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Abstract

We prove convergence in distribution for the profile (the bemof nodes at each level), normalized
by its mean, of random recursive trees when the limit rataf the level and the logarithm of tree size
lies in[0, ¢). Convergence of all moments is shown to hold onlydog [0, 1] (with only convergence
of finite moments whew € (1,¢)). When the limit ratio i) or 1 for which the limit laws are both
constant, we prove asymptotic normality fer= 0 and a “quicksort type” limit law forx = 1, the
latter case having additionally a small range where themm iixed limit law. Our tools are based on
contraction method and method of moments. Similar phenaratso hold for other classes of trees; we
apply our tools to binary search trees and give a completectaization of the profile. The profiles
of these random trees represent concrete examples for wieatange of convergence in distribution
differs from that of convergence of all moments.

1 Introduction

The profile or height profile of a tree is the sequence of numbédrosek-th element enumerates the
number of nodes at distangdrom the root of the tree (or the number of descendantstimgeneration in
branching process terms). Profiles of trees are fine shapaatbastics encountered in diverse problems
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such as breadth-first search, data compression algoritbacsgfet, Szpankowski, Tang, 2001), random
generation of trees (Devroye and Robson, 1995), and théwase analysis of quicksort (Chern and
Hwang, 2001b, Evans and Dunbar, 1982). In addition to time@rest in applications and connections to
many other shape parameters, we will show, through re@itsdes and binary search trees, that profiles
of random trees having roughly logarithmic height are a sobirce of many intriguing phenomena. The
high concentration of nodes at certain (log) levels resnltee asymptotic bimodality for the variance, as
already demonstrated in Drmota and Hwang (2005a); our gerpbthis paper is to unveil and clarify the
diverse phenomena exhibited by the limit distributionghef profiles of random recursive trees and binary
search trees. The tools we use, as well as the results wegare/of some generality.

Recursive trees. Recursive trees have been introduced as simple probaitvittjels for system gener-
ation (Na and Rapoport, 1970), spread of contamination gdr@sms (Meir and Moon, 1974), pyramid
scheme (Bhattacharya and Gastwirth, 1984, Smythe and Madyh895), stemma construction of philol-
ogy (Najock and Heyde, 1982), Internet interface map (Janat., 2002), stochastic growth of networks
(Chan et al., 2003). They are related to some Internet m@dafsMieghem et al., 2001, van der Hofstad
et al., 2001, Devroye, McDiarmid and Reed, 2002) and somsipalymodels (Tetzlaff, 2002); they also
appeared in Hopf algebra under the name of “heap-ordered’freee Grossman and Larson (1989). The
bijection between recursive trees and binary search tretesnly makes the former a flexible representa-
tion of the latter but also provides a rich direction for iiet extensions; see for example Mahmoud and
Smythe (1995).

A simple way of constructing a random recursive tree ofodes is as follows. One starts from a root
node with the label; at stage (i = 2,...,n) a new node with label is attached uniformly at random
to one of the previous nodes$,(..,i — 1). The process stops after nodés inserted. By construction,
the labels of the nodes along any path from the root to a naue & increasing sequence; see Figire
for a recursive tree of0 nodes. For a survey of probabilistic properties of recarsiges, see Smythe and
Mahmoud (1995).

Known results for the profile of recursive trees. Let X, x denote the number of nodes at lexein a
random recursive tree af nodes, whereX,, o, = 1 (the root) forn > 1. ThenX, ; satisfies (see van der
Hofstad et al., 2002)

Xk Z Xiher + X7 p 4 (1)
forn,k > 1 with X, 0 = 1 — 8,0 (6s,0 being Kronecker’'s symbol), whereY,, x), (Xn""k) and([,) are
independentX, « Z X,;“’k, and/, is uniformly distributed ove(l,...,n — 1}.

Meir and Moon (1978) showed (implicitly) that
s(n,k +1
Unk = E(Xnk) = sk + 1) (0 <k <n), (2)
(n—1)!

wheres(n, k) denotes the unsigned Stirling numbers of the first kind; $s®Moon (1974) and Donda-
jewski and Szymanhski (1982). By the approximations giveHwang (1995), we then have

)\k
wk=——"2——(1+0(X1"), 3
uniformly for 1 < k < KA, forany K > 1, where here and throughout this paper

An := maxXlogn, 1}, Onk =k /Ay,
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andI” denotes the Gamma function. This approximation impliepairiicular, a local limit theorem for the
depth (distance of a random node to the root); see Devroyasj1$zymanhski (1990), Mahmoud (1991).
The second moment is also implicit in Meir and Moon (1978)

B = Y (Zj)s(n,k +j+ D),

—_ 1\
0<j=<k J (n 1)'

see also van der Hofstad et al. (2002). Precise asymptqsiozipnations for the varianc€(X, x) were
derived in Drmota and Hwang (2005a) for all rangescofin particular, the variance is asymptotically
of the same order aﬁfl’k whena € (0,2) exceptk ~ A, (where the profile variance exhibits a bimodal
behavior).

Limit distribution when 0 <« <e. From the asymptotic estimat8)( we have

|Og Mn,k

n

—a—aloga,

wherehere and throughout this papér = k(n) anda := lim,_. k(n)/A,. Thuspu,r — oo when
a < e. Note that the expected height (length of the longest patim the root) of random recursive trees
Is asymptotic taeA,; see Devroye (1987) or Pittel (1994).

Define a class of random variabl&%«) by the fixed-point equation

X(@) Z aU%X (@) + (1 — U)* X (a)*, (4)

with E(X(«)) = 1, whereX(a), X(x)*, U are independentX («)* Z X(a), andU is uniformly dis-
tributed in the unit interval; see Proposititrior existence and properties &f(«). Define X'(0) = 1.

Theorem 1. (i) If 0 < @ < e, then

a

k2 X(w), (5)

=

n,k

where—Z> denotes convergence in distribution.
(i) If 0 < @ < m"=D wherem > 2, thenX,, 1/, converges toX («) with convergence of the
first m moments but not th@n + 1)-st moment.

In particular, convergence of the second moment holds fere < 2.

Corollary 1. If 0 <« < 2, then

C(a + 1)? 5
V&ns) ~ ((1 — /)T Qe+ 1) 1) o

Note that the coefficient on the right-hand side becomeswbemna = 0 anda = 1, and the variance
indeed exhibits dimodal behaviowhena = 1; see Figurel for a plot and Drmota and Hwang (2005a)
or below for more precise approximations to the variance.

Sincem!/m=1 | 1, the unit interval is the only range where convergence ahalnents holds.
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Figure 1: A plot of E(X, x) (the unimodal curve)V (X, ) (the bimodal curve with higher valley), and
|E(Xux — tax)’| (right) of the numberX,, ;. of nodes at levet in random recursive trees af = 1100
nodes, all normalized by their maximum values. Note thawiey of |[E(X ;1004 — i11004)°| (When
normalized by:?®) is deeper than that 0¥ (X;100.) (normalized by:?); see Corollary5 for the general
description.

Corollary 2. If 0 <« <1, then
Xn,k

Mon,k

- X(@). (6)

M .
where— denotes convergence of all moments. Convergence of all meffiads forl < o < e.

Thus the profile of random recursive trees represents a eenekample for whiclhe range of con-
vergence in distribution is different from that of converge of all momentsWe will show that such a
property also holds for random binary search trees; it igetqul to hold for other trees like ordered (or
plane) recursive trees ama-ary search trees, but the technicalities are expected touod more compli-
cated. We focus at this stage on new phenomena and theispraaifon generality.

The proof of §) relies on the contraction method developed in NeiningdrRinschendorf (2004) (see
also the survey paper Rosler and Ruschendorf, 2001),r@nchboment convergenck, /i, x uses the
method of moments. Both methods are technically more imgbecause we are dealing with recurrences
with two parameters. We will indeed prove a stronger appnation to ) by deriving a rate under the
Zolotarev metric (see Zolotarev, 1976).

But why m!/"=D? This is readily seen by the recurrence of the momepts) := E(X(«x)™) of
X(x)

1 r'(h nHr —h 1
e = I I W L T CEE )

1<h<m

wherevg (o) = v () = 1. This recurrence is well-defined foy, («) whena < m'/=D_ This explains
the special sequenee'/ 1.
Note that sinc@ (X (a)”) = oo fora > m!/"=D we haveR(X, i /u.x)" — oo in that range.

A “quicksort-type” limit distribution when « = 1. SinceX (1) = 1, we can refine the limit resulb}
fora = 1 as follows.



Theorem 2. (i) If k = A, + tyk, Where|t, x| — oo andt, . = o(%,), then

X%k'_link M
o TR X' (1 , 8
VTR ©

whereX’(1) := (d/da) X («)|«=1 Satisfies
X'(1) Z UX' () + (1 -U)X'(1)"+U +UlogU + (1 —U)log(l1 — U),

with X'(1), X'(1)*, U independent and” (1) Z X’(1)*.
(i) If & = A, + O(1), then the sequence of random variabl&S, x — tnx)/ v/ V(Xnx) does not
converge to a fixed law.

Although @) can also be proved by the contraction method, we prove lasthlts of the theorem by
the method of moments because the proof for the non-conveegeart is readily modified from that for
(8); see also Chern et al. (2002) for more examples having neecgence to fixed limit law. On the other
hand, since the distribution &f’(1) is uniquely characterized by its moment sequence &b (ve have
the convergence in distribution as follows.

Corollary 3. If k = A, + tyk, Where|t, x| — oo andt, x = o(A,), then

X%k'_link 2 ,
- X 1 .
tn,k)»ﬁ_l/k! (1)

The same limit lawX”(1) also appeared in the total path length (which ig kX, x) of recursive trees
(see Dobrow and Fill, 1999), or essentially the total lethdangth of random binary search trees, and the
cost of an in-situ permutation algorithm; see Hwang and Mgger (2002).

The appearance of the same limit law as the total path lesgibtia coincidencdntuitively, almost
all nodes lie at the levels = A, + O(J/A,) (sinceE(X,x) < n/+/A, by (3)) and it is these nodes
that contribute predominantly to the total path length; @lee @) below for an estimate of the variance.
Analytically, a deeper connection between the profile and the total pagthas seen through the level
polynomials) ", X, z* (properly normalized) for which we can derive, following&lvin et al. (2001),
an almost sure convergence to some (complex-valued) landam variable. From such a uniform con-
vergence, the profile is quickly linked to the total path lémigy taking derivative of the normalized level
polynomial with respect te and substituting = 1. Indeed, limit theorems for weighted path-lengths of
the form)_, k" X, «, as well as the width (maxX,, x), can be obtained as by-products. These and finer
results on correlations and expected width are discussedchota and Hwang (2005b).

Asymptotics of the variance. As a consequence of our convergence of all moments, we havelth
lowing estimate for the variance.

Corollary 4. If k = A, + t4k, Wheret, x = o(A,), then the variance ok, ;. satisfies
2

Xk_l
V(Xn,k)»»pz(rn,k)( " ) , ©)

k!
wherep, (ty k) 1= 212, + 2¢1ty i + co With

2

T
(&) 5:2—?, cpi=c(1—-y)—C003)+1
4

co =2 (y? =2y +3) =263 = D1 —y) — 3. (10)

Herey denotes Euler’s constant afd3) := } ., j3.
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The expression9) explains the valley for the variance in Figute Note thatV(Xn,k)/ufl,k =
O(t7  /Ay) whent, k. = o(hy).
Our proof indeed yields the following extremal orderdo¢ X, x — pnx)™| for m > 2.

Corollary 5. The absolute value of the-th central moment satisfies

max |E(X,x — tni)™| < A,"n™,

0<k<n

min  |E(Xux — i)™ < A3 20™,
k=0T " g

where the maximum is achievedkat= A, £ +/A,(1 + o(1)) and the minimum at = A, + O(1).

More refined results can be derived as in Drmota and Hwandgs@0®or example, by40) below, we
have

max [E(Xx — )™ ~ [ECX/ (1M e ™2 —=—) |
max [E(Yo = )| ~ Bl (L)

for m > 2, whereE(X’ (1)) can be computed recursively; s

Asymptotic normality when o« = 0. The profile X,, x in the remaining rangé < k = o(A,) will be
shown to be asymptotically normally distributed. It is kno{gee Bergeron et al., 1992) that the out-degree
of the root,, ; satisfies

—1,j
POty = ) = S

thus X}, is asymptotically normal with mean and variance both asgtipto A,,. Equivalently, X, ; is
the number of nodes on the rightmost branch (the path sgdrtam the root and always going right until
reaching an external node) in a random binary search trees-df nodes; see the transformation below
for more information.

Let ®(x) := 2n)~ V2 [*
tion.

(I =j<n);

e~*/2 dr denote the distribution function of the standard normatritis-

Theorem 3. The distribution of the profilé, x satisfies

sup =0|,—1, (11)

>
3

X, — A/ k!
IP( k= A/

M S DRk =) x) ~ o)

uniformly forl < k = o(A,), with mean and variance asymptotic to

My
IE(Xn,k) ~ F,
’ A2k—1

(k— D22k —1)

V(Xn,k) ~

In particular, X, , is asymptotically normally distributed with mean asymjattd %A,Z, and variance to
%Afl. A similar central limit theorem appeared in the logaritbrorder of a random element in symmetric
groups; see Erdds and Turan (1967).

Unlike previous cases, the proof of this result is based arlympmial decomposition of the associated
generating functions using characteristic functions andusarity analysis (see Flajolet and Odlyzko,
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Figure 2:A recursive tree of 0 nodes and its corresponding transformed binary increasieg of9 nodes.

1990), the reasons bein@) this method leads to the optimal Berry-Esseen bouri), (which is not
obvious by the method of moments)) it is of independent methodological interests, &iid it can also
be applied to give an alternative proof &) (

The asymptotic normality ok, » whena = 0 indicates that nodes are generated in a very regular way
in recursive trees, at least for the fitgh.,,) levels. The rough picture here is that each node at thesks leve
“attracts” about\,,/ k new-coming nodes, as is obvious froB);(see also Drmota and Hwang (2005b)
for an asymptotic independence property for the number déaat two different levels, both bein@\.,)
away from the root.

Profiles of random binary search trees. Binary search trees are one of the most studied fundamental
data structures in Computer Algorithms. They have also leteaduced in other fields under different
forms; see Drmota and Hwang (2005a) for more references.

This tree model is characterized by a recursive splittinecess in whiche > 2 distinct labels are
split into a root and two subtrees formed recursively by #r@e procedure (one may be empty) of sizes
J, andn — 1 — J,, whereJ, is uniformly distributed in{0, 1,...,n — 1}. Such a model is isomorphic
to binary increasing treegn which a sequence of > 2 continuous random variables (independent and
identically distributed) is split into a root with the smedt label and two subtrees formed recursively by the
same splitting process corresponding to the subsequemtes keft and right respectively of the smallest
label. Note that when given a random permutation efements the size of the left subtree of the binary
increasing tree constructed from the permutation egiiads< j < n — 1 with equal probabilityl /n, the
same as in random binary search trees.

A recursive tree can be transformed into a binary increasaggby the well-known procedure (referred
to as thenatural correspondenda Kunth, 1997 and theotation correspondendeay others): drop first the
root and arrange all subtrees from left to right in incregsirder of their root labels; sibling relations are
transformed into right branches (of the leftmost node in ¢femeration) and the leftmost branches remain
unchanged; a final relabeling (using labels froro » — 1) of nodes then yields a binary increasing tree
of n — 1 nodes. Such a transformation is invertible; see Figure

Under this transformation, the profilg, x in recursive trees becomes essentially the number of nodes
in random binary search treesof- 1 nodes with left-distancke — 1 (k > 1), theleft-distanceof a node



being the number of left-branches needed to traverse fremabt to that node. This also explains the
recurrenceX).

Known and new results for profiles of random binary search trees. We distinguish two types of nodes
for binary search trees: external nodés, (virtual nodes completed so that all nodes are of out-degree
either zero or two) and internal nod&s x (nodes holding labels). Chauvin et al. (2001) establistienst
sure convergenc®r Y, x /E(Y,x) andZ, . /E(Z,x) whenl.2 < « < 2.8, and recently Chauvin et al.
(2005) extended the range f&} « /E(Y, x) to the optimal range— < o < a4, the two numbers_ ~

0.37, a4+ =~ 4.31 being the fill-up and height constants (of binary searchsjigeamely) < a_ < 1 < a4
solving the equation“~/? = z/2: see also Chauvin and Rouault (2004). For other known eenlthe
profilesY, x, see Drmota and Hwang (2005a) and the references therein.

Our tools for recursive trees also apply to binary searcéstreBriefly, we derive convergence in
distributionforY,  /E(Y,.x) andZ, x /E(Z, x) in the rangexr € («—, @) and convergence of all moments
fora € [1, 2], the degenerate cases= 1, 2 being further refined by more explicit limit laws; see Seafio
for details.

While it is expected that the profiles for both types of nodagehsimilar behaviors td, », we will
derive finer results showing more delicate structural céffiee between internal nodes and external nodes.

Organization of the paper. Since most of our asymptotic approximations are based osdhgion
(exact or asymptotic) of the underlying double-indexecureence (inz and k), we start from solving
the recurrence in the next section. The proof of the convexgeén distribution ) of X, /., When
0 < a < e by contraction method is given in SectiBn Then we prove the moment convergence part of
Theoreml in Section4 and Theoren? in SectionS. The asymptotic normality whesm = 0 is proved in
Section6, where an alternative proof o) is also indicated. Our methods of proof can be easily angnde
for binary search trees, and the results are given in Se¢tidve conclude this paper with a few questions.

Notations. Throughout this papek,, := maxlogn, 1}, a,x := k/A, anda := lim,_, o @, x When the

limit exists. The symbo|z"] f(z) stands for the coefficient af* in the Taylor expansion of (z). The

generic symbolg and K always represent sufficiently small and large, respegtiysitive constants
whose values may vary from one occurrence to another. Fjréllrepresents a uniforrfd, 1] random

variable.

2 The double-indexed recurrence and asymptotic transfer

Since all moments (centered or not) satisfy the same ramereve derive in this section the exact solution
and study a simple type of asymptotic transfer (relatingagyanptotics of the recurrence to that of the non-
homogeneous part) for such a recurrence.

By (1), we have the recurrence for the probability generatingtions P, x (y) := E(y%n#)

Pak) = = Y P Paja() 22k 2 1) (12

1<j<n

with P, o(y) = y forn > 1 and P4 (y) = 1.



Recurrence of factorial moments. Let
Ar(zr,'}c) = IE(Xvn,k()(n,k - 1) cee (Xn,k —-—m + 1)) — P;s,nl?(l)

Then4'®) = 1forn, k > 0. By (12), we have the recurrence

m _ 1 (m) (m) (m) .
A = ——= 3 (AL + ATD) + B 0z 2kam = 1),
1<j<n

where

(m) _ m 1 ") (m—h)
Bn,k - Z (h)n—l Z Aj,k—lAn—j,k’ (13)

1<h<m 1<j<n
with the boundary conditionﬂfll’()) =1forn=>1 andA,(["g (0) =0form > 2andn > 1.

Exact solution of the recurrence. Consider a recurrence of the form

1
n—1

3 (@jx+aju1) +bag. (0= 2ik = 1), (14)

1<j<n

Ank =
with a, x andb, x given. We assume, without loss of generality, thgt = 0 (otherwise, we need only to
modify the values of;, x andb, k).

Lemma 1. Forn > 1 andk > 0,
bj’k_r u
ank=bnict 35 Y N+ I (1+7) (15)
1<j<n0<r<k j<t<n
Wherebl’k =dik-
Proof.Leta,(u) := Y, ant14u* andb,(u) := 3", bpt1 ,u*. Thena,(u) satisfies the recurrence

14+ u

> ai) +oaw) (=1,

0<j<n

an(u) =

with the initial conditionae(u) = Y, a1 ,xu*. By taking the differenceia, (1) — (n — 1)a,—i(u), we

obtain
n—1

an(w) = (14 =) ap1@) + b)) = ——byes ) (122),

Solving this linear recurrence yields

an(u) = by() + (14 1) Y l?"iu)l [T (1+ %) (n > 1),
0<j<n J j+2=<L=n

(sincebo (1) := ao(u)). Taking coefficient oi/* on both sides leads td§). 1



Mean value. Applying (15) with b, x = 6,180 %, We obtain fom > 1 andk > 0
[k u
e =" TT (14 7) (16)

1<l<n
sk + 1)
T m—1

This rederives?).

A uniform estimate for the expected profile. For later use, we derive a uniform bound foy .

Lemma 2. The mean satisfies
g = O (WA v ™5n"), (17)

uniformly forl < k < n, whered < v = O(1).
Proof. Note that by 16), we have the obvious inequality
k v
Jgvk < N]L (1+7)  @>o.

which leads tqu, x = O (v_kn") for 1 < k < n. But this is too crude for our purpose.
By Cauchy'’s integral formula,

—k g
v
< ||
Hnke = 2 /_n

1<{=n

dr

veit
1
T

v—k V4 1
<0 exp(v(cosr) > st 0(1)) dr

T 1<f<n

=0 ((vkn)_l/zv_kn") )

proving L7). 1

Note that whenk = O(A,), then the right-hand side ol7) is optimal if we takev = k/A, and
(17) becomesu, x = O(AK/k!). Thus (7) is tight whenk = O(A,). This also explains why we write
(vA,)~'/2 instead ofr,, '/? (to keep uniformity whert = o(1,) and we choose = k/,,).

On the other hand, leavingunspecified in17) and in many other estimates in this paper considerably
simplifies the analysis.

A simple asymptotic transfer. We will need the following result when applying the contraotmethod.
It roughly says that when the non-homogeneous hatof (14) is of ordery,’, , wherew > 1, thena, «
is also of the same order for certain rangexof

Lemma 3. If b, x = O (((vi,)"/2v™*n?)¥) forall 1 <k < n, wherew > 1 and0 < v < vy, then

ang = O (ﬁ ((vkn)—l/zv—knv)w) ’

uniformly for1 < k < n, provided thatd < v < min{fw/®=Y _y,}. Similarly, replacingO by o in the
estimate fow, x yields ano-estimate fow,, x .

10



Proof. By the exact expression fay, ., we have, fol) < v < vy,

g = bk = (Z > - ((vm Yyt ) )+ ) T (1+%)). (18)

1<j<n 0<r<k j<{<n
The inner sum over can be simplified as follows.

Z v—(k—r)w[ur](l + u) 1—[ (1 + %) < kaUrw[ur](l + u) 1—[ (1 + —)

0=<r=<k j<t<n r>0 j<t<n

—Kw w vw
= v 0 +0”) ]] (1+7)

j<{<n

_o (U—kw (;)) | (19)

uniformly in j. Substituting this estimate inta§), we obtain

dnj = 9] (((v)\n)l/kanv)w n v—kwnvw Z (U)L]_)w/ijvvwl)

1<j<n

=9 (# ((”k")_l/zv_k”vy) ’

uniformly for 1 < k < n, where0 < v < w'/®=1_ Theo-estimate is similarly proved. This completes
the proof of Lemma. |

3 Convergence in distribution when0 < o < e

We prove the first part of Theorefin(exceptingx = 0) in this section by contraction method based on the
framework developed in Neininger and Riuschendorf (2004% new difficulty arising here is the asymp-
totics of the double-indexed recurrendel) (instead of single-indexed ones previously encountered)

The underlying idea. The idea used here is roughly as follows.
Define Xy, x := Xux//nk- Then, by 0), X, « satisfies the recurrence

X1, k-1 + Ptk
Mn.k Mn .k

with independence conditions as it).(By the estimates3) and the relation,, = [(n — 1)U ], we expect
that

- 9 My, k-1
Xnk— =

X Ik (20)

Iy o1k (A,, +IogU)k_1 .
—x — | —— —-aU”,
Mn.k )\n )‘n
with suitable meaning for the convergence; similarly,
,uvn—ln,k — (1 _ U)a.
Mn k

Thus if we expect thafn,k — X (), thenX(x) satisfies the fixed-point equatiof) (
To justify these steps, we apply the contraction method.

11



Contraction method. The fixed-point equationd] has a few special properties not enjoyed by single-
indexed recursions encountered in the literature for wthiehtypical fixed-point equation has the form

XZ Y Gx9D+b, (21)

1<j<h

with X X® (Cy,...,Cy.b) independentY® Z X, and0 < C; < 1 almost surely for all

1 < j < h. Here,h may be deterministic or integer-valued random variablé® Jpecial rangg, 1] for
the coefficients”; .. ., C; is roughly due to the relation
a(I™)

o(n)

—)Cj

where, in various applications (see Neininger and Rustt#n2004) 0 is the leading term in the expan-
sion of the standard deviation of the underlying randomalde andd < Ij(") < n are the sizes of the
subproblems. Typicallyr is a monotonically increasing function, hence we obtain C; < 1.

In general, the Lipschitz constant of the map of probabititgasures associated wit@lf under
the Zolotarev metric,, is assessed bEj E(C/”). This term is monotonically decreasing asin-
creases. Thus, in typical applications for which one expactontraction, the suh_; E(C*) has to
satisfy ), E(C;*) < 1, and for that purpose, one has to choassufficiently large; see Neininger and
Ruschendorf (2004) for implications of this condition e tmoments required.

For the bi-indexed recursion of, x, we are led to the fixed-point equatiof) (where the coefficient
aU% may have values larger than one for- 1. This implies that the corresponding estimateeU )” +
E(1 — U)" for the Lipschitz constant is not decreasingiinWhena < e increases, the range where we
have contraction becomes smaller and vanishes in the boucasexr = e.

Notations. We denote byM the space of univariate probability measures My, C M the space of
probability measures with finite absoluteth moment, and by, (1) C M,, the subspace of probability
measures with unit mean, where< w < 2. Zolotarev pQ] introduced a family of metricg,,, which, for

1 < w < 2 are given by

Cw(vi.v2) = sup [E(f(X) — fF(¥))], (v1,v2 € My (1)),

SEeFw

whereX andY have the distributiong(X) = vy, L(Y) = v;.
We have

Fo={f €C'RR) : |f'(x)= [ = |x = p|""},

with C!(R, R) the space of continuously differentiable functionskariWe will use the property that con-
vergence irt,, implies weak convergence and tl§gtis ideal of ordenw, i.e., we have foW independent
of (X,Y)andc # 0

CwX + WY + W) <8(X.Y),  Lu(eX,cY) = [c[*8u(X.Y).

For general reference and propertieg f see Zolotarevil] and Rachev43].
We also use the minimdl, metrics{,, defined forl < p <2 by

Cy(vi,v2) =INf{lX =Y, 1 LX) = vy, L(Y) = v}, (vi,v2 € Mp),
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where | X ||, denotes thel ,-norm of a random variablé&'. For simplicity, we use the abbreviation
tw(X,Y) = Cu(L(X), L(Y)) for ¢, as well as for the other metrics appearing subsequently.
In addition, we assume that

R(n) := |k —ar,| = |anr — Ay = 0(Ay),

where0 < «a < e, and fix a constant as follows. If2 < a < ¢, thenl < s < p with p € (1, 2] the unique
solution ofp = 7!, ands := 2 if 0 < a < 2. The boundo also identifies the best possible order for the
existence of absolute moment&{«). Note thats satisfiess —a*~! > 0, which is the continuous version
of m —a™~! > (0 appearing in7).

Properties of X(«). Define the map
T -M—->M, v LU*Z+(1-U)*Z%),
whereZ, Z*, U are independen;(Z) = L(Z*) = v.
Proposition 1. For 0 < a < e, the restriction ofl" to M;(1) has a unique fixed poini(X («)). Further-
more,E| X (x)|? = ocofor2 <o <e.

Proof. By Lemma 3.1 in Neininger and Ruschendorf (2008)is a Lipschitz map in; with Lipschitz
constant bounded above by |

: o’ +

lip(T) < 1
Thus lip(T) < 1 by our choice ofs. Also T has a unique fixed point in the subspaet (1) by Lemma
3.3 in Neininger and Ruschendorf (2004).

When2 < o < ¢, we assumé&| X (x)|? < oo and prove a contradiction. First we haieX («)|” =
EleU*X () + (1 — U)*X(«x)*|°, whereX («), X(«x)*, U are independent witll (X («)) = L(X(x)*).
Note thatX («) > 0 almost surely. Furthermor&(X(«)) = 1 implies that there is a set with positive
probability in which we haveX'(«) > 0 and X («)* > 0. It follows that

ElX ()’ = E(X(2)?) = E(@U*X(a) + (1 = U)* X(2)*)”
> E(PU X (@) + (1 — U)*(X(@)*)")

= Y e @)
ap

+1
= EWX()”),

by the definition ofp and the inequalitya + b)? > a” 4+ b* fora,b > 0 andp > 1. Thisis a contradiction,
hence we havE| X (x)|? = co. |

Zolotarev distance betweenX, s/ ,.x and X («).
Theorem 4. 1f 0 < @ < 2, then

& (X"”‘,X(a)) —0 (—R(”) * 1).
Mn,k )\”

¢ (X”’k,X(a)) o0,

Mn k

If 2 <a < e, then

wheres is specified as above.

In particular, this theorem implies the convergence inrttistion of X, x/ sk for 0 < @ < e and
proves the first part of Theorefin

13



Convergence rate of the factors in 20).

Lemma 4. Withs and R(n) specified as above, we have

H’n In.k

—aU”

HM — (-

Mn.k

R e

R(n) +1
‘0( A )

Proof.We consider only thé.;-norm Of/j‘ln,k—l//j“”’k —aU%, the other part being similar. BR), we have

stk +1) 2k
i = BT M g g
Pon ke -1 K (n, k),
where
Hok)=— 1oL 22)
T A T anp) )

the O-term holding uniformly forl < k& < K1,. Then we decompose the rafig , ,/usx into three
parts

k—1
Moyt _ Aﬁ ('og ’") AUn k= 1) . gt pla) pta, (23)

lonk Do H(n, k)
We first show that

o R(n) +1
F el + I FE = U+ IF - 1 = 0 (205D,

An

These estimates imply thi#s” |4, | 5 l4s = O(1). Then, Holder's inequality gives

R(n) +1
o=,
s ( )\‘" )
First, we introduce the set := {I, < n%/®}. Note thatu,, = O(1) for k > 31,. On the set4, we

havek — 1 = aA, + R(n) — 1 > (a/2)A, > (/2) Iogl,f/“ = 3logI,, for sufficiently largen; thus
Ky, k-1 = O(1). On the other hand, sinee< e, the mean satisfigs, » = 2(1); thus

My, k-1
H ns _aU(X

Mn k

/ ‘”‘; kkl —aU*["dP = OB(A) = O, = Vi) = O(1/ /) = 05 *).
A n

Thus we need only to consider the complement4et

Obviously, F'l = k /d, = a + O(R(1)/A).

ForF,?], we observe that far < 0 the expansioril + x/m)™ = e* + O(e”*/m) holds uniformly
with ¢ < 1. Thus, we obtain

k—1 o\ N\ @TRE—1)/ Ay
() (bo(42)

(R(n)(U“ + U logU + U‘””‘l)

=U"+0
+ .

14



Here, we may choose with | —a < © < 1. Then(U* + U*t?~!)logU andU**?~! are bothL 4-
integrable and th&@-term in the last display is bounded above®({ R(n) + 1)/A,) in L.
For the third factor inZ3), we have

I DV _ L (R
H(”’k)‘r(1+a+R(n)/xn)+0(E)‘m+a>+0( * )

For H(I,,k — 1), we restrict to the setl“. On A€, for n sufficiently large, we havké — 1 < 12log [, so
the error in the expansion d¥ (1, k — 1) implied by 22) is uniformly O(1/log1,) = O(1/A,). Thus
we have

H(ly,k—1)= |j(/1 )+ R(n)—1 +0(|011 )
F(1+Ol+ g |olé]n ) g ln
1 log(n/1,) + R(n)
T +a) & ( An

Since ||log(n/1,)|lss — |I1ogU|lss < oo, the last error term is of orde®((R(n) + 1)/A,) in Lys.
Collecting all estimates, we obtalFLl — 1|4, = O(R(1) + 1)/Ay). 1

Asymptotic transfer of the double-indexed recurrence {4). Consider the recurrencé4) with suit-
able initial conditions.

Lemma 5. If
R 1
by = O (((vkn)_l/zn”v_k)w . (71)37+) (1<w<=<2),
uniformly forl < k < n, where0 < v < vg, then
1 R 1
ang = 0 (———— () 2nruhye . RO LY (24)
’ w — pWw 1 )Vn

uniformly forl < k < n, where0 < v < minfw'/®@=D y,1.

Proof. The proof is similar to that for Lemm&but slightly more complicated. By the exact expression for
an x and the estimate fat, ., we have, fol) < v < vy,

Qn k _bn,k =0 (vwkw/Z Z Z |k _ _akj|)\j—1—w/2jwv—1vwr[ur](l + Ll) 1_[ (1 n Z)) .

1<j<n0=<r=<k j<f<n

First, if |k — aA,| > ey, thenlk —r —ad;| = O(k + 1,), so that 4) holds by the proof of Lemma.
We assume now that — oA, | < eA,. Split the sum inj into three parts

an,kb,,,k—o(vwkw/z( Y r Y o+ Y )

1<j<én 6n<j=<(1-8)n (1-86)n<j<n

x 3 k=1 —ak A T () T (1#2))

0<r=<k j<t<n

whereé € (0, 1) will be specified later. An analysis similar to the proof ofnhea3 gives

A —w/2 . k— i |
nje = bnje = O (& p Wk (8“’”_" + & + 5)) ’

w — w1l An
where0 < v < minfw!'/®=Y o). Takings := ((R(n) + 1)/A,)"/ @) yields 4). |
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An inequality between ;- and £-distances.
Lemma6. For1 <w <2andM > 0, there is a constank > 0 such that

Gw(X,Y) < K(y(X,Y) v L~ (X, Y)), (25)
for all pairs L(X), L(Y) € My (1) with || X ||, |Y|lw < M.

Proof. We start from the inequality (see Theorem 3, Zolotarev, 1976
1 — w— w w —w
fw(X.Y) = — (2B, (X, Y) + 27 B (X, V)X g A Y [1)*7Y)
for 1 < w <2, wherep, denotes the difference pseudo-moment
Buwi,v2) = Inf{E||X|*7'X — [Y|*7'Y| : LX) =v1, LY) = vy} (w > 1),

with vy, v, € My, From||x[*~'x — [p[*~!y| < w(x|[*~' v |y[*~")|x — y| and Holder’s inequality, it
follows that
Bu(X.Y) <w (E|X|* +E|Y|*)® D¢, (X,Y).

which implies the desired inequality. I

Proof of Theorem4. We introduce a hybrid quantity

M h—1p,
g, = Inle()+M 1.k

Mn k Mn k

X* (),

whereX («), X *(«), I, are independent and(«), X * () identically distributed. Sincé(X («)), E()?,,,k),
L(E,) € M;(1), the ¢s-distances between these quantities are finite. For siitypligrite /1, x :=
¢s(Xn k. X (o). By triangle inequality

hn,k = é‘s()?n,k, En) + é‘s(En, X(O[))

Note that, is ideal of orders. Thus

Ve ~ Mnk I'L_Inak % Mn,k_ ILL ln
cs(Xn,k,m:zs( Aty g Pt P o Bk ) )
n,k Mon,k Mon,k n.k
W k— Mn—j k M k— M k
< Zzs(’ B T 1X(a>+”JX(>)
n— 1<]<I’l Mn.k Mn.k Mn.k Hn k
1 k=1’ ta-jk )
T (B e (Y )
Py Hon Hon ke

We now show that

§s(En, X (@) = O (D)*™), (26)
whereD(n) := (R(n) + 1)/A,.
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First, by Lemmad,

- Kr k=1 Hn—I,.k
2l = (|Aet] o |Ptet] ) .
n,

= (U ]ls + [I(1 = U)“Ils)IIX(Oé)IIs,

which implies thatl| €, || is uniformly bounded for alk. SinceL(X(«x)) € M;(1), there isanM > 0
such thal| X () ||s, || E.|ls < M for all n. We apply Lemmd to bound the;-distance, which gives

§s(En, X (@) < K(E(En, X(@)) v L7 (En, X())),

By Lemma4

0y(En, X (@) < (HM _qU®
Mn .k

btk -
s Mn .k

¢ s) [X ()]s = O (D(n)).

This proves 26).
Collecting the estimates, we obtain

nk<— Z ((:Uﬂk 1) j’k_l_i_(l‘v;—j,k) hn—j,k) -I—O(D(n)s_l).

1<j<n

Thus,h, x = O(an,k,u;j(), wherea, ; satisfies {4) with

bn,k =0 (Mfz,kD(n)s_l) )

and suitable initial conditions. Theorefnthen follows from applying the different types of asymptoti
transfer given in Lemma3and5. |

Remark. Note that the proof of Theorer also yields a rate of convergence of ord(((R(n) +
1)/1,)*~ 1) for ¢, for the range < o < e.
Recently, S. Janson (private communication) showed thainha&6 also holds with 25) there replaced
by
é‘w(Xv Y) S Kew(X, Y)
This inequality leads to an improvement of the error term iredrem4 for the range2 < o < e to
O((R(n) + 1)/An).

4  Asymptotics of moments

We prove in this section the moment estima#&exhose proof is more involved than the asymptotic transfer
in Lemma3. The idea is to first derive a crude bound for higher momentg,qf, which holds uniformly
for 1 < k < n. Then a more refined analysis leads@p (

Note that them-th factorial moments ofY, x and them-th moments are asymptotically equivalent
whenu, x — oo, or roughly whenx < e.

17



A uniform estimate for higher moments. For convenience, defing (v) = 1 and

1

We now prove by induction that
4% = 0 (pn (@A) 7P05"))  m =), 27)

uniformly for 1 < k < n, where0 < v < m!'/=1,
Obviously, 7) holds form = 1 by (17). By (13) and induction, we have fdr < v < (m — 1)1/"=2

B = 0( > (’Z)wh(v)wm_h(w
1<h<m
a3 () k) (Wl PR j)”)'"h)

1<j<n

= 0| @uot ™ 3 = HOT @A) T () T2

1<h<m
1<j<n

—0 (<pm_1(u)(vxn)—m/%—k’"n’"”) , (28)
uniformly for1 < k < n.
By (19),
B™

A™ =B™ 4+ 3 Y Bk ’[ T+ ] (1+ ) (29)

1<j<n0=<r=k j<t<n

Substituting the estimat@®) into (29) gives for0 < v < m /=1

Ai(l”;c) =0 B,S"',? D I (79 ey L Y 78 (A I | (1 + %)

1<j<n 0<r=<k j<t<n

= 0 (B} + gn(®) (i) 2nmu k),

similar to the proof of Lemma&. This proves27).

Note that wheny < m!/®=1 — ¢ the optimal choice of in (27) minimizing n*v=* isv = a,x,
which yields the estimatﬂfl’,”) = O(Ak/k!), uniformly in k. Whena > m!/"=D — ¢ the optimal choice
is thenv = m!/m=D _ ¢ This says that the asymptotic behaviormff}? whena < m!'/=1 s very

different from that wherx > m!'/®=1_ More precise estimates can be derived, but they are noedeed
here; see Drmota and Hwang (2005a) for asymptotic apprdionsto the variance (covering all ranges).
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Asymptotics ofA(’”). Since the case = 0 will be treated separately, we assume throughout thissecti
thata > 0. We reflne the above inductive argument and show that

m m Ak "
A1(1k) ~ U (00) gy g ~ Vm (et )(m) ; (30)

for eachm > 1 andk /A, — o < m'/™=D wherev,,(«) denotes the moment sequenceXafr) given in
(7). This will prove the moment convergence part of Theodem

Note that by ), (30) holds form = 1 with v;(e) = 1. Assume that0) holds for all 4%, with
i < m. We split the right-hand side o29) into three parts

B
AN =B+ S Y+ Y v Y )J’J’f’[u’](u+1)]_[(1+;f)

0<r<k \1=<j<en en<j<(1—e&)n (1—e)n<j<n j<f<n

. B 4 40 (m) (m)
=: B, + A, (1] + 4,721 + 4,7/ [3].

By the same proof used for Lemr3awe have

b

A;(:;c)[l] -0 (va—vm(pm(v))\;(m+l)/2nmvv—km)
A1) = O (egm(u)hy D2y
Lettinge — 0, we see that, byX7),

AN+ A1) = 0(4T).

Asymptotics of Afl”’}(): the dominant terms. We start by showing that fdr < o < (m — 1)!/"=2)
( ) )\,k m
" —r > 2), 31
~ V(@) (F(l +a)k!) (m = 2) (31)

where

v (@) = Z (’Z) Vi (@) Vp—n (@) /01 ul® (1 — u) =M dy,

1<h<m

By (13), induction and 80), we have, fo < o < (m — 1)/

(m) m 1 Wil oM, N
B ~ Z (h)Vh(Ol)Vm—h(Ol); Z (I‘(1+a)(k—1)!) (I‘(l—t—a)k!)

1<h<m en<j=<(1—e)n

Ak m m 1 j kh/\n 7 k(m—h)/An
~(ravan) Z (Dwemsey 3 #(0)(-0)

1<h<m en<j=<(1—e)n

which proves 81). The errors introduced for terms with < e¢n and forj > (1 — ¢)n can be easily
bounded by using?(?).
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To evaluateél,(l’,'}() [2], we first observe that

I (1+;;):exp( S +0(|”2))

j<t<n j<t<n
= (/)" (140 (lul*j™")).
uniformly for finite complex: and j — oo. It follows that
Wl 1 (1 N u) (log(n/J))’ (1 Lo (rj_z)) ’
j<t<n !

uniformly foren < j < (1 —¢)nand0 < r < k = o(4/Jj). Consequently, by28) and 31),

(m) : Mo\ 1y ma

An,k [2] ~ v, (@) (m) 6n<j;_e)nj (j/n)

x 3 am ((log(n/j))"1 n (log(n/j))’)

rzo r—1) !
kk m  al1—¢ oy
~ Vm(a)((x —l— 1) (m) \/; X dx.

Lettinge — 0, we then obtain, byX9), that

1 Ak m
A(m) ~ ¥ 1 m 1 / mo—o—1 d n
n,k Vm(a) ( + (O[ + ) o X X) (F(l T O[)k')

., . ma+1 Ak "
= (@) _ ,
ma —a™ \T'(1 + a)k!

where
. mo+1 1 m gy L(ha + 1)I((m — h)a + 1)
Vm(a)moc —am m—am] 1<§<:m (h)vh(a)vm_h(a)a '(ma + 1)
= Vm(a),

form > 2, by (7). This completes the proof o29) and thus Theorerh (ii). 1

Moment convergence §). Convergence of all moments implies convergence in digiohuf the mo-
ment sequencé@) uniquely characterizes the distribution. By considefingx) := v, ()T (ma+1)/m!,
we easily obtain by induction that,(«) = O(K™) for « € [0, 1] (see Hwang and Neininger, 2002), and
thus convergence in distribution &f, /i, x follows from (6) whena € [0, 1].

5 The central rangea = 1

We prove Theoren2 in this section. The proof proceeds essentially along theede as we did above
but with one major difference: we consider central momemsseiad of factorial moments. This minor
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step is crucial in dealing with the cancellations involvedhe asymptotics of higher central moments. For
simplicity, the case whef, x| — oo andz, x = o(%,) is first analyzed; then the same method of proof is
extended to the case whegn, = O(1). Justifications of the error terms are similar to those&fﬁﬁ,'(;() given
above but become more complicated.

Recurrence of central moments. ConsiderP, x(y) := E(eXnr—#n6)¥) = P, 1 (e?)e Hnx7; see (2).
Then we have the recurrence

P k—1(3) Puj i (y)erk 0 (n>2k>1),

Isn,k(y) =
n ,
1<j<n
where
An,k(‘]') = Wjk—1t HUn—jk — Mnk
and P, o(y) = Py (y) = 1forn, k > 1.
Let nowP,f’;’() = 13,5’7() (0) denote then-th central moment ok, «. ThenP,fl,z = 0 and form > 2

m 1 m m m
P = > (P,(k) L+ P )) +0"  (m=2k=1), (32)

where

(m) ._ (@) (b) AC .
0= X ()it TP a0

a+b+c=m 1<]<"

and Py = 0forn,m > 1.

Outline of the proof of Theorem 2. Similar to the proof of 80), we divide the proof of Theorerinto
three main steps.

— We first derive a uniform estimate fay, . () for 1 < j, k < n, which then implies a uniform bound
for P,ff’,? for 1 < k < n. This bound is sufficient for our uses except whken- 1,,| = o(v/Ay).

— We then derive a second estimateAgyy (7 ) uniformly valid fork ~ A,. This in turnimplies a tight
bound forP,ff’,? whenk ~ A,, and an asymptotic approximationf(jf’,? whenl < |t x| = o(An).

— Afiner estimate fo\, (/) is needed to deal with the case whgp = O(1).

An integral representation for A, x(j). By (2),

— I,k -1
=T le)(1+0(n )-

Then

Mk = 3 g /) (140G (= ) du 33

uniformly for1 < j < n (whenj orn— j is bounded, th&-term becoming)(1) instead ob(1)), where

I =x)"tux"—1
PUX) = 1
Here and throughout this sectipwe takev = 1 + o(1) sincek ~ A,.

21



A uniform estimate for A, x(j). Since¢(1,x) = 0, we have

[p(u. x)| = O(lu —1])  (x €[0,1]).
Substituting this estimate int@8) gives

T
An,k(j) =0 (U—an/ Ueie _ 1‘ n—v(l—cos@)de)

T

= 0 (v =11+ 27"/, 20 ). (34)

uniformly for1 < j, k < n.

A uniform estimate for P").  From the recurrence3p) and the estimate3#}), we deduce, by an induc-
tion similar to that used for27), that

0. P = 0 ((w =11+, (120 n?) ") mz2), (35)

uniformly for 1 < k < n. This bound is however not tight whékh — A,| = o(+/A,), the reason being
simply thatv is not properly chosen to minimize the error term (the ﬁr,_',s't/z) in (34).

A finer estimate than (34). For a more precise estimate th&d), we use the two-term Taylor expansion

¢(u,x) = ¢, (1,x)(u—1) + O(ju — 1],
where¢, (1, x) = x + xlogx + (1 — x) log(1 — x), which leads to

: k—1
By =04 (12) G =) ™2 (140G 4+ 0= y7)
) <(|v 12 4 X;I)X;I/zv_kn”) . (36)
Takingv = k/A, gives
Ak—l
Auk(j) = O (<|k L ) (37)

This bound holds uniformly fok ~ A, and1 < j < n since¢,(1,x) = O(x|logx|) asx — 0.

A uniform bound for PZZ) whenk ~ A,. From @37), we deduce, again by induction, that

m m m Aﬁ_l "
0y Py = 0((Ik—kn| +1)( - ) ) (m = 2). (38)

uniformly for k ~ A,. The proof differs slightly from that for30) in that we split all sums of the form
1<), into three parts

2= Xt >+

1<j<n 1<j<n/M} n/AP<j<n—n/A}' n—n/Aj'<j<n

and then apply38) and @7) to the middle sum, andp) to the remaining two sums.
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Asymptotics of P,ff’,? when |z, x| — oo andt, x = o(A,). In this case, the estimat86) has the form

) : )\k 1
By ~ 8 (1.1 s (39)
n k!
uniformly in k whenen < j < (1 — ¢)n. Then we show that
) kk 1
P~ &m (tn,k 7(! ) (m=1), (40)
wherego = 1, g; = 0 and form > 2
m—+1 m ! a , c
a="10 % ( )gagb [ (41)
— a,b,c 0
a+b+c=m
0<a,b<m
0<c<m

Equivalently, this can be written as

1
_ m o c
Em = Z (a,b’c)gagb/(; x4(1—x)°¢! (1, x)° dx.

a+b+c=m
0<a,b,c<m

In particular,
1 7'[2
g, =3 qb;(l,x)zdx:Z—?.

The inductive proof is almost the same as thatA{ij, with the factor(k — A,,)™ handled by direct
expansion and then estimated term by term. Also we needltcssms of the formp _, _; _,, into five parts

)DL D DS D DI D DR D D
1<j<n 1<j<n/M? n/Aj'<j<en en<j<(l—e)n (1—e)n<j=<n—n/A] n—n/Aj<j<n

and then apply40) to the middle sum, and the two estimat85)(and 38) to the other four sums.

The moment sequencél) is easily checked to have the property of uniquely chareitg the distri-
bution; see Hwang (2005) for similar details.

This proves the first part of Theore?n

The periodic case wherv,x = O(1). In this case, we need a more precise expansion tB&8nas

follows.
)\k 1 - .
nk(.])N (¢u( ’ )tnk__¢uu (lvi))’ (42)

uniformly for j/n € [e,1 — ¢] andk ~ A,, where

¢, (1,x) = (xlogx + (1 —x)log(l — x))* = 2(1 — y)¢, (1, x).

This is proved by expanding more terms¢fu, x) atu = 1 and then estimating the error terms (see
Hwang, 1995 for similar details).
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With the approximation4?2), we first prove that forn > 0

k 1
IE()(n,k - /’Ln,k)m P( " ~ pm(tn k) ( Il ) s (43)

where p,, (¢, k) is a polynomial irv,, . of degreem with po(t,x) = 1 and p;(¢,x) = 0. This will imply
that fork = |A,] + £, wherel € Z,

Xn,k — MUn,k "
E (W) ~ Pm(L —{An}),

form > 0, where{\, } denotes the fractional part &f,. Then we apply an argument based on the Frechet-
Shohat moment convergence theorem similar to that used @mnCénd Hwang (2001a) to prove that
(Xux — tnk)/(A%=1/k!) does not converge to a fixed limit law. The proof {a¢, x — tnx)//V(Xuk)
is similar.

To prove @3), we use again induction. Assume> 2. Then a similar analysis as above leads to

) kk \"
Qn, ~ qm(tn k) px ,

whereg,, () is a polynomial of degree: defined by

1
dmtn) = ) (a’ZC) /0 (1= )"

a+b+c=m
0<a,b<m
0<c<m

/ l 1! ¢
X pa(tn — 1 =109 y) pp(tux —log(l — »)) (qbu(l, Wtnj — 5%(1, y)) dy.

Then by 32), we deduce that fan > 2

k—1\ " p

r=0

X (gm(tppe —7 — 1 —=109x) + ¢ty —r —logx)) dx,

the infinite series on the right-hand side being convergenes;,, is a polynomial of degree:. This
proves 43) and the second part of Theoréin
Note that by induction

1
pn®) = an@) + [ 37 (e = 1-103) + pult ~log) dx (= 2).
0
Straightforward calculation of the integrals gives theresgion 10) for p,(z,.x)-

Extrema of |[E(X, x —nx)™|. To prove the maximum order & (X, » —tn.x)™, We consider two cases.
First, when|k — A,| < A2/3, we apply 88), so that

max_ [P =0 A2 max (1, + 1)e—mt3_k/(zxn)
‘k_)‘-nlf)\.,%/3 ’ s

=0WX"n"),
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the maximum being reached whgn, ~ ++/A,.
On the other hand, whei — ,,| > A2/3, we apply the estimat&6) and bound the maximum by the
sum

2/3
lk=An|=An k<A,—A2/3  k=A+A2/3

max [PV =0|lv—1"A," 2 >+ ) )v’"k .

1/3

Takingv = 1 — A, '/? in the first sum an@ = 1 + A,,'/* in the second, we obtain

1/3
max [P =0 (A},“‘S’"/“nme‘m” /2).
k=Aal=A33
Thus
max |E(X,x — puni)™| = O (A,"n™).

1<k<n

The proof for the minimum order is similar. This proves Ctan} 5.

6 Asymptotic normality when a = 0
The approach we use in this section relies on manipulat@ggiturrences of two sequences of polynomials

defined from the bivariate generating functiabg(z, y) := Y, E(y*»#)z". It can not only be applied to
prove Theoren3 but also gives an alternative proof of the moment converg@act of Theoreml.

Main steps. Let

)L,%k_l
Ok =N =Dk — 1)’
X = Xng — Ak /kY)/ouk, andA := A,/ k. The proof of Theorerd uses the following estimates.

Proposition 2. The characteristic functions of *, satisfy the two estimates:)

. 0 03
E(eX”-klO) . 6—92/2‘ -0 (6_02/2| |\—I/—K| | + n—&‘) ’ (44)

uniformly for|8] < eA'/¢; and (i)
E(e*nxi?) = 0(e™/* +n7®), (45)
uniformly fore A'/® < 0] < ev/A.

Theorem3 then follows from applying the Berry-Esseen smoothing usdiy (see Petrov, 1975).
These estimates are derived by singularity analysis (sgeléi and Odlyzko, 1990), starting from
Cauchy’s integral representation

1 .
— 27" Pz, e'%onky dz.

E(eXn,kio/O'n,k) —
2mi |z|=¢

We then need estimates for the generating functi®nsand for that purpose, we introduce two sequences
of polynomials and derive approximations® via those for the two polynomials.
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Two sequences of polynomials. By (12), the generating functio®, satisfies

yz
Py(z,y) =14+ —,
1—z

Z Pr— —1
0

t

dt) k> 1).

It is more convenient to work with

Pr(z,e®)—1
Oulz.s) 1= HED =T
Then
es
QO(sz) = 1 ’
—Z Lz (46)
Qk(Z,S):eXp(/ Qk—l(tvs)dt)’ (kZ 1)
0
Now, write L(z) := —log(1 — z). We define two sequences of polynomi&landW as follows.
Vim(L(2)) ,,
Ok(z,s) = exp(z %s )
m>0 ’
_ 1 Wk,m(L(Z)) m
Tl—z n;) m! o

Lemma 7. The two sequences of polynomials satisfy the recurrences

View () = /0 Wicim@Od (k> 2),

Wiem(x) = % > (’;l)jvk,j(x)Wk,m—j(x) (m = 1),

1<j<m

(47)

whereV; ,, = x form > 0 and Wy o(x) = 1 for k > 1.

Proof. The first relation follows from46) and the second from taking derivative with respect émd then
collecting the coefficient af”* on both sides. 1
Mean value and variance. We first rederive the mean and variance by sugh#-polynomial approach.
By (47) with m = 1, we obtain
xk
Via(x) = Wi (x) = T (k=1). (48)

Consequently, withh = L(z),

o z Lk(z)_s(n,k+l)
Pk = T T T =1y

26



which rederives?). The asymptotic behavior @f, » whenk = o(A,) is derived as follows.

_[ k] (” )(1+0(n_1))

N ! o 2k
! Z (k — )AL .[uJ]I‘(l + u) + O (nk!)

0=<j=<k

F.
Form = 2, we have, again by(),
2k—1

k — )22k — 1)

Via(x) = / Wi12() di = + / Vir 2(0) dr
0 0

2j) xk+j .
= : — (49)
OEJZ.;,((J (k +/)!
and then
Wi a(x) =V, V2 (x) = AN A
k2(x) = Via(x) + k’l(X)_ost;k(j)(k—Fj)!.
Hence,
o E 2J)L"+f'(z): (2j)s(n,k+J+1)
[2]1_2 0;]{(]’ (k + j)! O;k j (n—1)!
27i\: & nt _
= 2 () e 0+ 007

0<j<k

cf. Meir and Moon (1978) and van der Hofstad et al. (2001). Nabvgerve that fok = o(A,)

2% P ni . ni 2 B k2k2k—2
(k)[uz]F(l—l—u)_([ ]r(1+ )) _0( k12 )

kzk—l

V(Xn,k) ~ (k _ 1)1'12(2k — l) (k = 0()\”)),

which proves the variance estimate in Theof&m

This line of computations can be extended to higher momédsds.example, a similar reasoning for
m = 3yields

Vies(x) = /0 Viera(t) dt + / (3Vimr 2O Vit () + Vi, ()

2 20 k+j+4 3 k+2j
—3 Y z(f)(” )— +Z(.¥.)7x .
¢ (k+j+0! ot I (k +2))!

0<t<k 0<j<{

B 2j j + 2/ xk+j+ﬁ 3j xk+2j
man=3 ¥ ¥ () a2 00 e

0<l<k 0<j<( 0<j<k

which was used to compul X, x — i,.x)* in Figurel. However, the resulting expressions soon become
very involved. Thus we focus directly on asymptotics of thpslynomials and not on exact expressions.

It follows that

and
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Asymptotics of the V and W polynomials. First, by @8), we have

k

X
Vii(x) = Wi i(x) ~ T (x € ©),

fork = o(|x]).
Next, by @9), we have the following estimates for= o(x)

(2k—1 2k — 1 k-t k-t
Vk’Z(x):(k—l)!z(Zk—l) (1+ Z 2k—j l—[ ( X .2kj€))

1<j<k 1<t<j

x2k—1

Tk —-DR22k—1)

and
2k

X
Wica(x) = Viea(x) + V2, (x) ~ JAER

The general pattern is as follows.

Lemma 8. If &k = o(|x|), wherex € C is large, then

me=1)+1
V ,m(x) ~ ’
" (k — DI (m(k —1) + 1) (50)
xm
Wiem(x) ~ 2o

Proof. We use induction om:. We already provedsQ) for m = 1,2. Assumem > 3. By (47) and
induction

Viem(x) = / Wi—1.m(t) dt
0

1 m X lj(k_2)+1 t(k—l)(m—j) g x g
~ — ] . . - dr + Vi—1,m(t) dt
mljzm(f)’/o TR &, e

x(k—l)m+l

N kDM Dm+ D |
Hence, by iteration,

/ Vi—1.m () dt.
0

xk+im=1)
jm (k4 j(m— 1))
yk=Dm+1

T =Dk —Dm+ 1)
Moreover, by applying47) and induction again

1 m xj(k—l)-H xk(m—j)
Wiem ~ — j . . n
ST lzm (J)’(k— DUGKk =D +1) Kk
ka
T me

This proves§0). 1
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Proof of Proposition 2. By Cauchy’s formula, we have

. 1
E (eXn,kzé)/an,k) = z7"Qk (z,i0/0n k) Oz.
27i Jiz1=¢

We then deform the integration circle onto the left contdwowen in Figure3, wheres, = A2/n. For the
larger circle, we have

1

2700 J |z =1+8,/n \2l=1+6, /1

z7"Qk(z, i0/opr)dz = O (e_)‘% sup |Qx(z, i@/O‘n’k)|) .

Now by the estimate

A
_ 1/2"%%n
Onk = O(A k')

and 60), we have
Vim(log(n/o)ory = 0 (A=22)  n = 1),

for any complex sequenee, satisfyingl < |w,| = O(AKX). It follows that the contribution from the
large circle is bounded above by

1

270 J\z1=1468,/n

z7"Qk(z2,i0/0nx)dz = O (n)L’:Ze—)»%—i-KA) ’

uniformly for [0] < ev/A.
When:z € H;, we make the change of variables> 1 — t/n and apply the estimat&(Q), which gives

0 Ak I 02 I
on(1=5:3) = teofam (10 (49) -5 (o (529))

o))

m=3

From this we deduce thatfif| < sA'/¢, then

0 Ak 02 I
o (-5 22) - on{go- ) (o (om 52

and ifeA'/% < |f] < eA'/?, then

Qk( ‘E 19 ) -0 (i |_L,|—ee—t92/2+K93/«/K)
T

_ n_—0%4
‘O(MF” )’

for sufficiently smalle.
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These estimates then yield

xrae, _ €O et 5 |logz]| 7|2 .
E(e¥ini?) = —— LO?(1+0((|0|+|0| )—A )) (1+0(—n )) dr + O (n™®)
_ 072 |9|+|9|3)) e
e (1—!—0(—7\ + 0,

uniformly for |#] < eA /¢, where the contouk{, is shown in Figure, and similarly

E(eX:.kie) =0 (e—92/4 + n—e) ’

uniformly for eA'/¢ < |0| < eA'/2. This completes the proof of Propositi@n

1+ 6, z T

Figure 3:The Hankel contours used to derive the asymptotics of theemisnofX, x.

Proof of Theorem3. We now apply the Berry-Esseen smoothing inequality (semPet975)

. _o-L
fﬁ‘@P(X"’k <x)-—®x)| =0 («/X + J),

where

VA |E (Xik?) = e~/2
J = / dé
—e/A 6

eX,;ﬁkie) _ o972

E
o e L) o
[0|<A—1/2 A—1/2<|f|<eAl/0 eN1/6<|0|<eA1/2 0

= J1+ Jo+ Js.
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The integral/; is assessed as follows.

E (eX:’k"e) —1
J1 S/ de +[
|0|§A—1/2 |0|§A—1/2

60
<EX}?) |(9|d0—|—/ 10| do
o Jigl=a-12 9|<A—1/2

= O(A™).

=02 _

do
60

By (44), the integral/, satisfies

J, =0 (A—W/ (14 6%)e /2 do + n_S/ 16! de)
A—1/2<]0|<eA1/6 A—1/2<]0|<eA1/6

—0 (A—l/2 tnt IogA)

= 0(A712).

The last integral/; is estimated by usingtf)

J3 =0 (/ 0 e /4 dp + nt log A)
eA1/6<|0|<eA1/2

=0(A712).

This proves Theorerd. 1
In particular, Theoren3 implies and completes the case= 0 in Theoreml.

An alternative proof of Theorem 1 (ii). The above approach based B -polynomials can also be
refined to give an alternative proof of TheorédmWe outline the main steps.
First, by @7) and induction, we can prove that

k k m—1 mk
Viem(X) ~ &m (;) ( /),2 ' )]i!m :
k mk
Wk,m(x) ~ Sm (;) )]iv,

uniformly for 0 < k/|x| < m'/®=1 and large complex, wheret,, (1) is defined recursively by

O L PAV R Y
m—u h

1<h<m

with & (u) = 1.
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Then whernk /A, — o, 0 < a < m!/m=1,

zZ

E(X,) = [2"] Wiem(L(2))

11—z

[ et w o (ogn /1)) de
2mi Jy

En@) [ o O —logn)™
- et ——AQar
2mi H

klm
Ak
"’Sm(a) n _'/er_[—l—motdr
L Jn

~

kim 27
Em(a) Amk
ra+mao) kim
ra+a™
~ Sm(a)mﬂn,k’

for a suitably chosen Hankel contot. And it is straightforward to check, by, that

T(l+a)"

Sm(a)m = vp(a).

Note that this approach does not apply to profiles of binaayctetrees.

7 Profiles of random binary search trees

We consider briefly in this section random binary searchstrdgose profiles have been widely studied; see
Drmota and Hwang (2005a) and the references therein. Ouratief moments and contraction method
apply. While the results for both trees are very similarréhie no range for binary search trees where the
limit law of the profile is normal.

Let Y, denote the number of external nodes at distandeom the root andZ, » the number of
internal nodes at leved (root being at leved) in a random binary search treemhodes (as constructed
from a random permutation afelements). Then fak,n > 1

2

4 *
Yn,k = YJn,k—l + Yn_l_Jn’k_la

9
Zl’l,k = Z-]n,k_l + Z:—I—Jn,k—l’
with the initial conditionsY, o = 8,0 and Z,o = 1 — 8,0, WhereJ, is uniformly distributed over

. 9 % *

LI - ' = ’ n . n =
{0 n — 1}, the summands are independent afg Yoo Znk Z, - Note thatZ, «
Zj>k Y”,J'zj_k'

IS

Mean values. The expected value df, ; satisfies (see Drmota and Hwang, 2005a and the references

therein)
2k 2)n)* 1
B0 = stk = e (140 (57))

the O-term holding uniformly forl < k < KA,,.
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For internal nodes, the asymptotic behavior is different
k

E(Zup) = o3 3500 /)
C >k

2k _ (24,)" if 1<k <t,— KAn:
(1 _an,k)r(an,k)nk!’ N N ’

~ 4 2K (—xnp), if xp s i= (k — An)/ Do = 0((hn)/6);

(24)" it 2, + K/hr <k < KA
(an,k - I)F(an,k)nk!’ " " N i

where the error terms in the first and the third approximateme of the form

k
of @\
Ik — An|Pnk!

and that of the middle i©((1 + |x,x|*)/~/Ax); see b1) below.

Note that
logE(Yn,k)
>
An
and the right-hand side is positive when < o < o4, whered < o« < 1 < « are the two real zeros of
the equatiorr — 1 — zlog(z/2) ore*~1/? = z/2. These two constants are sometimes referred to as the
binary search tree constangsr the fill-up level and height constants, respectively).

a—1—alog(a/2),

The limit law. Define the map
. g a—1 g _ a—1zx*
Twm»M,VHcQU Z+351-0) Z),

whereZ, Z*, U are independentanf(Z) = L(Z*) = v.

The constant is defined bys := 2 when2 — v2 < ¢ < 2+ +/2andl < s < o whena €
(a—,a4) \ (2—+/2,2 + +/2), wherep € (1, 2] solves the equatiop(a — 1) + 1 = 2(a/2)°.

Similar to Propositiori, we have the following properties.

Proposition 3. If «— < o < a4, then the restriction of” to M, (1) has a unique fixed poirit (). In
addition,E|Y («)|? = oo fora € (a—,ay) \ (2 — /2,2 4+ V/2).

Limit distribution when «_- < o < a4. The above estimates for the mean valuedpf and Z,,
say roughly that internal nodes are asymptotically fullgiaes2*) for the firsti,, — K /A, levels, while
external nodes are relatively sparse there. Observe thaettond order term &(Z,, x) is asymptotically
of the same order ds(Y, x) whena < 1. This suggests that we should consider

- 2k — 7w, fa_<a<I:
Lok = ’ .
’ Zn’k, ifl<ac< o,

Theorem 5. Let Y («) and ¢ be defined as in PropositioBh Assume that = aA, + o(A,). Then for
o <a <o,

Y, Zy 7
ko _Lnk 7 (),
with convergence of all moments f@re [1, 2] but not fore outside(l, 2].
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Chauvin et al. (2005) proved almost sure convergenc&fa/E(Y, ) wheno_ < o < ay; their
result is stronger than convergence in distribution busdus imply convergence of all moments.

As in Theorem¥, we can derive a convergence rate for thalistance whe — v2 < o < 2 4+ /2
and for¢; whena € (a.ay) \ (2 — 2,2 + V2).

Moments of the limit law. The integral moments,,(«) of Y («) satisfy (when they existyo(a) =
n1 () = 1 and form > 2

B (a/2)™ m F'he—1)+ DIC((m—=h)(e—1)+1)
) = T + 1 =2/ 2 (h)"”(“)”’""’(“) T(n(e—1) + 1) '

1<h<m

Observe that the polynomiat(z — 1) + 1 — 2(z/2)™ has two positive zeros,, andz,, wherez = €
2-+2,1) andz}t € 2,2+ V2] for m > 2. And the two sequences of zeros for increagingatisfy (see
Tablel)

z, T 1, zh | 2.
Thus the intervall, 2] is the only range where convergence of all moments holds.

More preciselyn. («) is finite whenz,, < « < z;} and we have convergence of the firsth moment
(but not the(m + 1)-st moment) forY,, x /E(Y, 1) and Z, x /E(Z,x) there. In particular, itr. < o <
2—+2o0r2+4 2 < a < a4, thenY(«) has no second moment. This is consistent with the result in
Drmota and Hwang (2005a).

m 2 3 4 5 6
Z, || 0.58578 | 0.69459 | 0.76045 | 0.80420 | 0.83509
zb || 3.41421 | 3.06417 | 2.86989 | 2.74376 | 2.65416
m 7 8 9 10 11
Z, || 0.85790 | 0.87533 | 0.88903 | 0.90006 | 0.90912
zb 1| 2.58668 | 2.53372 | 2.49085 | 2.45532 | 2.42531
Table 1:Approximate numeric values gf, andz! form =2,...,11.

Limit distributions when « = 1. Note thatY (1) = Y(2) = 1.
The following theorem states that there is a delicate diffee between the limit distribution of,
and that ofZ, x (properly normalized) whea = 1 + O(1/+/A,).

Theorem 6. Assumé = A, + #,k, Wheret, . = o(A,). If |t x| — oo, then

Yn,k - E(Yn,k)
2k (2An)k71/ (nk!)

Loy

if £, x = O(1), then the sequence of random variabl&s, — E(Y, x))/+/V(Y,x) does not converge to a
fixed limit law.
For internal nodes, uniformly fof, . = o(%,),

Zn,k - IE(Zn,k) M ’
ek T
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Thus the periodicity does not play a special role for intenuales wherr = 1. Note that the normal-
izing constants differ by the factog, x — 1 = t,,.4/An.
The limit law Y'(1) can also be defined as

s 1 1 1 1
Y'(1) Z SY' () + EY’(I)* + 1+ 5 logU + - log(1 —U).

with independent summands aid(1) Z Y'(1)*. Note that the random variablgjZO Z,.j/2) have
mean equal tc):lﬁjﬁn j~! and converge td’(1) (after centered and normalized).

Since the distribution ot ’(1) is uniquely characterized by its moment sequence, the cgaree in
distribution is also implied by the Frechet-Shohat momemntvergence theorem.
The quicksort limit law when « = 2.

Theorem 7. Assumey, x = 2 + ty /Ay, Wheret, x = o(A,). If |t, x| — oo, then

Yn,k - IE(Yn,k) Zn,k - IE(Zn,k)
2k 2An)*7V/ (k)" 28, 1 2A0)* =1/ (nk!)

L Y');

if £, x = O(1), then neither of two sequences

Yﬁk'_JE(YhJ) szk'_JE(szk)
VT VV(Zug)
converges to a fixed limit law.

The limit law Y’ (2) is essentially the quicksort limit law (see Hwang and Negein 2002)
: |
YQ ZUY' Q) +(-U)Y'Q" + 5 +UlogU + (1-U)log(l - V).

with independent summands on the right-hand sidelat2l) Z Y'(2)*.

Convergence in distribution in the case whg.| — oo is also implied.

The approach given in this paper gives not only the bimoglalfithe variance&/ (Y, ) andV(Z, x)
but also the extremal (reachable) ordersofY, » — E(Y,x))™| and|E(Z,x — E(Z,))"| form > 3
whena = 2.

Sketch of proofs. We sketch a few steps for internal nodes, external nodeglsamlar and simpler.
Starting from the recurrence for the probability genegfumction of Z,,

1
Pri(y) = p Y Pkt Puciju(y) (= 2k = 1),

0<j<n

with Pyo(y) = 1 and P, o(y) = y forn > 1, we have the recurrence for the mean value

B(Zn)=> Y BZj)  z2kzl)

0<j<n
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Lemma 9. The solution to the recurrence

2
nk = Z aj -1+ bu,

0<j<n
is given explicitly by
ank = bug + %()SJZEH ong;k bj,k—l—r[ur]jdr[n (1 + 2%) ,
wherebg x 1= ao k-
Then we have, by applying the exact solution withy = 1 for » > 1 andb,, x = 0 otherwise,

2z = 211 Y ] (1+27“)

1<j<nj<l<n

= Pk ( Tz + u) 1)

u—1\T(n+ DL u+1)
2k 1 —1
=— k! (" T ) . (51)
2700 Jjuj=ay 1> 1 u—1 n
Thus
E(Zjx-1) + E(Zp—1-j k1) —E(Zu )
2k k1 u— . . o
=5 u " e, j/n) (140G + (n—j)™") du,
Tl lul=ctp i
where

ux*“ ' +u(l—x)*1-2
2N (u)(u — 1)
Note that, unlike recursive trees and external nodes ofpsearch treeg(1, x) isnotzero ang (1, x) =
143 log x+% log(1—x). This is why there is no periodic case for internal nodes when140(1/+/A,).
All estimates required foE(Z, x) and for its differencé&(Z; x—1) + E(Zn—1-j k—1) — E(Z,) can
be derived as for recursive trees. For example, we havegramiij for A, + K+/A, < k < KA,

¢ (u, x) =

(2hn)*

E(Znie) ~ (@ — D (a)k'n”

8 Conclusions

Most random trees in discrete probability or data structin@ve height of order either ign or in logn;

see Aldous (1991). While profiles and other related prosedsined on random trees gfi-height have
been thoroughly studied in the literature (see Aldous, 1¥®inota and Gittenberger, 1997, Kersting,
1998, Pitman, 1999, and the references therein), profilesees with logarithmic height have received
little attention (except for digital search trees; see Alsland Shields, 1988, Jacquet et al., 2001). This
paper shows that the phenomena exhibited in such trees asécdily different yet highly attractive.
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A detailed study of more general random search trees (imgua-ary search trees, quadtrees, fringe-
balanced binary search trees, etc.) will be given elsewhere

Many questions remain unclear at this stage. For exam@é¢hare more “humps” or valleys for higher
central moments or cumulants in the central range? Are th&seesting process approximations? How
to simulate the limit laws appearing in this paper? And wlegigens when = e for recursive trees and
o = o_, a4 for binary search trees? Do we still have the same conveegendistribution forX,, x /iy «
whenu, x — co? Note that for recursive treeB( X, ) — oo for k < eA, —e; logA,, wheree; > 1/2,
but V(X,x) — oo fork < =1, — e, logA,, wheree, > 1/(2log4). Since4/log4 ~ 2.88 > e, there

log4
is still a small range ik where the mean goes to zero but the variance goes to infinity.
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