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Abstract

In this extended abstract, we outline how to derive limit
theorems for the number of subtrees of size k on the fringe
of random plane-oriented recursive trees. Our proofs are
based on the method of moments, where a complex-analytic
approach is used for constant £ and an elementary approach
for k£ which varies with n. Our approach is of some
generality and can be applied to other simple classes of
increasing trees as well.

1 Introduction

Several recent studies have been concerned with the node
profile of rooted random trees, where the node profile is
defined as the number of nodes at distance k£ from the
root; for random binary search trees and recursive trees see
Chauvin et al. [4], Chauvin et al. [5], Drmota and Hwang
[11], [12], Fuchs et al. [22]; for random plane-oriented
recursive trees see Hwang [23]; for other types of random
trees see Drmota and Gittenberger [10], Drmota et al. [13],
Drmota and Szpankowski [14], Park et al. [25].

Here, we are going to investigate another kind of profile
which is defined as the number of subtrees of size k. This
profile is called subtree size profile and has so far only
been investigated for random binary search trees, random
recursive trees and random Catalan trees; see Chang and
Fuchs [3], Dennert and Griibel [7], Feng et al. [16], Feng
etal. [17], Feng et al. [18], Fuchs [21].

Similar to the node profile, the subtree size profile is
an important tree characteristic carrying a lot of information
on the shape of a tree. For instance, total path length (sum
of distances of all nodes to the root) and Wiener index
(sum of distances between all nodes) can be easily computed
from the subtree size profile. Also, as we will explain in
more details below, results about the subtree size profile
will in turn entail results about the occurrence of pattern
sizes. Studying patterns in random trees is an important issue
with many applications in computer science (for instance in
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the context of compressing; see Devroye [8] and Flajolet et
al. [19]) and mathematical biology (see [3] and Rosenberg
[26]).

In this paper, we will consider the subtree size profile
for random plane-oriented recursive trees (or random PORTSs
for short). Random PORTSs have surfaced in several recent
applications sometimes under different names such as heap-
ordered trees or scale-free random trees. They are for
instance used as one of the most simplest model of random
networks; see Barabdsi and Albert [1] and the thorough
discussion in [23].

We will start by defining random PORTS. First, PORTs
of size n are rooted plane trees with n nodes that are labeled
such that the sequence of labels from the root to any node is
increasing. Alternatively, PORTs can be defined via a tree
evolution process: start with the root; inductively assume
that a node of out-degree d has d + 1 free places (before the
first child, between the first and second child, etc.); attach
the next node to a free place. Stop when you have attached
n nodes. It is easy to see that this gives the same sets. Also,
from the second definition, we can easily count the number
7, of PORTS of size n. Therefore, observe that the sum over
all out-degrees in any tree of size ¢ equals ¢ — 1. Hence, the
number of free places after inserting ¢ nodes equals 27 — 1.
Finally, 7, is the product over all free places after inserting ¢
nodes with 1 <7 <n — 1. Thus,

Tp=1-3---(2n—3) =2'""nlC,,,

where C,, = (*"77)/n are the (shifted) Catalan numbers.
Note that the exponential generating function P(z) of 7, is

given by 1 — /1 — 2z and satisfies the differential equation

d

P =14+ P(z)+P(2)*+ -

(1.1) P(z)

1
1-P(2)
with initial condition P(0) = 0. The latter equation can also
be obtained by symbolic combinatorics: a PORT without the
root (this is the left-hand-side) is the ordered sequence of
PORTSs tangling from the root (this is the right-hand-side).

A random PORT of size n is now defined as a PORT
which is chosen from all PORTs of size n with probability



1/7,. Again, an alternative definition can be given via the
above tree evolution process: attach the next node uniformly
to one of the free places. Note that under this tree evolution
process, a node with high out-degree is more likely to attract
the next node. This preferential attachment rule is one of the
reasons of the importance of PORTs.

In the sequel, we will be interested in the subtree size
profile of random PORTSs which is a double-indexed random
variable denoted by X, ;.. We will derive limit laws for fixed
k and for k tending to infinity as n tends to infinity. More
precisely, we will prove the following result.

THEOREM 1.1. (i) (Normal range) Let k = k,, such that
1<k =o0(y/n). Then,

Xn,k — Unk d
R PR 2

N(0,1
- (0.1),

where i, = (2n —1)/(4k* — 1) and, as n — oo,

) 8k2 — 4k — 8
O-le ~ A2 1\2
; (4k2 —1)2

(2k — 3)12
T k- DRaTek+ 1) )

(ii) (Poisson range) Let k = k, such that k ~ c\/n as
n — oo. Then,

Xk 4, Poisson(27 ¢ 2).

(iii) (Degenerate range) Let k = k,, such that k < n and
vn = o(k) asn — oo. Then,
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We will explain some consequences of this result for the
occurrences of pattern sizes (the following interpretation of
our result was pointed out to us by one of the anonymous
referees). Therefore, observe that the number of patterns of
size k is given by C} (the number of rooted plane trees).
From Stirling’s formula, we have
(1.2) Cp ~ V232401 (| = o).
Consequently, all patterns can only occur up to a size which
is O(logn). Beyond this, certain patterns cease to exist. Our
result on the other hand shows that despite of this, all pattern
sizes do still occur up to o(y/n). Pattern sizes of order \/n
then only exist sporadically and are Poisson. Finally, all
pattern sizes beyond the order of 1/ are highly unlikely.

The non-existence of patterns beyond /n is consistent
with other well-known properties of PORTs. For instance, if
we denote by T, the total path length, then the order of 7}, is

known to be O(n logn). Moreover, as mentioned above, T;,
can easily be computed from X, ;, as

n—1
To = kXnk.
k=0

Hence, there cannot be patterns with sizes much beyond
vnlogn.

Our result should be compared with the corresponding
results for random binary search trees and recursive trees
in [16] where the same phenomena was observed (with a
slightly different expression for the mean and a more simpler
expression for the variance). The proof method from [16],
however, cannot be applied here since it rested on an exact
expression for all centered moments which does not seem to
be available here. So, we will have to devise a new method
of proof. Our new method will use an inductive procedure
called "moment pumping” that was used in several recent
studies in the analysis of algorithms (see Chern et al. [6]
and references therein). In comparison to [16], our method
will incorporate the cancelations from [16] already in the
induction step making the resulting proof much simpler.
Another advantage of our method is that it can be applied to
other classes of random trees as well. This will be briefly
indicated in a final section, where we are going to apply
our method to other simple classes of random increasing
trees, thereby showing that the above phenomena is universal
for these tree families. We mention in passing that the
subtree size profile for simple classes of random trees (for
a definition see Drmota [9]) was investigated as well. For
instance, Catalan trees were treated in [3] and a similar result
as above was proved with the critical point v/n moving up to
n?/3. Similar to simple families of random increasing trees,
the same phenomena is again expected to hold universally
for many other simple families of random trees.

Before presenting details, we will give a short sketch
of the paper. In the next section, we will look at the case
of constant k and derive mean value and variance. There-
fore, we will use complex-analytic tools, more precisely, sin-
gularity analysis with its closure properties. This method
combined with induction can be extended to derive the first
order asymptotics of all higher centered moments, too. By
the Fréchet-Shohat Theorem, this then implies Theorem 1.1,
part (i) for constant k. As for varying k, we will use an el-
ementary approach (in the number-theoretic sense, i.e., no
complex analysis is used) again based on moments and in-
duction. Finally, in the last section, we will briefly indicate
how our tools can be used to derive similar results for other
simple classes of random increasing trees, too.

2 Constant Subtree Size - An Analytic Approach

Here, we will sketch the proof of Theorem 1.1, part (i)
for constant k. Therefore, we will work with moments.



The first step will be to derive the mean value. Next, we
will shift-the-mean and show that generating functions of
centered moments satisfy a recursive relation (see Lemma
2.1 below). This combined with singularity analysis with its
closure properties (see Chapter VI in Flajolet and Sedgewick
[20]) will allow us to obtain the singularity expansion of the
generating function of the variance from properties of the
mean. Then, an asymptotic expansion for the variance will
follow from the transfer theorems in [20]. Moreover, this
procedure can be generalized to all higher centered moments
as well. Finally, our result will follow from the Fréchet-
Shohat Theorem (see Lemma 1.43 Elliott in [15]).

We mention in passing that one could alternatively try an
approach based on the bivariate generating function (2.4) and
Hwang’s quasi-power theorem (see [20]). Such an approach
has the advantage that one does not have to treat all moments,
but is likely to be restricted to constant &£ only. Our approach
via moments, however, also works for varying k as we will
demonstrate in Section 3.

The starting point of our proof is the following (trivial)
observation: the number of subtrees in a random PORT of
size n is the sum of the number of subtrees in all subtrees of
the root which are again random PORTSs. This observation
translates into the following distributional recurrence

iZX

with initial conditions X, = 1, X, = 0 forn < k and
X(Z)k = X,k Moreover, X, x, Xfl)k, (N, I, I, ...) are
1ndependent random variables, where IV is the out-degree
of the root and 14, ..., Iy are the sizes of the subtrees of the
root. Due to the uniform probability model, we have for the
joint distribution of (N, Iy, Io, .. .)

2.3) (n> k)

Z:P(N:T,Ilz’il,...,.[»,‘:ir)

n—1 \7 -7,
- . . -
(ST Tn

where i1,...,4, > land iy +--- + ¢, = n — 1. Since we
are interested in moments of X, ;,, we define the bivariate
generating function

Tn,ryiy ... ir

24)  Pul(z,y)= > 7E (exp( nky))ﬁ

n>1
Then, (2.3) translates into

1

— 12" * kG2t
1- Pk(Z,y) ) ke

(2.5) %Pk(zyy) = +(e¥—
with initial condition P(0,y) = 0. Note that Py(z,0) =
P(z) forall k > 1.

As (1.1), the above differential equation can also be

alternatively obtained by symbolic combinatorics: a PORT

without the root is the sequence of PORTs tangling from the
root. Moreover, the number of subtrees of size k in a PORT
is the sum of the number of subtrees of size k in the PORTSs
tangling from the root (this is the first term of the right-hand-
side in (2.5)) except in the case where the PORT itself has
size k where we have to add one (this is the correction term
on the right-hand-side of (2.5)).
Next, we compute the mean. Therefore, set

= ZTnE(X Lk z

n>1

n

Then, by differentiating the above differential equation with
respect to y and setting y = 0, we obtain the following
differential equation

d - Mk(z)
o Me2) = 175,

with initial condition M}, (0) = 0.
The solution of this differential equation is easily ob-
tained as

+ 2R 2R

217kk0k ?
2.6 My(2) = “——= [ t"'V/1—2tdt
( ) k(z) m 0

From this we can derive the mean value.
PROPOSITION 2.1. We have, forn > k,
2n—1

E(X,k) = —o.

(Xni) = 27

Proof. From (2.6), we obtain

n!21_kk0k
E(X, ) = "] tF=1y/1 = 2tdt.
(i) = R e
Next,
1 ? k—1
—— [ N1 —2tde
Vv1—2z /0
1/2
= —L/1 — 2tdt
V1-—2z
1 z
+ 7/ tF=1y/1 — 2tdt
vV 1-—2z 1/2
_ 27%B(k,3/2)
 V/1-2z

. k—1

24~ k-1
b ~)(1 - 2t)H1/2a
2 /Z( -2

R
CRk+D) VI—22
2.7

)H—l

1—-92 I+1
2l+3( 97

g ()



where B(z,y) is the beta function. Plugging this into the
above expression gives for n > k

n121 =k 10y, 1
E(X, 1) = n =
Xok) = = o ==

where the last line follows by a simple computation.

2n—1
4k2 - 1’

REMARK 2.1. Note that Theorem 1.1, part (iii) follows from
the above exact expression of the mean value.

Next, we consider the variance and higher centered
moments. Therefore, we shift-the-mean. Set 1 := 2/(4k? —
1) and

n

2y) = > mBlexp(Xo — pm)y) =

n!
n>1
= Pk’(zei'uyvy)'
Then, (2.5) becomes
e—HY

o _
S Puley) = T+ (e

_1 —ky/y21—k‘k_c k—1
82 1— Pu(z,y) Je ke

with initial condition Py (0,y) = 0. Next, set

n

z
ZTn Xk — /.L’I’L)mﬁ.

n>1

A
Then, again by differentiation, we obtain

d 1m A[m
@AL ) = ===

with initial condition A[ ]( 0) =0and
B"()
= (~ku+ )"

+7§1 ")y A —
2\ ) i T Bz y)
=0 y=0
m—1 i1 +1]
A 1
* Z <i13i27i3) k (Z)

t1+iz+iz=m—1

(*kﬂ)m) 217]6](10]@21671

i1<m—1
D'z 1 dts 1
Oy 1 — Py(z,y) o Qyis 1 — Py(z,vy) y:O’
where
o 1

Oyt 1 — Py(z, y)

_Z() zd AY)

— (1= kp)' — (=kp)") 2 F ROy L

Note that B! (z) is a function of Al(2) withi < m.
The above differential equation is easily solved.

We have,

/ BI™ (t)y/1 = 2tdt.
1—22

LEMMA 2.1.
A[m]( ) =

This is a recurrence for the generating functions of
all centered moments. Hence, we can derive singularity
expansions of these generating functions by the closure
properties in Chapter VI in [20] and induction. Asymptotic
expansions for the centered moments will then follow from
the transfer theorems of Chapter VI in [20].

We will first demonstrate this procedure by treating the
variance. Since we want to use the results from Chapter
VI in [20], we need to show that the generating functions
are analytic in a domain of the form: for R > 1 and
0<¢<m/2,

A(R,¢9) ={z :

We call such a domain a A-domain. Moreover, a function is
called analytic in a A-domain if it is analytic in a A-domain
for some R and ¢.

Now, we prove the following result.

|z| < R,z #1/2,|arg(z — 1/2)| > ¢}.

PROPOSITION 2.2. flf](z) is analytic in a A-domain.
Moreover, we have the singularity expansion

2

Ay =—2 __ Loa 1/2,2 € A
where
9 8k? — 4k — 8 (2/~c—i’>)!!2

(k2 —1)%  (k—1)24F1k(2k + 1)

Proof. First, note that B,[f] (z) is a function of
Az -
k(%) =5

Hence, from the expression for My, (z) derived in the proof

= My(z) —

of Proposition 2.1, we obtain that B,[f] (z) is A-analytic and
BP(z) = 0(1/(1 —22)) as z — 1/2 and z € A.
Consequently, by Lemma 2.1 and Theorem VIL.9 in [20],
AR(2) is also A-analytic and

c

AN = =
— 4z

+O(1)

asz — 1/2and z € A, where

1/2
c= / B (1)1 —2tdt.
0

Finally, the claimed expression for c is obtained from the

exact expression of B ( ) (by plugging in the exact expres-
sion of M (z)) and a stralghtforward computation.



Applying the transfer theorems in [20] gives now the
following consequence.

COROLLARY 2.1. Asn — oo,
Var (X, 1) = oc*n+ O (nl/Z) .

REMARK 2.2. The above method can be used to derive
longer expansions of the variance, too.

As for higher centered moments, we use the same
procedure together with induction (details will be given in
the journal paper).

[m]

PROPOSITION 2.3. A" (z) is analytic in a A-domain for
all m > 3. Moreover, we have the singularity expansions

flfm_ll(z) -0 ((1 _ 22)3/2*”1) (z—>1/2,z€ A)

and

(2m)!(2m — 3)!lo?™m
4mm)!

+0((1—22)m)

Theorem 1.1, part (i) for constant k follows from this by the

transfer theorems in [20] and the Fréchet-Shohat Theorem.

Agfm](z) — (1 _ 22)1/2—m

(z —>1/2,z € A).

3 Variable Subtree Size - An Elementary Approach

Now, we will sketch the proof of the remaining cases of
Theorem 1.1. Therefore, assume that £ = k,, with k — oo
as n — oo. We will concentrate on part (i), part (ii) being
proved similarly.

As in the previous section, our proof is based on mo-
ments and induction. However, here we will work directly
with the underlying sequences instead of their generating
functions. Moreover, we will use a slightly different start-
ing point. Therefore, observe that a random PORT can be
decomposed into two random PORTsS, one being the leftist
subtree and the other the remaining tree. This gives the fol-
lowing distribution recurrence

(B8) Xok T Xp p+Xir o—Linrcky  (n>F)

with initial conditions Xy = 1, X, = 0 forn < k and
d . . .

X . = X, . Here, I, is the size of the leftist subtree. Due

to the uniform random model, we have

2(n —j)C;Chnj
nC,,

Since the mean value was already derived in the previous

section, we can immediately concentrate on centered mo-
ments. Therefore, set

Ty =PI, = j) = (1<j<n).

0, ifn <k,
Lok =14 1, ifn =k
on/(4k% — 1), ifn > k;

and P, () = E(exp((Xn.k — ftn.x)2)). Then, from (3.8)

Por(2) = Y 7 Pin(2)Posji(2)et 5% (n > k),

1<j<n
where P, ;(z) = 1 forn < k and
An,j,k: = Hj,k + Hn—j,k — Hn,k — 1{j:n—k}~

Next, set flgn,l = E(X, ,k — tn,x)™. Differentiating yields
the following recurrence
(3.9

A =N (Ag’j;] + Aﬁfﬂj,k) + B!

1<j<n

(n > k),

where /_1[:2 =0forn < k and
B
(3.10)

- ¥

i1+i2+iz=m
0<i1,iz<m

glia] glie] iz
Z T A5k A j kB j ke
1<j<n

( i )
i17i27i3

The above recurrence can be easily solved.

LEMMA 3.1. Forn >k,

(3.11)

Proof. This is a straightforward justification.

]

Consequently, since BL & 1 a function of [lz , With i <

m]
m, we again have a recursive relation for flg’f ,l Therefore,
we can again use induction to obtain first order asymptotics
of all higher centered moments. However, to estimate error
terms, we will need a uniform bound as well which is derived
by another induction (see [22] where the same approach was
used in a different context).
We first treat the variance.

PROPOSITION 3.1. (i) Fork,n > 1,

n
Var(X,) = O (ﬁ) :
(ii) Let k = k,, such that k — oo as n — oo. Then, as

n — oo,
n

Var(ka) ~ w

Proof. Here, (3.10) becomes

§ 2
Wn’jAn,j,k'

1<j<n

A2l
n,k



Next, note that

(3.12)

2] 1 B 1 (TL — k)CkCn,k
Bn’ko<k2+ﬂ-n7k>o<kj2+na’l .
We will plug this into Lemma 3.1 and treat the resulting two
sums separately. First, for the first sum,

1 C'(’I”L—‘r].—j)anrl,-
ﬁ Z J J

k+1<j<n Cn

k+1<j<n
=0 <\k/j kin 321 - x)l/zdm>
o)

where we have used (1.2). Next, for the second sum

Cr Z (J—FK)Cj—k(n+1—3)Chi1-

" kl<j<n J
C )
=5 3 Cin—k+1-j)Copsr1—
n 1<j<n—k
_ kCy Z Cj—r(n+1—j)Chi1—;
" k+1<j<n J
_ Cr(n—k+1)Cpg11
20,
_ kCr Z Ci—k(n+1—7)Crny1-
" k41<j<n J
1 2n—1
3 B(&n) 22k + 1)(2k — 1)°

where the first claim in the last line is proved by showing
that the expression solves the recurrence for the mean. This
proves part (i).

As for part (ii), observe that (3.12) can be refined to

BY, = w1 A2 )+ O (1/K?).

Now, we again use Lemma 3.1. The error term is treated as
above. As for the main term, observe that AfL ep ~ 1as
n — oo. Consequently,

Z C](n+1—j)Cn

+1—3 2
Wj,kAj,k,k

. Cn
k+1<j<n
_ 2Ck U =F)Cikn+1-5)Cni1
" gl<i<n J
n
2k2’

where the last line follows as above. This proves part (ii).

The next step is to use induction to generalize the
previous result to all higher centered moments. The proof
is long and cumbersome and we will not give details here.

(i) Fork,n>1andm > 2,
qlm] _ no(n\m/?
A”’k_0<max{k2’(k2) })

(ii) Let k = ky such that k = o(y/n) and k — oo as
n — oo. Then, as n — oo,

(2
A o )

n,k ~ gm
Jorm > 1, where g, = (2m)!/(2™m!).

PROPOSITION 3.2.

1[2m—1
ALJ@ =

From this, our claimed result follows by the Fréchet-
Shohat Theorem.

4 Other Simple Classes of Increasing Trees

In this final section, we indicate some extensions of our result
to other simple classes of increasing trees. We will be rather
brief and postpone further details to the journal version of
this paper.

Simple classes of increasing trees were introduced in
Bergeron et al. [2] and are defined as follows: first, an in-
creasing tree is a rooted, plane, node-labeled tree with the
sequence of labels from the root to any node being increas-
ing. A simple class of increasing trees is then defined as the
class of increasing trees together with a weight sequence ¢,
with ¢g > 0 and ¢, > 0 for some » > 2. The ordinary
generating function of the weight sequence, i.e.,

$w) =D G

r>0

is called weight function. Using the weight sequence, a
weight is attached to every increasing tree 7" as follows

w(T) = H Paw),

veT

where the product runs over all nodes of 7" and d(v) is the
out-degree of v.

Next, we equip a simple class of increasing trees with a
probability model, where the probability of T is proportional
to its weight, i.e., if

w(T),

Tn =

T has n nodes
then the probability of a tree T with n nodes is w(T")/7,.
Note that if P(z) denotes the exponential generating func-
tion of 7, then

%P(z) = ¢(P(2)) = ¢o + p1P(2) + - --



with initial condition P(0) = 0. As (1.1), this differential
equation can again be derived by symbolic combinatorics: an
increasing tree without the root (this is the left-hand-side) is
the sequence of increasing trees tangling from the root where
we have to multiply with ¢ if the root has out-degree d (this
is the right-hand-side).

It is easy to see that random binary search trees, random
recursive trees and random PORTSs are all simple classes of
increasing trees. Note that all of them can be generated by
a tree evolution process. It is interesting to ask which other
simple classes of increasing trees admit such a construction
(via a natural tree evolution process). This question was
solved in Panholzer and Prodinger [24], where it was shown
that up to scaling such a construction exists if and only if the
class belongs to following three types.

e Random d-ary trees: ¢(w) = (1 + t)4, where d €
{2,3,4,...}.

e Random recursive trees: ¢(w) = e’.

e Generalized random PORTs: ¢(w) =
where r > 1.

(1 _ t)frJrl’

Using our previous approach, a similar result as Theo-
rem 1.1 can be proved for those classes as well (for instance,
again by symbolic combinatorics, one easily derives a dif-
ferential equation similar to (2.5) for the bivariate generating
function). We just state our result for generalized random
PORTs.

First, the mean value of generalized random PORTSs has
again a simple expression.

THEOREM 4.1. We have forn > k
(r—=1)(rn—1)
(rk+r—1)(rk—1)

Moreover, results for the variance and limit laws can be
given as well. We just state the result for varying k.

Hn,k = ]E(Xnk) =

THEOREM 4.2. (i) (Normal range) Let k = k,, such that
k — oo asn — oo. Then,

Xn,k: — Hn,k d

N(0,1),
On,k
where, as n — 00,
» r=l n
On.k

3

(ii) (Poisson range) Let k = k, such that k ~ c\/n as
n — oo. Then,

’ r

Xnk 4, Poisson((r — 1)r~tc¢™2).
(iii) (Degenerate range) Let k = k,, such that k < n and
vn = o(k) as n — co. Then,

L
X 20,
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