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Abstract

A class of games for finding a leader among a group of candidates is studied in detail.
This class covers games based on coin-tossing and rock-paper-scissors as special cases
and its complexity exhibits similar stochastic behaviors: either of logarithmic mean and
bounded variance or of exponential mean and exponential variance. Many applications are
also discussed.

1 Introduction
Selecting a leader or a representative by fair random mechanisms without relying on a priori
information of the candidates has long been used in diverse contexts and civilizations. Typical
examples range from sortition (or allotment) in the West and rock-paper-scissors (or Janken) in
the East; see Wikipedia’s pages on sortition and rock-paper-scissors for more information. This
paper is concerned with the analysis of a class of leader selection algorithms (or leader election
algorithms) that are used to select a leader among a group of n candidates. These algorithms
have widespread applications in diverse areas; see Figure 1 for a summary and below for more
descriptions.

Key words: Leader selection, Janken game, recurrence relation, functional equation, Mellin transform, saddle-
point method, limit theorems, periodic function, gap theorem, ties.
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Figure 1: Leader selection procedures and applications.

One easy and efficient way to solve the leader selection problem is to use coin-tossing. A
simple such procedure is described as follows. Assume that we have a (possibly biased) coin
with two outcomes “head” and “tail”. Each of the n candidates tosses an independent coin
and those who toss head go on to the next round. In case nobody tosses head, the round is
repeated with the same candidates. The procedure ends when only one candidate is left who
is then declared the leader. We refer to this simple scheme as CTLS (Coin-Tossing Leader
Selection). It has been used in many applications, for instance, in the CTM Tree Protocol
(after Capetanakis, Tsybakov and Mikhailov), which is used to determine the order in which n
processors sharing a common communication channel send their messages; see [4] and [48].
More recent applications are in ad-hoc radio networks (see Chapter 9 of [34]) and RFID systems
(see, e.g., [18]).

Many variants of CTLS have been proposed and extensively studied. One such variant con-
sists of waiting until everyone is eliminated and then declaring those who stayed the longest
in the game as the leaders. This variant, referred to as MGLS (Maximum Geometric Leader
Selection), amounts to finding the maximum of n i.i.d. geometric distributed random variables.
The latter problem has a longer history than the study of CTLS, and the earliest publication
we found dated back to the early 1950s. Closely connected applications include mathematical
models of the brain [35], study of aircraft wing fatigue failure [30] and system reliability in
general [49], order statistics of geometric random variables [32], skip-lists [6], bulk buying of
possibly defective items [42, 26] and program unification techniques in concurrency enhance-
ment methods [38, 39]; see also the more recent study [7] and the book on bioinformatics [8]
for further applications.

The complexity of CTLS seemed to have been first analyzed by Bruss and O’Cinneide [3]
in the early 1990s, where they attributed the problem of analyzing the number of rounds to
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identify a leader to Bajaj and Mendieta [1]. In fact, in [3], the authors relied on the above
connection to geometric random variables as an approximation to CTLS, and gave an analysis
of MGLS as well. A more detailed analysis of CTLS was given independently by Prodinger
[37]. In particular, he showed that the expected number of rounds, denoted by E(Xn), used by
CTLS to identify a leader among n candidates satisfies

E(Xn) = log2 n+ 1
2

+ P0(log2 n) +O
(
n−1
)
, (1)

when all coins tossed are unbiased. Here P0(u) is a bounded periodic function of period 1
with amplitude less than 1.93 × 10−5. Such a minute yet nonzero periodic oscillation is a
characteristic feature for problems of a similar type, and tools for deriving the corresponding
Fourier expansions have been the major focus of many papers. A similar periodic phenomena is
also present in the variance V(Xn), which is asymptotic to another periodic function and thus of
constant order (again in the unbiased case). This together with the following limit distribution
result

P(Xn 6 blog2 nc+ `) =
2{log2 n}−`

exp(2{log2 n}−`)− 1
+O

(
n−1
)
, (2)

where {x} denotes the fractional part of x, was derived in [10]. Moreover, extensions of the
above results to biased coins were also considered; see [24].

The logarithmic order (1) shows that CTLS is not only simple but also very efficient in
terms of cost complexity. We will establish a more general asymptotic pattern of this type and
clarify when a leader selection procedure is more efficient than the others.

In addition to coin-tossing with binary outcomes, the natural idea of allowing m-ary out-
comes (m > 3) with cyclic dominance has also proved fruitful in diverse applications including
leader selection. The simplest such procedure is the “rock-paper-scissors game” (RPS), which
is popular in many countries, notably in Japan, where it is called “Janken game”, meaning
the play between two fists. Many annual tournaments and championships of such games on
regional and international level are held, and have received widespread media attention. RPS
originated in China and was imported to Japan about a thousand years ago (with different
rules). Then it was modified to the current form of RPS about a century ago, and its use spread
later across Asia and to the western and the whole world. See [29, 28, 36] for a detailed ac-
count. The rules underlying RPS can be visualized by the following digraph, which indicates
the dominance relations:

rock

paper

scissors

Many variants of RPS exist. Examples include the rock-paper-scissors-well game (pop-
ular in Germany), and the rock-paper-scissors-Spock-lizard game; see the figure below and
Wikipedia’s page on RPS for more information.

The usefulness of the Janken game and its variants is not limited to select a winner or
a loser, but also to broad applications in other areas. Examples are found in evolutionary
game theory (see [17, 41]) and in biology (the field data on alternative male strategies of

3



R

P S

W
R

P

Sc Sp

L

Rock, Paper, Scissors, Well
(Germany)

Rock, Paper, Scissors,
Spock, Lizard

side-blotched-lizards [40] being a well-known example). Other biological uses are found in
food-webs, antibiotic production of bacteria, and biodiversity. In physical applications, Janken
games were also encountered in interacting particle systems with cyclic dominance [20] which
have a Lotka-Volterra system as a deterministic approximation. These systems can be extended
to nonlinear integrable systems; see [2, 21, 22]. The introduction of the spatial structure as
lattice Lotka-Volterra system drastically enriches the dynamics of interacting particles systems
and yields interesting simulation results; see [14, 27, 46, 47].

When used to select a leader among n candidates, it turns out that RPS is very inefficient in
that it requires an exponential number of rounds to resolve the overwhelming ties, in contrast
to the logarithmic complexity (1) for CTLS. More precisely, the procedure follows along the
natural way and if only two different hands are present, then the group whose hand dominates
that of the other will go on to the next stage; otherwise, the game is in a tie and has to be
repeated. The game ends when only one candidate is left who is then the leader. We will call
this procedure RPSLS.

Maehara and Ueda [31] proved that when p1 = p2 = p3 = 1
3
, the number of rounds, say Yn,

used by RPSLS satisfies
E(Yn) ∼ 1

3

(
3
2

)n
,

(cf. (1)) and, furthermore,
Yn

1
3

(
3
2

)n d−→ Exp(1),

where d−→ denotes convergence in distribution and Exp(1) represents an exponential random
variable with mean 1. While the expected exponential complexity of RPSLS under uniform
distribution of the hands cannot compete with the expected logarithmic one of CTLS, for very
small n, we have the following numerical values:

Scheme n 2 3 4 5 6 7 8

CTLS E(Xn) 4 4.83 5.52 6.09 6.58 6.99 7.35
RPSLS E(Yn) 1.5 2.25 3.21 4.49 6.22 8.65 12.1

and we see that in terms of expected number of rounds RPSLS is more efficient than CTLS
when n 6 6.
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Extensions of RPSLS to more hands than three were also studied in distributed computing
contexts by Suzaki and Osaki in several papers (see [43, 44, 45]), where partial probabilistic
analyses are provided; see also Section 3.

Our aim in this paper is to propose a general model containing all the schemes above as
special cases. More precisely, we will define a wide class of generalized Janken games with
m > 2 hands, and we will show that the different behaviors mentioned above for CTLS and
RPSLS are prototypical and find their extensive form in a general setting. More precisely, we
will show that the complexity of leader selection based on general Janken schemes exhibits a
gap theorem: the average number of rounds needed to select a leader is either of logarithmic
order or of exponential order. Moreover, we will establish stronger results including bounded
variance and the oscillations of the asymptotic distribution in the log-case, and an exponential
limit law in the exp-case.

This paper is structured as follows. In the next section, we define our generalized Janken
games and provide general tools for analyzing the number of rounds until a leader is selected.
In Section 3, we apply our results to some games. Finally, in Section 4, we discuss extensions
and other gap theorems in our model. We conclude the paper with a remark on infinite-hand
games.

2 Dichotomous behavior of the complexity
We define first the class of generalized Janken games we will analyze. Then we distinguish
between two subclasses of games (log-games and exp-games) for which the cost complexity
differs significantly from being logarithmic to being exponential. We will also derive more
precise asymptotic approximations.

The analysis of log-games will be more subtle due to the inherent periodic fluctuations in
the asymptotic approximations to the moments and the limit law, which will be clarified by
generalizing our recent approach from [15]. The analysis of exp-games, on the other hand, is
more straightforward and our results will follow by the method of moments.

2.1 Generalized Janken games
Letm > 2, and we are givenm hands {H1, . . . ,Hm}with (positive) probabilities {p1, . . . , pm}.
A generalized Janken game is played as follows. Assume that the set of hands the n players
may choose equals S = {Hi1 , . . . ,Hi`}. Then there are two situations:

• S is a (clear-cut) win-or-defeat (abbreviated as WOD) set, i.e., S = W ∪ D with W ∩
D = ∅, where W = {Hj1 , . . . ,Hjr}, 1 ≤ r < ` is a set of winning hands, meaning
that players having chosen these hands continue to play in the next round, and D =
{Hk1 , . . . ,Hk`−r

} is a set of losing hands, meaning that players having chosen these
hands are eliminated after the current round.

• The hands in S result in a tie, meaning that no one is eliminated and the round is non-
conclusive and has to be repeated.

The generalized Janken game is played one round after another until a single player remains
who is then the leader. This is always possible if there is at least one WOD set whose cardinality
is two. We refer to these games as GJLS.
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For analysis purposes, we introduce more notations. First, given S = {Hi1 , . . . ,Hi`},
define

π(S)
n :=

∑
j1+···+j`=n
j1,...,j`>1

(
n

j1, . . . , j`

)
pj1i1 · · · p

j`
i`
.

Then, by the inclusion-exclusion principle,

π(S)
n = (pi1 + · · ·+ pi`)

n

− (pi2 + · · ·+ pi`)
n − · · · −

(
pi1 + · · ·+ pi`−1

)n
+ (pi3 + · · ·+ pi`)

n + (pi2 + pi4 + · · ·+ pi`)
n + · · ·+

(
pi1 + · · ·+ pi`−2

)n
± · · · .

From this, we see that, for large n,

π(S)
n ∼ (pi1 + · · ·+ pi`)

n . (3)

Let WD denote the set of all WOD sets. Define now two game indices:

ρ := max
{Hi1

,...,Hi`
}∈WD
{pi1 + · · ·+ pi`}, (4)

and ν the number of WOD sets attaining the maximum value ρ. We distinguish between two
cases:

• log-game: ρ = 1;

• exp-game: ρ < 1.

Note that a log-game occurs if and only if {H1, . . . ,Hm} is itself a WOD set, and in this case
ν = 1. Also log-games are more meaningful when the hands are generated by purely random
mechanisms but not by intentional calculation.

We are interested in the number of rounds Xn used by n players to select a leader by GJLS,
which is one of the most important cost measures of the game. This number satisfies, by con-
sidering the size of the winning group after the first round of GJLS, the following distributional
recurrence

Xn
d
= XIn + 1 (n > 2), (5)

where the Xn’s and In’s are independent, X1 = 0, and for 1 6 j 6 n,

P(In = j) =


1−$n, if j = n;∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−j, if 1 6 j < n, (6)

where
$n :=

∑
S∈WD

π(S)
n

stands for the probability of no tie occurring. From (3) and by the definitions of ρ and ν, we
have

$n ∼ νρn. (7)
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Alternatively, instead of considering only one round, one may also wait for a random num-
ber of times Tn until a WOD set is reached. This then yields the following alternative distribu-
tional recurrence for Xn

Xn
d
= XJn + Tn (n > 2), (8)

where the Xn’s, Jn’s, and Tn’s are independent, Tn is a geometric distributed random variable
with parameter $n, X1 = 0 and for 1 6 j < n,

P(Jn = j) =
1

$n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−j. (9)

Both forms of the distributional recurrence will be useful for us; (5) will be used in the
analysis of log-games, whereas (8) is advantageous in the analysis of exp-games.

2.2 Log-games
In this subsection, we consider log-games for which ρ = 1 and ν = 1. In this case the whole
set of hands {H1, . . . ,Hm} is itself a WOD set, and we define

α :=
∑

Hj is a winning hand in {H1,...,Hm}

pj.

Denote by Xn the number of rounds to select a leader by GJLS. Such games are marked
by its complexity Xn satisfying logarithmic mean, bounded variance and periodic oscillations
of the asymptotic distributions. This is the same pattern as for CTLS; see Section 1. For the
proofs, we extend the analytic approach used in our previous paper [15].

Mean value. Let µn := E(Xn). Then, by (5), we obtain that

µn =
∑

16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jµj + (1−$n)µn + 1,

for n > 2, with the initial condition µ1 = 0.
To solve this recurrence, we consider first the Poisson generating function

f̃1(z) := e−z
∑
n>1

µn
zn

n!
.

In what follows, an “exponentially small term” is used to mean an entire function that is
bounded above by e−c<(z) for some c > 0 as |z| → ∞ in the half-plane <(z) > 0.

Lemma 1. The Poisson generating function of µn satisfies the functional equation

f̃1(z) = f̃1(αz) + 1 +
∑
16j6k

λje
−βjzf̃1(αjz)− (1 + z)e−z, (10)

with f̃1(0) = 0, where λj ∈ {−1, 1} and 0 < αj, βj < 1 are constants.
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Proof. Since ρ = 1, we see that 1−$n consists only of exponentially small terms. This implies
that we can arrange the terms and write

e−z
∑
n>1

(1−$n)E(Xn)
zn

n!
=
∑
16j6k

λje
−βjzf̃1(αjz).

On the other hand

e−z
∑
n>2

∑
16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jE(Xj)

zn

n!

= e−z
∑
S∈WD
S=W∪D

(∑
n>1

π(D)
n

zn

n!

)(∑
n>1

π(W )
n E(Xn)

zn

n!

)
.

The largest terms (as |z| → ∞ in <(z) > 0) comes from the whole set S = {H1, . . . ,Hm},
which is itself a WOD set and produces terms of the form (by (3))

e−z

(∑
n>1

π(D)
n

zn

n!

)(∑
n>1

π(W )
n E(Xn)

zn

n!

)
= f̃1(αz) +

∑
16j6k

λje
−βjzf̃1(αjz),

for some λj ∈ {−1, 1} and 0 < αj, βj < 1 (whose values may differ from one occurrence to
another). For all other WOD sets different from {H1, . . . ,Hm}, we have

∑
Hi∈S pi < 1 and

they can be regrouped as

e−z
∑
S∈WD
S=W∪D

S 6={H1,...,Hm}

(∑
n>1

π(D)
n

zn

n!

)(∑
n>1

π(W )
n E(Xn)

zn

n!

)
=
∑
16j6k

λje
−βjzf̃1(αjz),

where λj ∈ {−1, 1} and 0 < αj, βj < 1. The remaining computations are straightforward.
Thus, our claim is proved.

We will write (10) as
f̃1(z) = f̃1(αz) + 1 + φ̃1(z), (11)

where φ̃1(z) is exponentially small in the half-plane <(z) > 0.

Variance. Consider now the Poisson generating function of E(X2
n), denoted by

f̃2(z) := e−z
∑
n>1

E(X2
n)
zn

n!
.

Define
Ṽ (z) := f̃2(z)− f̃1(z)2.

Lemma 2. The function Ṽ (z) satisfies the functional equation

Ṽ (z) = Ṽ (αz) + φ̃3(z), (12)

where φ̃3(z) is an exponentially small term.
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Proof. A similar analysis as that used for f̃1(z) leads to the functional equation

f̃2(z) = f̃2(αz) + 2f̃1(αz) + 1 + φ̃2(z), (13)

where φ̃2(z) consists of exponentially small terms (involving both f̃1(z) and f̃2(z)). Then (12)
follows from (11) and (13).

Asymptotics and JS-admissibility. From the Poisson generating functions f̃1(z) (which is
indeed the expected cost Xn when n itself follows a Poisson(z) distribution), we can recover
the asymptotic behaviors of E(Xn) by the relation

µn = n![zn]ezf̃1(z).

This can be done by several means, and a by-now standard approach are the so-called analytic
de-Poissonization techniques largely developed by Jacquet and Szpankowski in [25], which
rely on the saddle-point method (see [13]). The use of such an approach can be further schema-
tized by introducing the notion of JS -admissible functions, which we formulated in [19]. We
briefly sketch the underlying ideas, and refer the interested readers to our previous papers for
more details [15, 19]. Similarly, since µn is of logarithmic order and the variance is bounded,
the function Ṽ (z) will provide a sufficiently good approximation to the variance V(Xn).

We recall the following definition from [19]. Let

Cε := {z : | arg(z)| 6 ε},

where ε > 0 is an arbitrary constant (which will subsequently be used as a generic symbol
whose value may change from one occurrence to another).

Definition 1. Let f̃(z) be an entire function and ξ, η ∈ R. Then f̃(z) is JS-admissible, written
f̃ ∈ JS (or more precisely, f̃ ∈ JSξ,η), if for 0 < φ < π/2 and all |z| > 1 the following
two conditions hold.

(I) Uniformly for z ∈ Cε,
f̃(z) = O

(
|z|ξ(log+ |z|)η

)
,

where log+ x := log(1 + x).

(O) Uniformly for φ 6 | arg(z)| 6 π,

f(z) := ezf̃(z) = O
(
e(1−ε)|z|

)
,

for some ε > 0.

Such functions enjoy closure properties under several different operations, and it is these
properties that make such a notion really useful. Also if f ∈JSξ,η, then

n![zn]f(z) =
∑

06j<2k

f̃ (j)(n)

j!
τj(n) +O

(
nξ−k(log n)η

)
(k > 1),

where

τj(n) :=
∑
06`6j

(
j

`

)
(−1)j−`

n!nj−`

(n− `)!
(j = 0, 1, . . . )
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are Charlier polynomials. In particular,

n![zn]f(z) = f̃(n)− f̃ ′′(n)

2
n+

f̃ ′′′(n)

3
n+O

(
nξ−2(log n)η

)
. (14)

Specific to our analysis, we need additionally the following property.

Lemma 3. Let f̃ and g̃ be two entire functions satisfying the functional equation

f̃(z) = f̃(αz) +
∑
16j6k

λje
−βjzf̃(αjz) + g̃(z), (15)

with f̃(0) = g̃(0) = 0, where λj ∈ R, βj > 0 and α, αj ∈ (0, 1). Then

g̃ ∈JS ⇐⇒ f̃ ∈JS .

The proof is similar to that of Proposition 3 in the Appendix of [15], and is omitted here.
From this and (11), (13), we see that f̃1 ∈ JS0,1 and f̃2 ∈ JS0,2. By (14) and the

arguments used for the variance in [19], we obtain that

E(Xn) = f̃1(n) +O
(
n−1
)
, V(Xn) = Ṽ (n) +O

(
n−1
)
. (16)

Thus for asymptotic purposes, we can entirely focus on the Poisson model. A standard ap-
proach for the asymptotics of the Poisson generating function for large |z| in similar situations
is based on the Mellin transform techniques

F ∗(s) = M [f̃ ; s] :=

∫ ∞
0

f̃(z)zs−1dz;

see [11] for an authoritative survey. We first derive the asymptotic behavior for functions
satisfying the more general equation (15). Let

φ̃(z) :=
∑
16j6k

λje
−βjzf̃(αjz).

Proposition 1. Let L := log(1/α) and χk := 2kπi/L.

(i) Assume that g̃ ∈JS ξ,η with ξ < 0. Then, as |z| → ∞ in the sector Cε,

f̃(z) =
1

L

∑
k∈Z

(Φ∗(χk) +G∗(χk)) z
−χk +O

(
|z|−min{1,ξ}(log |z|)η

)
, (17)

where Φ∗(s) := M [φ̃; s] and G∗(s) := M [g̃; s].

(ii) Assume that g̃ ∈JS and
g̃(z) = c+O

(
|z|−ξ

)
,

as |z| → ∞ in the sector Cε. Then

f̃(z) = c log1/α z +
c

2
+
d+ Φ∗(0)

L
+
∑
k 6=0

(Φ∗(χk) +G∗(χk)) z
−χk +O

(
|z|−min{1,ξ}) ,

as |z| → ∞ in Cε, where d = lims→0(G
∗(s) + c/s).
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Remark 1. Note that Fourier coefficients of the periodic functions in the above result are less
explicit due to the occurrence of f̃(z) in φ̃(z). However, in some situations (e.g., CTLS) they
can be made explicit; see [37] and the remarks in Section 3.

Proof. Consider part (i). The assumptions imply that G∗(s) exists in the strip−1 < <(s) < −ξ
and

F ∗(s) := M [f̃ ; z] =
Φ∗(s) +G∗(s)

1− α−s
, <(s) ∈ (−1, 0). (18)

Note that from the assumptions, Lemma 3 and the Exponential Smallness Lemma in [16],
we obtain that F ∗(s) decays exponentially fast along vertical lines in −1 < <(s) < −ξ.
Consequently, by standard Mellin argument, we deduce (17).

For part (ii), by the Direct Mapping Theorem in [11], we see that G∗(s) has a simple pole at
s = 0 with the singularity expansion G∗(s) � c/s+ d+ · · · . The rest of the proof then follows
as in part (i).

Collecting all results, we then derive the asymptotics of the mean and the variance.

Theorem 1 (Log-games). If ρ = 1, then the number of rounds Xn to find a leader used by
GJLS satisfies

E(Xn) = log1/α n+ P1(log1/α n) +O
(
n−1
)
,

and
V(Xn) = P2(log1/α n) +O

(
n−1
)
,

where P1(t), P2(t) are bounded, 1-periodic functions.

Limit law. We now turn to the limit law. We begin with considering the Poisson generating
function of the probability generating function of Xn

P̃ (y, z) := e−z
∑
n>1

E
(
yXn
) zn
n!
,

which satisfies the functional equation

P̃ (y, z) = yP̃ (y, αz) + y
∑
16j6k

λje
−βjzP̃ (y, αjz) + (1− y)ze−z,

where λj ∈ {−1, 1} and α, αj, βj ∈ (0, 1). Observe that

P̃ (y, z)

1− y
=
∑
`>0

Ã`(z)y`,

where
Ã`(z) := e−z

∑
n>0

P(Xn 6 `)
zn

n!
.

By dividing the above functional equation by 1− y and reading off coefficients, we obtain the
recursive functional equation

Ã`+1(z) = Ã`(αz) +
∑
16j6k

λje
−βjzÃ`(αjz), (` > 0) (19)
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with Ã0(z) = ze−z.
The equations here are similar to those in [15], and the remaining analysis follows along

the same lines there, which we now sketch. First, define R̃0(z) := Ã0(z) and for ` > 0

R̃`+1(z) :=
∑
16j6k

λje
−βjzÃ`(αjz).

Then
Ã`+1(z) = Ã`(αz) + R̃`+1(z),

which, by iteration, leads to
Ã`(z) =

∑
06j6`

R̃j

(
α`−jz

)
.

For the asymptotics, we need the JS-admissibility in a stronger uniform form.

Lemma 4. For ` > 1, Ã`(z) is uniformly JS-admissible, i.e., for | arg(z)| 6 ε, 0 < ε < π/2,

Ã`(z) = O (|z|ε1) , (20)

uniformly in z, and, for ε 6 | arg(z)| 6 π,

ezÃ`(z) = O
(
e(1−ε2)|z|

)
, (21)

uniformly in z. Here the involved constants in both cases are absolute and ε1, ε2 are positive
constants.

Proof. The proof is similar to that of Lemma 3 in [15].
Then, by standard de-Poissonization arguments [19, 25], we deduce that

P(Xn 6 `) =
∑
06j6`

R̃j

(
α`−jn

)
+O

(
n−1+ε

)
,

uniformly in `. On the other hand, by the definition of R̃j(x), we see that |R̃j(x)| 6 e−px for
some p > 0. Consequently,∑

j>`

R̃j

(
α`−jn

)
6
∑
j>`

e−pα
`−jn =

∑
j>1

e−pα
−jn = O

(
e−pn

)
.

The latter implies that

P(Xn 6 `) =
∑
j>0

R̃j

(
α`−jn

)
+O

(
n−1+ε

)
,

uniformly in `.
Replacing now ` by blog1/α nc+ `, and writing ϑ(n) = {log1/α n}, we obtain

P(Xn 6 blog1/α nc+ `) =
∑
j>0

R̃j

(
α−ϑ(n)+`−j

)
+O

(
n−1+ε

)
.

We summarize the analysis as follows.
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Theorem 2 (Log-games). If ρ = 1, then the number Xn of rounds used by GJLS until a leader
is selected satisfies

P(Xn 6 blog1/α nc+ `) =
∑
j>0

R̃j

(
α−ϑ(n)+`−j

)
+O

(
n−1
)
,

uniformly in `.

The improved error term comes from refining the above analysis (by expanding more terms
in the de-Poissonization procedure).

Remark 2. It is possible to derive more explicit expressions for Ã`(z) and R̃j(z) in Theorem 2,
but they are generally messy. For that purpose, rewrite (19) as

Ã`+1(z) =
∑
06j6k

λje
−βjzÃ`(αjz),

where λ0 = 1, α0 = α and β0 = 0. Iterating yields

Ã`(z) =
∑

j=(j1,...,j`)∈{0,...,k}`
λje
−

∑`
i=1 αj1

···αji−1
βjizÃ0(αjz),

where λj = λj1λj2 · · ·λj` , and αj = αj1αj2 · · ·αj` . Since Ã0(z) = ze−z, we then have

Ã`(z) = z
∑

j=(j1,...,j`)∈{0,...,k}`
αjλje

−
∑`+1

i=1 αj1
···αji−1

βjiz,

with j`+1 := 1. We will give some examples for which this expression simplifies in Section 3.

2.3 Exp-games
In this section we consider the exp-games for which ρ < 1 and the probability $n of tie occur-
ring satisfies $n ∼ νρn. We show that Xn converges (with all its moments) to an exponential
distribution.

Theorem 3 (Exp-games). Assume ρ < 1. The number of rounds Xn used to select a leader by
GJLS converges in distribution and with all moments to an exponential distribution:

νρnXn
d−→ Exp(1),

where Exp(1) denotes an exponential random variable with mean one. In particular,

E(Xn) ∼ ν−1ρ−n.

The proof relies on the recurrence (8) using the method of moments.
First, taking the m-th moment on both sides of (8) gives (µn,m := E (Xm

n ))

µn,m =
∑

06k6m

(
m

k

)
E
(
Tm−kn

)
µJn,k

=
1

$n

∑
06k6m

(
m

k

)
E
(
Tm−kn

) ∑
16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jµj,k. (22)

13



We single out the terms corresponding to k = m and have

µn,m =
1

$n

∑
16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jµj,m

+
1

$n

∑
06k<m

(
m

k

)
E
(
Tm−kn

) ∑
16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jµj,k. (23)

The proof proceeds in two steps: first, we derive an upper bound for µn,m, and then we refine it
and get a more precise asymptotic approximation to µn,m.

Lemma 5. For m > 0,
E(Tmn ) = O

(
ρ−nm

)
.

Proof. This follows from the fact that E(Tmn ) = P ($−1n ), where P (x) is a polynomial of degree
m (without constant term), and the asymptotics (7) of $n.

We now use this to find a similar bound for µn,m.

Lemma 6. For m > 0,
µn,m = O

(
ρ−nm

)
.

Proof. We prove by induction that

µn,m 6 cmρ
−nm, (24)

for some constants cm.
Assume that the bound (24) is proved for all moments of order < m and for the m-th

moment for all indices < n. To prove it for n, we use (23). First, observe that

1

$n

∑
06k<m

(
m

k

)
E(Tm−kn )

∑
16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jµj,k

= O

 1

$n

∑
06k<m

ρ−n(m−k)
∑

16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jρ

−jk


= O

(
ρ−nm

)
.

Thus
1

$n

∑
06k<m

(
m

k

)
E(Tm−kn )

∑
16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jµj,k 6 dmρ

−nm

for a suitable constant dm. By this bound, induction hypothesis and (23), we obtain that

µn,m 6
cm
$n

∑
16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jρ

−jm + dmρ
−nm

6 (ρmcm + dm) ρ−nm 6 cmρ
−nm,

where the last step follows by choosing cm such that cm > dm/(1− ρm).
Now we refine Lemma 5.
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Lemma 7. For m > 0,

E(Tmn ) ∼ m!

νmρnm
. (25)

Proof. The moment generating function of $nTn is given by

E(e$nTnt) =
$ne

$nt

1− (1−$n)e$nt
.

Since $n → 0, we see that

E(e$nTnt)→ 1

1− t
,

for |t| < 1. The latter is the moment generating function of an exponential distribution with
mean 1. Consequently, we have

E($nTn)m → m! (m > 0),

which, together with the asymptotics of $n, proves (25).
We now prove a similar result for µn,m. Rewrite (22) as follows.

E(Xm
n ) = E(Tmn ) +

1

$n

∑
16k6m

(
m

k

)
E(Tm−kn )

∑
16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jµj,k. (26)

Lemma 8. For m > 0,

µn,m ∼
m!

νmρnm
. (27)

Proof. We use (26). First the second term on the right hand side of (26) is bounded above by

1

$n

∑
16k6m

(
m

k

)
E(Tm−kn )

∑
16j<n

∑
S∈WD
S=W∪D

(
n

j

)
π
(W )
j π

(D)
n−jµj,k

= O

ρ−n ∑
16k6m

ρ−n(m−k)
∑
S∈WD
S=W∪D

∑
16j<n

(
n

j

)
π
(W )
j π

(D)
n−jρ

−jk


= O

 ∑
16k6m

ρn(m−k+1)
∑
S∈WD
S=W∪D

(
ρ−k

∑
j∈W

pj +
∑
`∈D

p`

)n


= O

((
ρ̃

ρ

)n
ρ−nm

)
,

where

ρ̃ = max

{∑
j∈W

pj + ρ
∑
j∈D

pj : S = W ∪D ∈ WD

}
.

Since ρ̃ < ρ, we see that (ρ̃/ρ)n is exponentially smaller than 1. Thus by substituting the above
estimate and Lemma 7 into (26), we prove (27).

The estimates (27) imply the convergence in distribution of Xn by the method of moment.
This proves Theorem 3.
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3 Applications
We apply in this section the previous theorems to a few concrete cases.

CTLS. For leader selection by coin tossing, the set of hands is given by {H1,H2}, where
H1 corresponds to head, and H2 to tail. The only one WOD set is {H1,H2}, where H1 is the
winning hand and H2 the losing hand. The remaining subsets of hands all lead to ties. Thus
CTLS is a log-game and both Theorems 1 and 2 apply.

For instance, in the case of an unbiased coin (i.e., p1 = p2 = 1
2
), we obtain $n = 1− 21−n,

and for (6)

P(In = j) =

21−n, if j = n;

2−n
(
n

j

)
, if 1 6 j < n.

Thus the functional equation (15) satisfied by the Poisson generating functions of the moments
has the form

f̃(z) =
(
1 + e−z/2

)
f̃
(z

2

)
+ g̃(z),

with f̃(0) = g̃(0) = 0, which can be further simplified by considering

f̂(z) :=
f̃(z)

1− e−z
, ĝ(z) :=

g̃(z)

1− e−z
,

so that (by ĝ(0) = 0)
f̂(z) = f̂

(z
2

)
+ ĝ(z) =

∑
j>0

ĝ
( z

2j

)
.

From this we can derive an explicit expression for the Fourier coefficients in Proposition 1
(compare Remark 1); see [37] for details.

Furthermore, the Poisson generating function for the distribution function satisfies (see
(19))

Ã`+1(z) =
(
1 + e−z/2

)
Ã`

(z
2

)
.

Then by Remark 2, the sum on the right-hand side in Theorem 2 indeed simplifies to the
expression in (2).

In addition, our results also apply to the case of an unbiased coin (p1 6= p2) and one then
recovers the results from [24]. In this case, the sum on the right-hand side in Theorem 2 can be
written more elegantly as an integral with respect to a suitable defined point measure; see [24]
for details.

RPSLS. For the classical Janken (RPS) game, the set of hands is {H1,H2,H3} and all sub-
sets of cardinality two are WOD sets, i.e., {H1,H2}, {H1,H3} and {H2,H3}, all other sub-
sets leading to ties. Thus RPSLS is an exp-game and Theorem 3 applies.

For instance, for p1 = p2 = p3 = 1
3
, we have ρ = 2

3
and ν = 3 and one recovers the main

result from [31]; see also Section 1.

Other three-hand games. Apart from RPSLS many other games with three hands are possi-
ble. We content ourselves here with a short discussion of games defined on a dominance graph
with p1 = p2 = p3 = 1

3
. All five connected dominance graphs are given as follows.
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I II III IV
V

The games based on these graphs are played in a natural way. Only the GJLS arising from
Graph V requires some more explanation. Assume that the hands are {H1,H2,H3}, where
Hi corresponds to the i-th node from the top to the bottom on Graph V. Then all WOD sets
are {H1,H2,H3} (with H1 the winning hand), {H1,H2} (with H1 the winning hand) and
{H2,H3} (with H2 the winnings hand). In particular, note that we define {H1,H3} as a tie
(no transitivity); for a more general definition of games arising from general dominance graphs,
see the paragraph on Janken games around the world below.

Note that the GJLS defined on Graph I corresponds to RPSLS and is the only exp-game;
games on all other graphs are log-games.

For instance, the GJLS defined on Graph II has $n = 1− 31−n, and (6) has the form

P(In = j) =

31−n, if j = n;

3−n
(
n

j

)
(2n−j + 1) , if 1 6 j < n.

The mean and the variance are then described by applying Theorem 1. For the limit law,
observe that (19) becomes

Ã`+1(z) =
(
1 + e−z/3 + e−2z/3

)
Ã`

(z
3

)
.

Then the explicit expression in Remark 2 specializes to

Ã`(z) =
z

3`
e−z/3

`
∏

16j6`

(
1 + e−z/3

j

+ e−2z/3
j
)
,

and one then obtains for the sum on the right-hand side in Theorem 2∑
j>0

R̃j(3
jz) = ze−z + ze−z

∑
k>0

(
e−3

kz + e−2·3
kz
) ∏

06j<k

(
1 + e−3

jz + e−2·3
jz
)

=
z

ez − 1
.

Note that this gives the same result as for CTLS with an unbiased coin, with the only difference
that 2 is replaced by 3 in (2); for a generalization with 2 replaced by any number m see the next
paragraph below.

Consider now the games defined on Graphs III and IV, which can be seen to correspond
to CTLS with a biased coin whose probability of head is either 1

3
(Graph III) or 2

3
(Graph IV).

For example, for the game defined on Graph III, we have $n = 1 − (2n + 1)3−n and then (6)
becomes

P(In = j) =

(2n + 1)3−n, if j = n;
2n−j

3n

(
n

j

)
, if 1 6 j < n.
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Finally, the GJLS defined on Graph V is also equivalent to CTLS with a biased coin, and
$n and (6) are identical to those of the GJLS on Graph III.

In summary, there are exactly five different three-hand games defined on connected domi-
nance graphs, where hands are chosen uniformly at random. One of them is an exp-game and
all others are log-games. Moreover, the exp-game is RPSLS and three of the four log-games
correspond to CTLS with a biased coin. Finally, the fourth log-game is a natural extension of
CTLS from two hands to three hands.

Janken games on acyclic cliques and CTLS. We consider Janken games defined on a di-
rected acyclic clique. Note that such a clique contains exactly one node of out-degree i for
i = 0, . . . ,m− 1; see the following graphs for m = 2, . . . , 6.

The GJLS (played in the natural way) on such a directed acyclic graph is a natural extension
of CTLS with an unbiased coin, and the GJLS from the previous paragraph on Graph II. The
functional equation for the moments becomes

f̃(z) =
(
1 + e−z/m + e−2z/m + · · ·+ e−(m−1)z/m

)
f̃
( z
m

)
+ g̃(z).

Thus the same normalization technique as that used for CTLS with an unbiased coin applies,
and the Fourier coefficients in Theorem 1 can be made more explicit.

Moreover, for the asymptotic distribution, we have

Ã`+1(z) =
(
1 + e−z/m + e−2z/m + · · ·+ e−(m−1)z/m

)
Ã`

( z
m

)
,

which gives again the same form as (2) but with 2 there replaced by m.

Regular tournament Janken games. A tournament is a directed graph (digraph) obtained
by assigning a direction for every edge in a complete graph. A regular tournament of 2m + 1
nodes is a tournament in which every node dominates exactly m other nodes and is dominated
by the remaining m nodes.

Typical examples of regular tournaments are the dominance graphs of RPSLS and the rock-
paper-scissors-Spock-lizard game. Also the dominance graph of the rock-paper-scissors-well
game is a subtournament of the rock-paper-scissors-Spock-lizard game. Note that up to isomor-
phism there is only one regular tournament of 5 nodes, two regular tournaments of 7 nodes, and
the number increases very rapidly with the number of nodes. The case of regular tournaments
on infinitely many nodes also makes sense and will be briefly discussed in Section 5.

We consider a class of Janken games arising from a regular tournament generalizing the
RPS game. The hands {H1, . . . ,H2m+1} correspond to the nodes of the regular tournament.
For instance, the hands can be ordered cyclically such that Hi dominates Hj for j − i ≡
{1, . . . ,m} mod (2m + 1). The game is played as follows: if the n players choose the hands
S = {Hi1 , . . . ,Hi`}, then the game is in a tie if and only if either of the following condition
holds:
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B

S

R P

W

G

C

R T

F

Bird, Stone, Revolver, Plank, Water

(MALAYSIA)

God, Chicken, Rifle, Termite, Fox

(Guangdong, CHINA)

• S is a singleton, or

• the induced subgraph of S contains a cycle.

Otherwise the game is in a WOD situation.
Since by definition, the set of all hands is a tie, this is an exp-game. Thus the cost of this

Janken game is described by Theorem 3. For instance, if pi = 1/(2m+ 1) for 1 6 i 6 2m+ 1,
then ρ = (m+ 1)/(2m+ 1) and ν = 2m+ 1. On the other hand, if we do not count rounds in
which the induced subgraph of S contains a cycle, then the number of steps needed is predicted
by Theorem 1 and Theorem 2; see Section 4 where counting without ties is considered in more
generality.

Some other Janken games around the world. Many variants of RPS are played all over
the world. Examples include (i) the rock-paper-scissors-well game in Germany; (ii) the bird-
stone-revolver-plank-water game in Malaysia, and (iii) the god-chicken-rifle-termite-fox game
in Guangdong province (in China); see the following figure for an illustration of (ii) and (iii).
See also [31].

All the three games (i)–(iii) are mainly played as two-person games. They can be general-
ized to n-person games. More precisely, assume that the hands are given by {H1, . . . ,Hm}.
If the n players choose the hands S = {Hi1 , . . . ,Hi`}, then we consider the subgraph induced
by these hands. The game is in a tie if and only if either the subgraph consists only of isolated
nodes or there is a cycle in one of the connected components of the subgraph. (Note that in
contrast to the regular tournament Janken game, induced subgraphs are now not necessarily
connected). Thus, if S is a WOD set (i.e., not a tie), then the induced subgraph has at least one
node with only outgoing edges. All these nodes together with the isolated nodes form the set
of winning hands; the remaining hands are the losing hands.

As an example, assume that in the god-chicken-rifle-termite-fox game, the players choose
the hands {G,C, F}. Then this set is a WOD set where {G,F} are the winning hands and {C}
is the losing hand.

The games (i)–(iii) are all of exponential type since there are cycles in the dominance
graphs. Thus the number of rounds is described by Theorem 3. For instance, if hands are
chosen uniformly at random, then one obtains the following game indices:
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GJLS ρ ν

(i) rock-paper-scissors-well 3
4

2

(ii) rock-stone-revolver-plank-water 4
5

1

(iii) god-chicken-rifle-termite-fox 4
5

3

Games on a circulant payoff matrix. These games where introduced in [45] for selecting a
leader in a distributed system. In contrast to all the previous games, they are not defined via an
underlying dominance graph. We first recall their definition.

The games are played with 2m+ 1 hands {H1, . . . ,H2m+1}, where for 1 6 i, j 6 2m+ 1
with i 6= j, the hand Hi gets a payoff of 2m+g(i,j) from Hj . Here i− j ≡ g(i, j) mod (2m+ 1)
with −m 6 g(i, j) 6 m. If the players choose the hands S = {Hi1 , . . . ,Hi`}, then the total
gain of Hij is defined as

Gij ,S =
∑

Hik
∈S

2m+g(ij ,ik).

Denote by SM the subset of hands from S with the maximal total gain. Then S is a WOD set
with winning hands SM and losing hands S \ SM if and only if #SM < #S.

Examples of a three-hand game and a five-hand game defined on circulant payoff matrices
are given in Figure 1. Note that m = 1 corresponds to RPSLS. On the other hand, the game
with m = 2 is different from the rock-paper-scissors-Spock-lizard game since there are more
WOD sets in the former. This is also the reason why the five-hand circulant payoff matrix game
was described as more efficient than the five-hand regular tournament Janken game in [45].

hands rock paper scissors
rock 21 20 22

paper 22 21 20

scissors 20 22 21

hands H1 H2 H3 H4 H5

H1 22 21 20 24 23

H2 23 22 21 20 24

H3 24 23 22 21 20

H4 20 24 23 22 21

H5 21 20 24 23 22

Table 1: Three-hand (left) and five-hand (right) circulant payoff matrix game.

The set of all hands in a circulant payoff matrix game is obviously a tie because each hand
has the same total gain. Thus, circulant payoff matrix games are of exponential type and their
complexity are described by Theorem 3. For instance, if pi = 1/(2m+ 1) for 1 6 i 6 2m+ 1,
then ρ = 2m/(2m+1) and ν = 2m+1. This generalizes the observation made in [45], namely,
(2m + 1)-hand circulant payoff matrix games are more efficient than (2m + 1)-hand regular
tournament games.

4 Extensions and Other Gap Theorems
Another equally important cost measure for GJLS is the total number of hands used until a
leader is selected, which corresponds to the number of times the random variate is generated
if the hands are generated by random mechanisms. We show that instead of the log-exp com-
plexity change, there is a change from linear to exponential for the expected cost; also the limit
law exists in either case (log or exp).
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On the other hand, we saw, from the above analysis, that ties play a crucial role in distin-
guishing between log-games and exp-games. We examine in this section the contribution of
ties in slightly more detail. More precisely, we discuss the number of rounds until a leader is
selected when ties are ignored.

4.1 The total number of hands
We consider here the total number of hands Yn used by all players before finding a leader by
GJLS. It turns out that Yn exhibits a scale change from linear (ρ = 1) to exponential (ρ < 1).

We begin with the case ρ = 1 for which we have the recurrence (cf. (5))

Yn
d
= YIn + n, (n > 2),

where Yn, In are independent, Y1 = 0 and In is defined in (6).
While the asymptotic distribution of Xn is dictated by periodic oscillations, the distribution

of Yn follows a central limit theorem.

Theorem 4 (Log-games). The total number of hands Yn used by GJLS to find a leader in
log-games (ρ = 1) is asymptotically normally distributed

Yn − E(Yn)√
V(Yn)

d−→ N (0, 1),

where N (0, 1) denotes the standard normal distribution. Furthermore, the mean and the vari-
ance satisfy

E(Yn) =
1

1− α
n+ P3(log1/α n) + o(1),

V(Yn) =
α

(1− α)2
n+ P4(log1/α n) log n+O(1),

(28)

where P3(z), P4(z) are one-periodic functions.

Proof. (Sketch) As in Section 2.2, we consider

f̃1(z) := e−z
∑
n>1

E(Yn)
zn

n!
and f̃2(z) := e−z

∑
n>1

E(Y 2
n )
zn

n!
,

which, by a similar computation as in Section 2.2, satisfy the functional equations

f̃1(z) = f̃1(αz) + z + φ̃1(z)

f̃2(z) = f̃2(αz) + 2zf̃1(αz) + 2αzf̃ ′1(αz) + z2 + z + φ̃2(z),

where φ̃1(z) and φ̃2(z) are finite sums of exponentially small terms.
The proof of (28) then follows the same line of arguments as that of Theorem 1 except for

the variance for which we need to consider the Poissonized variance (see [19])

Ṽ (z) := f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2,

21



which then satisfies the equation

Ṽ (z) = Ṽ (αz) + α(1− α)zf̃ ′1(αz)2 + φ̃3(z),

where φ̃3(z) consists of exponentially small terms.
Finally, the central limit theorem can be proved either by the method of moments using

the shifting-the-mean technique (see [5]) or by the contraction method [33]; details are omitted
here.

Note that for CTLS with an unbiased coin, it was proved in [37] that E(Yn) = 2n (α = 1
2
).

This is a rather exceptional result which does not seem to hold in general. Furthermore, in this
case, P4(z) ≡ 0.

We now consider exp-games (ρ < 1). Here the total number of hands used satisfies the
distributional recurrence

Yn
d
= YJn + nTn, (n > 2),

where Yn, Jn, Tn are independent, Tn is a geometrically distributed random variable with pa-
rameter $n, Y1 = 0 and Jn is defined in (9).

Then the same approach used in Section 2.3 applies and we obtain the same exponential
limit law for Yn.

Theorem 5 (Exp-games). The total number of hands Yn used to find a leader by GJLS in
exp-games (ρ < 1) satisfies

νρn

n
Yn

d−→ Exp(1),

where Exp(1) denotes an exponentially distributed random variable with mean one. In addi-
tion, we have convergence of all moments. In particular, the mean satisfies

E(Yn) ∼ n

νρn
.

Overall, we see that the total number of hands used by GJLS exhibits a sharp scale change
from linear to exponential.

4.2 Counting without ties
Denote by Zn the number of rounds used by GJLS until a leader is selected where ties are
ignored. Then Zn satisfies the same recurrence as (8) with Tn there replaced by 1, namely,

Zn
d
= ZJn + 1, (n > 2),

where Zn, Jn are independent, Z1 = 0 and Jn is defined in (9). It turns out that in such a case
the expected cost is always logarithmic, independent of ρ. For simplicity, we consider only the
mean.

We introduce first some notations. Denote by S1, . . . Sν the WOD sets for which the maxi-
mum is attained in (4). Furthermore, define

α` :=
∑

Hj∈W`

pj, (1 6 ` 6 ν),

22



where W` is the set of winning hands belonging to S`.
By the same arguments used in Section 2.2, we obtain the functional equation

f̃1(z) =
1

ν

∑
16`6ν

f̃1

(
α`
ρ
z

)
+ 1 + φ̃1(z),

with f̃1(0) = φ̃1(0) = 0, where

f̃1(z) := e−z
∑
n>1

E(Zn)
zn

n!
,

and φ̃1(z) is a finite sum of exponentially small terms.
Asymptotics of E(Zn) then follows from the same Mellin and de-Poissonization arguments

we used above. The major difference here is that the Mellin transform of f̃1(z) has now the
denominator

1− 1

ν

∑
16`6ν

(
ρ

α`

)s
,

instead of 1− α−s when ρ = 1; see (18).
For the inverse Mellin transform, one needs to clarify the set of zeros of this function for

which much has been known; see [9, 12] for more information. First, it is easy to see that all
zeros must satisfy <(s) > 0. Moreover, it is well-known that s = 0 is the only zero on the
vertical line <(s) = 0 if and only if at least one of the ratios log(ρ/αj)/ log(ρ/αk) is irrational.
Note that if the latter does not hold, then there exits an r > 1 such that ρ/αj = rκj for positive
integers κj , and there are infinitely many zeros on <(s) = 0 that are equally spaced along this
line; for these and related properties see, e.g., [12] and references therein.

Using this and the approach from Section 2.2, we obtain the following result.

Theorem 6. The expected number of rounds Zn, counted without ties, used by GJLS to find a
leader satisfies

E(Zn) = hν log n+ P (logr n) + o(1),

where
hν :=

1

1
ν

∑
16`6ν log

(
ρ
α`

) ,
and P (z) is a constant if at least one of the ratios log(ρ/αj)/ log(ρ/αk) is irrational, and is a
one-periodic function otherwise.

Thus ties dominate in an exp-game.

5 A concluding remark
In this paper, we discussed leader selection based on generalized Janken games. Our framework
contains as special cases the classical leader selection procedure using coin-tossing, which is
widely used in computer science and related areas, and the popular two-person RPS game (and
its variants), which is played in many countries and is of importance in game theory, biology
and physics. We showed that leader selection based on the latter as well as many other previous
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examples of Janken games exhibit only dichotomous behaviors: either very efficient of log-
order or very laborious of exp-order.

We conclude this paper with a remark on an infinite-hand Janken game generalizing the
regular tournament Janken game introduced in Section 3.

Assume that the n players choose points uniformly at random on the surface of the unit
sphere in the `-space. Then the probability that all points lie on the same hemisphere [50] is

21−n
∑
06j<`

(
n− 1

j

)
.

Consider the unit circle (` = 2). Assume that two players choose points P and Q, respectively.
We define the dominance relation according to the clockwise arc-length: if the clockwise arc-
length from Q to P is larger than the counter-clockwise one, then we say that Q dominates P
(or Q wins); see [23]. Obviously, there is a winner whenever all players choose points lying
on the same semicircle; otherwise, the game is in a tie. The expected time until a winner is
selected is 1/p− 1, where p is the probability that all points lie on the same semicircle. By the
above result, the latter probability is given by p = n/2n−1 and, consequently, the expected time
is given by

n−12n−1 − 1.

This is again a game of exponential type. Note that its discrete version is the regular tournament
Janken game with pi = 1/(2m+ 1) for 1 6 i 6 m.
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