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Abstract

In a recent paper, Shah and Zaman proposed the rumor center as an effective rumor source estimator
for rumor spreading on random graphs. They proved for a very general random tree model that the
detection probability remains positive as the number of nodes to which the rumor has spread tends to
infinity. Moreover, they derived explicit asymptotic formulas for the detection probability of random d-
regular trees and random geometric trees. In this paper, we derive asymptotic formulas for the detection
probability of grown simple families of random increasing trees. These families of random trees contain
important random tree models as special cases, e.g., binary search trees, recursive trees and plane-
oriented recursive trees. Our results show that the detection probability varies from 0 to 1 across these
families. Moreover, a brief discussion of the rumor center for unordered trees is given as well.

1 Introduction and Results
Rumor spreading on random trees has a long history in the biology, computer science and probability
literature and has been investigated from many different angles. In a recent paper, Shah and Zaman [9,
10] added a new angle by putting forth the rumor source detection problem which asks for the correct
identification of the rumor source when only information about the underlying model and the infected
nodes is known. In [9, 10], this problem was discussed for random d-regular trees and random geometric
trees. Then, in [11], the authors generalized their approach to obtain results for very general families of
random trees. Their studies, even though all of them very recent, have already lead to many follow-up
works (e.g., according to a google scholar search from August 14, 2014, the number of citations of the
paper [10] had already reached 80).

From now on, we assume that some random tree model is fixed. After some time has elapsed, the rumor
has spread to n nodes which form a tree Γ. The main idea in [9, 10] was to assign a score to the nodes
of Γ. The so-called rumor center is then the node which receives the highest score (where ties are either
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ignored or broken uniformly at random). In [9, 10], the authors showed that the rumor source estimator
obtained in this way is the maximum likelihood (ML) estimator if the underlying random tree model are
random d-regular trees. However, for most other random tree models, the rumor source estimator is not
the ML estimator. Nevertheless, it was shown in [11] that for very general families of random trees, the
rumor source estimator is still effective in the sense that the detection probability tends to a positive value
as the number of infected nodes n tend to infinity.

Precise asymptotic values for detection probabilities have so far only been found in the special cases
of d-regular trees and geometric trees. It is the purpose of this work to derive detection probabilities for
other classes of random trees, namely, all subclasses of simple families of random increasing trees whose
random model arises from a (natural) tree evolution process. These subclasses will contain d-regular trees
and, e.g., the following important random tree models:

• Recursive Trees: they have been proposed as a simple model for the spread of epidemics (a situation
very similar to rumor spreading); see Moon [7]. We will show that they constitute the limiting case
of d-regular trees as d tends to infinity.

• Plane-oriented Recursive Trees: they are one of the most simplest model for real complex networks;
see the important paper of Barabási and Albert [1].

We will give a precise mathematical definition of simple families of random increasing trees below and
describe some of their properties; for more information see Bergeron, Flajolet, and Salvy [2].

We now provide some more details in order to be able to state our results. We fix some notations.
Recall that Γ denotes the tree of the nodes to which the rumor has spread. We will denote by V (Γ) the
nodes of Γ and by E(Γ) the edges of Γ. If v ∈ V (Γ), Γv will denote Γ rooted at v with an (arbitrary)
embedding in the plane, where we will draw Γ in such a way that v is at the top (and the subtrees are
below). If u ∈ V (Γ), then Γvu will denote the subtree at the fringe of Γv rooted at u.

Rumor Center. In this paragraph, we will recall the definition of the rumor center from [9, 10]. For
v ∈ V (Γ), we define a score as follows

R(v,Γ) = n!
∏

u∈V (Γ)

1

|Γvu|
.

This is the so-called shape functional; see for instance Fill [4]. In order to explain its meaning, we need
to recall some further notation from graph theory. We call a rooted tree ordered if it comes with a fixed
embedding into the plane (where in this paper, we always draw the root at the top); otherwise, the tree is
called unordered. Moreover, a rooted increasing tree of n nodes is a tree whose nodes are labeled with
labels from the set {1, . . . , n} in such a way that every sequence of labels from to the root to a leaf forms
an increasing sequence. Now, we can explain the meaning of the shape functional: it gives the number of
rooted ordered increasing trees which are isomorphic to Γv.

We next recall the definition of rumor center from [9, 10].
Definition 1. Let Γ be a tree. A node v ∈ V (Γ) which maximizes R(v,Γ) is called a rumor center of Γ.

Thus, a rumor center v of Γ is a node such that the number of rooted ordered increasing trees which
are isomorphic to Γv is maximal. Every such increasing tree corresponds to a spreading order in which the
rumor has spread from the source v. Consequently, if all spreading orders are equally likely (as is the case,
e.g., for d-regular trees; see [9, 10] and below), then the rumor center is the most likely rumor source or in
other words the rumor center is the ML estimator for the rumor source.

It was shown in [9, 10] that the rumor center has a surprisingly easy characterization. We will give two
versions of this characterization. For the first, we need the following definition.
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Definition 2. Let Γ be a tree. A node v ∈ V (Γ) is called a local rumor center if R(v,Γ) ≥ R(u,Γ) for all
u ∈ V (Γ) with {u, v} ∈ E(Γ).

Then, Shah and Zaman proved the following result in [9, 10].

Theorem 1 (Shah and Zaman; 2010 - Version 1). Let Γ be a tree. Then, every local rumor center is a
rumor center.

The second version of Sha and Zaman’s result (which is in fact only a more precise version of the first
one) characterizes the rumor center by graph-theoretical properties.

Theorem 2 (Shah and Zaman; 2010 - Version 2). Let Γ be a tree with n nodes. Then, v ∈ V (Γ) is a rumor
center of Γ if and only if |Γvu| ≤ n/2 for all u ∈ V (Γ) with {u, v} ∈ E(Γ). Moreover, if all inequalities
are strict there is only one rumor center; otherwise, there are exactly two adjacent rumor centers.

The rumor source estimator is now defined as follows: if there is only one rumor center, then we
choose this node; if there are two, we either ignore them or choose one of them uniformly at random.

The appropriateness of the rumor source estimator as defined above depends on the random model.
In the definitions above, we considered ordered trees. This, however, might not be always appropriate,
for instance if the underlying tree model has not a fixed but dynamic structure (e.g., if a node can spread
the rumor to an arbitrary large number of neighbors; see the definition of recursive trees below). Then,
considering unordered trees might be advantageous. For such trees, the above definition of R(v,Γ) has to
be suitable modified. Unfortunately, the resulting characterization of nodes v which maximize the score
becomes messier; see the appendix of this paper for details.

(Grown) Simple Families of Increasing Trees. In this paragraph, we are going to explain the random
tree models which will be used in this paper. First, consider the set of all rooted ordered increasing trees.
A simple family of increasing trees consists of this set together with a sequence of weights (φi)i≥0 with
φ0 > 0 and φi > 0 for some i ≥ 2. For every tree T , we define its weight as

w(T ) =
∏

v∈V (t)

φd(v),

where d(v) is the out-degree of v (= the number of edges of v which point away from the root). Moreover,
set

τn :=
∑

V (T )=n

w(T ).

Then, a probability space on trees of size n is defined as follows: a tree T of size n has probability
w(T )/τn. The resulting family of random trees is called a simple family of random increasing trees.

We give some prominent examples.

• d-ary trees: φi =
(
d
i

)
, 0 ≤ i ≤ d and φi = 0 for all i > d (here, d ∈ {2, 3, . . .}).

• Recursive trees: φi = 1/i! for all i ≥ 0.

• Generalized plane-oriented recursive trees: φi =
(
r+i−2
i

)
for all i ≥ 0 (here, r > 1 is a real number).

These three families contain, e.g., random binary trees (d-ary trees with d = 2) which are equivalent to
random binary search trees from computer science and plane-oriented recursive trees (PORTs for short;
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these are generalized PORTs with r = 2); see the introduction and [2] for more explanation concerning
the relevance of these two random tree models.

The above three families of random increasing trees are very special; see Panholzer and Prodinger
[8]. More precisely, it was shown in [8] that out of all families of random increasing trees they are the
only ones for which the random model alternatively can also be obtained from a (natural) tree evolution
process. Consequently, they have been nicknamed grown simple families of random increasing trees; see,
e.g., Kuba and Panholzer [6].

We briefly describe the tree evolution process for the above three families.

• d-ary trees: the first node is the root and d empty leaves are attached; for the second node, one leaf is
chosen uniformly at random and the node together with d empty leaves is placed there; for the third
node, again one of the leafs is chosen uniformly at random, etc.

• Recursive trees: assume that a tree with n − 1 nodes was already constructed; for the next node,
choose one of the nodes uniformly at random and add the next node as child. (Note that the tree here
is unordered).

• Generalized plane-oriented recursive trees: again assume that a tree with n − 1 nodes was already
constructed; for the next node, choose an existing node v with probability proportional to d(v)+r−1
(d(v) is the out-degree of v) and add the next node as child. (The tree is again unordered; however,
for r = 2, this random model is equivalent to the uniform model on rooted ordered increasing trees).

From these descriptions, it is obvious that the random model of d-ary trees is the uniform model on
rooted ordered increasing d-ary trees and the random model for PORTs (generalized PORTs with r = 2)
is the uniform model on rooted ordered increasing trees (as already mentioned above). Moreover, the
random model for recursive trees is the uniform model on rooted unordered increasing trees. Thus, the
rumor source estimator described in the previous paragraph is a ML estimator only for the former two
families of random increasing trees but not for the latter (and also not for generalized PORTS with r 6= 2).

For later purpose, we need some more properties of the above three families of random increasing
trees. Therefore, set

φ(z) =
∑
i≥0

φiz
i, τ(z) =

∑
n≥1

τn
zn

n!
.

Then, it is straightforward to show that
τ ′(z) = φ(τ(z)).

Solving this differential equation for the above families gives the following:

• d-ary trees: τ(z) = −1 + (1− (d− 1)z)−1/(d−1).

• Recursive trees: τ(z) = log(1/(1− z)).

• Generalized plane-oriented recursive trees: τ(z) = 1− (1− rz)1/r.

From this τn is easy to derive by standard Taylor series expansion.

Results. In this paragraph, we explain our results. Consider a random increasing tree with n nodes (as
random model, we choose one of the three random models from the previous paragraph). We denote by Cn
the probability that the node obtained from the rumor source estimator is indeed the rumor source, where
we use here the strategy that ties are ignored (since ties anyway occur only with asymptotic probability
zero; see below). Then, we have the following result for grown simple families of random increasing trees.
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Theorem 3. (a) (d-ary Trees) We have,

lim
n→∞

P (Cn) = kd-ary = 1− d+ d2−1/(d−1)

is increasing in d and
lim
d→∞

kd-ary = 1− ln 2.

Thus, for d ≥ 3,

0.12132 · · · = 3

2

√
2− 2 ≤ kd-ary < 1− ln 2.

(b) (Recursive Trees) We have, limn→∞ P (Cn) = 1− ln 2.

(c) (Generalized PORTs) We have,

lim
n→∞

P (Cn) = kr = r − (r − 1)21/r

is decreasing in r with
lim
r→1

kr = 1 and lim
r→∞

kr = 1− ln 2.

Thus, for r > 1,
1− ln 2 < kr < 1.

Remark 1. Due to part (b), recursive trees can be seen as the limiting case of d-ary trees as d tends to
infinity. Moreover, note that the detection probability increases from 0 (for d-ary trees with d = 2) all the
way to 1 as one goes from d-ary trees to recursive trees to generalized PORTs.

Part (a) of Theorem 3 will follow from a result on a more general family of random trees: the subtree of
the root has d1 subtrees and all other subtrees have d2 subtrees (subtrees are possibly empty). The random
model of this family of trees is as follows: the first node is the root and d1 empty leafs are attached; for the
next node, one leaf is chosen uniformly at random and the next node together with d2 empty leafs is placed
there; for the third node, again one leaf is chosen uniformly at random, etc. Then, we have the following
result.

Theorem 4. We have,

lim
n→∞

P (Cn) = 1− d1 + d1I1/2

(
1

d2 − 1
,
d1 − 1

d2 − 1

)
,

where Ix(a, b) is the regularized incomplete beta function.

Note the for d1 = d2 = d, we obtain the above result for d-ary trees. Moreover, this result also contains
one of the main results from [10], namely, d1 = d and d2 = d− 1 which are d-regular trees.

Theorem 5 (d-regular Trees; see also [11]). For d-regular trees, we have limn→∞ P (Cn) = kd-reg, where

kd-reg = 1− d

2
+

dΓ( d
d−2

)

2
d

d−2 Γ(d−1
d−2

)2
.

Remark 2. As observed in [11], Stirling’s formula implies that

lim
n→∞

kd-reg = 1− ln 2.

Hence, recursive trees are also the limiting case of d-regular trees as d tends to infinity (this is of course
not surprising).
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We conclude the introduction with a brief sketch of the paper. In the next section, we prove Theorem 4.
In contrast to [11] this will be done by using tools from Analytic Combinatorics (in [11] the authors used
Pólya urn models and tools from the theory of stochastic processes). As a consequence, we will obtain
part (a) of Theorem 3 and Theorem 5. In Section 3, we will prove part (b) of Theorem 3. In Section 4,
we will prove part (c) of Theorem 4. Finally, in an appendix, we will give a brief discussion of the rumor
center for rooted unordered trees.

2 Generalized d-ary Trees
In this section, we will prove Theorem 4.

We start by fixing some notation. First, recall the definition of the trees from Theorem 4 (see the para-
graph preceding the theorem). The number of these trees with n nodes will be denoted by τ̃n. Moreover,
we will denote by τn the number of d2-ary trees with n nodes . Then, observe that

τ̃n =
∑

j1+···+jd1=n−1

(
n− 1

j1, . . . , jd1

)
τj1 · · · τjd1 ,

where j1, . . . , jd1 ≥ 0 are the sizes of the d1 subtrees of the root and τ0 := 1. Consequently,

τ̃ ′(z) = (1 + τ(z))d1 , (1)

where τ(z) is as in the introduction and

τ̃(z) =
∑
n≥1

τ̃n
zn

n!
.

Recall that
τ(z) = −1 + (1− (d2 − 1)z)−1/(d2−1). (2)

Now, we turn to the probability of Cn. By Theorem 2, we have

P (Cn) = 1− d1P (size of leftist subtree ≥ n/2). (3)

Denote by I the size of the leftist subtree. Then,

P (I = j) =
1

τ̃n

∑
j+j2+···+jd1=n−1

(
n− 1

j, j2, . . . , jd1

)
τjτj2 · · · τjd1

=
(n− 1)!τj
j!τ̃n

∑
j2+···+jd1=n−1−j

τj2
j2!
· · ·

τjd1
jd1 !

=
(n− 1)!τj
j!τ̃n

[zn−1−j](1 + τ(z))d1−1

=
(n− 1)!τj
j!τ̃n

[zn−1−j](1− (d2 − 1)z)
− d1−1

d2−1

=
(n− 1)!τj
j!τ̃n

(d2 − 1)n−1−j[zn−1−j](1− z)
− d1−1

d2−1 . (4)

In the sequel, we need the following standard lemma from analytic combinatorics.
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Theorem 6 (Theorem VI.1 in [5]). For α ∈ C \ Z≤0 set

f(z) := (1− z)−α.

Then, as n→∞,

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

∞∑
k=1

ek(α)

nk

)
,

where ek(α) is a polynomial of degree 2k.

Applying this result to (2) gives

τn = n![zn]τ(z) ∼ n!(d2 − 1)n
n

1
d2−1

−1

Γ( 1
d2−1

)
.

Similarly, applying the result to (1) yields

τ̃n = (n− 1)![zn−1]τ̃ ′(z) ∼ (n− 1)!(d2 − 1)n−1n
d1

d2−1
−1

Γ( d1
d2−1

)
.

By (3), we need to compute ∑
n/2≤j≤n−1

P (I = j),

where P (I = j) is given by (4). To accomplish this task, we again use Theorem 1 and the expansions for
τn and τ̃n from above. This gives

∑
n/2≤j≤n−1

P (I = j) ∼ (n− 1)!

τ̃n

∑
n/2≤j≤n−1

τj
j!

(d2 − 1)n−1−j (n− 1− j)
d1−1
d2−1

−1

Γ(d1−1
d2−1

)

∼
Γ( d1

d2−1
)

Γ( 1
d2−1

)Γ(d1−1
d2−1

)
· 1

n
d1

d2−1
−1

∑
n/2≤j≤n−1

j
1

d2−1
−1

(n− 1− j)
d1−1
d2−1

−1

∼
Γ( d1

d2−1
)

Γ( 1
d2−1

)Γ(d1−1
d2−1

)
· 1

n

∑
n/2≤j≤n−1

(
j

n

) 1
d2−1

−1(
n− 1− j

n

) d1−1
d2−1

−1

∼
Γ( d1

d2−1
)

Γ( 1
d2−1

)Γ(d1−1
d2−1

)

∫ 1

1/2

x
1

d2−1
−1

(1− x)
d1−1
d2−1

−1
dx. (5)

Observe that∫ 1

1/2

x
1

d2−1
−1

(1− x)
d1−1
d2−1

−1
dx =

Γ( 1
d2−1

)Γ(d1−1
d2−1

)

Γ(d1−1
d2−1

)
−B

(
1/2;

1

d2 − 1
,
d1 − 1

d2 − 1

)
,

where B(x; a, b) denotes the incomplete beta function. Plugging this into (5) and (5) in turn into (3) yields
Theorem 4.

Proof of Theorem 3, part (a). Setting d1 = d2 = d and evaluating the expression obtained in Theorem 4
yields the claimed result for kd-ary. Moreover, the claims for kd-ary follow by simple calculus.

Next, we consider the case of d-regular trees, where we set d1 = d and d2 = d − 1. We need the
following lemma.
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Lemma 1. For α > 0, ∫ 1

1/2

xα−1(1− x)αdx =
1

2

(
B(α, α + 1)− 1

α22α

)
,

where B(a, b) denotes the beta function.

Proof. First, observe that

B(α, α + 1) =

∫ 1

0

xα−1(1− x)αdx =

∫ 1/2

0

xα−1(1− x)αdx+

∫ 1

1/2

xα−1(1− x)αdx.

Now, call the first and second integral on the right hand side L and R, respectively. By integration by parts
and substitution, we have

L =
1

α
xα(1− x)α

∣∣∣1/2
0

+R.

Thus,

R =
1

2

(
B(α, α + 1)− 1

α22α

)
which is the claimed result.

This lemma can be used to evaluate the integral in (5). Plugging the result then in turn into (3) yields
Theorem 5.

3 Recursive Trees
We consider now recursive trees and will prove part (b) of Theorem 3. Recall that

τ(z) = ln

(
1

1− z

)
and thus τn = (n− 1)!. Similar to d-ary trees, we have that

P (Cn) = 1− P (one subtree of the root has size ≥ n/2).

In order to find the latter probability observe that at most one subtree of the root has size at least n/2.
Consequently, since recursive trees are unordered trees, we can arrange the subtrees such that this subtree
is the leftist one. Then,

P (one subtree of the root has size = j) =
1

τn

∑
`≥1

1

(`− 1)!

∑
j+j2+...j`=n−1

(
n− 1

j, j2, . . . , j`

)
τjτj2 . . . τj`

=
(n− 1)!τj
j!τn

[zn−1−j]
∑
`≥1

τ(z)`−1

(`− 1)!

=
(n− 1)!τj
j!τn

[zn−1−j]
1

1− z
=

1

j
,

where j ≥ n/2. Plugging this into the expression above gives

P (Cn) = 1−
∑

n/2≤j≤n−1

1

j
= 1−Hn−1 +Hdn/2e−1,

where Hn denotes the n-th harmonic number. We summarize this in a result.

Theorem 7 (Recursive Trees). We have, P (Cn) = 1−Hn−1 +Hdn/2e−1.

From this part (b) of Theorem 3 follows from standard expansions for harmonic numbers.
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4 Generalized Plane-oriented Recursive Trees
Finally, we consider generalized plane-oriented recursive trees and prove part (c) of Theorem 5. Recall
that

τ(z) = 1− (1− rz)1/r. (6)

Then, as in the last section

P (Cn) = 1− P (one subtree of the root has size ≥ n/2).

Since now the subtrees are ordered, we obtain

P (one subtree of the root has size = j) =
1

τn

∑
`≥1

`φ`
∑

j+j2+...j`=n−1

(
n− 1

j, j2, . . . , j`

)
τjτj2 . . . τj`

=
(n− 1)!τj
j!τn

[zn−1−j]
∑
`≥1

`φ`τ(z)`−1

=
(n− 1)!τj
j!τn

(r − 1)[zn−1−j](1− τ(z))−r

=
(n− 1)!τj
j!τn

rn−1−j(r − 1), (7)

where j ≥ n/2.
We now turn to asymptotic expansions. First, applying Theorem 6 to (6) gives

τn ∼ −n!rn
n−1/r−1

Γ(−1/r)
.

Plugging this into (7) yields

P (one subtree of the root has size ≥ n/2) ∼ r − 1

r
· 1

n

∑
n/2≤j≤n−1

(
j

n

)−1/r−1

∼ r − 1

r

∫ 1

1/2

x−1/r−1dx

= (r − 1)(21/r − 1).

This proves the claimed limit result. The claimed properties for kr follow by simple calculus.
Remark 3. Alternatively to the above asymptotic derivation, one can also derive an exact expression (sim-
ilar as in the last section). To give more details, note that from (6), one obtains that

τn = n!(−1)n+1rn
(

1/r

n

)
.

Consequently, from (7),

P (one subtree of the root has size ≥ n/2) =
r − 1

r
· (−1)n

n
(

1/r
n

) ∑
n/2≤j≤n−1

(−1)j
(

1/r

j

)
Note that ∑

n/2≤j≤n−1

(−1)j
(

1/r

j

)
= nr(−1)n+1

(
1/r

n

)
+ dn/2er(−1)dn/2e

(
1/r

dn/2e

)
.

Plugging this into the above formula gives the following result.
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Theorem 8 (Generalized PORTs). We have,

P (Cn) = r − (r − 1)(−1)n+dn/2e
dn/2e

(
1/r
dn/2e

)
n
(

1/r
n

) .
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Appendix: Rumor Center for Unordered Trees
In this appendix, we will use the same notation as in Section 1. Moreover, recall that R(v,Γ) gives the
number of rooted ordered increasing trees which are isomorphic to Γv.

If trees are now considered to be unordered instead of ordered, R(v,Γ) has to be replaced by the
shape functional for unordered trees, i.e., by the number of rooted unordered increasing trees which are
isomorphic to Γv. This shape functional has been introduced and studied by Feng and Mahmoud in [3].
Following this paper, for v ∈ V (Γ), we define now the score by

S(v,Γ) = (n− 1)!
∏

u∈V (Γ)

w(Γvu)

|Γvu|
,

10



where

w(Γvu) =
r∏
i=1

1

mi!

with (m1, . . . ,mr) the multiplicities of the subtrees of u in Γvu.
With a slight abuse of notation, we give the following definition.

Definition 3. Let Γ be a tree. A node v ∈ V (Γ) is called a local rumor center if S(v,Γ) ≥ S(u,Γ) for all
u ∈ V (Γ) with {u, v} ∈ E(Γ).

Then, as for ordered trees, we have the following theorem.

Theorem 9. Let Γ be a tree. Then, every local rumor center is a rumor center.

Proof. Denote by v the local rumor center and consider Γv. Let u ∈ V (Γ) with {u, v} ∈ E(Γ) be fixed.
In the sequel, we will use the following notation: by mv

u we denote the multiplicity of Γvu amongst the
subtrees of v in Γv.

First consider
S(v,Γ)

S(u,Γ)
=
mu
v |Γuv |

mv
u|Γvu|

=
mu
v(n− |Γvu|)
mv
u|Γvu|

,

where we used the (trivial) fact that |Γuv | + |Γvu| = n. Since, due to the assumptions, the above ratio must
be at least one, we have

|Γvu| ≤
mu
vn

mu
v +mv

u

. (8)

We will fix now an ũ ∈ V (Γ) with ũ 6= v and {ũ, u} ∈ E(Γ); see the tree on the left in Figure 1.

v

u

ũ . . .

u

v
ũ

. . .

Figure 1: The two trees from the proof of Theorem 9

Observe that
S(v,Γ)

S(ũ,Γ)
=
S(v,Γ)

S(u,Γ)
· S(u,Γ)

S(ũ,Γ)
≥ mũ

u(n− |Γuũ|)
mu
ũ|Γuũ|

(9)

and we have to show that this is at least one. For this, we will consider two cases.
In the first case, we will assume that |Γvu| ≤ n/2. Then, |Γuv | ≥ n/2 and hence mu

v = 1. Similarly,
|Γũu| ≥ n/2 and mũ

u = 1. Moreover, we have

mu
ũ|Γuũ| ≤ |Γvu| ≤ n/2.

This implies that |Γuũ| ≤ n/(2mu
ũ) which in turn implies that |Γuũ| ≤ n/(1 + mu

ũ). Thus, (9) is indeed at
least one and hence S(v,Γ) ≥ S(ũ,Γ).

11



It should be clear that the above argument can be repeated. Consequently, if we choose a path from v
via ũ to a leaf, then the S-value of the nodes is non-increasing as required.

Next, we consider the second case, where we assume that |Γvu| > n/2. Consider the tree on the right
in Figure 1 which is just the left one rooted at u (i.e., Γu). Due to (8), we have that

|Γuv | ≥
n

mu
v +mv

u

. (10)

If Γuũ is isomorphic to Γuv , then the S-value of ũ and v are the same and nothing has to be proved. So,
assume that Γuũ is not isomorphic to Γuv . Then, a simple counting argument shows that

mu
ũ|Γuũ|+mu

v |Γuv | ≤ n.

Using (10), we obtain
|Γuũ| ≤

n

mu
ũ(m

u
v +mv

u)
≤ n

1 +mu
ũ

.

This in particular implies that |Γuũ| ≤ n/2 and hence mũ
u = 1. Consequently, (9) is again shown to be

at least one. Finally, similar to the first case, this argument can be iterated such that again the S-value of
nodes along paths from v to a leaf (via ũ) are non-increasing.

Remark 4. From the proof, we find the following sufficient and necessary condition for v ∈ V (Γ) to be a
rumor center (compare with Theorem 2 from the introduction).

Theorem 10. Let Γ be a tree with n nodes. Then, v ∈ V (Γ) is a rumor center of Γ if and only if the
following holds for all u ∈ V (Γ) with {u, v} ∈ E(Γ):

|Γvu| ≤
mu
vn

mu
v +mv

u

.

Remark 5. In contrast to the ordered case, here Γ can have more than two rumor centers; also, rumor
centers are not necessary adjacent; see Figure 2 for examples.

v1 v2

Figure 2: Every node of the tree on the left is a rumor center; the nodes v1 and v2 of the tree on the right
are (non-adjacent) rumor centers.

Remark 6. As mentioned in Section 1, the random model of recursive trees is the uniform model on rooted
unordered increasing trees. Thus, the rumor center defined in this appendix is the ML estimator for the
rumor source. It would be interesting to compute the detection probability for this estimator (which will
be at least 1 − ln 2 as follows from Theorem 3). However, the more complicated characterization of the
rumor center from Remark 4 makes this a seemingly complicated task.
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