = n2, we
obtain that det(Σn) ≥ cn2 with c > 0.

As a consequence of Proposition 5.4.6, Σ1/2
n exists for n large enough. For

the proof of the bivariate limit law, we need some notation(
b
(1)
n

b
(2)
n

)
= Σ−1/2

n

((
T

(k1)
n

T
(k2)
n

)
−

(
µ
(k1)
n

µ
(k2)
n

)
+

k∑
i=1

(
µ
(k1)

I
(i)
n

µ
(k2)

I
(i)
n

))
,

where µ(k1)
n and µ

(k2)
n are as in the proof of the above proposition and

A(i)
n = Σ−1/2

n Σ
1/2

I
(i)
n

, 1 ≤ i ≤ m.

Explicit expressions for these vectors and matrices can be derived by Maple
and are given in Appendix B (which the reader should consult before reading
the proof of Theorem 5.4.7.)

Theorem 5.4.7. Assume that (k1, k2,m) ̸∈ {(1, 2, 2), (2, 3, 3)}. Then, Σn is
positive definite for n large enough and, as n→ ∞,

Σ−1/2
n

(
N

(k1)
n − E(N (k1)

n)

N
(k2)
n − E(N (k2)

n)

)
d−→ N(0, I2),

where I2 denotes the 2× 2 identity matrix.

Proof. We use the multivariate version of the contraction method; see Neininger
and Rüschendorf [159]. We have to verify the following assumptions for
2 < s ≤ 3:(

b
(1)
n

b
(2)
n

)
Ls−→
(

0
0

)
, A(i)

n
Ls−→ Ai, (5.25)

E
m∑
i=1

∥Ai∥sop < 1, E
(
∥Ai∥sopχ{I(i)n ≤j}∪{I(i)n =n}

)
→ 0 (5.26)

for all 1 ≤ i ≤ m and j ∈ N, where ∥ · ∥op denotes the operator norm of a
matrix.

122

First, from the proof of Theorem 5.4.3, we have

T
(⋆)
n − µ

(⋆)
n +

∑m
i=1 µ

(⋆)
i√

n

Ls−→ 0

for ⋆ ∈ {k1, k2}. This together with the boundedness of Ω1(n)and Ω2(n)
(from Proposition 5.4.2) andD(n) (from the proof of Proposition 5.4.6) shows
the claimed result for b(1)n and b

(2)
n in (5.25).

Next, to show the second claim (5.26), we argue as in the proof of condi-
tion (a) in Theorem 5.1.7. For instance, for the expressions in A

(i)
n (1, 1), we

obtain
Ω1(I

(i)
n) + Ω2(I

(i)
n) + 2

√
D(I

(i)
n)

Ω1(n) + Ω2(n) + 2
√
D(n)

a.s.−→ 1

and (
Ω1(I

(i)
n) +

√
D(I

(i)
n)

)(
Ω2(n) +

√
D(n)

)
− Ω3(n)Ω3(I

(i)
n)

2D(n) + (Ω1(n) + Ω2(n))
√
D(n)

a.s.−→ 1

which are proved similar as (5.8). Plugging this into the expression for
A

(i)
n (1, 1) and using (5.7) then gives

A(i)
n (1, 1)

a.s.−→ √
pi.

By dominated convergence, the same holds in Ls. Similarly, the other entries
of A(i)

n are treated. Overall, we obtain

A(i)
n

Ls−→ √
piI2 (5.27)

which shows the second claim in (5.25).
From (5.27) it follows immediately that ∥Ai∥op =

√
pi. Using this, the

two conditions in (5.26) are easily checked.
Finally, by applying the multivariate contraction method, we obtain con-

vergence in distribution of the random vector from Theorem 5.4.7 to a ran-
dom variable whose distribution is the unique solution of a distributional
fixed point equation (see [187]). It is easily verified that the only solution of
this fixed point equation is the (2-dimensional) standard normal distribution.
This completes the proof of Theorem 5.4.7.

A similar result could be also given for (N (k1)
n , N

(k2)
n , N

(k3)
n), however, prov-

ing that the corresponding covariance matrix is positive definite would be
technically complicated (and the problem becomes even more intractable
when considering stochastic vectors of higher dimension).

123

5.5 2-Protected Nodes in Symmetric Digital
Search Trees

A node in a tree is said to be k-protected if the distance from the node to each
leaf is at least k. For example, every node which is not a leaf is 1-protected
and 2-protected nodes are those nodes which are neither a leaf nor a parent
of a leaf.

2-protected nodes have drawn some attention in recent years due to some
practical relevance. For instance, in a network model with the hackers repre-
sented by leaves, the distance between the computers (represented by internal
nodes) and hackers would be an important measure of how ”vulnerable” a
computer is in the network. This is why the parameter is named ”protected”.
The parameter also found real life applications in social networks, computer
security models and so on; see [81] for more details.

The concept of protected nodes was first proposed by Cheon and Shapiro
in [19]. They considered the number of 2-protected nodes in some families
of ordered trees, including planar trees, Motzkin trees and ternary trees, and
showed that the portion of 2-protected nodes in the trees they considered
will converge to some constants. Since then, 2-protected nodes have been
considered for various tree models. In [143], the author computed the portion
of 2-protected nodes in k-ary trees. Mahmoud and Ward showed that the
number of 2-protected nodes in binary search trees satisfies a central limit
theorem in [142]. Bóna also considered the probabilistic properties of k-
protected nodes in binary search trees in [12]. The authors of [80] and [81]
derived the asymptotic expression of the mean and variance of 2-protected
nodes in tries. Du and Prodinger computed an asymptotic expression of
the mean of 2-protected nodes in DSTs [52]. Recently, Devroye and Janson
proposed a parameter called protected fringe subtree which generalizes k-
protected nodes and studied it for simply generated trees, binary search trees
and random recursive trees [40].

In this section, we are going to rederive the asymptotic expression of the
mean for the number of 2-protected nodes in DSTs. Moreover, we also obtain
an asymptotic expression for the variance and prove a central limit theorem
by the framework introduced in Section 5.2.

Let Ln be the random variable which counts the number of 2-protected
nodes in a DST constructed by n strings. Then, we have the following re-
currence under the Bernoulli model:

Ln+1
d
= LBn + L∗

n−Bn
+ Tn, (n ≥ 3),

124

where Bn = Binomial(n, 1/2) and

Tn =

{
0, Bn = 1 ∨ n− 1;
1, Otherwise. (5.28)

The initial conditions are L0 = L1 = L2 = 0 and L3 = 1/2.

Theorem 5.5.1. We have that

E(Ln) =
n

log 2
∑
k∈Z

GE(2 + χk)

Γ(2 + χk)
nχk +O(nϵ) as n→ ∞,

and

V(Ln) ∼
n

log 2
∑
k∈Z

GV (2 + χk)

Γ(2 + χk)
nχk as n→ ∞.

Proof. To apply Proposition 5.2.2, we need to compute τ̃1(z), τ̃2(z) and ṼT (z).
(Note that again the independence assumption of Bn and Tn is not certified.
However, the proof of Proposition 5.2.2 still holds for the current assumption.
) From (5.28), we get that

τ̃1(z) = τ̃2(z) = 1− e−z − ze−z/2.

Thus,

ṼT (z) =

(
1− z − z3

4

)
e−z − (1 + z)e−2z + z−z/2 − z2e−3z/2.

We can easily verify that τ̃1(z), τ̃2(z) as well as ṼT (z) fulfill the requirements.

Next, we derive an explicit expression of the periodic function in the
asymptotic expression of E(Ln). Let f̃1(z) = e−z

∑
n≥0 E(Ln)

zn

n!
, we get

f̃1(z) + f̃ ′
1(z) =2f̃1

(z
2

)
+

(
z2

4
− 1

)
e−z − ze−z/2 + 1.

Now, set p̃(z) =
(

z2

4
− 1
)
e−z − ze−z/2 + 1. We need to find an explicit

expression of

GE(ω) =

∫ ∞

0

sω−1

Q(−2s)

(∫ ∞

0

p̃(z)e−szdz

)
ds.

We begin with the Laplace transform of p̃(z)

L [p̃; s] =
1

2(s+ 1)3
− 1

(s+ 1)
− 1

(s+ 1/2)2
+

1

s
.

125

Set
g(s) =

1

2(s+ 1)3
− 1

s+ 1
− 1

(s+ 1/2)2
,

we first compute the Mellin transform of g(s)
Q(−2s)

. Equation 2.2.5 of [5] gives
us that

1

Q(−2s)
=
∑
n≥0

(−1)nsn

Qn

, when |s| < 1.

Thus,

g(s)

Q(−2s)
=
∑
r≥0

(
(r + 2)(r + 1)

4
− 1− (r + 1)2r+2

)
(−1)rsr

∑
n≥0

(−1)nsn

Qn

=
∑
n≥0

(−1)nsn
∑
r≥0

1

Qn−r

(
(r + 2)(r + 1)

4
− 1− (r + 1)2r+2

)
.

By the direction mapping theorem from Section 3.3, the singular expansion
will be

M

[
g(s)

Q(−2s)
;ω

]
≍
∑
n≥0

(
n∑

r=0

1

Qn−r

(
(r + 2)(r + 1)

4
− 1− (r + 1)2r+2

))
(−1)n

ω + n
.

From equation 2.2.6 of [5], we get that

1

Qn

=
Q(2n)

Q(1)
=

1

Q(1)

∑
l≥0

al+12
−nl,

where

al+1 =
(−1)l2−(

l+1
2)

Ql

.

Next, we compute the meromorphic extension of
n∑

r=0

1

Qn−r

(
(r + 2)(r + 1)

4
− 1− (r + 1)2r+2

)
=

1

Q(1)

∑
l≥0

al+1

n∑
r=0

(
(n− r + 2)(n− r + 1)

4
2−rl − 2−rl − (n− r + 1)2n+2−r(l+1)

)

=
8 · 24l − 32 · 23l + 46 · 22l − 32 · 2l + 9

21−ln(2 · 2l − 1)2(2l − 1)3
−

2n+l+3
(
n(2l+1 − 1) + 2l+1 − 2

)
(2 · 2l − 1)2

+
2l
(
2l(n2 + 3n− 2)− 2l+1(n2 + 4n− 2) + n2 + 5n+ 2

)
4(2l − 1)3

126

We let

κ(ω) =
8 · 24l − 32 · 23l + 46 · 22l − 32 · 2l + 9

21−lω(2 · 2l − 1)2(2l − 1)3
−

2ω+l+3
(
ω(2l+1 − 1) + 2l+1 − 2

)
(2 · 2l − 1)2

+
2l
(
2l(ω2 + 3ω − 2)− 2l+1(ω2 + 4ω − 2) + ω2 + 5ω + 2

)
4(2l − 1)3

,

then
M

[
g(s)

Q(−2s)
;ω

]
≍
∑
n≥0

κ(n)
(−1)n

ω + n
.

By the same argument as in Example 5 of [62], we get that

M

[
g(s)

Q(−2s)
;ω

]
= κ(−ω)Γ(ω)Γ(1− ω).

Moreover, from [66], we have∫ ∞

0

sω−2

Q(−2s)
ds =

Q(2ω−1)

Q(1)
Γ(−ω)Γ(ω + 1) for ℜ(ω) > 2.

As a result,

GE(ω) = κ(−ω)Γ(ω)Γ(1− ω) +
Q(2ω−1)

Q(1)
Γ(−ω)Γ(ω + 1).

Note that the asymptotic expression of Ln in DSTs has already been
derived by Du and Prodinger with the Rice integral method in [52]. Their
result is given as

E(Ln) =
n

Q(1)

∑
m≥0

am+1bm + nδ(log2 n) +O(1),

where
bm :=

1

4 log 2
B(2−m)

(2−m − 1)3(2−m − 2)2

with

B(x) =16(1− x)3 log 2− (x− 1)(x− 2)(7x2 − 15x+ 10)

− 2x(4 + 6x− 5x2 + 2x3) logx.

Du and Prodinger computed the numerical value of 1
Q(1)

∑
m≥0 am+1bm as

0.3070798... and claimed that δ(x) is a periodic function with tiny amplitude.

127

However, they did not compute the Fourier coefficient of the periodic function
δ(x).

Comparing with our result, we have that

lim
ω→2

GE(ω)

log 2 ≈ 0.3070798...

which coincide with Du and Prodinger’s result. Our method can also derive
all the Fourier coefficients of the periodic function at once, which is obviously
an advantage over the Rice integral method.

Now, we turn to the limiting distribution.

Theorem 5.5.2.
Ln − E(Ln)√

Var(Ln)

d−→ N (0, 1).

Proof. To apply Theorem 5.2.3, we need to verify that

1. ∥Tn∥s = o(
√
n) with 2 < s ≤ 3.

2. τ1(z) ∈ J S α1,γ1
with 0 ≤ α1 < 1/2 and τ̃2(z) ∈ J S .

3. ṼT (z) ∈ J S α2,γ2
with 0 ≤ α2 < 1.

4. V(Ln) ≥ cn for some c > 0.

The first condition is trivial since ∥Tn∥s = O(1) for all s ≥ 1. The second,
third and fourth conditions are already verified in the previous theorem.
Thus, we only need the show that V(Ln) ≥ cn for some c > 0.

From the discussion in Section 5.3, we only need to find some n′ > 3
such that ϑn′ > 0 where ϑn is defined as (5.20). From (5.28) and the initial
conditions µ0 = µ1 = µ2 = 0 and µ3 = 1/2, we can easily compute that ϑ4 =
27/16. Therefore, the fourth condition is satisfied and the result follows.

128

Chapter 6

Conclusion

The main purpose of this thesis was to contribute to the analysis of additive
shape parameters in random digital trees. The results in this thesis can be
divided into two topic areas.

The first topic area was concerned with new applications of the recently
proposed Poisson-Laplace-Mellin method. In [74], all the applications of the
Poisson-Laplace-Mellin method were for shape parameters of linear order (up
to a power of logarithms). In Chapter 4, we collected many examples of shape
parameters which are not of linear order, including the leftmost path length,
the Wiener index and the total Steiner distance. We derived asymptotic
expansions of the mean and variance for these parameters. Moreover, we
proved limit laws as well.

The second topic area was concerened with general framworks for central
limit theorems of additive shape parameters in random digital trees. In
Chapter 5, we first introduced our framework from [77] for proving central
limit theorems for shape paramters in m-ary tries. Then, we extended this
framework to shape parameters in symmetric digital search trees. We also
gave two examples to illustrate how our frameworks work.

As for open problems, the most straightforward one is the extension of our
study of the total Steiner distance to other digital trees. In fact, such a study
can be performed by the methods we introduced in this thesis. However, the
computations are cumbersome. Another obvious question is whether our
results for symmetric DSTs can be extended to asymmetric DSTs? For pa-
rameters satisfying one-sided distributional recurrences, such as the leftmost
path length, we saw that the Poisson-Laplace-Mellin method still works in
the asymmetric case. On the other hand, for parameters satisfying two-sided
distributional recurrences, this is no longer true. Netherless, with similar
tools as in our thesis, deriving asymptotic expansions of mean, variance and
obtaining the limit law is still possible. However, asymptotic expressions are

129

not explicit. Thus, finding a general method for deriving explicit asymptotic
expressions of the mean and variance of shape parameters satisfying a two-
sided distributional recurrence in asymmetric DSTs is an important open
question. As a final open problem, note that our frameworks in Chapter 5
are for proving central limit laws. So, a natural question is whether or not
similar frameworks can be given for local limit laws and rates of convergence?

We end this thesis by placing our research in a larger context. There-
fore, we point out that research of random digital trees is part of the more
general study of binomial splitting processes (BSPs) in which the binomial
distribution and some of its extensions play an important role. For an ex-
tensive introduction into BSPs, see [75]. In this thesis, we mainly dealt with
functional equations of the form

f̃(z) + f̃ ′(z) = 2f̃
(z
2

)
+ g̃(z)

or
f̃(z) =

m∑
r=1

f̃(prz) + h̃(z).

Such (differential-)functional equations are special cases of the more general
form

b∑
j=0

(
b

j

)
f̃ (j)(z) =

m∑
r=1

arf̃(prz + λ) + g̃(z)

which underlies the study of BSPs. Most of the recent research has focused
on the case λ = 0. Very little is known about the case λ > 0 which is
also important in applications; see [55, 56, 91]. Thus, there is still a lot of
research to be done and the we have still a long way ahead of us before having
a complete understanding of the stochastic properties of BSPs.

130

Appendices

131

Appendix A

We use the same notation for poissonized means, variances and covariances
as in Section 2. In addition, for the node-wise Wiener index of bucket digital
search trees and the internal Wiener index for tries, we denote by h̃1(z) the
Poisson generating function of E(Nn) and

H̃N(z) = g̃N(z)− h̃1(z)
2 − zh̃′1(z)

2,

H̃T (z) = g̃T (z)− h̃1(z)f̃1,0(z)− zh̃′1(z)f̃
′
1,0(z),

H̃W (z) = g̃W (z)− h̃1(z)f̃0,1(z)− zh̃′1(z)f̃
′
0,1(z),

where g̃N(z), g̃T (z) and g̃W (z) denote the Poisson generating function of
E(N2

n), E(NnTn) and E(NnWn), respectively.

Key-wise Wiener Index of Bucket Digital Search Trees. We have,

b∑
j=0

(
b

j

)
f̃
(j)
1,0 (z) = 2f̃1,0(z/2) + z,

b∑
j=0

(
b

j

)
f̃
(j)
0,1 (z) = 2f̃0,1(z/2) + (z + 2)f̃1,0(z/2) +

z2

2
+ z

and

b∑
j=0

(
b

j

)
Ṽ (j)(z) = 2Ṽ (z/2) +

(
b∑

j=0

(
b

j

)
f̃
(j)
1,0 (z)

)2

+ z

(
b∑

j=0

(
b

j

)
f̃
(j+1)
1,0 (z)

)2

−
b∑

j=0

(
b

j

)(
f̃1,0(z)

2 + zf̃ ′
1,0(z)

2
)(j)

,

133

b∑
j=0

(
b

j

)
C̃(j)(z) =2C̃(z/2) + (z + 2)Ṽ (z/2)

+

(
b∑

j=0

(
b

j

)
f̃
(j)
1,0 (z)

)(
b∑

j=0

(
b

j

)
f̃
(j)
0,1 (z)

)

+ z

(
b∑

j=0

(
b

j

)
f̃
(j+1)
1,0 (z)

)(
b∑

j=0

(
b

j

)
f̃
(j+1)
0,1 (z)

)

−
b∑

j=0

(
b

j

)(
f̃1,0(z)f̃0,1(z) + zf̃ ′

1,0(z)f̃
′
0,1(z)

)(j)
,

b∑
j=0

(
b

j

)
W̃ (j)(z) =2W̃ (z/2) + (2z + 4)C̃(z/2) +

(
z2

2
+ 3z + 2

)
Ṽ (z/2)

+ z2f̃ ′
1,0(z/2)

2 + 2z2f̃ ′
1,0(z/2) + z2

+

(
b∑

j=0

(
b

j

)
f̃
(j)
0,1 (z)

)2

+ z

(
b∑

j=0

(
b

j

)
f̃
(j+1)
0,1 (z)

)2

−
b∑

j=0

(
b

j

)(
f̃0,1(z)

2 + zf̃ ′
0,1(z)

2
)(j)

.

Node-wise Wiener Index of Bucket Digital Search Trees. We have,

b∑
j=0

(
b

j

)
h̃
(j)
1 (z) =2h̃1(z/2) + 1,

b∑
j=0

(
b

j

)
f̃
(b)
1,0(z) =2f̃1,0(z/2) + 2h̃1(z/2),

b∑
j=0

(
b

j

)
f̃
(b)
0,1(z) =2f̃0,1(z/2) + 2f̃1,0(z/2)h̃1(z/2) + 2h̃1(z/2)

2

+ 2f̃1,0(z/2) + 2h̃1(z/2)

and

b∑
j=0

(
b

j

)
H̃

(j)
N (z) = 2H̃N(z/2) +

(
b∑

j=0

(
b

j

)
h̃
(j)
1 (z)

)2

134

+ z

(
b∑

j=0

(
b

j

)
h̃
(j+1)
1 (z)

)2

−
b∑

j=0

(
b

j

)(
h̃1(z)

2 + zh̃′1(z)
2
)(j)

,

b∑
j=0

(
b

j

)
H̃

(j)
T (z) =2H̃T (z/2) + 2H̃N(z/2)

+

(
b∑

j=0

(
b

j

)
h̃
(j)
1 (z)

)(
b∑

j=0

(
b

j

)
f̃
(j)
1,0 (z)

)

+ z

(
b∑

j=0

(
b

j

)
h̃
(j+1)
1 (z)

)(
b∑

j=0

(
b

j

)
f̃
(j+1)
1,0 (z)

)

−
b∑

j=0

(
b

j

)(
h̃1(z)f̃1,0(z) + zh̃′1(z)f̃

′
1,0(z)

)(j)
,

b∑
j=0

(
b

j

)
Ṽ (j)(z) =2Ṽ (z/2) + 4H̃T (z/2) + 2H̃N(z/2) +

(
b∑

j=0

(
b

j

)
f̃
(j)
1,0 (z)

)2

+ z

(
b∑

j=0

(
b

j

)
f̃
(j+1)
1,0 (z)

)2

−
b∑

j=0

(
b

j

)(
f̃1,0(z)

2 + zf̃ ′
1,0(z)

2
)(j)

,

b∑
j=0

(
b

j

)
H̃

(j)
W (z) =2H̃W (z/2) + 2H̃T (z/2)(h̃1(z/2) + 1) + 2H̃N(z/2)(2h̃1(z/2)

+ f̃1,0(z/2) + 1) +

(
b∑

j=0

(
b

j

)
h̃
(j)
1 (z)

)(
b∑

j=0

(
b

j

)
f̃
(j)
0,1 (z)

)

+ z

(
b∑

j=0

(
b

j

)
h̃
(j+1)
1 (z)

)(
b∑

j=0

(
b

j

)
f̃
(j+1)
0,1 (z)

)

−
b∑

j=0

(
b

j

)(
h̃1(z)f̃0,1(z) + zh̃′1(z)f̃

′
0,1(z)

)(j)
,

b∑
j=0

(
b

j

)
C̃(j)(z) =2C̃(z/2) + 2H̃W (z/2) + 2Ṽ (z/2)(h̃1(z/2) + 1)

+ 2H̃T (z/2)(3h̃1(z/2) + f̃1,0(z/2) + 2) + 2H̃N(z/2)(2h̃1(z/2)

+ f̃1,0(z/2) + 1) +

(
b∑

j=0

(
b

j

)
f̃
(j)
1,0 (z)

)(
b∑

j=0

(
b

j

)
f̃
(j)
0,1 (z)

)

135

+ z

(
b∑

j=0

(
b

j

)
f̃
(j+1)
1,0 (z)

)(
b∑

j=0

(
b

j

)
f̃
(j+1)
0,1 (z)

)

−
b∑

j=0

(
b

j

)(
f̃1,0(z)f̃0,1(z) + zf̃ ′

1,0(z)f̃
′
0,1(z)

)(j)
,

b∑
j=0

(
b

j

)
W̃ (j)(z) =2W̃ (z/2) + 4C̃(z/2)(h̃1(z/2) + 1) + 4H̃W (z/2)(2h̃1(z/2)

+ f̃1,0(z/2) + 1) + 2Ṽ (z/2)H̃N(z/2)

+ Ṽ (z/2)((2 + z)h̃1(z/2)
2 + 4h̃1(z/2) + 2) + 2H̃T (z/2)

2

+ H̃T (z/2)(8h̃1(z/2)
2 + 16h̃1(z/2)

+ 4zh̃′1(z/2)
2 + 4h̃1(z/2)f̃1,0(z/2) + 2zh̃′1(z/2)f̃

′
1,0(z/2) + 4)

+ 4H̃N(z/2)
2 + 8H̃N(z/2)

2h̃1(z/2)
2

+ 8H̃N(z/2)H̃T (z/2) + H̃N(z/2)(8h̃1(z/2)

+ 4zh̃′1(z/2)
2 + 8h̃1(z/2)f̃1,0(z/2)

+ 4zh̃′1(z/2)f̃
′
1,0(z/2) + 2f̃1,0(z/2)

2 + 4f̃1,0(z/2)

+ zf̃ ′
1,0(z/2)

2 + 2) + z2h̃1(z/2)
4 + 2z2h̃1(z/2)

3f̃1,0(z/2)

+ z2h̃′1(z/2)
2f̃ ′

1,0(z/2)
2

+

(
b∑

j=0

(
b

j

)
f̃
(j)
0,1 (z)

)2

+ z

(
b∑

j=0

(
b

j

)
f̃
(j+1)
0,1 (z)

)2

−
b∑

j=0

(
b

j

)(
f̃0,1(z)

2 + zf̃ ′
0,1(z)

2
)(j)

.

External Wiener Index of Tries. We have,

f̃1,0(z) = 2f̃1,0(z/2) + z − ze−z,

f̃0,1(z) = 2f̃0,1(z/2) + zf̃1,0(z/2) +
z2

2

and

Ṽ (z) = 2Ṽ (z/2) + e−z(4zf̃1,0(z/2) + 2zf̃ ′
1,0(z/2)− 2z2f̃ ′

1,0(z/2))

+ e−z(z − ze−z + z2e−z − z3e−z),

136

C̃(z) = 2C̃(z/2) + zṼ (z/2) + e−z
(
zf̃1,0(z/2) +

z2

2
f̃ ′
1,0(z/2)−

z3

2
f̃ ′
1,0(z/2)

+ 2zf̃0,1(z/2) + zf̃ ′
0,1(z/2)− z2f̃ ′

0,1(z/2)
)
+ e−z

(
z2 − z3

2

)
,

W̃ (z) = 2W̃ (z/2) + 2zC̃(z/2) +

(
z2

2
+ z

)
Ṽ (z/2) + z2f̃ ′

1,0(z/2)
2

+ 2z2f̃ ′
1,0(z/2) + z2.

Internal Wiener Index of Tries. We have,

h̃1(z) =2h̃1(z/2) + 1− e−z(1 + z),

f̃1,0(z) =2f̃1,0(z/2) + 2h̃1(z/2),

f̃0,1(z) =2f̃0,1(z/2) + 2f̃1,0(z/2)h̃1(z/2) + 2h̃1(z/2)
2 + 2f̃1,0(z/2) + 2h̃1(z/2)

and

H̃N(z) =2H̃N(z/2) + e−z(4h̃1(z/2) + 4zh̃1(z/2)− 2z2h̃′1(z/2))

+ e−z(1 + z − e−z − 2ze−z − z2e−z − z3e−z),

H̃T (z) =2H̃T (z/2) + 2H̃N(z/2) + e−z(2h̃1(z/2) + 2zh̃1(z/2)− z2h̃′1(z/2)

+ 2f̃1,0(z/2) + 2zf̃1,0(z/2)− z2f̃ ′
1,0(z/2)),

Ṽ (z) =2Ṽ (z/2) + 4H̃T (z/2) + 2H̃N(z/2),

H̃W (z) =2H̃W (z/2) + 2H̃T (z/2)(h̃1(z/2) + 1) + 2H̃N(z/2)(2h̃1(z/2)

+ f̃1,0(z/2) + 1) + e−z(2h̃1(z/2)
2 + 2zh̃1(z/2) + 2h̃1(z/2) + 2zh̃1(z/2)

− z2h̃1(z/2)h̃
′
1(z/2)− z2h̃′1(z/2) + 2h̃1(z/2)f̃1,0(z/2) + 2zh̃1(z/2)f̃1,0(z/2)

− z2h̃1(z/2)f̃
′
1,0(z/2)− z2h̃′1(z/2)f̃1,0(z/2) + 2f̃1,0(z/2) + 2zf̃1,0(z/2)

− z2f̃ ′
1,0(z/2) + 2f̃0,1(z/2) + 2zf̃0,1(z/2)− z2f̃ ′

0,1(z/2)),

C̃(z) =2C̃(z/2) + 2H̃W (z/2) + 2Ṽ (z/2)(h̃1(z/2) + 1)

+ 2H̃T (z/2)(3h̃1(z/2) + f̃1,0(z/2) + 2) + 2H̃N(z/2)(2h̃1(z/2)

+ f̃1,0(z/2) + 1),

W̃ (z) =2W̃ (z/2) + 4C̃(z/2)(h̃1(z/2) + 1) + 4H̃W (z/2)(2h̃1(z/2) + f̃1,0(z/2) + 1)

+ 2Ṽ (z/2)H̃N(z/2) + Ṽ (z/2)((2 + z)h̃1(z/2)
2 + 4h̃1(z/2) + 2)

+ 2H̃T (z/2)
2 + H̃T (z/2)(8h̃1(z/2)

2 + 16h̃1(z/2) + 4zh̃′1(z/2)
2

+ 4h̃1(z/2)f̃1,0(z/2) + 2zh̃′1(z/2)f̃
′
1,0(z/2) + 4) + 4H̃N(z/2)

2

137

+ 8H̃N(z/2)
2h̃1(z/2)

2 + 8H̃N(z/2)H̃T (z/2) + H̃N(z/2)(8h̃1(z/2)

+ 4zh̃′1(z/2)
2 + 8h̃1(z/2)f̃1,0(z/2) + 4zh̃′1(z/2)f̃

′
1,0(z/2)

+ 2f̃1,0(z/2)
2 + 4f̃1,0(z/2) + zf̃ ′

1,0(z/2)
2 + 2) + z2h̃1(z/2)

4

+ 2z2h̃1(z/2)
3f̃1,0(z/2) + z2h̃′1(z/2)

2f̃ ′
1,0(z/2)

2.

External Wiener Index of PATRICIA Tries. We have,

f̃1,0(z) = 2f̃1,0(z/2) + z − ze−z/2,

f̃0,1(z) = 2f̃0,1(z/2) + zf̃1,0(z/2) +
z2

2

and

Ṽ (z) =2Ṽ (z/2) + e−z/2(2zf̃1,0(z/2)− z2f̃ ′
1,0(z/2)) + e−z/2

(
z +

z2

2

)
− e−z

(
z +

z3

4

)
,

C̃(z) =2C̃(z/2) + zṼ (z/2) + e−z/2
(
zf̃1,0(z/2) +

z2

2
f̃1,0(z/2) +

z2

2
f̃ ′
1,0(z/2)

− z3

4
f̃ ′
1,0(z/2) + zf̃0,1(z/2)−

z2

2
f̃ ′
0,1(z/2)

)
+ z2e−z,

W̃ (z) =2W̃ (z/2) + 2zC̃(z/2) +

(
z2

2
+ z

)
Ṽ (z/2)

+ z2f̃ ′
1,0(z/2)

2 + 2z2f̃ ′
1,0(z/2) + z2.

Internal Wiener Index of m-ary PATRICIA Tries. We have,

h̃(z) =
m∑
r=1

h̃(prz) + 1 + (m− 1)e−z −
m∑
r=1

e(pr−1)z,

f̃1,0(z) =
m∑
r=1

f̃1,0(prz) +
m∑
r=1

h̃(prz)−
m∑
r=1

e(pr−1)zh̃(prz),

f̃0,1(z) =
m∑
r=1

f̃0,1(prz) +
∑

(r,s)∈S2

h̃(prz)f̃1,0(psz) +
∑

(r,s)∈S2

h̃(prz)h̃(psz)

+
m∑
r=1

(
f̃1,0(prz) + h̃(prz)

)
−

m∑
r=1

e(pr−1z)
(
f̃1,0(prz) + h̃(prz)

)
,

138

where S2 = {(r, s) : 1 ≤ r, s ≤ m, r ̸= s} and

H̃T (z) =
m∑
i=1

H̃T (piz) +
m∑
i=1

H̃N(piz) + g̃N,T (z),

Ṽ (z) =
m∑
i=1

Ṽ (piz) + 2
m∑
i=1

H̃T (piz) + g̃T (z),

H̃W (z) =
m∑
i=1

H̃W (piz) +
∑

(i,j)∈S2

(
H̃N(piz)f̃1,0(pjz) + H̃T (piz)h̃(pjz)

)
+ g̃N,W (z),

C̃(z) =
m∑
i=1

C̃(piz) +
∑

(i,j)∈S2

(
H̃T (piz)f̃1,0(pjz) + Ṽ (piz)h̃(pjz)

)
+ g̃T,W (z),

W̃ (z) =
m∑
i=1

W̃ (piz) +
∑

(i,j)∈S2

(
H̃N(piz)f̃1,0(pjz)

2 + 2H̃T (piz)h̃(pjz)f̃1,0(pjz)

+ Ṽ (z)f̃1,0(pjz)
2 + 2H̃W f̃1,0(pjz) + 2C̃(piz)f̃1,0(pjz)

)
+

∑
(i,j,k)∈S3

(
H̃N(piz)f̃1,0(pjz)f̃1,0(pkz) + 2H̃T (piz)h̃(pjz)f̃1,0(pkz)

+ Ṽ (piz)h̃(pjz)h̃(pkz)
)
,

where S3 = {(i, j, k) : 1 ≤ i, j, k ≤ m, i ̸= j, j ̸= k, i ̸= k} and

g̃N,T (z) = o(z),

g̃T (z) = O(z),

g̃N,W (z) = O(z2),

g̃T,W (z) = O(z2 log z),
g̃W (z) = O(z3 log z)

uniformly in z with | arg(z)| ≤ ϕ and 0 < ϕ < π/2. The expression of
g̃N,T (z), g̃T (z), g̃N,W (z), g̃T,W (z) and g̃W (z) can be computed by computer al-
gebra such as maple. However, the explicit expressions of them are too
complicated and hence we do not list them here. We give only the bounds
since it is already enough for our purpose.

139

140

Appendix B

We will use the following notations

Ω1(n) = Q(k1)(log1/a n), Ω2(n) = Q(k2)(log1/a n), Ω3(n) = Q(k1,k2)(log1/a n)

and
D(n) = Ω1(n)Ω2(n)− Ω3(n)

2.

Then,

b(1)n =
T

(k1)
n − µ

(k1)
n +

∑m
i=1 µ

(k1)
Ii√

n

·

(
Ω1(n) +

√
D(n)

)(√
Ω1(n) + Ω2(n) + 2

√
D(n)

)
2D(n) + (Ω1(n) + Ω2(n))

√
D(n)

−
T

(k2)
n − µ

(k2)
n +

∑m
i=1 µ

(k2)
Ii√

n
·
Ω3(n)

√
Ω1(n) + Ω2(n) + 2

√
D(n)

2D(n) + (Ω1(n) + Ω2(n))
√
D(n)

,

b(2)n =
T

(k2)
n − µ

(k2)
n +

∑m
i=1 µ

(k2)
Ii√

n

·

(
Ω2(n) +

√
D(n)

)(√
Ω1(n) + Ω2(n) + 2

√
D(n)

)
2D(n) + (Ω1(n) + Ω2(n))

√
D(n)

−
T

(k1)
n − µ

(k1)
n +

∑m
i=1 µ

(k1)
Ii√

n
·
Ω3(n)

√
Ω1(n) + Ω2(n) + 2

√
D(n)

2D(n) + (Ω1(n) + Ω2(n))
√
D(n)

and

A(i)
n (1, 1) = B(i)

n ·

(
Ω1(I

(i)
n) +

√
D(I

(i)
n)

)(
Ω2(n) +

√
D(n)

)
− Ω3(n)Ω3(I

(n)
r)

2D(n) + (Ω1(n) + Ω2(n))
√
D(n)

,

141

A(i)
n (1, 2) = B(i)

n ·
Ω3(I

(i)
n)
(
Ω2(n) +

√
D(n)

)
− Ω3(n)

(
Ω2(I

(i)
n) +

√
D(I

(i)
n)

)
2D(n) + (Ω1(n) + Ω2(n))

√
D(n)

,

A(i)
n (2, 1) = B(i)

n ·
Ω3(I

(i)
n)
(
Ω1(n) +

√
D(n)

)
− Ω3(n)

(
Ω1(I

(i)
n) +

√
D(I

(i)
n)

)
2D(n) + (Ω1(n) + Ω2(n))

√
D(n)

,

A(i)
n (2, 2) = B(i)

n ·

(
Ω1(n) +

√
D(n)

)(
Ω2(I

(i)
n) +

√
D(I

(i)
n)

)
− Ω3(n)Ω3(I

(n)
r)

2D(n) + (Ω1(n) + Ω2(n))
√
D(n)

,

where

B(i)
n =

√
I
(i)
n

n
·

√√√√ Ω1(n) + Ω2(n) + 2
√
D(n)

Ω1(I
(i)
n) + Ω2(I

(i)
n) + 2

√
D(I

(i)
n)

.

142

Bibliography

[1] Rafik Aguech, Nabil Lasmar, and Hosam M. Mahmoud. Distribution
of inter-nodes distance in digital trees. In Discrete Mathematics and
Theoretical Computer Science Proceedings, Proceedings of 2005 Inter-
national Conference on Analysis of Algorithms, pages 1–10, 2005.

[2] Rafik Aguech, Nabil Lasmar, and Hosam M. Mahmoud. Distances in
random digital search trees. Acta Informatica, 43(4):243–264, 2006.

[3] Rafik Aguech, Nabil Lasmar, and Hosam M. Mahmoud. Limit distribu-
tion of distances in biased random tries. Journal of Applied Probability,
43:1–14, 2006.

[4] Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft. Data Struc-
tures and Algorithms. Addison-Wesley, 1983.

[5] George E. Andrews. The Theory of Partitions, volume 2 of Encyclope-
dia of Mathematics and Its Applications. Cambridge University Press,
1998.

[6] George E. Andrews, Richard Askey, and Ranjan Roy. Special
Functions. Encyclopedia of Mathematics and Its Applications. Cam-
bridge University Press, 1999.

[7] Alberto Apostolico. The Myriad Virtue of Suffix Trees, volume F12 of
NATO ASI, pages 85–96. Springer, 1985.

[8] James Aspnes and Keren Censor. Approximate shared-memory count-
ing despite a strong adversary. ACM Transactions on Algorithms
(TALG), 6(2):25, 2010.

[9] Ricardo A. Baeza-Yates. Some average measures in m-ary search trees.
Information Processing Letters, 25(6):375–381, 1987.

143

[10] Jean Bertoin, Philippe Biane, and Marc Yor. Poissonian exponen-
tial functionals, q-series, q-integrals, and the moment problem for log-
normal distributions. In Seminar on Stochastic Analysis, Random
Fields and Applications IV, pages 45–56. Springer, 2004.

[11] Michael G. B. Blum, Olivier François, and Svante Janson. The mean,
variance and limiting distribution of two statistics sensitive to phylo-
genetic tree balance. Annals of Applied Probability, 16(4):2195–2214,
2006.

[12] Miklós Bóna. k-Protected vertices in binary search trees. Advances in
Applied Mathematics, 53:1–11, 2014.

[13] Andrew D. Booth and Andrew J. T. Colin. On the efficiency of a
new method of dictionary construction. Information and Control,
3(4):327–334, 1960.

[14] Jérémie Bourdon. Size and path length of Patricia tries: dynamical
sources context. Random Structures & Algorithms, 19(3-4):289–315,
2001.

[15] Jérémie Bourdon. Analyze dynamique d’algorithmes: examples en
arithmétique et en théorie de l’information. PhD thesis, Université
de Caen Basse-Normandie, 2002.

[16] Jérémie Bourdon, Markus Nebel, and Brigitte Vallée. On the stack-
size of general tries. RAIRO-Theoretical Informatics and Applications,
35(02):163–185, 2001.

[17] William H. Burge. An analysis of binary search trees formed from
sequences of nondistinct keys. Journal of the ACM, 23(3):451–454,
1976.

[18] John Capetanakis. Tree algorithms for packet broadcast channels.
IEEE Transactions on Information Theory, 25(5):505–515, 1979.

[19] Gi-Sang Cheon and Louis W. Shapiro. Protected points in ordered
trees. Applied Mathematics Letters, 21(5):516–520, 2008.

[20] Hua-Huai Chern and Hsien-Kuei Hwang. Phase changes in random
m-ary search trees and generalized quicksort. Random Structures &
Algorithms, 19(3-4):316–358, 2001.

144

[21] Jacek Chichoń and Wojciech Macyna. Approximate counters for flash
memory. In Proceedings of the seventeenth IEEE International Confer-
ence on Embedded and Real-time Computing Systems and Applications,
pages 185–189, 2011.

[22] Costas A. Christophi and Hosam M. Mahmoud. The oscillatory dis-
tribution of distances in random tries. Annals of Applied Probability,
15(2):1536–1564, 2005.

[23] Julien Clément, Philippe Flajolet, and Brigitte Vallée. Dynamical
source in information theory: a general analysis of trie structures. Al-
gorithmica, 29(1-2):307–369, 2001.

[24] Edward G. Coffman Jr and J. Eve. File structures using hashing func-
tions. Communications of the ACM, 13(7):427–432, 1970.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein, et al. Introduction to Algorithms, volume 2. MIT press Cam-
bridge, 2001.

[26] Davide Crippa and Klaus Simon. q-distributions and Markov processes.
Discrete Mathematics, 170(1):81–98, 1997.

[27] Miklós Csűrös. Approximate counting with a floating-point counter.
In Computing and Combinatorics, pages 358–367. Springer, 2010.

[28] Peter Dankelmann, Ortrud R Oellermann, and Henda C Swart. The
average steiner distance of a graph. Journal of Graph Theory,
22(1):15–22, 1996.

[29] Rene de la Briandais. File searching using variable length keys. In
Papers Presented at the March 3-5, 1959, Western joint Computer
Conference, pages 295–298. ACM, 1959.

[30] Florian Dennert and Rudolf Grübel. Renewals for exponentially in-
creasing lifetimes, with an application to digital search trees. Annals
of Applied Probability, 17(2):676–687, 2007.

[31] Luc Devroye. A note on the average depth of tries. Computing,
28(4):367–371, 1982.

[32] Luc Devroye. A probabilistic analysis of the height of tries and of the
complexity of triesort. Acta Informatica, 21(3):229–237, 1984.

145

[33] Luc Devroye. Lecture Notes on Bucket Algorithms. Birkhauser Boston,
1986.

[34] Luc Devroye. A note on the height of binary search trees. Journal of
the ACM, 33(3):489–498, 1986.

[35] Luc Devroye. A Note on the Probabilistic Analysis of Patricia Trees.
Random Structures & Algorithms, 3(2):203–214, 1992.

[36] Luc Devroye. A study of tree-like structures under the density model.
Annals of Applied Probability, 2:402–434, 1992.

[37] Luc Devroye. Universal limit laws for depths in random trees. SIAM
Journal on Computing, 28(2):409–432, 1998.

[38] Luc Devroye. Laws of large numbers and tail inequalities for random
tries and PATRICIA trees. Journal of Computational and Applied
Mathematics, 142(1):27–37, 2002.

[39] Luc Devroye. Universal asymptotics for random tries and PATRICIA
trees. Algorithmica, 42(1):11–29, 2005.

[40] Luc Devroye and Svante Janson. Protected nodes and fringe subtrees
in some random trees. arXiv preprint arXiv:1310.0665, 2013.

[41] Luc Devroye and Paul Kruszewski. On the Horton-Strahler number for
random tries. Informatique Théorique et Applications, 30(5):443–456,
1996.

[42] Luc Devroye and Carlos Zamora-Cura. Expected worst-case par-
tial match in random quadtries. Discrete Applied Mathematics,
141(1):103–117, 2004.

[43] Andrey A. Dobrynin, Roger Entringer, and Ivan Gutman. Wiener in-
dex of trees: Theory and applications. Acta Applicandae Mathematica,
66(3):211–249, 2001.

[44] Andrey A. Dobrynin and Ivan Gutman. The average Wiener index of
trees and chemical trees. Journal of Chemical Information and Com-
puter Sciences, 39(4):679–683, 1999.

[45] Alexander S. Douglas. Techniques for the recording of, and reference
to data in a computer. The Computer Journal, 2(1):1–9, 1959.

146

[46] Michael Drmota. An analytic approach to the height of binary search
trees. Algorithmica, 29(1-2):89–119, 2001.

[47] Michael Drmota. The variance of the height of digital search trees.
Acta Informatica, 38(4):261–276, 2002.

[48] Michael Drmota. Random Trees: An Interplay between Combinatorics
and Probability. Springer, 2009.

[49] Michael Drmota, Bernhard Gittenberger, Alois Panholzer, Helmut
Prodinger, and Mark D. Ward. On the shape of the fringe of various
types of random trees. Mathematical Methods in the Applied Sciences,
32(10):1207–1245, 2009.

[50] Michael Drmota and Wojciech Szpankowski. (un) expected behavior of
digital search tree profile. In Proceedings of the twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 130–138. Society for
Industrial and Applied Mathematics, 2009.

[51] Michael Drmota and Wojciech Szpankowski. The expected profile
of digital search trees. Journal of Combinatorial Theory, Series A,
118(7):1939–1965, 2011.

[52] Rosena R.-X. Du and Helmut Prodinger. Notes on protected nodes
in digital search trees. Applied Mathematics Letters, 25(6):1025–1028,
2012.

[53] Roger C. Entringer, Amram Meir, John W. Moon, and László A.
Székely. The Wiener index of trees from certain families. Australasian
Journal of Combinatorics, 10:211–224, 1994.

[54] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, Francesco G.
Tricomi, and Harry Bateman. Higher Transcendental Functions, vol-
ume 1. New York McGraw-Hill, 1953.

[55] Guy Fayolle, Philippe Flajolet, and Micha Hofri. On a functional equa-
tion arising in the analysis of a protocol for a multi-access broadcast
channel. Advances in Applied Probability, pages 441–472, 1986.

[56] Guy Fayolle, Philippe Flajolet, Micha Hofri, and Philippe Jacquet.
Analysis of a stack algorithm for random multiple-access communica-
tion. IEEE Transactions on Information Theory, 31(2):244–254, 1985.

147

[57] Julien Fayolle and Mark D. Ward. Analysis of the average depth in
a suffix tree under a markov model. In Discrete Mathematics and
Theoretical Computer Science Proceedings, Proceedings of 2005 Inter-
national Conference on Analysis of Algorithms, pages 95–104, 2005.

[58] James A. Fill and Svante Janson. Precise logarithmic asymptotics for
the right tails of some limit random variables for random trees. Annals
of Combinatorics, 12(4):403–416, 2009.

[59] James Allen Fill, Hosam M. Mahmoud, and Wojciech Szpankowski.
On the distribution for the duration of a randomized leader election
algorithm. Annals of Applied Probability, 6:1260–1283, 1996.

[60] Philippe Flajolet. On the performance evaluation of extendible hashing
and trie searching. Acta Informatica, 20(4):345–369, 1983.

[61] Philippe Flajolet. Approximate counting: a detailed analysis. BIT
Numerical Mathematics, 25(1):113–134, 1985.

[62] Philippe Flajolet, Xavier Gourdon, and Philippe Dumas. Mellin trans-
forms and asymptotics: Harmonic sums. Theoretical Computer Sci-
ence, 144(1):3–58, 1995.

[63] Philippe Flajolet, Rainer Kemp, and Helmut Prodinger. Average-case
analysis of algorithms. Dagstuhl Seminar Report, 68, 1993.

[64] Philippe Flajolet and Andrew Odlyzko. Singularity analysis of generat-
ing functions. SIAM Journal on Discrete Mathematics, 3(2):216–240,
1990.

[65] Philippe Flajolet and Claude Puech. Tree structures for partial match
retrieval. In Proceedings of the 24th Annual Symposium on Foundations
of Computer Science, pages 282–288, 1983.

[66] Philippe Flajolet and Bruce Richmond. Generalized digital trees and
their difference¡xdifferential equations. Random Structures & Algo-
rithms, 3(3):305–320, 1992.

[67] Philippe Flajolet, Mathieu Roux, and Brigitte Vallée. Digital trees and
memoryless sources: from arithmetics to analysis. In 21st International
Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in
the Analysis of Algorithms (AofA’10), Discrete Mathematics Theoret-
ical Computer Science Proceedings, number 01, 2010.

148

[68] Philippe Flajolet and Robert Sedgewick. Digital search trees revisited.
SIAM Journal on Computing, 15(3):748–767, 1986.

[69] Philippe Flajolet and Robert Sedgewick. Mellin transforms and asymp-
totics: finite differences and rice’s integrals. Theoretical Computer Sci-
ence, 144(1):101–124, 1995.

[70] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-
bridge University Press, 2009.

[71] Philippe Flajolet and Jean-Marc Steyaert. A branching process aris-
ing in dynamic hashing, trie searching and polynomial factorization,
volume 140 of Lecture Notes in Computer Science, pages 101–124.
Springer-Verlag, 1982.

[72] Edward Fredkin. Trie memory. Communications of the ACM,
3(9):490–499, 1960.

[73] Michael Fuchs. The variance for partial match retrievals in k-
dimensional bucket digital trees,. In Discrete Mathematics and Theo-
retical Computer Science Proceedings, Proceedings of the 21st Interna-
tional Meeting on Probabilistic, Combinatorial, and Asymptotic Meth-
ods in the Analysis of Algorithms (AofA’10), pages 261–275, 2010.

[74] Michael Fuchs, Hsien-Kuei Hwang, and Vytas Zacharovas. Asymptotic
variance of random digital search trees. Discrete Mathematics & Theo-
retical Computer Science (Special Issue in Honor of Phillipe Flajolet),
12(2):103–166, 2010.

[75] Michael Fuchs, Hsien-Kuei Hwang, and Vytas Zacharovas. An ana-
lytic approach to the asymptotic variance of trie statistics and related
structures. Theoretical Computer Science, 2014.

[76] Michael Fuchs and Chung-Kuei Lee. The Wiener index of random
digital trees. Submitted for publication.

[77] Michael Fuchs and Chung-Kuei Lee. A General Central Limit Theorem
for Shape Parameters of m-ary Tries and PATRICIA Tries. Electronic
Journal of Combinatorics, 21(1), 2014.

[78] Michael Fuchs, Chung-Kuei Lee, and Helmut Prodinger. Approximate
counting via the poisson-laplace-mellin method. Disrete Mathematics
and Theoretical Computer Science Proceedings, (01):13–28, 2012.

149

[79] Michael Fuchs, Chung-Kuei Lee, and Guan-Ru Yu. 2-protected nodes
in random digital trees. in preparation.

[80] Jeffrey Gaither, Yushi Homma, Mark Sellke, and Mark D. Ward. On
the number of 2-protected nodes in tries and suffix trees. Disrete Math-
ematics and Theoretical Computer Science Proceedings, (01):381–398,
2012.

[81] Jeffrey Gaither and Mark D. Ward. The variance of the number of
2-protected nodes in a trie. In ANALCO, pages 43–51. SIAM, 2013.

[82] Gaston H. Gonnet and Ricardo Baeza-Yates. Handbook of Algorithms
and Data Structures: in Pascal and C. Addison-Wesley Longman Pub-
lishing Co., Inc., 1991.

[83] Gaston H. Gonnet and J. Ian Munro. The analysis of linear probing sort
by the use of a new mathematical transform. Journal of Algorithms,
5(4):451–470, 1984.

[84] André Gronemeier and Martin Sauerhoff. Applying approximate count-
ing for computing the frequency moments of long data streams. Theory
of Computing Systems, 44(3):332–348, 2009.

[85] Fabrice Guillemin and Philippe Robert. Analysis of steiner subtrees of
random trees for traceroute algorithms. Random Structures & Algo-
rithms, 35(2):194–215, 2009.

[86] Fabrice Guillemin, Philippe Robert, Bert Zwart, et al. Aimd algo-
rithms and exponential functionals. Annals of Applied Probability,
14(1):90–117, 2004.

[87] Allan Gut. Probability: A Graduate Course, volume 200 of Springer
Texts in Statistics. Springer Verlag, 2005.

[88] Thomas N. Hibbard. Some combinatorial properties of certain trees
with applications to searching and sorting. Journal of the ACM,
9(1):13–28, 1962.

[89] Friedrich Hubalek. On the variance of the internal path length of gener-
alized digital trees–the Mellin convolution approach. Theoretical Com-
puter Science, 242(1):143–168, 2000.

[90] Friedrich Hubalek, Hsien-Kuei Hwang, William Lew, Hosam M. Mah-
moud, and Helmut Prodinger. A multivariate view of random bucket
digital search trees. Journal of Algorithms, 44(1):121–158, 2002.

150

[91] Philippe Jacquet, Paul Muhlethaler, et al. Marginal throughtput of a
stack algorithm for CSMA/CD random length packet communication
when the load is over the channel efficiency. Technical Report RR-0436,
INRIA, Rocquencourt, 1990.

[92] Philippe Jacquet and Mireille Régnier. Trie partitioning process: lim-
iting distributions. In CAAP’86, pages 196–210. Springer, 1986.

[93] Philippe Jacquet and Mireille Régnier. Normal limiting distribution of
the size of tries. In Proceedings of the 12th IFIP WG 7.3 International
Symposium on Computer Performance Modelling, Measurement and
Evaluation, pages 209–223. North-Holland Publishing Co., 1987.

[94] Philippe Jacquet and Mirelle Régnier. Normal limiting distribution
for the size and the external path length of tries. Technical Report
RR-0827, INRIA, 1988.

[95] Philippe Jacquet and Mirelle Régnier. New results on the size of tries.
IEEE Transactions on Information Theory, 35(1):203–205, 1989.

[96] Philippe Jacquet and Wojciech Szpankowski. Analysis of digital tries
with Markovian dependency. IEEE Transactions on Information The-
ory, 37(5):1470–1475, 1991.

[97] Philippe Jacquet and Wojciech Szpankowski. Autocorrelation on words
and its applications: analysis of suffix trees by string-ruler approach.
Journal of Combinatorial Theory, Series A, 66(2):237–269, 1994.

[98] Philippe Jacquet and Wojciech Szpankowski. Asymptotic behavior of
the Lempel-Ziv parsing scheme and digital search trees. Theoretical
Computer Science, 144(1):161–197, 1995.

[99] Philippe Jacquet and Wojciech Szpankowski. Analytical depoissoniza-
tion and its applications. Theoretical Computer Science, 201(1):1–62,
1998.

[100] Philippe Jacquet, Wojciech Szpankowski, and Jing Tang. Average pro-
file of the Lempel-Ziv parsing scheme for a Markovian source. Algo-
rithmica, 31(3):318–360, 2001.

[101] Svante Janson. The Wiener index of simply generated random trees.
Random Structures & Algorithms, 22(4):337–358, 2003.

[102] Svante Janson. Rounding of continuous random variables and oscilla-
tory asymptotics. Annals of Probability, 34:1807–1826, 2006.

151

[103] Svante Janson. Renewal theory in the analysis of tries and strings.
Theoretical Computer Science, 416:33–54, 2012.

[104] Svante Janson, Philippe Chassaing, et al. The center of mass of the
ISE and the Wiener index of trees. Electronic Communication in Prob-
ability, 9:178–187, 2004.

[105] Svante Janson, Donald E. Knuth, Tomasz Łuczak, and Boris Pittel.
The birth of the giant component. Random Structures & Algorithms,
4(3):233–358, 1993.

[106] Svante Janson and Wojciech Szpankowski. Analysis of asymmet-
ric leader election algorithm. Electronic Journal of Combinatorics,
64(R17):1–62, 1997.

[107] Augustus J. E. M. Janssen and Marc J. M. de Jong. Analysis of con-
tention tree algorithms. IEEE Transactions on Information Theory,
46(6):2163–2172, 2000.

[108] Marc Kac. On deviations between theoretical and empirical distribu-
tions. Proceedings of the National Academy of Sciences of the United
States of America, 35(5):252, 1949.

[109] Michael Kaplan and Eugene Gulko. Analytic properties of multiple-
access trees. IEEE Transactions on Information Theory, 31(2):255–263,
1985.

[110] Tämur Ali Khan and Ralph Neininger. Tail bound for the Wiener index
of random trees. In Discrete Mathematics and Theoretical Computer
Science Proceedings, Proceedings of the 2007 Conference on the Analysis
of Algorithms, number 01, pages 279–289, 2007.

[111] Peter Kirschenhofer and Helmut Prodinger. Some further results on
digital trees, volume 214 of Lecture Notes in Computer Science, pages
177–185. Springer-Verlag, 1986.

[112] Peter Kirschenhofer and Helmut Prodinger. b-tries: a paradigm for the
use of number-theoretic methods in the analysis of algorithms. Contri-
butions to General Algebra, 6:141–154, 1988.

[113] Peter Kirschenhofer and Helmut Prodinger. Eine Anwendung der
Theorie der Modulfunktionen in der Informatik. Österreich. Akad.
Wiss. Math.-Natur. Kl. Sitzungsber. II, 197(4-7):339–366, 1988.

152

[114] Peter Kirschenhofer and Helmut Prodinger. Further results on digital
search trees. Theoretical Computer Science, 58(1):143–154, 1988.

[115] Peter Kirschenhofer and Helmut Prodinger. Approximate counting:
an alternative approach. Informatique Théorique et Applications,
25(1):43–48, 1991.

[116] Peter Kirschenhofer and Helmut Prodinger. On some applications of
formulae of ramanujan in the analysis of algorithms. Mathematika,
38(1):14–33, 1991.

[117] Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski.
Digital search trees-further results on a fundamental data structure. In
IFIP Congress, pages 443–447, 1989.

[118] Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski.
On the balance property of Patricia tries: external path length view-
point. Theoretical Computer Science, 68(1):1–17, 1989.

[119] Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski.
On the variance of the external path length in a symmetric digital trie.
Discrete Applied Mathematics, 25(1):129–143, 1989.

[120] Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski.
Multidimensional digit searching and some new parameters in tries.
International Journal of Foundations of Computer Science (IJFCS),
4:69–84, 1993.

[121] Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski.
Digital search trees again revisited: The internal path length perspec-
tive. SIAM Journal on Computing, 23(3):598–616, 1994.

[122] Charles Knessl and Wojciech Szpankowski. Asymptotic Behavior of the
Height in a Digital Search Tree and the Longest Phrase of the Lempel-
Ziv Scheme. SIAM Journal on Computing, 30(3):923–964, 2000.

[123] Charles Knessl and Wojciech Szpankowski. On the number of full levels
in tries. Random Structures & Algorithms, 25(3):247–276, 2004.

[124] Donald E. Knuth. Optimum binary search trees. Acta Informatica,
1(1):14–25, 1971.

[125] Donald E. Knuth. The Art of Computer Programming. Volume 1:
Fundamental Algorithms. Addison Wiley Publishing Co., Third edition,
1997.

153

[126] Donald E. Knuth. The Art of Computer Programming. Volume 2:
Seminumerical Algorithms. Addison Wiley Publishing Co., Third edi-
tion, 1997.

[127] Donald E. Knuth. The Art of Computer Programming. Volume 3:
Sorting and Searching. Addison Wiley Publishing Co., Second edition,
1998.

[128] Donald E. Knuth. The Art of Computer Programming, Volume 4A:
Combinatorial Algorithms, Part 1. Pearson Education India, 2011.

[129] Alan G. Konheim and Donald J. Newman. A note on growing binary
trees. Discrete Mathematics, 4(1):57–63, 1973.

[130] Chung-Kuei Lee. The k-th total path length and total steiner k-distance
for digital search trees. in press.

[131] William Lew and Hosam M. Mahmoud. The joint distribution of elas-
tic buckets in multiway search trees. SIAM Journal on Computing,
23(5):1050–1074, 1994.

[132] Ernst Lindelöf. Robert Hjalmar Mellin. Acta Mathematica, 61(1):I–VI,
1933.

[133] Stefano Lonardi, Wojciech Szpankowski, and Mark D. Ward. Error
resilient LZ’77 data compression: algorithm, analysis, and experiments.
Information Theory, IEEE Transactions on, 53(5):1799–1813, 2007.

[134] M. Lothaire. Applied Combinatorics on Words, volume 105. Cambridge
University Press, 2005.

[135] Guy Louchard. Exact and asymptotic distributions in digital
and binary search trees. Informatique Théorique et Applications,
21(4):479–495, 1987.

[136] Guy Louchard. Trie size in a dynamic list structure. Random Structures
& Algorithms, 5(5):665–702, 1994.

[137] Guy Louchard and Helmut Prodinger. Asymptotics of the moments
of extreme-value related distribution functions. Algorithmica, 46(3-
4):431–467, 2006.

[138] Guy Louchard and Helmut Prodinger. Generalized approximate count-
ing revisited. Theoretical Computer Science, 391(1):109–125, 2008.

154

[139] Hosam M. Mahmoud. Evolution of Random Search Tree. Wiley-
Interscience, 1992.

[140] Hosam M. Mahmoud, Philippe Flajolet, Philippe Jacquet, and Mireille
Régnier. Analytic variations on bucket selection and sorting. Acta
Informatica, 36(9-10):735–760, 2000.

[141] Hosam M. Mahmoud and Boris Pittel. Analysis of the space of search
trees under the random insertion algorithm. Journal of Algorithms,
10(1):52–75, 1989.

[142] Hosam M. Mahmoud and Mark D. Ward. Asymptotic distribution of
two-protected nodes in random binary search trees. Applied Mathemat-
ics Letters, 25(12):2218–2222, 2012.

[143] Toufik Mansour. Protected points in k-ary trees. Applied Mathematics
Letters, 24(4):478–480, 2011.

[144] James L. Massey. Collision-resolution algorithms amd random-
access communications. In Multi-User Communication Systems, pages
73–137, 1981.

[145] Collin McDiarmid. On the method of bounded differences, volume 141
of London Mathematical Society Lecture Notes Series - Survey in Com-
binatorics, pages 148–188. Cambridge University Press, 1989.

[146] Scott A. Mitchell and David M. Day. Flexible approximate counting.
In Proceedings of the 15th Symposium on International Database En-
gineering & Applications, pages 233–239, 2011.

[147] Kate Morris, Alois Panholzer, and Helmut Prodinger. On some param-
eters in heap ordered trees. Combinatorics Probability & Computing,
13(4-5):677–696, 2004.

[148] Robert Morris. Counting large numbers of events in small registers.
Communications of the ACM, 21(10):840–842, 1978.

[149] Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve
Information Coded In Alphanumeric. Journal of the ACM (JACM),
15(4):514–534, 1968.

[150] Yiannis N. Moschovakis. What is an algorithm. Mathematics Unlim-
ited–2001 and Beyond, pages 919–936, 2001.

155

[151] Götz O. Munsonius. The total Steiner k-distance for b-ary recursive
trees and linear recursive trees. In Discrete Mathematics and Theoreti-
cal Computer Science Proceedings, Proceedings of the 21st International
Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in
the Analysis of Algorithms (AofA’10), pages 529–550, 2010.

[152] Götz O. Munsonius. On the asymptotic internal path length and the
asymptotic Wiener index of random split trees. Electronic Journal of
Probability, 16:1020–1047, 2011.

[153] Götz O. Munsonius et al. On tail bounds for random recursive trees.
Journal of Applied Probability, 49(2):566–581, 2012.

[154] Jean-Fréderic Myoupo, Loys Thimonier, and Vlady Ravelomanana. Av-
erage case analysis-based protocols to initialize packet radio networks.
Wireless Communications and Mobile Computing, 3(4):539–548, 2003.

[155] Markus E. Nebel. On the horton-strahler number for combi-
natorial tries. RAIRO-Theoretical Informatics and Applications,
34(04):279–296, 2000.

[156] Markus E. Nebel. The Stack-Size of Combinatorial Tries Revisited.
Discrete Mathematics & Theoretical Computer Science, 5(1):1–16,
2002.

[157] Markus E. Nebel. The stack-size of tries: a combinatorial study. The-
oretical Computer Science, 270(1):441–461, 2002.

[158] Ralph Neininger. The Wiener index of random trees. Combinatorics,
Probability & Computing, 11(6):587–597, 2002.

[159] Ralph Neininger and Ludger Rüschendorf. A general limit law for
recursive algorithms and combinatorial structures. Annals of Applied
Probability, 14(1):378–418, 2004.

[160] Ralph Neininger and Ludger Rüschendorf. On the contraction
method with degenerate limit equation. Annals of Probability,
32(3B):2838–2856, 2004.

[161] Michel Nguyên-Thê. Distribution de valuations sur les arbres. PhD
thesis, LIX, Ecole polytechnique, 2003.

[162] Frank W. J. Olver. Asymptotics and Special Functions. Akademic
Press., 1974.

156

[163] Alois Panholzer. The distribution of the size of the ancestor-tree and
of the induced spanning subtree for random trees. Random Structures
& Algorithms, 25(2):179–207, 2004.

[164] Alois Panholzer. Distribution of the steiner distance in generalized
M-ary search trees. Combinatorics Probability and Computing, 13(4-
5):717–733, 2004.

[165] Alois Panholzer and Helmut Prodinger. Analysis of some statistics for
increasing tree families. Discrete Mathematics & Theoretical Computer
Science, 6(2):437–460, 2004.

[166] Gahyun Park, Hsien-Kuei Hwang, Pierre Nicodeme, and Wojciech
Szpankowski. Profiles of tries. SIAM Journal on Computing,
38(5):1821–1880, 2009.

[167] Boris Pittel. Asymptotical growth of a class of random trees. Annals
of Probability, 18:414–427, 1985.

[168] Boris Pittel. Paths in a random digital tree: Limiting distributions.
Advances in Applied Probability, pages 139–155, 1986.

[169] Boris Pittel. On the height of patricia search tree. In ORSA/TIMS
Special Interest Conference on Applied Probability in the Engineering,
Monterey, CA., 1991.

[170] Boris Pittel and Herman Rubin. How many random questions are
necessary to identify n distinct objects? Journal of Combinatorial
Theory, Series A, 55(2):292–312, 1990.

[171] Franco P. Preparatat and Michael I. Shamos. Computational Geometry:
An Introduction. Springer-Verlag, 1985.

[172] Helmut Prodinger. Hypothetical analyses: approximate counting in
the style of Knuth, path length in the style of Flajolet. Theoretical
Computer Science, 100(1):243–251, 1992.

[173] Helmut Prodinger. How to select a loser. Discrete Mathematics,
120(1):149–159, 1993.

[174] Helmut Prodinger. Approximate counting via euler transform. Math-
ematica Slovaca, 44(5):569–574, 1994.

157

[175] Helmut Prodinger. Digital search trees and basic hypergeometric func-
tions. Bulletin-European Association for Theoretical Computer Science,
56:112–112, 1995.

[176] Helmut Prodinger. Digital search trees with m trees: level polynomials
and insertion costs. Discrete Mathematics & Theoretical Computer
Science, 13(3):1–8, 2011.

[177] Helmut Prodinger. Approximate counting with m counters: a detailed
analysis. Theoretical Computer Science, 439:58–68, 2012.

[178] Hans Jürgen Prömel and Angelika Steger. The Steiner Tree Problem.
A Tour Through Graphs, Algorithms and Complexity. Vieweg Verlag,
Wiesbaden, 2002.

[179] Svetlozar T. Rachev and Ludger Rüschendorf. Probability metrics and
recursive algorithms. Advances in Applied Probability, 27(3):770–799,
1995.

[180] Bonita Rais, Philippe Jacquet, and Wojciech Szpankowski. A limiting
distribution for the depth in Patricia tries. SIAM Journal on Discrete
Mathematics, 6(2):197–213, 1993.

[181] Philippe Robert. On the asymptotic behavior of some algorithms. Ran-
dom Structures & Algorithms, 27(2):235–250, 2005.

[182] Uwe Roesler and Ludger Rüschendorf. The contraction method for
recursive algorithms. Algorithmica, 29(1-2):3–33, 2001.

[183] Walter A. Rosenkrantz. Approximate counting: a martingale approach.
Stochastics: An International Journal of Probability and Stochastic
Processes, 20(2):111–120, 1987.

[184] Uwe Rösler. A limit theorem for Quicksort. RAIRO Theoretical Infor-
matics and Applications, 25:85–100, 1991.

[185] Uwe Rösler. A fixed point theorem for distributions. Stochastic Pro-
cesses and their Applications, 42(2):195–214, 1992.

[186] Uwe Rösler. On the analysis of stochastic divide and conquer algo-
rithms. Algorithmica, 29(1-2):238–261, 2001.

[187] Ludger Rüschendorf and Ralf Neininger. Survey of multivariate as-
pects of the contraction method. Discrete Mathematics & Theoretical
Computer Science, 8(1), 2006.

158

[188] Werner Schachinger. On the variance of a class of inductive valuations
of data structures for digital search. Theoretical Computer Science,
144(1):251–275, 1995.

[189] Werner Schachinger. The variance of a partial match retrieval in a
multidimensional symmetric trie. Random Structures & Algorithms,
7(1):81–95, 1995.

[190] Werner Schachinger. Limiting distributions for the costs of partial
match retrievals in multidimensional tries. Random Structures & Al-
gorithms, 17(3-4):428–459, 2000.

[191] Werner Schachinger. Asymptotic normality of recursive algorithms via
martingale difference arrays. Discrete Mathematics & Theoretical Com-
puter Science, 4(2):363–398, 2001.

[192] Robert Sedgewick and Philippe Flajolet. An Introduction to the Anal-
ysis of Algorithms. Addison-Wesley, 2013.

[193] Shyue-Horng Shiau and Chang-Biau Yang. A fast initialization algo-
rithm for single-hop wireless networks. IEICE Transactions on Com-
munications, 88(11):4285–4292, 2005.

[194] Klaus Simon. An improved algorithm for transitive closure on acyclic
digraphs. Theoretical Computer Science, 58(1):325–346, 1988.

[195] Wojciech Szpankowski. Average complexity of additive properties for
multiway tries: a unified approach, volume 249 of Lecture Notes in
Computer Science, pages 13–25. Springer-Verlag, 1987.

[196] Wojciech Szpankowski. The evaluation of an alternating sum with
applications to the analysis of some data structure. Information Pro-
cessing Letter, 28(1):13–19, 1988.

[197] Wojciech Szpankowski. Some results on v-ary asymmertic tries. Journal
of Algorithms, 9(2):224–244, 1988.

[198] Wojciech Szpankowski. Patricia tries again revisited. Journal of the
ACM, 37(4):691–711, 1990.

[199] Wojciech Szpankowski. A characterization of digital search trees
from the successful search viewpoint. Theoretical Computer Science,
85(1):117–134, 1991.

159

[200] Wojciech Szpankowski. On the height of digital trees and related prob-
lems. Algorithmica, 6(1-6):256–277, 1991.

[201] Wojciech Szpankowski. Analysis of Algorithms (AofA) part I:
1993–1998 (”Dagstuhl Period”). Current Trends in Theoretical Com-
puter Science: Algorithms and Complexity, 1:39, 2004.

[202] Wojciech Szpankowski. Average Case Analysis of Algorithms. Chapman
& Hall/CRC, 2010.

[203] Wojciech Szpankowski and Charles Knessl. Height in generalized tries
and PATRICIA tries, volume 1776 of Lecture Notes in Computer Sci-
ence, pages 298–307. 2000.

[204] Boris Solomonovich Tsybakov and Viktor Alexandrovich Mikhaĭlov.
Free synchronous packet access in a broadcast channel with feedback.
Problemy Peredachi Informatsii, 14(4):32–59, 1978.

[205] Brigitte Vallée. Dynamical sources in information theory: Fundamental
intervals and word prefixes. Algorithmica, 29(1-2):262–306, 2001.

[206] Stephan G. Wagner. A class of trees and its Wiener index. Acta
Applicandae Mathematica, 91(2):119–132, 2006.

[207] Stephan G. Wagner. On the average Wiener index of degree-restricted
trees. Australasian Journal of Combinatorics, 37:187–203, 2007.

[208] Stephan G. Wagner. On the Wiener index of random trees. Discrete
Mathematics, 312(9):1502–1511, 2012.

[209] Stephen G. Wagner. On unary nodes in tries. In Discrete Mathematics
and Theoretical Computer Science Proceedings, Proceedings of the 21st
International Meeting on Probabilistic, Combinatorial, and Asymptotic
Methods in the Analysis of Algorithms (AofA’10), pages 577–589, 2010.

[210] Mark D. Ward. Analysis of the multiplicity matching parameter in
suffix trees. PhD thesis, Purdue University, 2005.

[211] Mark D. Ward and Wojciech Szpankowski. Analysis of randomized se-
lection algorithm motivated by the LZ’77 scheme. In The First Work-
shop on Analytic Algorithmics and Combinatorics (ANALCO 04), New
Orlean, 2004.

160

[212] Mark D. Ward and Wojciech Szpankowski. Analysis of the multiplicity
matching parameter in suffix trees. In International Conference on
Analysis of Algorithms, Disrete Mathematics and Theoretical Computer
Science Proceedings AD, volume 307, page 322, 2005.

[213] Mark D. Ward and Wojciech Szpankowski. Analysis of the multiplic-
ity matching parameters in suffix trees. In Discrete Mathematics and
Theoretical Computer Science Proceedings, Proceedings of 2005 Inter-
national Conference on Analysis of Algorithms, pages 307–322, 2005.

[214] Harry Wiener. Structural determination of paraffin boiling points.
Journal of the American Chemical Society, 69(1):17–20, 1947.

[215] Peter F. Windley. Trees, forests and rearranging. The Computer Jour-
nal, 3(2):84–88, 1960.

161

