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Abstract

Simple families of increasing trees have been introduced by Bergeron, Flajolet and Salvy. They
include random binary search trees, random recursive trees and random plane-oriented recursive trees
(PORTs) as important special cases. In this paper, we investigate the number of subtrees of size k on
the fringe of some classes of increasing trees, namely generalized PORTs and d-ary increasing trees.
We use a complex-analytic method to derive precise expansions of mean value and variance as well as
a central limit theorem for fixed k. Moreover, we propose an elementary approach to derive limit laws
when k is growing with n. Our results have consequences for the occurrence of pattern sizes on the
fringe of increasing trees.

1 Introduction
Several recent studies have been concerned with the profile of rooted random trees, where a couple of
different notions of the profile have been proposed. The oldest and most widely-used notion counts the
number of nodes at a fixed distance k from the root. This kind of profile which is called node profile has
been extensively studied for many different families of trees; for random binary search trees and recursive
trees see Chauvin, Drmota, and Jabbour-Hattab [4], Chauvin, Klein, Marckert, and Rouault [5], Fuchs,
Neininger, and Hwang [22], Drmota and Hwang [10], [11]; for random plane-oriented recursive trees
see Hwang [23]; for other types of random trees see Drmota and Gittenberger [9], Drmota, Janson, and
Neininger [12], Drmota and Szpankowski [13], Park, Hwang, Nicodeme, and Szpankowski [26].

In this paper, we are interested in another notion of profile defined as the number of subtrees of size k
on the fringe of rooted random trees. This profile which is called the subtree size profile has so far only
been investigated for random binary search trees and recursive trees. More specifically, limit theorems
have been derived in Feng, Mahmoud, and Panholzer [15], Feng, Mahmoud, and Su [16], Feng, Miao, and
Su [17]; Berry-Esseen bounds, local limit theorems and Poisson approximation results have been discussed
in Fuchs [21]; and functional limit laws have been proved by Dennert and Grübel [7]. Similar to the node
profile, the subtree size profile is a fine tree characteristic carrying a lot of information about the shape of
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a tree. For instance, the total path length (sum of distances of all nodes to the root) and the Wiener index
(sum of distances between any two nodes) can be easily computed from the subtree size profile. Moreover,
results about the subtree size profile in turn entail results about the occurrence of pattern sizes (for a more
thorough discussion see below). Studying pattern occurrence in random trees is an important issue in
Computer Science (for instance in the context of compression; see Devroye [8] and Flajolet, Gourdon, and
Martinez [19]) as well as in Phylogenetics (see Chang and Fuchs [3] and Rosenberg [27]).

Here, we are going to investigate the subtree size profile for other families of rooted random trees.
More precisely, we will propose a method which is applicable to several classes of simple families of
random increasing trees as defined in Bergeron, Flajolet, and Salvy [2]. These families have numerous
applications (see [2]) and contain random binary search trees, random recursive trees and random plane-
oriented recursive trees (PORTs) as special cases. We will explain our approach and work out all details for
random PORTs in the next two sections (random binary search trees and recursive trees have been treated
in [16]). Generalized PORTs and d-ary increasing trees will then be briefly treated in a final section.

We will start by giving some more details on random PORTs. Random PORTs have surfaced in a
couple of different applications sometimes under different names such as random heap-ordered trees or
scale-free random trees. They are for instance used as one of the most simplest model of random networks;
see Barabási and Albert [1] and the thorough discussion in [23]. As for the definition of random PORTs,
first a PORT is a rooted, plane tree together with a labeling of the vertices, where labels along any path
from the root to a leaf form an increasing sequence. If we fix the number of nodes to be n, then an easy
counting argument shows that the number τn of PORTs with n nodes is given by

τn = 1 · 3 · · · (2n− 3) =: (2n− 3)!! = n!21−nCn,

where Cn =
(

2n−2
n−1

)
/n are the (shifted) Catalan numbers. A random PORT is then obtained by uniformly

picking a PORT of size n.
There is an equivalent definition of a random PORT of size n via a tree evolution process: start from

the root and recursively attach new nodes, where an existing node with d children is supposed to have
d + 1 free places (in front of the first child, between the first child and the second child, etc.) and the
new incoming node is attached to a place that is chosen uniformly from all those free places. Stop when
you have attached n nodes and the resulting tree is again a random PORT. Note that in this tree evolution
process, nodes with a large number of children are more likely to attract the new incoming node. This
preferential attachment rule is the reason for the importance of PORTs as simple network models.

Now, for a random PORT of size n, we denote by Xn,k the number of subtrees of size k (the same
notation for the subtree size profile will also be used for other types of random trees). In this work, we
are interested in the limiting properties of Xn,k both for fixed k and for k tending to infinity as n tends to
infinity. More precisely, we will prove the following result.

Theorem 1. (i) (Normal range) Let k = k(n) such that 1 ≤ k = o (
√
n). Then,

Xn,k − µn,k
σn,k

d−→ N(0, 1),

where µn,k = (2n− 1)/(4k2 − 1) and, as n→∞,

σ2
n,k ∼

(
8k2 − 4k − 8

(4k2 − 1)2
− (2k − 3)!!2

((k − 1)!)2 4k−1k(2k + 1)

)
n.

(ii) (Poisson range) Let k = k(n) such that k ∼ c
√
n as n→∞. Then,

Xn,k
d−→ Poisson(2−1c−2).
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(iii) (Degenerate range) Let k = k(n) such that k < n and
√
n = o(k) as n→∞. Then,

Xn,k
L1−→ 0.

For fixed k, this result will follow by standard tools. Hence, our main contribution will be the treatment
of varying k. Here, the result entails some interesting consequences concerning the occurrence of patterns
(by which we mean the subtrees rooted at the nodes of a tree). In order to explain these consequences, first
observe that the number of patterns of size k is equal to the number of rooted, plane trees of size k which
is given by

Ck ∼ π−1/2k−3/24k−1 (k →∞).

Hence, all pattern can just occur about to size k = O(log n). Beyond this order, some pattern will cease to
exist. Our result on the other hand shows that all pattern sizes are still present up to k = o(

√
n). Moreover,

patterns sizes of order
√
n exist only sporadically and are Poisson. Finally, pattern sizes of order beyond√

n are highly unlikely. Note that the latter non-existence is consistent with the stochastic behavior of
other shape parameters. For instance, it is well-known that the total path length Tn of random PORTs is
of order O(n log n); see Smythe and Mahmoud [28]. Now notice that we have the following connection
between Tn and the subtree size profile

Tn =
n−1∑
k=0

kXn,k.

Consequently, if all pattern sizes exist up to index k0, then

Θ(k2
0) =

k0∑
k=0

k ≤
n−1∑
k=0

kXn,k = Tn = O(n log n).

Thus, pattern sizes beyond
√
n log n are very unlikely.

Next, we are going to discuss the method of proof of the above theorem. Therefore, note that our result
is almost identical to the results for random binary search trees and recursive trees in [15] (only the variance
has a more complicated shape). The proof in the latter paper, however, rested on a precise expression
for all moments of Xn,k and such an expression is not available in the current situation. Consequently,
a new method of proof has to be devised. Our new approach will again work with moments, but in
difference to [15] we will use induction to derive the first order asymptotics of all moments (such an
approach was nicknamed “moment-pumping” in several recent papers; see Chern, Fuchs, and Hwang [6]
and references therein). Moreover, we will directly work with central moments. This will incorporate
the tedious cancelations from [15] in the induction step, making the resulting proof much easier. Another
advantage is that this approach will be applicable to other families of random trees as well, thereby showing
that the above phenomena hold more generally for many families of random trees.

We will conclude the introduction by giving a more detailed sketch of our approach. In Section 2
we will consider the case of fixed k. As already mentioned before, this case is standard and a variety
of approaches could be used (e.g. bivariate generating functions combined with Hwang’s quasi-power
theorem or contraction method; see Flajolet and Sedgewick [20] for the former and [7] for the latter).
The approach we choose will work with moments and use complex-analytic tools. To give some more
details, our starting point is the easy observation that the number of subtrees of size k in a random PORT is
obtained as the sum of the numbers of subtrees of size k in all subtrees of the root which again are random
PORTs. This yields the following distributional recurrence

Xn,k
d
=

N∑
i=1

X
(i)
Ii,k

(n > k) (1)
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with initial conditionsXk,k = 1, Xn,k = 0 for n < k andX(i)
n,k

d
= Xn,k. Moreover,Xn,k, X

(i)
n,k, (N, I1, I2, . . .)

are independent random variables, where N is the out-degree of the root and I1, . . . , IN are the sizes of the
subtrees of the root. Due to the uniform probability model, we have

πn,r,i1,...,ir := P (N = r, I1 = i1, . . . , Ir = ir) =

(
n− 1

i1, . . . , ir

)
τi1 · · · τir

τn
,

where i1, . . . , ir ≥ 1 and i1 + · · · + ir = n − 1. Next, we consider the following (scaled) exponential
generating function of the m-th moment

A
[m]
k (z) =

∑
n≥1

τnE(Xm
n,k)

zn

n!
.

Straightforward computation then reveals that all these generating functions satisfy the following type of
differential equation

A′(z) =
A(z)

1− 2z
+B(z), A(0) = 0,

where B(z) is a function of generating functions of moments of smaller order. Generating functions of
centered moments also satisfy the same differential equation. This differential equation is easily solved

A(z) =
1√

1− 2z

∫ z

0

B(t)
√

1− 2tdt. (2)

Thus, we have a recursive scheme. From this, the above result for fixed k is obtained as follows: we first
derive an exact expression for the mean value and an asymptotic expansion for the variance. We then shift-
the-mean and use induction to deduce the first order asymptotics of all higher centered moments. Here,
we will use singularity analysis with its closure properties (see Chapter VI in [20]). Finally, our result
will follow from the Fréchet-Shohat Theorem (see Lemma 1.43 in [14]). A similar strategy was used in a
recent paper of Fill and Kapur [18] for studying additive functionals in Catalan trees.

The above approach using generating functions and singularity analysis has the drawback that the
dependency of the error terms on k is not clear. Hence, in Chapter 3, we will devise another approach for
the more complicated case of variable k. Here, we will not work with generating functions, but directly
with the underlying sequences. Even though one could read off a recurrence relation for the m-th moment
from the above differential equation, it is easier to use a slightly different starting point. Therefore, observe
that a random PORT can be decomposed into two random PORTs, one being the leftist subtree of the root
and the other the remaining tree. This yields the following distributional recurrence for Xn,k

Xn,k
d
= XIn,k +X∗n−In,k − 1{n−In=k} (n > k) (3)

with initial conditions Xk,k = 1, Xn,k = 0 for n < k and X∗n,k
d
= Xn,k. Here, In is the size of the leftist

subtree. From our random model, it is easy to see that

πn,j := P (In = j) =
2(n− j)CjCn−j

nCn
, (1 ≤ j < n).

Now, by taking expectations, one observes that all (centered or non-centered) moments satisfy a recurrence
of the form

an,k = 2
∑

1≤j<n

CjCn−j
Cn

aj,k + bn,k (n > k) (4)
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with ak,k given and bn,k a function of moments of smaller order. This recurrence is easily solved

an,k =
∑

k+1≤j≤n

Cj(n+ 1− j)
Cn

bj,k +
Ck(n+ 1− k)Cn+1−k

Cn
ak,k (n > k). (5)

Thus one again has a recursive scheme. Now, one can apply the approach from [22] which works as
follows: first we re-derive the mean. Then, we shift-the-mean and use induction to derive a uniform bound
for all centered moments. Next, we use this uniform bound and another induction to derive the first order
asymptotics of all centered moments in the normal range of Theorem 1. For the Poisson range, a similar
approach is used, the only difference being that we will work with factorial moments. The final step is
then again the Fréchet-Shohat Theorem. The same approach was already applied in [3] for random binary
search trees, but in the current situation the technicalities are much more demanding.

Our two approaches above are of some generality and can be applied to other families of random trees
as well. In particular, our approaches work for certain classes of simple families of increasing trees. We
will recall the definition of these tree families in the final section and shortly outline how to deduce similar
results for those families, too.

2 Constant Subtree Size - An Analytic Approach
Here, we will prove Theorem 1 for constant k. Therefore, we will follow the approach sketched in the
introduction. First consider the double generating function

Pk(z, y) =
∑
n≥1

τnE(exp(Xn,ky))
zn

n!
.

Then, (1) translates into the following differential equation.

∂

∂z
Pk(z, y) =

1

1− Pk(z, y)
+ (ey − 1)21−kkCkz

k−1

with the initial condition Pk(0, y) = 0.
Next, we recall that A[m]

k (z) is the m-th derivative of Pk(z, y) with respect to y at y = 0. Taking
derivatives in the above differential equation yields

d

dz
A

[m]
k (z) =

A
[m]
k (z)

1− 2z
+B

[m]
k (z), (6)

where B[m]
k (z) is a suitable function and A[m]

k (0) = 0 (note that this verifies the claim from the introduc-
tion). We list two instances for B[m]

k (z) which will be needed below

B
[1]
k (z) = 21−kkCkz

k−1, B
[2]
k (z) =

2A
[1]
k (z)2

(1− 2z)3/2
+ 21−kkCkz

k−1. (7)

More generally, B[m]
k (z) is a function of A[i]

k (z) with i < m.
As already mentioned in the introduction, we will use singularity analysis to obtain asymptotic expan-

sions of moments. First, we need a definition. For some R > 1 and 0 < φ < π/2 set

∆(R, φ) = {z : |z| < R, z 6= 1/2, | arg(z − 1/2)| > φ}

which will be a called a ∆-domain. Moreover, we say that a function f(z) is defined (or analytic, etc.) on
a ∆-domain if f(z) is analytic on ∆(R, φ) for some R and φ.

Now, we can start by deriving the mean value and the variance of Xn,k.
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Proposition 2. For n > k,

E (Xn,k) =
2n− 1

4k2 − 1

and, as n→∞,

Var (Xn,k) =

(
8k2 − 4k − 8

(4k2 − 1)2 −
(2k − 3)!!2

(k − 1)!24k−1k(2k + 1)

)
n− 4k2 − 2k − 2

(4k2 − 1)2

+
(2k − 3)!!2

(k − 1)!24k−1k(2k + 1)
+O

(
n−5/2

)
.

Proof. We start with the mean value. Therefore, observe that by substituting (7) into the solution (2) of the
differential equation (6), we obtain

A
[1]
k (z) =

21−kkCk√
1− 2z

∫ z

0

tk−1
√

1− 2tdt.

Consequently,

E(Xn,k) =
n!21−kkCk

τn
[zn]

1√
1− 2z

∫ z

0

tk−1
√

1− 2tdt.

Next,

1√
1− 2z

∫ z

0

tk−1
√

1− 2tdt

=
1√

1− 2z

∫ 1/2

0

tk−1
√

1− 2tdt+
1√

1− 2z

∫ z

1/2

tk−1
√

1− 2tdt

=
2−kB(k, 3/2)√

1− 2z
+

21−k
√

1− 2z

∫ z

1/2

k−1∑
l=0

(
k − 1

l

)
(−1)l(1− 2t)l+1/2dt

=
(k − 1)!

(2k + 1)!!
· 1√

1− 2z
+ 21−k

k−1∑
l=0

(
k − 1

l

)
(−1)l+1

2l + 3
(1− 2z)l+1, (8)

where B(x, y) denotes the beta function. Substituting this into the above expression yields for n > k

E(Xn,k) =
n!21−kk!Ck
τn(2k + 1)!!

[zn]
1√

1− 2z
=

2n− 1

4k2 − 1
,

where the last line follows by straightforward simplifications. Hence, the first claim of the result is proved.
In order to prove the second claim, again by (7) and (2),

A
[2]
k (z) =

2√
1− 2z

∫ z

0

A
[1]
k (t)2

1− 2t
dt+

21−kkCk√
1− 2z

∫ z

0

tk−1
√

1− 2tdt

=
23−2kk2C2

k√
1− 2z

∫ z

0

1

(1− 2t)2

(∫ t

0

uk−1
√

1− 2udu

)2

dt+
21−kkCk√

1− 2z

∫ z

0

tk−1
√

1− 2tdt. (9)

The second term is the same as above. Thus, we only have to concentrate on the first term. Note that
according to the computation above,

1

(1− 2t)2

(∫ t

0

uk−1
√

1− 2udu

)2

=
(k − 1)!2

(2k + 1)!!2
· 1

(1− 2t)2
+O

(
1√

1− 2t

)
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as t→ 1/2 in a suitable ∆-domain. Consequently, by Theorem VI.9 in [20],

1√
1− 2z

∫ z

0

1

(1− 2t)2

(∫ t

0

uk−1
√

1− 2udu

)2

dt

=
(k − 1)!2

2(2k + 1)!!2
· 1

(1− 2z)3/2
+

c√
1− 2z

+O
(√

1− 2z
)

as z → 1/2 in a suitable ∆-domain. Here,

c = − (k − 1)!2

2(2k + 1)!!2
+

∫ 1/2

0

(
1

(1− 2t)2

(∫ t

0

uk−1
√

1− 2udu

)2

− (k − 1)!2

(2k + 1)!!2
1

(1− 2t)2

)
dt.

Before simplifying this constant, we substitute what we have so far into (9) and use the transfer theo-
rems from Chapter VI in [20]. This yields

E(X2
n,k) =

n!22−2kk!2C2
k

τn(2k + 1)!!2
[zn]

1

(1− 2z)3/2
+
cn!23−2kk2C2

k

τn
[zn]

1√
1− 2z

+
2n− 1

4k2 − 1
+O

(
n!

τn
2nn−3/2

)
as n→∞. Now, recall the well-known asymptotics for the n-th Catalan number

Cn ∼ π−1/2n−3/24n−1, (n→∞). (10)

Consequently, the error term above is O(1). Further simplifying the other terms yields

E(X2
n,k) =

4n2

(4k2 − 1)2
+

(
4c(2k − 3)!!2

(k − 1)!2
+

2

4k2 − 1

)
n+O(1)

as n→∞ and thus

Var(Xn,k) =

(
4c(2k − 3)!!2

(k − 1)!2
+

2

4k2 − 1
− 4

(4k2 − 1)2

)
n+O (1)

as n→∞.
So, what is left is to find a simple expression for c. Therefore, we substitute (8) into the integral in the

above expression for c. This together with some computation yields

c = − (k − 1)!2

2(2k + 1)!!2
+

22−k(k − 1)!

(2k + 1)!!

k−1∑
l=0

(
k − 1

l

)
(−1)l+1

(2l + 1)(2l + 3)

+ 21−2k

k−1∑
l=0

k−1∑
i=0

(
k − 1

l

)(
k − 1

i

)
(−1)l+i

(2l + 3)(2i+ 3)(l + i+ 2)
.

Now, either by standard simplifications or using Maple,
k−1∑
l=0

(
k − 1

l

)
(−1)l+1

(2l + 1)(2l + 3)
= − 2k−1k!

(2k + 1)!!

k−1∑
l=0

k−1∑
i=0

(
k − 1

l

)(
k − 1

i

)
(−1)l+i

(2l + 3)(2i+ 3)(l + i+ 2)
= − 2

k(2k + 1)
+

22k−1k!(k − 1)!

(2k + 1)!!2
.

Substituting this into the expression above and substituting the expression for c in turn into the above
expression for the variance together with straightforward computations yields the claimed result.

Note that our method above just yields the main term in the asymptotic expansion of the variance.
However, it is straightforward to extend our approach to obtain arbitrary long expansions of the variance,
too.

7



Remark 1. Note that Theorem 1, part (iii) immediately follows from the above explicit expression for the
mean value.

Next, we are going to generalize the previous method to obtain an asymptotic expansion of all higher
centered moments. Therefore, we first have to shift-the-mean. Thus, set X̄n,k = Xn,k − µn, where
µ = 2/(4k2 − 1). Moreover, set

P̄k(z, y) =
∑
n≥1

τnE
(
exp(X̄n,ky)

) zn
n!

= Pk
(
y, ze−µy

)
.

Then, our original differential equation can be replaced by the following one

∂

∂z
P̄k(z, y) =

e−µy

1− P̄k(z, y)
+ (ey − 1)e−kµy21−kkCkz

k−1

with the initial condition P̄k(0, y) = 0.
Now, denote by Ā[m]

k (z) the m-th derivative of P̄k(z, y) with respect to y at y = 0. These functions
again satisfy our fundamental differential equation

d

dz
Ā

[m]
k (z) =

Ā
[m]
k (z)

1− 2z
+ B̄

[m]
k (z)

with initial condition Ā[m]
k (0) = 0 and

B̄
[m]
k (z) = ((−kµ+ 1)m − (−kµ)m) 21−kkCkz

k−1 +
m−1∑
i=0

(
m

i

)
(−µ)m−i

∂i

∂yi
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

+
∑

i1+i2+i3=m−1
i1<m−1

(
m− 1

i1, i2, i3

)
Ā

[i1+1]
k (z)

∂i2

∂yi2
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

∂i3

∂yi3
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

. (11)

Our next aim is to prove the following result.

Proposition 3. Ā[m]
k (z) is analytic in a ∆-domain for all m ≥ 1. Moreover, we have the singularity

expansions
Ā

[2m−1]
k (z) = O

(
(1− 2z)3/2−m) (z → 1/2, z ∈ ∆)

and

Ā
[2m]
k (z) =

(2m)!(2m− 3)!!σ2m

4mm!
(1− 2z)1/2−m +O

(
(1− 2z)1−m) (z → 1/2, z ∈ ∆)

where

σ2 =
8k2 − 4k − 8

(4k2 − 1)2 −
(2k − 3)!!2

(k − 1)!24k−1k(2k + 1)
.

Proof. We will use induction, where apart from the above claim, we will also prove the following one

∂2m−1

∂y2m−1

1

1− P̄k(z, y)

∣∣∣∣∣
y=0

= O
(
(1− 2z)1/2−m)
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as z → 1/2 and z ∈ ∆, and

∂2m

∂y2m

1

1− P̄k(z, y)

∣∣∣∣∣
y=0

=
(2m)!(2m− 1)!!σ2m

4mm!
(1− 2z)−1/2−m +O

(
(1− 2z)−m

)
(12)

as z → 1/2 and z ∈ ∆.
Now, the claims are easily verified for m = 1. Thus, we may assume that the claims hold for all

m′ < m. We want to prove them for m. We will only concentrate on the even case, the odd case being
similar.

First, we will investigate the terms in (11). Therefore, observe that by the induction hypothesis

2m−1∑
i=0

(
2m

i

)
(−µ)2m−i ∂

i

∂yi
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

= O
(
(1− 2z)1/2−m)

as z → 1/2 and z ∈ ∆. Next, we consider the last term in (11). Here, again from the induction hypothesis

∑
i1+i2+i3=2m−1

i1<2m−1

(
2m− 1

i1, i2, i3

)
Ā

[i1+1]
k (z)

∂i2

∂yi2
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

∂i3

∂yi3
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

=
∑

i1+i2+i3=2m−1
i1 odd;i1<2m−1;i2,i3 even

(
2m− 1

i1, i2, i3

)
Ā

[i1+1]
k (z)

∂i2

∂yi2
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

∂i3

∂yi3
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

+O
(
(1− 2z)−m

)
=
c(2m− 1)!σ2m

4m
(1− 2z)−1/2−m +O

(
(1− 2z)−m

)
.

as z → 1/2 and z ∈ ∆, where

c =
∑

i1+i2+i3=2m−1
i1 odd;i1<2m−1;i2,i3 even

(i1 + 1)
(i1 − 2)!!

((i1 + 1)/2)!

(i2 − 1)!!

(i2/2)!

(i3 − 1)!!

(i3/2)!

= 22−m
∑

i1+i2+i3=2m−1
i1 odd;i1<2m−1;i2,i3 even

(
i1 − 1

(i1 − 1)/2

)(
i2
i2/2

)(
i3
i3/2

)

= 22−m
m−2∑
i=0

(
2i

i

)m−i−1∑
j=0

(
2j

j

)(
2m− 2i− 2− 2j

m− i− 1− j

)
= 23−m(m− 1)

(
2m− 2

m− 1

)
.

By substituting this into the expression above and collecting all terms, we obtain for (11)

B̄
[2m]
k (z) =

(m− 1)(2m)!(2m− 3)!!σ2m

22m−1m!
(1− 2z)−1/2−m +O

(
(1− 2z)−m

)
as z → 1/2 and z ∈ ∆. Using (2), we have

Ā
[2m]
k (z) =

1√
1− 2z

∫ z

0

B̄
[2m]
k (t)

√
1− 2tdt

and the claim follows from Theorem VI.9 in [20].

9



What is left is to show (12). Here, observe that

∂2m

∂y2m

1

1− P̄k(z, y)

∣∣∣∣∣
y=0

=
Ā

[2m]
k (z)

1− 2z

+
∑

i1+i2+i3=2m−1
i1<2m−1

(
2m− 1

i1, i2, i3

)
Ā

[i1+1]
k (z)

∂i2

∂yi2
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

∂i3

∂yi3
1

1− P̄k(z, y)

∣∣∣∣∣
y=0

.

Hence, the claim follows from the expansion for Ā[2m]
k (z) and the computations above. This concludes the

proof of the result.
Now, we can conclude the proof of Theorem 1 for fixed k.

Proof of Theorem 1, (i) for fixed k. Applying the transform theorems of Chapter VI in [20] yields

E (Xn,k − µn)2m−1 = O
(
n!

τn
2nnm−5/2

)
as n→∞, and

E (Xn,k − µn)2m =
n!(2m)!(2m− 3)!!σ2m

τn4mm!
[zn](1− 2z)1/2−m +O

(
n!

τn
2nnm−2

)
as n→∞. Using (10) and standard computations in turn gives

E (Xn,k − µn)2m−1 = O
(
nm−1

)
and

E (Xn,k − µn)2m = gmσ
2mnm +O

(
nm−1/2

)
,

where gm = (2m)!/(2mm!). The claimed result follows from this by the Fréchet-Shohat Theorem.

Remark 2. It might be possible that with the approach just presented the case of variable k can be treated
as well. However, in order to do so, one needs error terms which are uniform in both n and k. Such error
terms seem to be easier to derive when one considers recurrences instead of generating function and avoids
using complex analysis. This we are going to do next.

3 Variable Subtree Size - An Elementary Approach
In this section, we will concentrate on the remaining cases of Theorem 1, namely, all cases where k = k(n)
and k →∞ as n→∞. As already mentioned, we will propose a different approach which will work with
sequences and is elementary in the sense that complex analysis is avoided.

We will follow the approach outlined in the introduction. Therefore, set Pn,k(z) = E(exp(Xn,kz)).
Then, we obtain

Pn,k(z) =
∑

1≤j<n

πn,jPj,k(z)Pn−j,k(z), (n > k),

where Pn,k(z) = 1 for n < k and Pk,k(z) = ez. By taking derivatives and evaluating at z = 0, we observe
that all moments satisfy the recurrence

an,k =
∑

1≤j<n

πn,j(aj,k + an−j,k) + bn,k, (n > k), (13)

10



where bn,k is a given sequence that involves moments of lower order. Here, an,k = 0 for n < k, ak,k is
given and bn,k = 0 for n ≤ k. Note that the above recurrence can be rewritten to (4).

Now, in order to prove (5), we set A(z) =
∑∞

n=1 Cnan,kz
n and B(z) =

∑∞
n=1Cnbn,kz

n. Then, (4)
becomes

A(z)− Ckak,kzk = 2A(z)
∞∑
n=1

Cnz
n +B(z) =

(
1−
√

1− 4z
)
A(z) +B(z).

Solving for A(z) yields

A(z) =
1√

1− 4z

(
B(z) + Ckak,kz

k
)
.

Reading off coefficients immediately gives (5).
We first demonstrate how to re-derive the expression for the mean value of the previous section from

(5). Therefore, observe that for the mean we have (13) with

bn,k = −P(In = n− k) = −2kCkCn−k
nCn

.

By substituting this into (5) (with ak,k = 1), we obtain

EXn,k = −2kCk
Cn

n∑
j=k+1

Cj−k(n+ 1− j)Cn+1−j

j
+
Ck(n+ 1− k)Cn+1−k

Cn

= −2kCk
Cn

[zn−k+1]
∞∑
i=1

iCiz
i

∞∑
j=1

Cj
j + k

zj +
Ck(n+ 1− k)Cn+1−k

Cn

= −kCk
Cn

[zn]
1√

1− 4z

∫ z

0

tk−1
(
1−
√

1− 4t
)

dt+
Ck(n+ 1− k)Cn+1−k

Cn

=
kCk
Cn

[zn]
1√

1− 4z

∫ z

0

tk−1
√

1− 4tdt

=
2nkCk
2kCn

[un]
1√

1− 2u

∫ z

0

tk−1
√

1− 2tdt.

The remaining derivation is as in the previous section.
Next, we will look at the variance. In difference to the previous section, we will already now shift-the-

mean. Therefore, set

µn,k =


0, if n < k,

1, if n = k;

2n/(4k2 − 1), if n > k;

Moreover, set X̄n,k = Xn,k − µn,k, and P̄n,k(z) = EeX̄n,kz. Then, (3) becomes

P̄n,k(z) =
∑

1≤j<n

πn,jP̄j,k(z)P̄n−j,k(z)e∆n,j,kz, (n > k),

where P̄n,k(z) = 1 for n ≤ k and

∆n,j,k = µj,k + µn−j,k − µn,k − 1{j=n−k}.

11



Put Ā[m]
n,k = E(Xn,k−µn,k)m = P̄

(m)
n,k (0). By takingm-th derivatives and evaluating at z = 0, we obtain

again a recurrence of type (13)

Ā
[m]
n,k =

∑
1≤j<n

πn,j

(
Ā

[m]
j,k + Ā

[m]
n−j,k

)
+ B̄

[m]
n,k , (n > k), (14)

where Ā[m]
n,k = 0 for n ≤ k and

B̄
[m]
n,k =

∑
i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

) ∑
1≤j<n

πn,jĀ
[i1]
j,k Ā

[i2]
n−j,k∆

i3
n,j,k. (15)

Now, we first derive a uniform bound for the variance. Therefore, we will use the above recurrence
together with (5).

Lemma 4. For k, n ≥ 1,
Var(Xn,k) = O

( n
k2

)
.

Proof. Setting m = 2 in (14), we get our usual recurrence with

B̄
[2]
n,k =

∑
1≤j<n

πn,j∆
2
n,j,k.

An easy observation shows that

B̄
[2]
n,k = O

(
1

k2
+ πn,k

)
= O

(
1

k2
+

(n− k)CkCn−k
nCn

)
.

We substitute now the latter into (5) and treat the resulting two sums differently. First, for the first sum,

1

k2

∑
k+1≤j≤n

Cj(n+ 1− j)Cn+1−j

Cn
= O

(
n3/2

k2

∑
k+1≤j≤n

j−3/2(n+ 1− j)−1/2

)

= O
(√

n

k2

∫ 1

k/n

x−3/2(1− x)−1/2dx

)
= O

( n

k5/2

)
,

where we have used (10). Using the same arguments as in our above derivation of the mean value, we can
evaluate the second sum

Ck
Cn

∑
k+1≤j≤n

(j − k)Cj−k(n+ 1− j)Cn+1−j

j

=
Ck
Cn

∑
1≤j≤n−k

Cj(n− k + 1− j)Cn−k+1−j −
kCk
Cn

∑
k+1≤j≤n

Cj−k(n+ 1− j)Cn+1−j

j

=
Ck(n− k + 1)Cn−k+1

2Cn
− kCk

Cn

∑
k+1≤j≤n

Cj−k(n+ 1− j)Cn+1−j

j

=
2n− 1

2(2k + 1)(2k − 1)
.

Overall, the claimed bound follows.
Next, we refine the above result for varying k.
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Proposition 5. Let k = k(n) such that k →∞ as n→∞. Then, as n→∞,

Var(Xn,k) ∼
n

2k2
.

Proof. Observe that in the proof of the last lemma, we more precisely have

B̄
[2]
n,k = πn,k∆

2
n,k,k +O

(
1/k2

)
.

Moreover, we found that the contribution of the O-term is negligible compared with the claimed order of
the variance. Hence, we just have to concentrate on the first term.

First, direct computation shows that ∆2
n,k,k ∼ 1 as n→∞. Consequently,∑

k+1≤j≤n

Cj(n+ 1− j)Cn+1−j

Cn
πj,k∆

2
j,k,k ∼

2Ck
Cn

∑
k+1≤j≤n

(j − k)Cj−k(n+ 1− j)Cn+1−j

j

∼ n

2k2
,

where the last line follows as in the proof of the previous lemma. Hence, we get the claimed result.
Next, we use induction to extend the uniform bound for the variance to all higher centered moments.

From a technical point of view, this is the most demanding part of the proof.

Lemma 6. For k, n ≥ 1 and m ≥ 2,

Ā
[m]
n,k = O

(
max

{
n

k2
,
( n
k2

)m/2})
.

Proof. First note that Lemma 4 implies the validity of the assertion for m = 2. Next, assume that the
assertion holds for all m′ < m. We are going to show that it holds for m as well.

Therefore, we first bound (15). In order to do so, we start by considering the range where n > 2k2 and
break the double sum into three parts

B̄
[m]
n,k =

∑
i1,i2,i3

∑
j≤k2

+
∑
i1,i2,i3

∑
k2<j<n−k2

+
∑
i1,i2,i3

∑
n−k2≤j

=: Σ1 + Σ2 + Σ3.

We will treat each sum separately. We start with the second sum

Σ2 =
∑

i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

) ∑
k2<j<n−k2

πn,jĀ
[i1]
j,k Ā

[i2]
n−j,k∆

i3
n,j,k

=
m−1∑
i=1

(
m

i

) ∑
k2<j<n−k2

πn,jĀ
[i]
j,kĀ

[m−i]
n−j,k

= m
∑

k2<j<n−k2

πn,jĀ
[1]
j,kĀ

[m−1]
n−j,k +

m−1∑
i=2

(
m

i

) ∑
k2<j<n−k2

πn,jĀ
[i]
j,kĀ

[m−i]
n−j,k =: Σ2,1 + Σ2,2.

The above two parts can be bounded as follows

Σ2,1 = O

(
1

k2

∑
k≤j<n

πn,j

(
n− j
k2

)(m−1)/2
)

= O

(( n
k2

)(m−1)/2 1

k2

∑
k≤j<n

j−3/2

(
1− j

n

)(m−2)/2
)

= O
(( n

k2

)(m−1)/2 1

k5/2

)
= O

(( n
k2

)m/2 1√
nk3/2

)
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and

Σ2,2 = O

(
m−1∑
i=2

(
m

i

) ∑
1≤j<n

πn,j

(
j

k2

)i/2(
n− j
k2

)(m−i)/2
)

= O

(( n
k2

)m/2 1√
n

m−1∑
i=2

(
m

i

)
1

n

∑
1≤j<n

(
j

n

)(i−3)/2(
1− j

n

)(m−i−1)/2
)

= O
(( n

k2

)m/2 1√
n

)
,

where we used (10) and the induction hypothesis.
Next, we estimate the third sum

Σ3 =
∑

i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

) ∑
n−k2≤j<n

πn,jĀ
[i1]
j,k Ā

[i2]
n−j,k∆

i3
n,j,k

=
∑

i1+i2+i3=m
0≤i1,i2<m,i1≥2

∑
n−k2≤j<n

+
∑

i2+i3=m−1

∑
n−k2≤j<n

+
∑

i2+i3=m
0≤i2<m

∑
n−k2≤j<n

=: Σ3,1 + Σ3,2 + Σ3,3.

Again, we bound the last three parts separately. First, we treat the first part

Σ3,1 = O

 ∑
i1+i2+i3=m

0≤i1,i2<m,i1≥2

∑
n−k2≤j<n

πn,j

(
j

k2

)i1/2
= O

 1√
n

∑
i1+i2+i3=m

0≤i1,i2<m,i1≥2

( n
k2

)i1/2 1

n

∑
1≤j<n

(
j

n

)(i1−3)/2(
1− j

n

)−1/2


= O

 1√
n

∑
i1+i2+i3=m

0≤i1,i2<m,i1≥2

( n
k2

)i1/2
= O

(( n
k2

)m/2 k
n

)
.

Next, we bound the second sum

Σ3,2 = O

 1

k2

∑
i2+i3=m−1

∑
n−k2≤j<n

πn,j

 = O
(

1

k2

)
.

Finally, we bound the third sum

Σ3,3 = O

1

k

∑
i2+i3=m
0≤i2<m

∑
n−k2≤j<n

πn,j

 = O

1

k

∑
k2≤j<n

j−3/2

(
1− j

n

)−1/2


= O

1

k

 ∑
k2≤j<n/2

j−3/2 +
1√
n
· 1

n

∑
n/2≤j<n

(
j

n

)−3/2(
1− j

n

)−1/2
 = O

(
1

k2

)
.
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What is still left is to estimate Σ1. Again, we break the sum into three parts

Σ1 =
∑

i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

)∑
j≤k2

πn,jĀ
[i1]
j,k Ā

[i2]
n−j,k∆

i3
n,j,k

=
∑

i1+i2+i3=m
0≤i1,i2<m,i1≥2

∑
j≤k2

+
∑

i2+i3=m−1

∑
j≤k2

+
∑

i2+i3=m
0≤i2<m

∑
j≤k2

=: Σ1,1 + Σ1,2 + Σ1,3

and bound all three parts individually. For the first sum, we have

Σ1,1 = O

 1

k2

∑
i1+i2+i3=m

0≤i1,i2<m,i1≥2

∑
j≤k2

πn,jj

(
n− j
k2

)i2/2
= O

 1

k2

∑
i1+i2+i3=m

0≤i1,i2<m,i1≥2

( n
k2

)i2/2 ∑
j≤k2

j−1/2

(
1− j

n

)(i2−1)/2


= O

(( n
k2

)(m−2)/2 1

k

)
= O

(( n
k2

)m/2 k
n

)
.

Next, we obtain the following bound for the second sum

Σ1,2 = O

 1

k2

∑
i2+i3=m−1

∑
j≤k2

πn,j

(
n− j
k2

)i2/2
= O

 1

k2

∑
i2+i3=m−1

( n
k2

)i2/2 ∑
j≤k2

j−3/2

(
1− j

n

)(i2−1)/2


= O
(( n

k2

)(m−1)/2 1

k2

)
= O

(( n
k2

)m/2 1√
nk

)
.

For the final bound, we have to work slightly harder

Σ1,3 = O

 ∑
i2+i3=m
0≤i2<m

∑
j≤k2

πn,j

(
n− j
k2

)i2/2
∆i3
n,j,k


= O

 1

k2

∑
i2+i3=m
0≤i2<m

∑
j<k

πn,jj

(
n− j
k2

)i2/2
+ πn,k

∑
i2+i3=m
0≤i2<m

(
n− k
k2

)i2/2
= O

 1

k2

∑
i2+i3=m
0≤i2<m

( n
k2

)i2/2∑
j<k

j−1/2

(
1− j

n

)(i2−1)/2

+ k−3/2
( n
k2

)(m−1)/2
(

1− k

n

)−1/2


= O

(( n
k2

)(m−1)/2 1

k3/2

)
= O

(( n
k2

)m/2 1√
nk

)
.
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So, overall we have proved the following estimate for B̄[m]
n,k

B̄
[m]
n,k = O

(( n
k2

)m/2 1√
n

)
(16)

for n > 2k2. Here, we should note that actually slightly more than the above bound was proved. The
reason for working harder than it is in fact necessary at this stage will become apparent later on.

Next, we have to find a suitable bound for the remaining range n ≤ 2k2. Therefore, we first observe

B̄
[m]
n,k =

∑
i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

) ∑
1≤j<n,j 6=k

πn,jĀ
[i1]
j,k Ā

[i2]
n−j,k∆

i3
n,j,k +O (πn,k) .

Then, we break the first sum into four parts∑
i1+i2+i3=m
0≤i1,i2<m

=
∑

i1+i2=m
0≤i1,i2<m

+
∑

i1+i2+i3=m
0≤i1,i2<m,i1,i3≥1

+
∑

i2+i3=m
1≤i2<m

+
∑
i3=m

= Σ1 + Σ2 + Σ3 + Σ4.

We will carefully estimate every part. We start with the first one

Σ1 = O

(
m−1∑
i=1

∑
1≤j<n,j 6=k

πn,j

(
j

k2

)(
n− j
k2

))

= O

(( n
k2

)2 1√
n

m−1∑
i=1

1

n

∑
1≤j<n

(
j

n

)−1/2(
1− j

n

)1/2
)

= O
(( n

k2

)2 1√
n

)
.

Next, we treat the second part

Σ2 = O

 ∑
i1+i2+i3=m

0≤i1,i2<m,i1,i3≥1

∑
1≤j<n,j 6=k

πn,j

(
j

k2

)
1

ki3


= O

 n

k2

1√
nk

∑
i1+i2+i3=m

0≤i1,i2<m,i1,i3≥1

1

n

∑
1≤j<n

(
j

n

)−1/2(
1− j

n

)−1/2

 = O
(
n

k3

1√
n

)
.

For the third part, we have

Σ3 = O

(
m−1∑
i=1

∑
1≤j<n,j 6=k

πn,j

(
n− j
k2

)
1

km−i

)

= O

(
n

k2

1

k

m−1∑
i=1

∑
1≤j<n

j−3/2

(
1− j

n

)1/2
)

= O
( n
k3

)
.

Finally, the fourth part we bound crudely by

Σ4 = O

( ∑
1≤j<n,j 6=k

πn,j
1

km

)
= O

(
1

km

)
.
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Overall, we obtain the following bound

B̄
[m]
n,k = O

( n
k3

+ πn,k

)
(17)

for n ≤ 2k2.
Now, we substitute what we have proved so far into the solution (5) of (14). Therefore, we will break

the solution into two parts

Ā
[m]
n,k =

∑
k+1≤j≤n

Cj(n+ 1− j)Cn+1−j

Cn
B̄

(m)
j,k =

∑
k+1≤j≤2k2

+
∑

2k2<j≤n

= Σ1 + Σ2.

In order to bound the second sum, we use (16) and obtain

Σ2 = O

 ∑
2k2<j≤n

Cj(n+ 1− j)Cn+1−j

Cn

(
j

k2

)m/2
1√
j


= O

(( n
k2

)m/2 1

n

∑
1≤j≤n

(
j

n

)(m−4)/2(
1− j − 1

n

)−1/2
)

= O
(( n

k2

)m/2)
.

For the first part, we use (17). Consequently,

Σ1 = O

 ∑
k+1≤j≤2k2

Cj(n+ 1− j)Cn+1−j

Cn

j

k3

+O

 ∑
k+1≤j≤2k2

Cj(n+ 1− j)Cn+1−j

Cn
πn,k


= Σ1,1 + Σ1,2.

The second sum was already estimated in the proof of Lemma 4 where we obtained the bound O(n/k2).
For the first sum, we break our considerations into two cases. First, assume that n > 3k2. Then,

Σ1,1 = O

 n

k3

∑
k+1≤j≤2k2

j−1/2

(
1− j − 1

n

)−1/2
 = O

( n
k2

)
.

Next, we assume that n ≤ 3k2. Then,

Σ1,1 = O

(
n3/2

k3

1

n

∑
1≤j≤n

(
j

n

)−1/2(
1− j − 1

n

)−1/2
)

= O
( n
k2

)
.

Collecting the above estimates, we obtain

Ā
[m]
n,k = O

( n
k2

)
+O

(( n
k2

)m/2)
which concludes the induction proof.

The next step is to refine the previous bound in the normal range of Theorem 1.

Proposition 7. Let k = k(n) such that k = o(
√
n) and k →∞ as n→∞. Then, as n→∞,

Ā
[2m−1]
n,k = o

(( n
k2

)m−1/2
)

;

Ā
[2m]
n,k ∼ gm

( n

2k2

)m
,

for m ≥ 1, where gm = (2m)!/(2mm!).
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Proof. We will once more use induction on m. Due to Proposition 5, the assertion holds for m = 1. Now,
assume that the assertion holds for all m′ < m. We will prove that it holds for m as well.

First, we concentrate on B̄[l]
n,k. Note that we can assume that n > 2k2. We break B̄[l]

n,k into the following
three parts

B̄
[l]
n,k =

∑
i1,i2,i3

∑
j<εn

+
∑
i1,i2,i3

∑
εn<j<(1−ε)n

+
∑
i1,i2,i3

∑
(1−ε)n<j

=: Σ1 + Σ2 + Σ3,

where ε > 0 is a fixed constant.
First, we consider the case where l is odd, i.e., l = 2m − 1. We use Lemma 6 to bound Σ1 and Σ2,

where it is actually enough to use the bounds we have already deduced in the proof of the lemma. This
yields

Σ1 = o

(( n
k2

)m−1/2 1√
n

)
+O

(( n
k2

)m−1/2 1√
n

2m−2∑
i=2

∫ ε

0

x(i−3)/2(1− x)m−1−i/2dx.

)
.

Now, we let ε→ 0 and obtain

Σ1 = o

(( n
k2

)m−1/2 1√
n

)
.

Similarly, we deduce the same bound for Σ3. As to Σ2, we first break it into two parts

Σ2 =
∑

i1+i2=2m−1
0≤i1,i2<2m−1,i1≥2

∑
εn<j<(1−ε)n

+ remaining terms,

where the remaining terms can be bounded as in the proof of Lemma 6 yielding

remaining terms = o

(( n
k2

)m−1/2 1√
n

)
.

For the other part, we use the induction hypothesis. Therefore, note that either i1 or i2 must be odd. Hence,

∑
i1+i2=2m−1

0≤i1,i2<2m−1,i2≥1

∑
εn<j<(1−ε)n

= o

2m−1∑
i=2

∑
εn<j<(1−ε)n

πn,j

( n
k2

)i/2(n− j
k2

)m−1/2−i/2


= o

(( n
k2

)m−1/2 1√
n

2m−1∑
i=2

1

n

∑
1≤j<n

(
j

n

)(i−3)/2(
1− j

n

)m−1−i/2
)

= o

(( n
k2

)m−1/2 1√
n

)
.

So, overall we have proved that

B̄
[2m−1]
n,k = o

(( n
k2

)m−1/2 1√
n

)
for k = o(

√
n) and k →∞ as n→∞.

Next, we consider the case where l is even, i.e., l = 2m. Here, Σ1 and Σ3 can be treated as above
and we obtain the bound o((n/k2)m1/

√
n). As to Σ2, we divide it as above and again obtain the previous

bound for the remaining parts. So, what is left is to consider∑
i1+i2=2m

0≤i1,i2<2m,i1≥2

∑
εn<j<(1−ε)n

.
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Note that either i1 and i2 are both odd or both even. The first case is treated as above and we obtain once
more the bound o((n/k2)m1/

√
n). For the second case, we have

∑
i1+i2=2m

0≤i1,i2<2m,i1 is even

∑
εn<j<(1−ε)n

∼
m−1∑
i=1

(
2m

2i

)
gigm−i

∑
εn<j<(1−ε)n

πn,j

(
j

2k2

)i(
n− j
2k2

)m−i

∼
( n

2k2

)m 1√
n

m−1∑
i=1

(
2m

2i

)
gigm−i

1

2
√
π

1

n

∑
εn<j<(1−ε)n

(
j

n

)i−3/2(
1− j

n

)m−i−1/2

∼
( n

2k2

)m 1√
n

m−1∑
i=1

(
2m

2i

)
gigm−i

1

2
√
π

∫ 1−ε

ε

xi−3/2(1− x)m−i−1/2dx,

where we used the induction hypothesis in the first step and (10) in the second step. Collecting all contri-
butions and letting ε→ 0 yields

B̄
[2m]
n,k ∼ ḡm

( n

2k2

)m 1√
n
.

for k = o(
√
n) and k →∞ as n→∞, where (Γ(x) denotes the Γ-function)

ḡm =
m−1∑
i=1

(
2m

2i

)
gigm−i

1

2
√
π

∫ 1

0

xi−3/2(1− x)m−i−1/2dx.

=
(2m)!

2m+1
√
π

m−1∑
i=1

1

i!(m− i)!
B(i− 1/2,m− i+ 1/2)

=
(2m)!

2m+1
√
π

m−1∑
i=1

1

i!(m− i)!
Γ(i− 1/2)Γ(m− i+ 1/2)

Γ(m)

=
(2m)!

2m+1(m− 1)!
√
π

m−1∑
i=1

1

i!(m− i)!
(2i− 2)!

(i− 1)!4i−1

√
π

(2m− 2i)!

(m− i)!4m−i
√
π

=
2
√
π(2m)!

8m(m− 1)!

m−1∑
i=1

1

i

(
2m− 2i

m− i

)(
2i− 2

i− 1

)
=

4
√
π(2m)!(2m− 2)!

8mm!(m− 1)!(m− 2)!
.

Next, we substitute what we have proved so far into the solution of (14) which is given by (5). We
break the solution into two parts

Ā
[l]
n,k =

∑
k+1≤j<εn

+
∑

εn≤j≤n

= Σ1 + Σ2,

where ε > 0 is a constant.
Again let us first consider the case where l is odd, i.e. l = 2m− 1. Then, Σ1 can be bounded as in the

proof of Lemma 6 and we obtain

Σ1 = O
(( n

k2

)m−1/2
∫ ε

0

xm−5/2(1− x)−1/2dx

)
.
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Upon letting ε→ 0, we obtain o((n/k2)m−1/2). For bounding Σ2, we use the induction hypothesis

Σ2 = o

( ∑
εn≤j≤n

Cj(n+ 1− j)Cn+1−j

Cn

(
j

k2

)m−1/2
1√
j

)

= o

(( n
k2

)m−1/2 1

n

∑
1≤j≤n

(
j

n

)m−5/2(
1− j − 1

n

)−1/2
)

= o

(( n
k2

)m−1/2
)
.

This proves the result in the case where l is odd.
Finally, we consider the case where l is even, i.e. l = 2m. Here, Σ1 can be treated as above and we

obtain o((n/k2)m). So, what is left is to deduce the asymptotics of Σ1. Therefore, observe that

Σ1 ∼ ḡm
∑

εn≤j≤n

Cj(n+ 1− j)Cn+1−j

Cn

(
j

2k2

)m
1√
j

∼
( n

2k2

)m
ḡm

1√
π

1

n

∑
εn≤j≤n

(
j

n

)m−2(
1− j − 1

n

)−1/2

∼
( n

2k2

)m
ḡm

1√
π

∫ 1

ε

xm−2(1− x)−1/2dx,

where we used the induction hypothesis in the first step and (10) in the second step. Letting ε → 0 and
some simplification yields

Σ1 ∼
( n

2k2

)m
ḡm

1√
π

∫ 1

0

xm−2(1− x)−1/2ddx

=
( n

2k2

)m 4(2m)!(2m− 2)!

8mm!(m− 1)!(m− 2)!
B(m− 1, 1/2)

=
( n

2k2

)m 4(2m)!(2m− 2)!

8mm!(m− 1)!(m− 2)!
· Γ(m− 1)Γ(1/2)

Γ(m− 1/2)

=
( n

2k2

)m 4(2m)!(2m− 2)!

8mm!(m− 1)!(m− 2)!
· 4m−1(m− 2)!(m− 1)!

(2m− 2)!

=
( n

2k2

)m (2m)!

2mm!
=
( n

2k2

)m
gm.

This concludes the induction proof and consequently also the proof of the proposition.
The last proposition together with the Fréchet-Shohat Theorem proves Theorem 1, part (i) for k →∞.
With a similar method of proof, the Poisson range can be handled as well. We just give a rough sketch

of the proof. The reader should have no problems in filling in the missing details.

Proof of Theorem 1, part (ii). In view of the claimed result, it is better to work here with factorial moments
instead of central moments. Therefore, set Qn,k(γ) = E

(
γXn,k

)
. Then, (3) translates into

Qn,k(γ) =
∑

1≤j<n

πn,jQj,k(γ)Qn−j,k(γ)γ−1{j=n−k} ,

=
∑

1≤j<n

πn,jQj,k(γ)Qn−j,k(γ)− (γ − 1)πn,n−kQn−k,k(γ), (n > k),
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where Qn,k(γ) = 1 for n < k and Qk,k(γ) = γ.
Next, we denote by Ā[m]

n,k the m-th derivative of Qn,k(γ) evaluated at γ = 1. Then, for m ≥ 2, the
above recurrence in turn yields

Ā
[m]
n,k =

∑
1≤j<n

πn,j

(
Ā

[m]
j,k + Ā

[m]
n−j,k

)
+ B̄

[m]
n,k ,

where Ā[m]
n,k = 0 for n ≤ k and

B̄
[m]
n,k =

m−1∑
i=1

(
m

i

) ∑
1≤j<n

πn,jĀ
[i]
j,kĀ

[m−i]
n−j,k −mπn,n−kĀ

(m−1)
n−k,k . (18)

As before, the next step is to obtain a uniform estimate. A careful analysis reveals that

Ā
[m]
n,k = O

(( n
k2

)m)
for all n, k ≥ 1 and m ≥ 2. Note that the bound here is more simpler than in the previous analysis. This
is due to the above simplified form of the “toll” sequence B̄[m]

n,k .
The latter estimate is then used to prove the following asymptotic expansion for k = k(n) and k ∼

c
√
n, as n→∞,

Ā
[m]
n,k ∼

1

(2c2)m
, for m ≥ 1.

Therefore, we proceed by induction. The case m = 1 follows from the explicit expression of the mean
value. Next, assume that the claim holds for all integers < m. Then, by substituting the induction assump-
tion into (18) and using the uniform estimate, we obtain, as n→∞,

B̄
[m]
n,k ∼

m−1∑
i=1

(
m

i

) ∑
εn<j<(1−ε)n

πn,jĀ
[i]
j,kĀ

[m−i]
j,k

∼ 1

(2c2)m
1√
n

m−1∑
i=1

(
m

i

)
1

2
√
π

1

n

∑
εn<j<(1−ε)n

(
j

n

)i−3/2(
1− j

n

)m−i−1/2

∼ 1

(2c2)m
1√
n

m−1∑
i=1

(
m

i

)
1

2
√
π

∫ 1−ε

ε

xi−3/2(1− x)m−i−1/2dx,

where ε > 0. Letting ε → 0 and using similar computations as in the proof of the last proposition, we
obtain, as n→∞,

B̄
[m]
n,k ∼

√
πm(2m− 2)!

4m−1(m− 2)!

1

(2c2)m
1√
n
.

Now, we substitute this into (5) and again use the uniform bound. This implies, as n→∞,

Ā
[m]
n,k ∼

∑
εn≤j≤n

Cj(n+ 1− j)Cn+1−j

Cn
B̄

[m]
j,k ∼

m(2m− 2)!

4m−1(m− 2)!

1

(2c2)m

∫ 1

ε

xm−2(1− x)−1/2dx,

where ε > 0. Letting ε → ∞ and some straightforward computations establishes the claimed results.
Hence, the induction proof is completed.
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4 Other Simple Families of Increasing Trees
Random binary search trees, random recursive trees and random PORTs are all special cases of simple
families of increasing trees. In this final section, we will briefly outline how our results can be extended to
other simple families of increasing trees. We will only focus on the (more complicated) case of varying k.

We will start by recalling the definition of simple families of increasing trees from [2]. First, an
increasing tree is a rooted, plane, node-labeled tree with labels along any path from the root to a leaf
forming an increasing sequence. A simple family of increasing trees is then defined as increasing trees
together with a sequence (φr)r≥0 of non-negative weights with φ0 > 0 and φr > 0 for some r ≥ 2. For a
given increasing tree T , we define its weight as

ω(T ) =
∏
v∈T

φd(v),

where the product runs over all nodes v of T and d(v) is the out-degree of node v. Moreover, we denote
by #T the size of T and set

τn =
∑

#T=n

ω(T ), τ(z) =
∑
n≥1

τn
zn

n!
.

Finally, we set
φ(ω) =

∑
r≥0

φrω
r

which is called the weight function. It was proved in [2] that

τ ′(z) = φ(τ(z)), τ(0) = 0. (19)

Now, we equip a simple class of increasing trees with a probability model, where the probability of a tree
T is proportional to its weight. More precisely, if T has size n then its probability equals ω(T )/τn. The
resulting class is called simple class of random increasing trees.

By specializing (φr)r≥0 (or equivalently φ(ω)) one recovers random binary search trees, random recur-
sive trees and random PORTs as special cases.

• Random binary search trees (or equivalently random binary trees): φ0 = 1, φ1 = 2, φ2 = 1 and
φr = 0 for all r ≥ 3, or equivalently φ(ω) = (1 + ω)2.

• Random recursive trees: φr = 1/r! for all r ≥ 0, or equivalently φ(ω) = eω.

• Random PORTs: φr = 1 for all r ≥ 0, or equivalently φ(ω) = (1− ω)−1.

Subsequently, we will fix a simple class of random increasing trees. Then, the subtree size profile is a
double-indexed random variable which we again denote by Xn,k. Arguing as in the introduction, we have

Xn,k
d
=

N∑
i=1

X
(i)
Ii,k

(n > k) (20)

with initial conditionsXk,k = 1, Xn,k = 0 for n < k andX(i)
n,k

d
= Xn,k. Moreover,Xn,k, X

(i)
n,k, (N, I1, I2, . . .)

are independent and the joint distribution of the latter random variable is given by

πn,r,i1,...,ir = P (N = r, I1 = i1, . . . , Ir = ir) = [ωr]φ(ω)

(
n− 1

i1, . . . , ir

)
τi1 · · · τir

τn
,
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where i1, . . . , ir ≥ 1 and i1 + · · ·+ ir = n− 1. As in Section 2, we set

Pk(z, y) =
∑
n≥1

τnE(exp(Xn,ky))
zn

n!
.

Then, we have
∂

∂z
Pk(z, y) = φ(Pk(z, y)) + (ey − 1)τk

zk

k!
.

with initial condition Pk(0, y) = 0. Next, consider the (scaled) exponential generating function of them-th
moment

A
[m]
k (z) =

∑
n≥1

τnE(Xm
n,k)

zn

n!
.

Taking derivatives shows that all these functions satisfy a differential equation of the type

A′(z) = φ′(τ(z))A(z) +B(z)

where B(z) is a function of generating functions of moments of smaller order. From this, we can read off
the following recurrence relation for the moments

an,k =
∑

1≤j<n

πn,jaj,k + bn,k (n > k)

with a suitable sequence bn,k (involving moments of lower order) and ak,k given, bk,k = 0, and an,k =
bn,k = 0 for n < k. Moreover,

πn,j :=
(n− 1)!τj
j!τn

[zn−1−j]φ′(τ(z)).

As before, we need a general solution of this recurrence. Therefore, set

A(z) =
∑
n≥1

τnan,k
zn

n!
, B(z) =

∑
n≥1

τnbn,k
zn

n!
.

Then, the recurrence translates into the differential equation

A′(z) = φ′(τ(z))A(z) +B′(z) + τkak,k
zk−1

(k − 1)!

with solution

A(z) = τ ′(z)

∫ z

0

(
B′(t) + τkak,k

tk−1

(k − 1)!

)
(τ ′(t))−1dt.

By reading off coefficients, we obtain

an,k =
∑
j≥k+1

bj,k
n!τj

(j − 1)!τn
[zn]τ ′(z)

∫ z

0

tj−1

τ ′(t)
dt+ ak,k

n!τk
(k − 1)!τn

[zn]τ ′(z)

∫ z

0

tk−1

τ ′(t)
dt. (21)

Using this, one can in principle use the method from the preceding section to derive similar results as
for PORTs for other simple families of increasing trees. We will state such results for special families of
increasing trees which will be defined below.
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Grown Simple Families of Increasing Trees. As mentioned in the introduction, random PORTs can
be alternatively defined via a tree evolution process. It is an interesting question to ask which other sim-
ple families of random increasing trees admit such a construction (via a natural tree evolution process).
This question was completely answered in Panholzer and Prodinger [25], where it was shown that such a
construction is possible if and only if the class belongs to the following list.

• Random d-ary trees: φ(ω) = φ0(1 + ct/φ0)d where φ0 > 0, c > 0 and d ∈ {2, 3, 4, . . .}.

• Random recursive trees: φ(ω) = φ0e
ct/φ0 , where φ0 > 0 and c > 0.

• Generalized random PORTs: φ(ω) = φ0(1− ct/φ0)−r+1, where φ0 > 0, c > 0 and r > 1.

Moreover, as explained in Kuba and Panholzer [24], for stochastic properties it is sufficient to consider
the following special cases.

• Random d-ary trees: φ(ω) = (1 + t)d, where d ∈ {2, 3, 4, . . .}.

• Random recursive trees: φ(ω) = et.

• Generalized random PORTs: φ(ω) = (1− t)−r+1, where r > 1.

We will state results similar to the one for random PORTs for these three simple families of random
increasing trees (where random recursive trees are already covered by previous work).

Mean Value. Here, we show how to compute the mean value of the subtree size profile of random d-ary
trees and generalized random PORTs. We will see that in all cases, the mean value admits a simple exact
expression.

We start with generalized random PORTs. Therefore, observe that by solving (19) one obtains

τ(z) = 1− (1− rz)1/r.

This in particular gives

τn = rn−1(n− 1)!

(
n− 1− 1/r

n− 1

)
.

Note that the latter formula implies that τn+1/τn = rn− 1.
Now, we use (21) with bn,k = 0 for all n, k and ak,k = 1. This yields

E(Xn,k) =
n!τk

(k − 1)!τn
[zn]τ ′(z)

∫ z

0

tk−1

τ ′(t)
dt.

Next, consider for n > k

[zn]τ ′(z)

∫ z

0

tk−1

τ ′(t)
dt = [zn]τ ′(z)

∫ z

0

tk−1(1− rt)1−1/rdt

= [zn]τ ′(z)r−k+1

k−1∑
l=0

(
k − 1

l

)
(−1)l

∫ z

0

(1− rt)l+1−1/rdt

= [zn]τ ′(z)r−k+1

k−1∑
l=1

(
k − 1

l

)
(−1)l

1

rl + 2r − 1

= [zn]τ ′(z)r−k
∫ 1

0

tk−1(1− t)1−1/rdt.

=
τn+1

n!
r−k

(k − 1)!Γ(2− 1/r)

Γ(k + 2− 1/r)
.
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Substituting this into the expression above yields for n > k

E(Xn,k) =
τn+1

τn
r−1(k − 1)!

(
k − 1− 1/r

k − 1

)
Γ(2− 1/r)

Γ(k + 2− 1/r)
=

(r − 1)(rn− 1)

(rk + r − 1)(rk − 1)
.

A similar computation gives the mean value of the subtree size profile for random d-ary trees. We
collect our result in the following theorem.

Theorem 8. (i) For generalized random PORTs, we have for n > k

µn,k := E(Xn,k) =
(r − 1)(rn− 1)

(rk + r − 1)(rk − 1)
.

(ii) For random d-ary trees, we have for n > k

µn,k := E(Xn,k) =
d((d− 1)n+ 1)

((d− 1)k + d)((d− 1)k + 1)
.

Limit Laws for Varying k. Here, we state limit laws for the subtree size profile of generalized random
PORTs and random d-ary trees. These results follow from (21) with the method of proof from Section 3.
Details will be left to the reader.

First, we state the result for generalized random PORTs.

Theorem 9. (i) (Normal range) Let k = k(n) such that k →∞ as n→∞. Then,

Xn,k − µn,k
σn,k

d−→ N(0, 1),

where, as n→∞,

σ2
n,k ∼

r − 1

r
· n
k2
.

(ii) (Poisson range) Let k = k(n) such that k ∼ c
√
n as n→∞. Then,

Xn,k
d−→ Poisson((r − 1)r−1c−2).

(iii) (Degenerate range) Let k = k(n) such that k < n and
√
n = o(k) as n→∞. Then,

Xn,k
L1−→ 0.

Similar, we have for random d-ary trees.

Theorem 10. (i) (Normal range) Let k = k(n) such k →∞ as n→∞. Then,

Xn,k − µn,k
σn,k

d−→ N(0, 1),

where, as n→∞,

σ2
n,k ∼

d

d− 1
· n
k2
.

(ii) (Poisson range) Let k = k(n) such that k ∼ c
√
n as n→∞. Then,

Xn,k
d−→ Poisson(d(d− 1)−1c−2).

(iii) (Degenerate range) Let k = k(n) such that k < n and
√
n = o(k) as n→∞. Then,

Xn,k
L1−→ 0.
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