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Abstract

In a recent paper, Bindjeme and Fill obtained a surprisingly easy exact formula for the L2-distance
of the (normalized) number of comparisons of Quicksort under the uniform model to its limit. Shortly
afterwards, Neininger proved a central limit theorem for the error. As a consequence, he obtained the
asymptotics of the L3-distance. In this short note, we use the moment transfer approach to re-prove
Neininger’s result. As a consequence, we obtain the asymptotics of the Lp-distance for all 1 ≤ p <∞.

1 Introduction
Quicksort, an algorithm proposed by Hoare [6], is one of the most important sorting algorithms. It has
been analyzed in many papers under the so-called uniform random model which assumes that the input
is a random permutation of size n. One of the most popular characteristics is the number of comparison
which we are going to denote by Cn.

First, it is straightforward to show that, as n→∞,

E(Cn) = 2(n+ 1)Hn − 4n ∼ 2n log n,

were Hn =
∑

1≤j≤n(1/j) denotes the n-th harmonic number. Moreover, as n→∞,

Var(Cn) ∼
(

7− 2

3
π2

)
n.

As for more refined stochastic properties, Régnier [10] used martingale theory to prove that

Yn :=
Cn − E(Cn)

n+ 1

converges to a non-degenerate limit Y both almost surely and in Lp for all 1 ≤ p <∞, i.e.,

lim
n→∞

‖Yn − Y ‖p = 0,
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where ‖X‖p = (E|X|p)1/p, 1 ≤ p <∞, for a random variableX (here, Yn and Y are all constructed on the
same probability space which, for instance, can be done via random binary search trees). Régnier’s result
implies weak convergence of Yn to Y . This was also proved by Rösler [11] who in addition constructed
a random variable satisfying a distributional equation and proved that this random variable has the same
distribution as Y . Recently, Bindjeme and Fill proved that the random variable constructed by Rösler is
even almost surely equal to Y and they constructed random variables Y (0) and Y (1) with

Y = UY (0) + (1− U)Y (1) + C(U),

where U, Y (0) and Y (1) are independent, Y (0) and Y (1) have the same distribution as Y , U is a uniform
distributed random variable on [0, 1] and

C(x) := 1 + 2x log x+ 2(1− x) log(1− x).

Fill and Janson [3] further refined the above results by studying the rate of convergence of Yn to Y .
They proved that for the minimal Lp metric lp, we have

lp(Yn, Y ) = O
(

1√
n

)
, lp(Yn, Y ) = Ω

(
log n

n

)
.

Moreover, they proved for the Kolmogorov–Smirnov distance ρ that for all ε > 0, we have

ρ(Yn, Y ) = O
(

1

n(1/2)−ε

)
, ρ(Yn, Y ) = Ω

(
1

n

)
.

Finally, Neininger and Rüschendorf [9] proved that for the Zolotarev metric ζ3, we have

ζ3(Yn, Y ) = Θ

(
log n

n

)
.

Very recently, Bindjeme and Fill in [1] obtained the following surprisingly easy exact formula for the
L2-distance of Yn to Y :

‖Yn − Y ‖2 =

(
1

n+ 1

(
2Hn + 1 +

6

n+ 1

)
− 4

∞∑
j=n+1

1

j2

)1/2

∼
√

2 log n

n
. (1)

Also very recently, Neininger [8] proved the following central limit theorem (CLT):√
n

2 log n
(Yn − Y )

d−→ N(0, 1). (2)

As a consequence of his proof, he obtained that, as n→∞,

‖Yn − Y ‖3 ∼
2

π1/6

√
log n

n
.

The purpose of this note is two-fold. First, we are going to re-prove Neininger’s result (2) with the
moment-transfer approach. Second, as a consequence of our proof, we will obtain the following result.

Theorem 1. We have for the Lp-distance of the (normalized) number of comparisons of quicksort Yn to its
limit Y that, as n→∞,

‖Yn − Y ‖p ∼
2(Γ((p+ 1)/2))1/p

π1/(2p)

√
log n

n
.
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2 CLT via the Moment-Transfer Approach
The moment-transfer approach was used in many recent papers in the analysis of algorithms. For instance,
for Quicksort-type recurrences, it was applied by Hwang and Neininger [7]; see also Fill and Kapur [4]
and the very general framework proposed by Chern, Hwang, and Tsai [2].

Before we can start with our proof, we collect some useful results.
First, we need the following result by Bindjeme and Fill [1]: for n ≥ 1, we have the following (sample-

pointwise) recurrence

Yn − Y =
In + 1

n+ 1

(
Yn,0 − Y (0)

)
+
n− In
n+ 1

(
Yn,1 − Y (1)

)
+

(
In + 1

n+ 1
− U

)
Y (0)

+

(
n− In
n+ 1

− (1− U)

)
Y (1) +

n

n+ 1
Cn(In + 1)− C(U), (3)

where C(x), Y (0), Y (1) and U are from the introduction; given {U = u} we have that In
d
= Binom(n −

1, u); given {In = j} we have that Yn,0 and Yn,1 are independent and distributed as Yj and Yn−1−j ,
respectively; and

Cn(i) :=
1

n
(E(Ci−1) + E(Cn−i)− E(Cn) + n− 1) .

For the sake of simplicity, we will use the notation

Tn :=

(
In + 1

n+ 1
− U

)
Y (0) +

(
n− In
n+ 1

− (1− U)

)
Y (1) +

n

n+ 1
Cn(In + 1)− C(U). (4)

Next, we recall the following lemma which was obtained by Neininger in [8].

Lemma 1. We have,

‖Tn‖p = O
(

1√
n

)
.

Proof. In Lemma 2.2 of [8], this was proved for p = 3. However, a careful inspection of the proof shows
that it holds in fact for all 1 ≤ p <∞.

Using the above notation, (3) becomes

(n+ 1)(Yn − Y ) = (In + 1)
(
Yn,0 − Y (0)

)
+ (n− In)

(
Yn,1 − Y (1)

)
+ (n+ 1)Tn. (5)

Now, set
A[k]
n = E

(
(n+ 1)k(Yn − Y )k

)
.

Raising the above equation to the k-th power and taking expectation yields, for n ≥ 1,

A[k]
n =

2

n

n−1∑
j=0

A
[k]
j +B[k]

n , (6)

where

B[k]
n =

∑
i1+i2+i3=k
0≤i1,i2<k

(
k

i1, i2, i3

)
E
(

(In + 1)i1
(
Yn,0 − Y (0)

)i1
(n− In)i2

(
Yn,1 − Y (1)

)i2
(n+ 1)i3T i3n

)
. (7)

The above recurrence for A[k]
n was extensively studied. For instance, in [7], [4], and [2], the authors

derived very general (asymptotic) transfer theorems. We recall one result which we will need in the sequel.
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Lemma 2. Let (bn)n≥1 be a given sequence and define a sequence (an)n≥0 by

an =
2

n

n−1∑
j=0

aj + bn

for n ≥ 1 with arbitrary initial value a0. Let α > 1 and β be positive real numbers.

(i) If bn = nα logβ n, then

an =
α + 1

α− 1
nα logβ n+O

(
nα logβ−1 n

)
.

(ii) If bn = O
(
nα logβ n

)
, then

an = O
(
nα logβ n

)
.

Using the above two lemmas and (6), we will prove the following result.

Proposition 1. For integers m ≥ 1, we have

A[2m−1]
n = O

(
nm−(1/2) logm−1 n

)
and

A[2m]
n = gmn

m logm n+O
(
nm logm−1 n

)
,

where gm = (2m)!/m!.

Proof. We prove this result by induction on m, where in addition we prove that

E
(
(n+ 1)2m−1|Yn − Y |2m−1

)
= O

(
nm−(1/2) logm−(1/2) n

)
. (8)

For m = 1, observe that the claim trivially holds for A[1]
n and by (1) holds for A[2]

n . Also, (8) follows
from (1) since

‖Yn − Y ‖1 ≤ ‖Yn − Y ‖2 = O

(√
log n

n

)
.

Now, assume that the claim is true for all m′ < m. We are going to prove it for m. We will only
present the proof for A[2m−1]

n and A
[2m]
n . The proof of (8) is slightly different and will be done in an

appendix (actually, (8) has to be proved first since it will be used below).
We start with A[2m−1]

n . First consider (7) which we break into two parts

B[2m−1]
n = Σ0 + Σ1

according to whether in the summation i3 = 0 or i3 ≥ 1, respectively.
For Σ0, we obtain

Σ0 =
2m−2∑
i=1

(
2m− 1

i

)
E
(

(In + 1)i
(
Yn,0 − Y (0)

)i
(n− In)2m−1−i

(
Yn,1 − Y (1)

)2m−1−i)
=

2m−2∑
i=1

(
2m− 1

i

)
1

n

n−1∑
j=0

A
[i]
j A

[2m−1−i]
n−1−j .
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Note that either i is odd or 2m− 1− i is odd. Consequently, by using the induction hypothesis,

Σ0 = O
(
nm−(1/2) logm−1

)
.

Next, we consider Σ1. Here, by an application of Hölder’s inequality, we have

E
(

(In + 1)i1
∣∣Yn,0 − Y (0)

∣∣i1 (n− In)i2
∣∣Yn,1 − Y (1)

∣∣i2 (n+ 1)i3|Tn|i3
)

≤ ‖(In + 1)
(
Yn,0 − Y (0)

)
‖i12m−1‖(n− In)

(
Yn,1 − Y (1)

)
‖i22m−1‖(n+ 1)Tn‖i3i3(2m−1)/(2m−1−i1−i2) (9)

Consequently, by using (8) and Lemma 1, we obtain

Σ1 = O
(
nm−(1/2) logm−1

)
.

Putting the above two estimates for Σ0 and Σ1 together gives

B[2m−1]
n = O

(
nm−(1/2) logm−1

)
.

From this, the claim for A[2m−1]
n follows from Lemma 2.

Next, we consider A[2m]
n . We again start from (7) which we now break into three parts

B[2m]
n = Σ0 + Σ1 + Σ2

according to whether in the summation i3 = 0, i3 = 1 or i3 ≥ 2, respectively.
For Σ0, we have

Σ0 =
m−1∑
i=1

(
2m

2i

)
E
(

(In + 1)2i
(
Yn,0 − Y (0)

)2i
(n− In)2m−2i

(
Yn,1 − Y (1)

)2m−2i)
+

m−1∑
i=0

(
2m

2i+ 1

)
E
(

(In + 1)2i+1
(
Yn,0 − Y (0)

)2i+1
(n− In)2m−2i−1

(
Yn,1 − Y (1)

)2m−2i−1)
.

Plugging the induction hypothesis into the first term on the right-hand side yields

Σ00 :=
m−1∑
i=1

(
2m

2i

)
E
(

(In + 1)2i
(
Yn,0 − Y (0)

)2i
(n− In)2m−2i

(
Yn,1 − Y (1)

)2m−2i)
=

m−1∑
i=1

(
2m

2i

)
1

n

n−1∑
j=0

A
[2i]
j A

[2m−2i]
n−1−j

=
m−1∑
i=1

(
2m

2i

)
gigm−i

1

n

n−1∑
j=0

ji(log j)i(n− 1− j)m−i(log(n− 1− j))m−i +O
(
nm logm−1 n

)
.

Now, observe that by an application of the Euler-Maclaurin summation formula (see Section 4.5 in Flajolet
and Sedgewick [5]), we have

1

n

n−1∑
j=0

ji(log j)i(n− 1− j)m−i(log(n− 1− j))m−i

= nm logm n

∫ 1

0

xi(1− x)m−idx+O
(
nm logm−1 n

)
=
i!(m− i)!
(m+ 1)!

nm logm n+O
(
nm logm−1 n

)
.
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Consequently, by a simple computation,

Σ00 =
m− 1

m+ 1
gmn

m logm n+O
(
nm logm−1 n

)
.

As for the second term on the right-hand side of Σ0, again by the induction hypothesis,

Σ01 :=
m−1∑
i=0

(
2m

2i+ 1

)
E
(

(In + 1)2i+1
(
Yn,0 − Y (0)

)2i+1
(n− In)2m−2i−1

(
Yn,1 − Y (1)

)2m−2i−1)
=

m−1∑
i=0

(
2m

2i+ 1

)
1

n

n−1∑
j=0

A
[2i+1]
j A

[2m−2i−1]
n−1−j = O

(
nm logm−1 n

)
.

Next, we consider Σ1, where we plug (4) into Σ1 and break the expectation into three parts according
to the three terms in the definition of Tn. For the first part, we obtain

E
(

(In + 1)i1
(
Yn,0 − Y (0)

)i1
(n− In)i2

(
Yn,1 − Y (1)

)i2
(In + 1− (n+ 1)U)Y (0)

)
=

n−1∑
j=0

(j + 1)i1E
(
(Yj − Y )i1Y

)
A

[i2]
n−1−j

∫ 1

0

(j + 1− (n+ 1)u)

(
n− 1

j

)
uj(1− u)n−1−jdu.

Note that ∫ 1

0

(j + 1− (n+ 1)u)

(
n− 1

j

)
uj(1− u)n−1−jdu =

j + 1

n
− j + 1

n
= 0.

Hence, the first part vanishes. Similarly, the second part vanishes. As for the third part, we have

E
(

(In + 1)i1
(
Yn,0 − Y (0)

)i1
(n− In)i2

(
Yn,1 − Y (1)

)i2
(nCn(In + 1)− (n+ 1)C(U))

)
=

n−1∑
j=0

A
[i1]
j A

[i2]
n−1−j

∫ 1

0

(nCn(j + 1)− (n+ 1)C(u))

(
n− 1

j

)
uj(1− u)n−1−jdu

=
n−1∑
j=0

A
[i1]
j A

[i2]
n−1−j

(
Cn(j + 1)− (n+ 1)

(
n− 1

j

)∫ 1

0

C(u)uj(1− u)n−1−jdu

)
.

We will show that

cj,n := Cn(j + 1)− (n+ 1)

(
n− 1

j

)∫ 1

0

C(u)uj(1− u)n−1−jdu = O
(

1

n

)
(10)

uniformly in j. Then, by using the induction hypothesis and the fact that i1 + i2 = 2m− 1, we have

Σ1 = O
(
nm−(1/2) logm−1 n

)
.

In order to show (10), we use

E(Cn) = 2(n+ 1) log n+ cn+O(1)

for some constant c. Consequently,

Cn(j + 1) =
1

n
(E(Cj) + E(Cn−j−1)− E(Cn) + n− 1)

=
2

n
(j + 1) log j +

2

n
(n− j) log(n− j − 1)− 2

n
(n+ 1) log n+ 1 +O

(
1

n

)
. (11)
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Next, to evaluate the integral in (10), we need∫ 1

0

uα(log u)(1− u)βdu =
d

dx

∫ 1

0

ux(1− u)βdu

∣∣∣∣
x=α

=
d

dx

Γ(x+ 1)Γ(β + 1)

Γ(x+ β + 2)

∣∣∣∣
x=α

=
Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
(Ψ(α + 1)−Ψ(α + β + 2))

for α, β > −1, where Ψ is the digamma function. Recall that, as x→∞,

Ψ(x) = log x+O
(

1

x

)
.

Using these results, we obtain for the integral in (10), uniformly in j,

(n+ 1)

(
n− 1

j

)∫ 1

0

C(u)uj(1− u)n−1−jdu

= 1 +
2

n
(j + 1)(log j − log n) +

2

n
(n− j)(log(n− j − 1)− log n) +O

(
1

n

)
.

Combining this with (11) proves (10).
Finally, we consider Σ2. Here, again from (9) together with (8) and Lemma 1, we obtain

Σ2 = O
(
nm logm−1 n

)
.

Overall, by combining the above estimates for Σ0,Σ1 and Σ2,

B[2m]
n =

m− 1

m+ 1
gmn

m logm n+O
(
nm logm−1 n

)
.

From this, by applying Lemma 2,

A[2m]
n = gmn

m logm n+O
(
nm logm−1 n

)
.

This is the claimed result. Hence, the proof is finished.
The latter proposition together with the Fréchet-Shohat theorem implies (2).

3 Proof of Theorem 1
Here, we prove Theorem 1. First, observe that by Proposition 1, we have∥∥∥∥√ n

2 log n
(Yn − Y )

∥∥∥∥
p

≤
∥∥∥∥√ n

2 log n
(Yn − Y )

∥∥∥∥
2dp/2e

= O(1). (12)

Consequently, (
n

2 log n

)p/2
|Yn − Y |p
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is uniformly integrable, for all p ≥ 1. This together with (2) implies that

lim
n→∞

(
n

2 log n

)p/2
E|Yn − Y |p = E|N(0, 1)|p.

A standard computation yields

E|N(0, 1)|p =
2p/2√
π

Γ

(
p+ 1

2

)
.

Overall, as n→∞, we have

‖Yn − Y ‖p ∼
2

π1/(2p)
Γ

(
p+ 1

2

)1/p
√

log n

n
.

This proves the claimed result.
Remark 1. The property (12) was mentioned without proof on page 11 in [8].
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Appendix
Throughout this appendix, we will use the notation log+(x) = max{log x, 1}.

The goal of this appendix is to prove (8). We will use the notation

Ā[k]
n = E

(
(n+ 1)k|Yn − Y |k

)
.

Note that Ā[2m]
n = A

[2m]
n and (8) becomes

Ā[2m−1]
n ≤ cnm−(1/2) log

m−(1/2)
+ n (13)

for a suitable constant c > 1.
The proof will proceed by induction. Thus, we assume that (13) and the claims of Proposition 1 hold

for all m′ < m. Moreover, we assume that (13) holds for all n′ < n where we can assume that n is
sufficiently large. We will show how to choose c such that (13) holds for all n.

In order to prove our claim, we start from (5). First, observe that

(n+ 1)|Yn − Y | ≤ (In + 1)
∣∣Yn,0 − Y (0)

∣∣+ (n− In)
∣∣Yn,1 − Y (1)

∣∣+ (n+ 1)|Tn|.

Raising this to the 2m− 1-st power gives

Ā[2m−1]
n ≤ 2

n

n−1∑
j=0

A
[2m−1]
j + B̄[2m−1]

n , (14)

where B̄[2m−1]
n is given by∑

i1+i2+i3=2m−1
0≤i1,i2<2m−1

(
2m− 1

i1, i2, i3

)
E
(

(In + 1)i1
∣∣Yn,0 − Y (0)

∣∣i1 (n− In)i2
∣∣Yn,1 − Y (1)

∣∣i2 (n+ 1)i3|Tn|i3
)
.

As in the proof of Proposition (1) we will break B̄[2m−1]
n into three parts

B̄[2m−1]
n = Σ0 + Σ1 + Σ2

according to whether i3 = 0, i3 = 1, or i3 ≥ 2, respectively.
For Σ0, by using the induction hypothesis, we have

Σ0 =
2m−2∑
i=1

(
2m− 1

i

)
2

n

n−1∑
j=0

Ā
[i]
j Ā

[2m−1−i]
n−1−j ≤ d1n

m−(1/2) log
m−(1/2)
+ n

for a suitable constant d1.
Next, for Σ1, we use (9). From this, another application of the induction hypothesis and using Lemma

(1), we obtain

Σ1 ≤ d̄2
√
n(2m− 1)4m−1

(
1

n

n−1∑
j=0

Ā
[2m−1]
j

)(2m−2)/(2m−1)

≤ d̄2c
(2m−2)/(2m−1)(2m− 1)4m−1nm−(1/2) logm−1+ n ≤ d2cn

m−(1/2) logm−1+ n

9



for suitable constants d̄2 and d2.
Finally, for Σ2, we again use (9) where 2m − 1 is replaced by 2m − 2. Consequently, again by the

induction hypothesis

Σ3 ≤ d3n
m−(1/2) log

m−(3/2)
+ n ≤ d3n

m−(1/2) log
m−(1/2)
+ n

for a suitable constant d3.
Putting the last three estimates together yields

B̄[2m−1]
n ≤

(
d2c√
log+ n

+ d1 + d3

)
nm−(1/2) log

m−(1/2)
+ n.

Plugging this into (14) and using once more the induction hypothesis yields

Ā[2m−1]
n ≤ 2c

1

n

n−1∑
j=0

jm−(1/2) log
m−(1/2)
+ j +

(
d2c√
log+ n

+ d1 + d3

)
nm−(1/2) log

m−(1/2)
+ n

≤
(

2c

∫ 1

0

um−(1/2)du

)
nm−(1/2) log

m−(1/2)
+ n+

(
d2c√
log+ n

+ d1 + d3

)
nm−(1/2) log

m−(1/2)
+ n

=

(
2c

m+ (1/2)
+

d2c√
log+ n

+ d1 + d3

)
nm−(1/2) log

m−(1/2)
+ n.

Note that for n large enough, we have

2

m+ (1/2)
+

d2√
log+ n

< 1.

Hence, we can choose c such that

2c

m+ (1/2)
+

d2c√
log+ n

+ d1 + d3 ≤ c

which concludes our proof.
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