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The number of subtrees

Xn,k =number of subtrees of size k on the fringe of random binary search
trees of size n.

Example: Input: 4, 7, 6, 1, 8, 5, 3, 2
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Mean value and variance

Xn,k satisfies

Xn,k
d= XIn,k +X∗n−1−In,k,

where Xk,k = 1, XIn,k and X∗n−1−In,k are conditionally independent given
In, and In = Unif{0, . . . , n− 1}.

This yields

µn,k := E(Xn,k) =
2(n+ 1)

(k + 1)(k + 2)
, (n > k),

and

σ2
n,k := Var(Xn,k) =

2k(4k2 + 5k − 3)(n+ 1)
(k + 1)(k + 2)2(2k + 1)(2k + 3)

for n > 2k + 1.
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Some previous results

Aldous (1991): Weak law of large numbers

Xn,k

µn,k
−→ 1 in probability.

Devroye (1991): Central limit theorem

Xn,k − µn,k
σn,k

d−→ N (0, 1).

Flajolet, Gourdon, Martinez (1997):

Central limit theorem with optimal Berry-Esseen bound and LLT

−→ All the above results are for fixed k.
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Results for k = kn

Theorem (Feng, Mahmoud, Panholzer (2008))

(i) (Normal range) Let k = o (
√
n) and k →∞ as n→∞. Then,

Xn,k − µn,k√
2n/k2

d−→ N (0, 1).

(ii) (Poisson range) Let k ∼ c
√
n as n→∞. Then,

Xn,k
d−→ Poisson(2c−2).

(iii) (Degenerate range) Let k < n and
√
n = o(k) as n→∞. Then,

Xn,k
L1−→ 0.
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Why are we interested in Xn,k?

Xn,k is a new kind of profile of a tree.

The phase change from normal to Poisson is a universal phenomenon
expected to hold for many classes of random trees.

The methods for proving phase change results might be applicable to
other parameters which are expected to exhibit the same phase
change behavior as well.

Xn,k is related to parameters arising in genetics.
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Yule generated random genealogical trees

Example:

5

4

2

3

1

1 2 3 4 5 6

5

4

2

3

1

1 2 3 4 5 6

genes

Random model:

At every time point,

two yellow nodes

uniformly coalescent.

Same model as
random binary

search tree model!

ti
m

e
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Shape parameters of genealogical trees

k-pronged nodes (Rosenberg 2006):

Nodes with an induced subtree with k − 1 internal nodes.

k-caterpillars (Rosenberg 2006):

Correspond to nodes whose induced subtree has k − 1 internal nodes
all of them with out-degree either 0 or 1.

Nodes with minimal clade size k (Blum and François (2005)):

If k ≥ 3, then they are internal nodes with induced subtree of size
k − 1 and either an empty right subtree or empty left subtree.
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Counting pattern in random binary search trees

Consider Xn,k with

Xn,k
d= XIn,k +X∗n−1−In,k,

where Xk,k = Bernoulli(pk), XIn,k and X∗n−1−In,k are conditionally
independent given In, and In = Unif{0, . . . , n− 1}.

Then,

pk shape parameter

1 # of k + 1-pronged nodes
2/k # of nodes with minimal clade size k + 1

2k−1/k! # of k + 1 caterpillars

Michael Fuchs (NCTU) Subtree Sizes of Random Trees April 16th, 2008 9 / 24



Counting pattern in random binary search trees

Consider Xn,k with

Xn,k
d= XIn,k +X∗n−1−In,k,

where Xk,k = Bernoulli(pk), XIn,k and X∗n−1−In,k are conditionally
independent given In, and In = Unif{0, . . . , n− 1}.

Then,

pk shape parameter

1 # of k + 1-pronged nodes
2/k # of nodes with minimal clade size k + 1

2k−1/k! # of k + 1 caterpillars

Michael Fuchs (NCTU) Subtree Sizes of Random Trees April 16th, 2008 9 / 24



Underlying recurrence and solution

All (centered or non-centered) moments satisfy

an,k =
2
n

n−1∑
j=0

aj,k + bn,k,

where ak,k is given and an,k = 0 for n < k.

We have

an,k =
2(n+ 1)

(k + 1)(k + 2)
ak,k + 2(n+ 1)

∑
k<j<n

bj,k
(j + 1)(j + 2)

+ bn,k,

where n > k.
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Mean value and variance

We have

E(Xn,k) =
2(n+ 1)

(k + 1)(k + 2)
pk, (n > k),

and

Var(Xn,k) =
2pk(4k3 + 16k2 + 19k + 6− (11k2 + 22k + 6)pk)(n+ 1)

(k + 1)(k + 2)2(2k + 1)(2k + 3)

for n > 2k + 1.

Note that

E(Xn,k) ∼ Var(Xn,k) ∼
2pk
k2

n

for n > 2k + 1 and k →∞ as n→∞.
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Higher moments

Denote by

A
(m)
n,k := E(Xn,k −E(Xn,k))m.

Then,

A
(m)
n,k =

2
n

n−1∑
j=0

A
(m)
j,k +B

(m)
n,k ,

where

B
(m)
n,k :=

∑
i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

)
1
n

n−1∑
j=0

A
(i1)
j,k A

(i2)
n−1−j,k∆

i3
n,j,k

and
∆n,j,k = E(Xj,k) + E(Xn−1−j,k)−E(Xn,k).
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n−1−j,k∆

i3
n,j,k

and
∆n,j,k = E(Xj,k) + E(Xn−1−j,k)−E(Xn,k).
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Normal range

Proposition

Uniformly for n, k,m ≥ 1 and n > k

A
(m)
n,k = O

(
max

{
2pkn
k2

,

(
2pkn
k2

)m/2})
.

Proposition

For E(Xn,k)→∞ as n→∞,

A
(2m−1)
n,k = o

((
2pkn
k2

)m−1/2
)
, A

(2m)
n,k ∼ gm

(
2pkn
k2

)m
,

where
gm = (2m)!/(2mm!).
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Poisson range

Consider
Ā

(m)
n,k = E(Xn,k(Xn,k − 1) · · · (Xn,k −m+ 1)).

Then, similarly as before:

Proposition

(i) Uniformly for n, k,m ≥ 1 and n > k

Ā
(m)
n,k = O

(
max

{
2pkn
k2

,

(
2pkn
k2

)m})
.

(ii) For E(Xn,k)→ c and k < n as n→∞,

Ā
(m)
n,k −→ cm.
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Ā

(m)
n,k = E(Xn,k(Xn,k − 1) · · · (Xn,k −m+ 1)).

Then, similarly as before:

Proposition

(i) Uniformly for n, k,m ≥ 1 and n > k

Ā
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The phase change

Theorem

(i) (Normal range) Let E(Xn,k)→∞ and k →∞ as n→∞. Then,

Xn,k −E(Xn,k)√
2pkn/k2

d−→ N (0, 1).

(ii) (Poisson range) Let E(Xn,k)→ c > 0 and k < n as n→∞. Then,

Xn,k
d−→ Poisson(c).

(iii) (Degenerate range) Let E(Xn,k)→ 0 as n→∞. Then,

Xn,k
L1−→ 0.
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A comparison of the phase change

For k-caterpillars, we have

E(Xn,k) =
2k−1n

(k + 2)!
.

Note that either

E(Xn,k)→∞ or E(Xn,k)→ 0.

So, there is no Poisson range.

shape parameter location phase change

k-pronged nodes
√
n normal - poisson - degenerate

minimal clade size k 3
√
n normal - poisson - degenerate

k-caterpillars lnn/(ln lnn) normal - degenerate
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Refined results (for # of subtrees)

Define
φn,k(y) = e−σ

2
n,ky

2/2E
(
e(Xn,k−µn,k)y

)
.

and

φ
(m)
n,k =

dmφn,k(y)
dym

∣∣∣∣∣
y=0

.

Proposition

Uniformly for n, k ≥ 1 and m ≥ 0

|φ(m)
n,k | ≤ m!Am max

{
n

k2
,
( n
k2

)m/3}
for a suitable constant A.
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Berry-Esseen bound and LLT for the normal range

Theorem (Rate of convergency)

For 1 ≤ k = o(
√
n) as n→∞,

sup
x∈R

∣∣∣∣∣P
(
Xn,k − µn,k

σn,k
< x

)
− Φ(x)

∣∣∣∣∣ = O
(
k√
n

)
.

Theorem (LLT)

For 1 ≤ k = o(
√
n) as n→∞,

P (Xn,k = bµn,k + xσn,kc) =
e−x

2/2

√
2πσn,k

(
1 +O

(
(1 + |x|3)

k√
n

))
,

uniformly in x = o(n1/6/k1/3).
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LLT for the Poisson range

Define
φ̄n,k(y) = e−µn,k(y−1)E

(
yXn,k

)
.

and

φ
(m)
n,k =

dmφ̄n,k(y)
dym

∣∣∣∣∣
y=1

.

Proposition

Uniformly for n > k and m ≥ 0

|φ̄(m)
n,k | ≤ m!Am

( n
k3

)m/2
for a suitable constant A.
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Poisson approximation

Theorem (LLT)

For k < n and n→∞,

P (Xn,k = l) = e−µn,k
(µn,k)l

l!
+O

( n
k3

)
uniformly in l.

Theorem (Poisson approximation)

Let k < n and k →∞ as n→∞. Then,

dTV (Xn,k,Poisson(µn,k)) −→ 0.

Remark: A rate can be given as well.
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Other types of random trees

Random recursive trees

Non-plane, labelled trees with every label sequence from the root to a
leave increasing; random model is the uniform model.

Methods works as well (with minor modifications) and similar results
can be proved.

Plane-oriented recursive trees (PORTs)

Plane, labelled trees with every label sequence from the root to a
leave increasing; random model is the uniform model.

Method works as well, but details more involved.
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Mean value and variance of PORTs

We have,

µn,k := E(Xn,k) =
2n− 1
4k2 − 1

, (n > k).

Moreover, for fixed k as n→∞,

Var(Xn,k) ∼ ckn,

where

ck =
8k2 − 4k − 8
(4k2 − 1)2

− ((2k − 3)!!)2

((k − 1)!)24k−1k(2k + 1)
,

and, for k < n and k →∞ as n→∞,

E(Xn,k) ∼ Var(Xn,k) ∼
n

2k2
.
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The phase change

Theorem

(i) (Normal range) Let k = o (
√
n) and k →∞ as n→∞. Then,

Xn,k − µn,k√
n/(2k2)

d−→ N (0, 1).

(ii) (Poisson range) Let k ∼ c
√
n as n→∞. Then,

Xn,k
d−→ Poisson((2c2)−1).

(iii) (Degenerate range) Let k < n and
√
n = o(k) as n→∞. Then,

Xn,k
L1−→ 0.
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More results and future research

Parameters of genealogical trees under different random models

Universality of the phase change for the number of subtrees

Very simple classes of increasing trees and more general classes of
increasing trees (polynomial varieties, mobile trees, etc.)

Phase change results for the number of nodes with out-degree k

Important in computer science.

A phase change from normal to degenerate is expected (no Poisson
range).
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