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Abstract

We study the number of subtrees on the fringe of random recursive trees and random binary search
trees whose limit law is known to be either normal or Poisson or degenerate depending on the size
of the subtree. We introduce a new approach to this problem which helps us to further clarify this
phenomenon. More precisely, we derive optimal Berry-Esseen bounds and local limit theorems for the
normal range and prove a Poisson approximation result as the subtree size tends to infinity.

1 Introduction and Results

In this paper, we are interested in the quanfity, that counts the number of subtrees of sizen the

fringe of certain random trees of size This number is an important tree characteristic carrying a lot

of information about the shape of a tree. It can be considered as another kind of “profile”, the latter
notation usually reserved for the number of nodes at a fixed level. The profile attracted a lot of attention
in recent research; for random recursive trees and random binary search trees see Drmota anG]Hwang |
and Fuchs, Hwang, and Neining€er]; for other classes of random trees ség [16], [17]. Apart from

being an important shape parametgr, . has also practical relevance due to its close relationship with
some fundamental quantities of trees arising in molecular biology and genetics; see Blum and Féancois [
and Rosenberd [] for more details.

In this paper, we will focus on recursive trees and binary search trees as underlying classes of trees. Du
to the similarity of our approach for those two families, we will mainly restrict our attention to recursive
trees. One way to define these trees is as rooted, non-plane trees with nodes labelled by positive integel
where the labels of any path from the root to the leave form an increasing sequence. We consider the
uniform random model on the class of recursive trees which assumes that every tree is equally likely. The
resulting random tree is then calleehdom recursive treeA different way to define a random recursive
tree is by a tree evolution process: first start with the root and then attach randomly nodes, where the

*Partially supported by National Science Council under the grant NSC-95-2115-M-009-017.



parent for an incoming node is chosen uniformly from the already existing nodes. Recursive trees have
found many applications in diverse fields; se€][and references therein.

The number of subtrees of random recursive trees seems to have appeared first in a paper of JAldous [
who obtained the weak law of large numbers

Xk 1
—
n k(k+1)

in probability.

This result was then re-derived by Devroye t\vith a different approach. Moreover, Devroye obtained
the following expressions for mean value

n

Hnk = E<Xnk) = m

(k <n)

and variance
(2k* — 1)n

k(k+1)2(2k+1)
and proved that for fixed a central limit theorem holds

Ug,k = V(Xyx) =

(2k < n)

Xn,k — HUnk
_
On,k

N(0,1), (n — o0).

Devroye’s results were re-discovered in a recent paper by Feng, Mahmoud, and.Stlije methods

of the latter authors were however completely different, namely, they applied the contraction method and
Polya urns, whereas Devroye’s approach was based on central limit theoremsd&gendent random
variables.

The above form of the mean value motivates the subdivision of the rangatd the following three
distinct subranges: (ubcriticalwhenl < k = o(y/n); (ii) critical whenk ~ ¢y/n; and (iii) supercritical
whenk < nandk/\/n — oo. Feng, Mahmoud, and Su posedIri]Jthe problem of extending the central
limit theorem for fixedk to the whole subcritical range. This problem was then solved in a subsequent
paper by Feng, Mahmoud, and Panholzei [(we will refer to this paper as Feng et al. throughout the
current work). More precisely, they derived all possible limit laws\ef, ask varies: in the subcritical
range, the limit law of X, , — ., 1)/0n x IS Standard normal; in the critical range, the limit lawof ;, is
Poisson with parametéy/¢?; in the supercritical range, the limit law df,, ;. is degenerate.

The method of proof proposed by Feng et al. rested on an exact expression for all factorial mo-
ments. In an unpublished paper, we independently obtained the same results by a completely differer
approach. More precisely, our approach was based on the crucial observation that all moments (centere
or non-centered) satisfy the same type of recurrence. Proving asymptotic transfer theorems for the latte
recurrence then provided a scheme for recursively obtaining first order asymptotics of all higher moments
The limit distribution is then identified via these asymptotics. Such a procedure, occasionally nicknamed
“moment pumping”, was successfully applied in a great variety of problems; see Chern, Fuchs, and Hwan
[6] and references therein. The current situation is however more involved due to the dependence on tw
indices; see the above references for the profile, where a similar two-indexed situation was encountered.

One of the main aims of this paper and a companion paper is to demonstrate that our approach base
on moments is very general in the sense that it applies to a great variety of problems and lends itself tc
refinements to give much deeper results.

First, the approach of Feng et al. can be used to work out the above result for random recursive trees an
also to prove a corresponding result for random binary search trees, but it is not clear how to amend thei
method to other classes of random trees. Our approach however can be more straightforwardly adapte
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to treat other classes of random trees. This will be done in a companion paper, where we will prove
similar limit results for many other classes of random trees. These results then demonstrate that the abo
phenomenon exhibits great universality, thereby adding further importance to the number of subtrees as
fundamental tree characteristics.

In this paper, we will propose refinements of our recursive method above. These refinements will all
be based on a method introduced by Hwang] for obtaining second phase change results in random
m-ary search trees (for more information see SecspnOur refined approaches will also exhibit some
universality; we will demonstrate this by showing that they straightforwardly apply to random binary
search trees, too. Technically, the main new challenges are again arising from the dependence of th
problem on two indices.

We will use our refined methods to shed further light on the phenomenon discovered by Feng et al. In
order to do so, we will prove two different type of results. First, in the subcritical range, we deduce the
optimal Berry-Essen bound and a local limit theorem. In particular, from the Berry-Essen bound, we see
that the convergence is getting weaker and weakér @gproaches/n, thereby identifying the latter as
the critical point.

Theorem 1. Letk = k, be a sequence with< k,, = o(y/n). Then,

sup ‘p(ng>_<p($> :(f)<i>7
n

—oo<r<o0 On,k
Theorem 2. Letk = k, be a sequence with< k,, = o(y/n). Then,

where the rate is (up to the implied constant) optimal.

P(Xpp = g +20,1]) = K (1 +0 <(1 +lat) %))

/ 2
2W0mk

uniformly inz = o(n!/¢/k1/3).

Our second explanation of the above result of Feng et al. was inspired by a study of predecessors il
random mappings due to Baron, Drmota, and Mutafchig\Hirst, observe that that the above expressions

for mean value and variance imply
n

E(Xnx) ~ V(X k) ~ 5
for k = k, < 2n, wherek — oo asn — oo. This suggests that a Poisson approximation result should
hold for k — oo (with the latter range being optimal). This is in fact the case.

Theorem 3. Letk = k,,, wherek < n andk — oo asn — oo. Then, the total variation distance between
X, and a Poisson random variable with ratg ;, tends ta0, i.e.,

I
P(Xpp=1)—e tnk (tine) — 0, (n — 00).

1
dry ( Xk, Po(ping)) = B Z T

1>0

The proof of the above result will rely on the local limit theorem for the normal range as well as a
similar local limit theorem for the critical and supercritical range that will be obtained below. Apart from
proving convergence t0, the proof will also yield a rate which however is quite poor (see the remark at
the end of Sectiod for further details).



We give a short sketch of the paper. In the next section, we give some general asymptotic transfel
results and re-derive the above two explicit formulas for mean value and variance. In Seetievill
introduce our first refined moment approach and use it to prove the above two results for the normal
range. Sectiod is then dedicated to obtaining a local limit theorem for the non-normal range via a second
refinement of the moment approach. This result together with the local limit theorem above will then be
used to prove Theorem In a final section, we will outline similar results for random binary search trees.

Notation. Throughout the papet, will denote a constant whose value might change from one occur-
rence to the next one.

2 Preliminaries

First, it is easy to see tha{, ; satisfies the following recurrence

Xok E X1t + X = Yooty (k< n) (1)

with X, . = 0 for n < kand X, = 1, wherel,, = Unif{1,n — 1}, X, Is an independent copy of,,
and the sequences, ;, X ,, and/, are all independent.

Roughly speaking, this recurrence can be explained as follows: the number of subtreestcdreize
counted by first counting the number of subtrees of &ize the left most subtree of the root and then
adding the number of subtrees of sizeén the remaining tree, where we have counted one subtree too
much if the remaining tree itself is of siZe for a more detailed explanation we direct the readef. . [

From this recurrence, we immediately obtain corresponding recurrences for the (centered or non-
centered) moments of,, , all of them having the following general shape

n—1
nge = 7 2 ik + bn ks (k <n), (2)
7=1
whereb,, ;, is a suitable sequence, , = 0 for n < k, anday, ;, is fixed.
For instance, for the mean value we get the above recurrencé,wite= —1/(n — 1) for £ < n and
arr = 1 and for the variance the “toll” sequentg;, becomes

—

1 «—
n—1

(Nj,k: + Hn—jk = Hnk — 1{j=n*k})2
1

bn,kz =

<.
Il

andam = 0.
We start by solving recurrencg)(

Lemmal. Fork <[ < n,

n bik n(l—1)
or = a2 S L N L 2) 3
e = O ”l;nj(j+1)+ SRR ©
= ———apr+2n —— + by (4)
k(k+1) " k;nj(j+1) g



Proof. Considen(n — 1)a, , — (n — 2)a,—1 and iterate the resulting recurrencd.

Using the above solution oR), we can re-derive the explicit formulas for mean value and variance
obtained by Feng, Mahmoud, and Su.

First, for the mean value,

om 1 1
= EX — 2 : __ -
k= e+ 1) ke Z G—-1jG+1) n-1

k<j<n

_ 1 1 1
_k@+1y‘”(_mn—nn+2uk+n)_n—1
k(k+1)

where this holds fok < n. Overall,

n/(k(k+1)), ifk<n;
Pk = § 1, if £ =n;
0, if &> n.

For the variance, slightly more work is necessary. Here, we are going t@usét{ [ = 2k + 1. First,
forn > 2k

n—1

Z (:u],k + Hn—jk — Hn ke — 1{j:n—k})2

- nil ; <kZ€_+j1) a k(kriL 1))2+ nil (k:?k:;kl) L ﬁf

. 1 n—k _ n 2
n—1\k(k+1) k(k+1)
3k2—/€—|—1 Ck

1
n—1

bn,k =

" 3k(k+)(n—1) n—1

Now, observe that all terms except the first one on the right hand sid} a@ld to0 for toll functions of
the formb,, , = ¢/(n — 1). So, forn > 2k,
n
Ui,k = %—Hff%kﬂ,k-

It is easy to see that

0, with probability (k — 1)(2k* — 1)/(2k*(k + 1));
,  with probability (2k? — 1) /(k*(k + 1));
2, with probability 1/(24?).

—_

X2k+1,k =

Thus,
2k? — 1

U§k+1,k = m



Plugging the latter into the above formula proves the claimed result. As for the remaining range of
observe that fok < n < 2k, we have

(5)

X 0, with probabilityl — n/(k(k + 1));
"M 711, with probabilityn/ (k(k + 1)).

Consequently, fok < n < 2k,

Overall,
(2k%* — )n/(k(k +1)*(2k + 1)), if n > 2k;
onp =3 n/(k(k+ 1)1 —n/(k(k+1))), ifk<n<2k (6)
0, if n < k.

Subsequently, we will need the following simple transfer result.
Proposition 1. Letay , = 0.
(i) Assume tha,, x| < cici, wheree; > 0 is a constant. Theng, x| < 2c¢i¢n/k.

(i) Assume that
bn ] < 1 (exn)”

wherec; > 0 andv > 1. Then,

lank| < 2cickm Z +cicp = —— —ciop <
ol (j—i—l +

For the second part, we use a similar reasoning and obtain

o 2cqv
lan k| < 2c160n Z 7"+ (epn)’ < . L

k<j<n

This proves the claimed resultl

3 Subcritical Range: Berry-Esseen Bound and LLT

In this section, we are going to prove Theoréand Theorem. Therefore, we will propose a new version

of Hwang’s refined method of moments which was introduced. i for proving second phase change
results for randommn-ary search trees; see alsj nd Bai, Hwang, and Tsa] for other applications of

the latter method. As already explained in the introduction, the main new feature of the current situation is
that we have to deal with a double-indexed recurrence. This will make the analysis much more involved.
In particular, the crucial bound from Propositidrbelow must hold uniform in botk andn. Where the



case ofn large compared wittk resembles the situations encountered in previous studies, the remaining
range ofn andk has to be treated completely different.
Now, we will provide more details. Therefore, denote by

Buly) = &R V2R ()

Then, @) implies the following recurrence faf,,

bni(y) = —— Z 05 1Y) Onsn(y)e Bjim Sk (k < n)

with ¢, x(y) = 1 forn <k,
Aj,n,k = Wikt Un—jk — MHnk — 1{j:n—k}7

and
5j7n7k = (0-‘]27k‘ + O"/?L—j,k‘ - O-i,k‘) /2

Next, denote byﬁﬁl’j}? them-th derivative ofp,, . (y) at0. From the above recurrence, we then obtain

2
nk_ 1Z¢ nk’ (k<n>

with gbf;';) =0,n < kand

|
w(m)_ 2 : m: z :d)“) (’LQ AZS (514
mk L2 . Z1'ZQ'Z3'14' n—1 n 3k gk g m ke
i1+12+i3+2i4=m
0<iy,ia<m

Our main aim is to prove the following proposition.

Proposition 2. For n, k > 1 andm > 0,

(m) m n m/3 n
\¢nk| < ml!A max{<ﬁ> ’ﬁ}’

whereA is a suitable constant.

We will first prove the claim for some smat. Therefore, note that it trivially holds fon = 0, 1, 2.
Next, we considem = 3. Here, @) becomes

n—1
2 3 3
=1 Yoot (k<n)
j=1

n,

with ¢} = 0,n < k and




Now, observe that
0, ifk<j<n-—k
ANjnr =14 O(1), if j =k; (7)
O (1/k), otherwise
and

0, if 2k < j <n —2k;
jin.k — { (8)

O (1/k), otherwise.

From those two estimates we obta/b;‘f,)C = O(1/k), where the implied constant is absolute. Applying
Propositionl then yields
(3 _ n
o =0(5)-

This proves our assertion fat = 3.
Next, assume that we have already proved that

m m n
o0 < mlAF (©)

for all n < 2k? andm > 1, whereA, is a suitable constant. This actually is already half of the claim
above and will be proved later on. To prove the other half, we have to show that

m/3
600 < miAp (1)

K2

(10)

for all n > 2k? andm > 0, whereA, is a suitable constant. W.l.o.g, we can assume that A,. In
order to prove 10), we will use induction and9).

We know already that10) holds form = 0,1,2,3. Now, assume we have proved it for all with
m' < m.

In order to prove the claim fat, we first considewfl’f,? and break it into three parts.

= > )P S DY

t1t+i2ti3+2ia=m 2k2<j<n—2k2  iG1ti2ti3+2ia=m j<2k2  d1t+ietiz+2ia=m j>n—2k2
0<i1,i2<m 0<41,82<m 0<41,82<m
=: Y + X9 + Xs.
We start by treating the first sum. Note that due®pand @) it simplifies to
m—1 m 1
_ (i) 4(m—i)
n=Y (M)t T oo
i=1 2k2<j<n—2k2
Using the induction hypotheses, the latter sum can be estimated as follows

m-1l j i/3 n—j (m—1i)/3
misnlr Yy Y (ﬁ) (kz)

2k2<j<n—2k?

m—1

o [T\ /3 I'@/3+ D0 ((m—1)/3+1)
< comid; (ﬁ) Zl T(m/3 + 2)
< co(m — AT (%)m/g,

8



where the last step follows from Lemmian [15].
As for the second sum, we first break it into the following two parts

Yo = Z Z + Z Z =: Yo 1 + Xao.

i1+ia+i3+2ia=m j<2k2 j<n—2k2 d1ti2tiz+2ig=m j<2k2, j>n-—2k2
0<i1,ia<m 0<i1,ia<m

We will use the induction hypotheses and the two estimatearid @) to bound the latter two parts
separately. First,

|E | < Qm'Am Z 1 1 Z n- j Bl C’i:sDu
2= isligdn —1 k2

i1+i2+iz+2i4=m §<2k2, j<n—2k2
0<21,i2<m
1/3 P\?
< com!AT* E E ( ) E 1—-=
k? n—1 4 n
1=0 [=0 1<j<n

<Com|A ZZ ( )l/3_ ( )Am<k2) /3’

where the last line follows from > 2k? (otherwise the sum would b&and the bound trivially holds).
The second sum above we once more break into two parts

Y99 = Z Z + Z Z =: Y991 + 2222.

t1tigtiz+2ia=m j<2k2?, j>n—2k2  i1ti2=m j<2k2, j>n—2k2
1370 or i47£0 i1,i2>1

The first part, we crudely bound by

m

1 : 1
1Xg01] < Com!AgLE Z Z 1< COQO!AgLE

=0 (=0

For the second part, we us@ @nd obtain

Z ( ) (n_J) < comm!Ag <%>2 < commlAT <%>7/6’

where the last line follows from < 4k? (otherwise the sum would 8.
The sumX; can be bounded similarly.
Overall, we obtain fon > k

(m) m( 1 /n m/3 51 n\7/6
W] S comi A (a(ﬁ bmipam (i) )

Applying Propositionl then yields

m m 1 n m/3 n n 7/6
o1 < comtay (2 ()" o () +om (55) ).

Forn > 2k? the latter in turn implies

1 m/3 m/3
6] < ¢ (m—_g + m2om(m=3)/3 | m2—<2m—7>/6) mlA™ (ﬁ> < mlAD (ﬁ) ,

[Xa,22 < mlAF Z

kQ
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where the last line holds for large enough. Hence, by suitable tuning the constanthe proof of (0)
is finished.

Looking at @), we see that we cannot prov@ py the same approach. Hence, we will use a different
(and more direct) proof. Since the claimed bound is for moderately smatlis better to look at the
factorial moments. Therefore, denote By;.(z) = E (zXnk) Then, @) translates into

n—1
1
Pule) = 7 Y Piil2) Pacjil(z) o=
j=1
1 n—1
-1 Z Pin(2)Pojil2) = -7 (2 = 1) Pogi(2), (11)

7j=1
whereP, ;(z) = 1 forn < k and P, x(z) = z. Next denote by4 ) the m-th derivative of P, () with
respect ta: evaluated at = 1. The above recurrence in turn ylelds for> 2

n—1

ST AW + B,

7j=1

2
n—1

(m)
An,k =

WhereAg’Q =0forn < kand

(m) () (m—1)
Bnk - Z ( )n_ 1 ZA]kAn gk n— 1An—k,k'
i =1
Now, we will use the same approach as above to prove the uniform bound
m m n m
AT < mtam () (12)

with a suitable constamt andm > 0 (with the sole exception of: = 1 andn = k).
First observe that12) trivially holds form = 0, 1. Next, we look atn = 2. Here, we have

n—1

1 Jllen —jk 31 Ez wie = O ((;)2"‘% (%)) =0 ((%>2> (13)

J=1

B2

Note that in the above estimate, we have to be careful yvithk andj = n — k: (i) if either j # k or
j # n — k, then we can exclude both cases from the above first sum and replager in front of the
second term; ilh = 2k then we can exclude the cage= k from the first sum and completely drop the
second term. Now, applying Propositiotyields (L2) with m = 2.

For the general case, assume that the assertion holds fof aiith ' < m. To prove it form, first

consider
() n—1 n—1 . m—1i m| . n—k m—1
B < mlA™ — A
BUY < m Zm 12( )( ) + (k)

= J=

m

=0
n\™ (1 A
#)

10

< Com'A

1
<



where in the first estimate we again have to be careful with the gasek andj = n — & (but a similar
remark as above holds) and the last line follows from Lerdnmg[ 15]. Applying Propositionl then yields

gl <o (g g () s (1)

where the last step follows for and A large enough. Suitable tuninggcompletes the induction step.

Remarkl. Note that (2) is simpler than the bound previously obtainedm). This is essentially due to

the more simpler nature of the toll sequelﬁ(;g}g) in this case. In particular, computimﬁf’} would reveal
that a similar simple bound would not hold in the previous situation.
Moreover, we should mention that the following weaker resultfor ck? was already obtained in

Feng et al.
i

I
for m > 2. Actually, this bound would be sufficient for us as well. The reason why we proved the above
stronger bound is because the proof is more in the spirit of our paper and hence makes our paper mor
self-contained. Moreover, we will encounter a very similar situation in the next section, too.

AT < co(m — 1)

Using the following well-known relation between moments and factorial moments

EXT =Y S(n,i)A)

n,k’
=1

whereS(n, i) are the Stirling numbers of second kind, we obtainifer n < 2k? andm > 1

EX] < X;S(n,z)z!A (ﬁ)

1=

n

< 2(2A)mZS(n,i)m(m—1)---(m—z’—i—1)

s I

m, m 7mn

where the last line follows by the definition of Stirling numbers of second kind and Stirling’s formula. The
latter estimate then in turn implies fér< n < 2k? andm > 1

m

m m 7 m—1 m
00— )" £ 2 (7 BN ()™ )
=1
s o n\m
<mlAm LN 2 <—>
=m kziz:;(m—i)!+ W2

< n
|A™ __
<mlA 12

Finally, we have

(m) L m Z' 2 i/2 m—i
= E — 2) " T E(Xpkp — tn .
=0, 7 even
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Consequently, fok < n < 2k? andm > 2

- m i/2 m/2
(m)| ~ |fyn11 ¢ l)m/<11> < I/V”ZE
|¢n,k | <m! 1.2 i:()zieven(i/2)! + L2 — :

This concluded the proof ofL().

Overall, our proof of Propositiof is finished.

Next, we will apply the latter proposition to deduce the following two results for the characteristic
function of X, ;.

only) = E (MK tna)ions) = tns/ons P, (ens).

Proposition 3. Letk = k,, with1 < k = o(y/n).

wmay%zey”2<1+6)oyﬁé%))

uniformly fory with |y| < en'/6/k'/3, wheree > 0 is sufficiently small.

(i) Forn large enough,

(i) For n large enough andy| < 7o, 4,

[Pni(y)] < emv/?
wheree > 0 is sufficiently small.

Proof. The first part follows from Taylor series expansion and Propositj@ee [15].
So, we just have to concentrate on the second part. Here, we will prove a slightly more general result:
forn > 3,1 <k <nand|y| <m, we have

’Pn,k (eiy) ‘ < e*GyQ(n/k2+C/l€) (14)

with (dependent) constartsndc that will be chosen below. From this, the above claim is then immediate.
In order to prove the latter result, first observe that frd) (

n—1

> 1Pk (€Y) [ Paci (€9) |.

J=1

1
n—1

We will establish our claim by induction an Note that forn > 3 the induction step is deduced from
the above recurrence as follows

7 7 2 1 7 7
Pk (") [ < =D 1P (") 1Pasin (") [+ =5 D 1Pk () [P (¢7)
i<k k<j<n—k
2 2,12 2k 2
< —ey?(n/k%4c/k) ey?j/k 1 — —ey?c/k
<e — ; e + o1 e
< e—eyQ(n/kQ—l—c/k) 2k 6eyQ(l/k—l-l/lc2) +(1- 2k e—eyQC/k
- n—1 n—1
2k 2k
< e—ey2(n/k2+c/k) (n — (1 + coeyQ/k:) + (1 . m) (1 N 01€y2c/k3)) 7
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wherecy, ¢c; are suitable absolute constants (here, we needethigt small; see below). Now, choose
¢ > 2¢p/c1. Then,

< 676y2 (n/k%+c/k) )

|Pog (€7) | < eme0 /et (1 o (n—1—2k)ce; — cho)

k(n—1)

This establishes the induction step for- 3k. As for the remaining range, we first considex 2k. Here,
we can directly work with%) and obtain

TL2

= 14207 (cosy —1) < e 20V Tk
wheree, is chosen so small thavs(y) — 1 < —eqy? for |y| < . Thus,

1Py (€¥)] < e~V s < o (€0/(6+60))y* (n/k>+e/k)

So, withe := ¢,/(6 + 6¢), the above claim is established (note thais also small as required). The final
range of2k < n < 3k can be treated by a similar (but slightly more complicated) computation, where for
this range, we have

0, with probability 1 + i, . (ptnx — 3)/2 + O-?z,k/2;
Xox =14 1, with probability i, 1 (2 — finx) — 02,
2, with probability ti,, . (finr — 1)/2 + 02 /2.

Of course, the above chosehas then to be adjusted accordingly.

As forn = 3,1 < k < 3, note that these cases are already covered by the previous arguments. This
concludes the induction proof and henad)(is established. Finally, we remark tha#f becomes wrong
for all other possible choices afandk. 1

Theoreml and Theoren2 follow now from the latter proposition by standard tools; s&g.[

4 Poisson Approximation

In this section, we will prove Theorem The proof will be based on the local limit theorem from the
supercritical range together with the following result.

Proposition 4. For k < n andn — oo,

uniformly in/.

This result will be proved with yet another variation of Hwang's refined method of moments. There-
fore, denote by 3
¢n,k(z) — e tnk(E-DR (ZXn,k) — 6_#n,k(z_1)Pn’k(z)7
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where we use here the convention that, = 0 (this will simplify the proof below). Then,1(1) can be
rewritten to

n—1

Dui(2) = = Z Gk (2) s (2)elamsG=1)

1 (2 = Dnpn(z)eM+CE0,
n p—

, n—1
J=1

whereg,, (z) = 1 forn < k, ¢y, = 2, and
Njnge = Wik + n—jk — Hnks Ak = Pk — Hnk-

Next, let gz@fl";) be them-th derivative of&n,k(z) with respect to: evaluated at = 1. Then, the above
recurrence in turn implies fon > 2

n—1
Oni = D_O% + U
j=1
wheres(}) = 0 forn < k and

m—1
~(m m ]_ i 3 m m— 7
wfm,k;): Z ( ' -)n_12¢“¢n ik ] ( ) nkk>‘ e

11,19, 1
i1+i2+ig=m 152,73 1=
0<i1,22<m

We will use a similar method as in the previous section to obtain the following uniform bound.

Proposition 5. For all n > £k andm > 0,
~ m/2
(m) < mlA™ ( >
|¢n,k | k3 ’

whereA is a suitable constant.

Note that the latter bound (once proved) will be hold as wellifat k& with the only exception being
n = kandm = 1. So, the situation here is very similar to the situation encountered in the prob2)of (
This is also to main reason for settipg;, = 0 in the definition of&nvk(z).

As for the proof of the above bound, we will proceed by induction. Note that our claim trivially holds
for m = 0, 1. We next consider the case = 2. Here, direct computation yields far> k

¢(2k - O- ,U/n,k

Now, we use §). First, forn > 2k,

é@) _ n é@) __ n(3k‘ + 2) _ <£>
wh Tk 4 1AL k(k+1)2(2k + 1) K3/

Next, fork < n < 2k, ,
72 _ TN _ (I
k=g -0 (s)-

Overall, the claim is proved far = 2.

14



Now, assume that it holds for atk’ < m. We want to show that it holds for. as well. Therefore,
observe that /k < (n/k*)'/2. Using this together with the induction hypothesis, we obtain

m—1
T(m m 1 ) % 7 m 7
|77Z)7(L,k)|:‘ Z ( ; )n_lng(lgzan)]kA]Snk_ 1 ( ) n kk/\nkl
i=0

i1+i2+iz=m t1, 2,3 i
0<41,i2<m
n—1 . i1/2 .\ i2/2 i3
<m Y 1 1 A+ 3 (L n—j ¢
i1+12+iz3=m 7j=1
0<11,i2<m

+nni!1Am_1;( —11—7,) </?3>i/2 (%) N
<o (ot ()" S S e )

< comtan (1) (%ﬁ),

where the last line follows from Lemmain [15]. Note that in the first estimate above we have to be
careful with the case where the induction hypothesis does not hold (see the remark below Praposition
however a similar cancellation as explained beld®) (n the previous section takes place. Now, we can
apply Propositiori and obtain

=0 (g ) e () s ()

where the last estimate holds farand A large enough. By suitable tuningthe proof of the proposition
is finished.

From the previous proposition, we can now deduce Proposition

Proof of Propositiont. First, observe that the assertion is trivial forX cn'/? with ¢ > 0. Hence, we can
restrict ourselves té with & > cn'/?, wherec is large.
Next, from Propositiord, we get

Pag(z) = @) — inaet) (G, (2) — 1)

— ekni(z=1) ) (Z |¢”f| P 1|m>
m/!

m=2

— ekni(z=1) ) (Z ( 1;(/2| _ 1|)m>
m=2

— etnk(z=1) () (%) ’

where the last line holds for al with |z — 1| < ¢k3/2/\/n with € suitable small. Finally, by making the
abovec large enough, we see that the above expansion holds uniformlwith |z| = 1.
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Next, we apply Cauchy’s formula. Hence,

1
P(Xpp=1)=— / Poi(2)z77d2
|21=1

271

1
27TZ |z]=1 ¢ + k3 ®

—e-”n““’z.’” +0<;2>

as it was claimed. 1
Now, we are ready to prove our main result.

Proof of Theorens. First, considet with k& > n2/>. Then, break the sum in the total variation distance
into two parts

_ (Mn,k)l
P T D DR EEH E A DN EH =
120 1= pin k| <0\ /Bn [l=ten k| >0 /B e
The second part can be easily estimated by Tschebyscheff’s inequality
2 i 1
Yo< 2 4 — =0 (n?
2 Pl 12 (77 )

For the first sum, we use Propositierand obtain

(n\/un ; k3> =0 (m*PE1).
Now, choose) = k*/?n~1/2. Then,
drv (X g, Po(pin ) = O (072 +mqn®?k™) = O (nk™%%) = O (n=/"?)

which proves the result fdr > n?/°

Next, we considek with n'/> < k < n*° and choose; = n'/2k~1/6, We again use the above
partition, whereX; is estimated as above. As for boundihg, we use Theorem together with the
following two expansions

(Hnp)’ 1 < U Nnk)z) 1
“Hn, —_= - :
e Hnk 0 T exp T (1 +0 (n,unvk))

and

1 (I = pin k)2 1 ( (I _Nnk)Q) 27.—1
—€X — : = exp| —— ) (1+0O k ,
\/2m02 b ( 207 /2T i e P 2tk ( )
where the latter expansions hold uniformly forialith || — 1, x| < n./lnx. Consequently,
1=0 (n?’k:_l + 7]4n_1/2k:) =0 (n‘l/QO) :

Overall, we obtain
dry (X, Po(png)) = O (n71/20 + 7772) —0 (n71/20) .

For the final range of with k& < n'/°, we choose) = k'/°. Then, similar as above, we obtain
dry (Xn e, Po(ping)) = O (k77 4 n77%0).
Hence, our result is established
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Remark?2. As already mentioned in the introduction, the above proof also gives a rate for the convergence
of the total variation distance t@ However, the rate is quite poor and can be further improved by in-
corporating estimates for higher moments. We will restrain ourselves from doing this here and postpone
the issue of deriving sharp bounds for the total variation distance to the relatedyerki¢h discusses
applications of the techniques of this paper to random trees arising from molecular biology and genetics.

5 Binary Search Trees

In Feng et al. a similar result as described in the introduction was derived for random binary search tree:
as well; see(], Feng, Miao, SulZ], Flajolet, Gourdon, MartineZzI[3] for earlier and/or related results in
this direction.

A random binary search tree is recursively build from a random permutation of the sequence of records
1,...,n as follows: place the first record into the root and direct the other records either to the left or right
subtree according to whether the record is smaller or larger then the record stored in the root; proceed lik
this to recursively build the left and right subtree. Binary search trees are a fundamental data structure ir
computer science and they have found numerous applications!4emfl references therein.

Again, denote byX,, ;, the number of subtrees of sizeon the fringe of a random binary search of size
n. Then,X,, , satisfies the following recurrence

d *
KXok =X, e+ X 11,k (k <n)

with X, . = 0 for n < k and X}, = 1, wherel,, = Unif{0,n — 1}, X, Is an independent copy of,, ,
and the sequences, j, ok and/, are all independent.

The latter recurrence can be similarly explained as the corresponding recurrence for recursive trees
see the paragraph below) (n Section2.

Now, the above recurrence again implies that all (centered or non-centered) moments satisfy a recur
rence of the following shape

n—1

2
nj = — g aji + bp g,

j=0
whereb, ; is a suitable sequence (again called “toll sequeneg’),= 0 for n < k anday is fixed. Using
the same method that was already applie®jdile above recurrence can easily be solved
2(n+1)
(k+ 1) (k+2)

ijf
U+10G+2)

Qnk = #_bnk»

agr+2(n+1) Z

k<j<n

wheren > k.

We see already here that things are very similar as in the previous situation of random recursive trees
So, our methods will run through with only minor modifications and yield similar results for random binary
search trees, too. It should be pointed out that this is quite different to the situation encountered in Feng e
al. whose approach applied to random binary search trees was technically much more involved than whe
applied to random recursive trees.

Due to the similarities to random recursive trees, we do not give any details and instead only state the
final results. The reader should have no difficulties to use the tools introduced in the previous sections tc
work out full proofs.
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First for the mean value and variance, we obtain the following explicit formulas

2(n+1)
nk = E(X,1) = , >k
e =B ) = G vy W
and k(4k% + 5k
onp=V(Xop) = 2k(k” + 5k — 3)(n+ 1) (n>2k+1).

(k+ 1) (k+2)2(2k + 1)(2k + 3)°
Our results in this situation then read as follows.

Theorem 4. (i) (Berry-Esseen bound) Lét= £, be a sequence with< k,, = o(y/n). Then,
sup ‘P (M < x) —P(z)| =0 <%) ,

—oo<z<00 On k
(i) (Local limit theorem) Let: = k,, be a sequence with< k,, = o(y/n). Then,

where the rate is (up to the implied constant) optimal.

P(Xpp = |fing +x00)) = o (l +0 <(1 +1af) %))

/92
2o,

uniformly inz = o(n'/¢/k'/3).
(i) (Poisson approximation) Lét = k,,, wherek < n andk — oo asn — oo. Then, the total variation
distance betwees,, , and a Poisson random variable with ratg ; tends td0, i.e.,

l
P<Xn,k = l) — e*ﬂn,k —(M?;k)

— 0, (n — 00).

1
drv (Xnp, Po(tnk)) = 2 Z

1>0

6 Conclusion

In this paper, we introduced a new approach to the limit law of the number of subtrees on the fringe of
random trees. Our new approach is based on the method of moments and its refinement. Compared
previous approaches, our method is capable of yielding much deeper results and it applies more uniformh
to different types of random trees. We demonstrated here the validity of the first claim by considerable
refining recent results of Feng, Mahmound, and Panholzer. In particular, our results further explain why
the number of subtrees exhibits the phenomenon discovered by the latter authors.

Our method is likely to have many more applications. In particular, other classes of random trees seen
to be treatable by our approach in a similar fashion, too. This will be postponed to future work.
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