THE VARIANCE FOR PARTIAL MATCH RETRIEVALS IN k-DIMENSIONAL BUCKET DIGITAL TREES ($\approx 1/2$ joint with Hsien-Kuei Hwang and Vytas Zacharovas)

Michael Fuchs

Department of Applied Mathematics National Chiao Tung University

Hsinchu, Taiwan

AofA2010, July 8th, 2010

Introduced by Coffman and Eve (1970).

・ロン ・四 ・ ・ ヨン ・ ヨン

Introduced by Coffman and Eve (1970).

(日) (周) (三) (三)

Introduced by Coffman and Eve (1970).

・ロン ・四 ・ ・ ヨン ・ ヨン

Introduced by Coffman and Eve (1970).

(日) (周) (三) (三)

Introduced by Coffman and Eve (1970).

Random Model: 0-1 are generated independently and equally likely.

Michael Fuchs (NCTU)

・ロン ・四 ・ ・ ヨン ・ ヨン

Shape Parameters

Depth

Konheim, Newman, Knuth, Devroye, Louchard, Szpankowski

• Partial Match Queries

Flajolet, Puech, Kirschenhofer, Prodinger, Szpankowski, Schachinger

• # of Occurrences of Patterns

Knuth, Flajolet, Sedgewick, Prodinger, Kirschenhofer

• Key-Wise Path Length

Flajolet, Sedgewick, Prodinger, Kirschenhofer, Szpankowski, Hubalek

Node-Wise Path Length

Fuchs, Hwang, Zacharovas

Michael Fuchs (NCTU)

(日) (同) (三) (三)

Previous Approaches

Rice Method

Introduced by Flajolet and Sedgewick for digital search trees with bucket size one.

• Approach of Flajolet and Richmond

Introduced for the analysis of bucket digital search trees. Based on Euler transform, Mellin transform, and singularity analysis.

• Approach via Analytic Depoissonization

Introduced by Jacquet & Regnier and Jacquet & Szpankowski. Based on saddle point method and Mellin transform.

• Schachinger's Approach

Largely elementary.

Michael Fuchs (NCTU)

Shape parameters X_n satisfy the recurrence:

$$X_{n+b} \stackrel{d}{=} X_{I_n} + X_{n-I_n}^* + T_n$$

- $I_n \stackrel{d}{=} \mathsf{Binomial}(n, 1/2);$
- $X_n \stackrel{d}{=} X_n^*;$
- X_n, X_n^*, I_n independent.
- T_n toll-function.

・ロン ・四 ・ ・ ヨン ・ ヨン

Poissonization

Moments satisfy the recurrence:

$$f_{n+b} = 2^{1-n} \sum_{j=0}^{n} \binom{n}{j} f_j + g_n.$$

(日) (同) (三) (三)

Poissonization

Moments satisfy the recurrence:

$$f_{n+b} = 2^{1-n} \sum_{j=0}^{n} \binom{n}{j} f_j + g_n.$$

Consider Poisson-generating function of f_n and g_n , i.e.,

$$\tilde{f}(z) := e^{-z} \sum_{n \ge 0} f_n \frac{z^n}{n!}, \qquad \tilde{g}(z) := e^{-z} \sum_{n \ge 0} g_n \frac{z^n}{n!}.$$

• • • • • • • • • • • •

Poissonization

Moments satisfy the recurrence:

$$f_{n+b} = 2^{1-n} \sum_{j=0}^{n} \binom{n}{j} f_j + g_n.$$

Consider Poisson-generating function of f_n and g_n , i.e.,

$$\tilde{f}(z) := e^{-z} \sum_{n \ge 0} f_n \frac{z^n}{n!}, \qquad \tilde{g}(z) := e^{-z} \sum_{n \ge 0} g_n \frac{z^n}{n!}.$$

Then,

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).$$

Michael Fuchs (NCTU)

-

• • • • • • • • • • • •

Poissonized Variance

Poisson Heuristic:

$$f_n$$
 sufficiently smooth $\implies \tilde{f}(n) \approx f_n$.

Poissonized Variance

Poisson Heuristic:

$$f_n$$
 sufficiently smooth $\implies \tilde{f}(n) \approx f_n$.

 \tilde{f}_2, \tilde{f}_1 Poisson-generating functions of second moment and mean.

(日) (同) (三) (三)

Poissonized Variance

Poisson Heuristic:

$$f_n$$
 sufficiently smooth $\implies \tilde{f}(n) \approx f_n$.

 \tilde{f}_2, \tilde{f}_1 Poisson-generating functions of second moment and mean.

Poissonized Variance:

• If mean is sublinear,

$$\tilde{V}(z) = \tilde{f}_2(z) - \tilde{f}_1(z)^2.$$

Poisson Heuristic:

$$f_n$$
 sufficiently smooth $\implies \tilde{f}(n) \approx f_n$.

 \tilde{f}_2, \tilde{f}_1 Poisson-generating functions of second moment and mean.

Poissonized Variance:

If mean is sublinear,

$$\tilde{V}(z) = \tilde{f}_2(z) - \tilde{f}_1(z)^2.$$

If mean is linear,

$$\tilde{V}(z) = \tilde{f}_2(z) - \tilde{f}_1(z)^2 - z\tilde{f}'_1(z)^2.$$

· · · · · · ·

Jacquet-Szpankowski-admissibility (JS-admissibility)

 $\tilde{f}(z)$ is called JS-admissible if

 ${\bf (I)} \ \ {\rm Uniformly \ for \ } |\arg(z)| \leq \epsilon,$

$$\tilde{f}(z) = \mathcal{O}\left(|z|^{\alpha} \log^{\beta} |z|\right),$$

 $\textbf{(O)} \ \ \text{Uniformly for} \ \epsilon < |\arg(z)| \leq \pi,$

$$f(z) := e^{z} \tilde{f}(z) = \mathcal{O}\left(e^{(1-\epsilon)|z|}\right).$$

Jacquet-Szpankowski-admissibility (JS-admissibility)

 $\tilde{f}(z)$ is called JS-admissible if

 ${\bf (I)} \ \ {\rm Uniformly \ for \ } |\arg(z)| \leq \epsilon,$

$$\tilde{f}(z) = \mathcal{O}\left(|z|^{\alpha} \log^{\beta} |z|\right),$$

 $({\bf O}) \ \ {\rm Uniformly \ for \ } \epsilon < |\arg(z)| \le \pi,$

$$f(z) := e^{z} \tilde{f}(z) = \mathcal{O}\left(e^{(1-\epsilon)|z|}\right).$$

Theorem (Jacquet and Szpankowski) If $\tilde{f}(z)$ is JS-admissible, then

$$f_n \sim \tilde{f}(n) - \frac{n}{2}\tilde{f}''(n) + \cdots$$

Michael Fuchs (NCTU)

Depoissonization

JS-admissibility satisfies closure properties:

- (i) \tilde{f}, \tilde{g} JS-admissible, then $\tilde{f} + \tilde{g}$ JS-admissible.
- (ii) \tilde{f} JS-admissible, then \tilde{f}' JS-admissible. Etc.

Depoissonization

JS-admissibility satisfies closure properties:

- (i) \tilde{f}, \tilde{g} JS-admissible, then $\tilde{f} + \tilde{g}$ JS-admissible.
- (ii) \tilde{f} JS-admissible, then \tilde{f}' JS-admissible. Etc.

Proposition

Consider

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).$$

We have,

$$\tilde{g}(z)$$
 JS-admissible \implies $\tilde{f}(z)$ JS-admissible.

Michael Fuchs (NCTU)

We start from,

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).$$

3

<ロ> (日) (日) (日) (日) (日)

We start from,

$$\sum_{j=0}^{b} \binom{b}{j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).$$

Applying Laplace transform,

$$(s+1)^b \mathscr{L}[\tilde{f}(z);s] = 4\mathscr{L}[\tilde{f}(z);2s] + \mathscr{L}[\tilde{g}(z);s] + p(s).$$

with p(s) a polynomial.

We start from,

$$\sum_{j=0}^{b} \binom{b}{j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).$$

Applying Laplace transform,

$$(s+1)^b \mathscr{L}[\tilde{f}(z);s] = 4\mathscr{L}[\tilde{f}(z);2s] + \mathscr{L}[\tilde{g}(z);s] + p(s).$$

with p(s) a polynomial.

Define,

$$Q(s) := \sum_{l \ge 1} \left(1 - \frac{s}{2^l} \right)$$

and $Q_{\infty} := Q(1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Set

$$\bar{f}(s) := \frac{\mathscr{L}[\tilde{f}(z);s]}{Q(-s)^b}, \qquad \bar{g}(s) := \frac{\mathscr{L}[\tilde{g}(z);s] + p(s)}{Q(-2s)^b}.$$

3

<ロ> (日) (日) (日) (日) (日)

Set

$$\bar{f}(s) := \frac{\mathscr{L}[\tilde{f}(z);s]}{Q(-s)^b}, \qquad \bar{g}(s) := \frac{\mathscr{L}[\tilde{g}(z);s] + p(s)}{Q(-2s)^b}.$$

Then,

$$\bar{f}(s) = 4\bar{f}(2s) + \bar{g}(s).$$

3

<ロ> (日) (日) (日) (日) (日)

Set

$$\bar{f}(s) := \frac{\mathscr{L}[\tilde{f}(z);s]}{Q(-s)^b}, \qquad \bar{g}(s) := \frac{\mathscr{L}[\tilde{g}(z);s] + p(s)}{Q(-2s)^b}.$$

Then,

$$\bar{f}(s) = 4\bar{f}(2s) + \bar{g}(s).$$

Applying Mellin transform,

$$\mathscr{M}[\bar{f}(s);\omega] = \frac{\mathscr{M}[\bar{g}(s);\omega]}{1-2^{2-\omega}}.$$

(日) (周) (三) (三)

3

Set

$$\bar{f}(s) := \frac{\mathscr{L}[\tilde{f}(z);s]}{Q(-s)^b}, \qquad \bar{g}(s) := \frac{\mathscr{L}[\tilde{g}(z);s] + p(s)}{Q(-2s)^b}.$$

Then,

$$\bar{f}(s) = 4\bar{f}(2s) + \bar{g}(s).$$

Applying Mellin transform,

$$\mathscr{M}[\bar{f}(s);\omega] = \frac{\mathscr{M}[\bar{g}(s);\omega]}{1-2^{2-\omega}}.$$

From this, an asymptotic expansion of $\tilde{f}(z)$ as $z \to \infty$ is obtained via inverse Mellin transform and inverse Laplace transform.

Image: A math a math

Our Approach vs. Flajolet-Richmond

イロト 不得下 イヨト イヨト 二日

Variance for Key-Wise Path Length

Theorem

We have,

$$\operatorname{Var}(X_n) \sim n P_2(\log_2 n),$$

where $P_2(z)$ is a one-periodic function with Fourier coefficients

$$\frac{1}{L\Gamma(2+2\pi i r/L)}\int_0^\infty \frac{s^{1+2\pi i r/L}}{Q(-2s)^b}\int_0^\infty e^{-zs}\tilde{h}(z)\mathrm{d}z\mathrm{d}s$$

with $L := \log 2$.

Here, $\tilde{h}(z)$ is a function of the Poisson generating function of the mean.

(日) (周) (三) (三)
Fourier Coefficients

Theorem

For b = 1,

$$\frac{Q_{\infty}}{L\Gamma(2+2\pi i r/L)}$$

$$\sum_{j_1,j_2,j_3\geq 0} \frac{(-1)^{j_1} 2^{-\binom{j_1+1}{2}+2\pi i r j_1/L}}{Q_{j_1}Q_{j_2}Q_{j_3}2^{j_2+j_3}} \varphi(2+2\pi i r/L;2^{-j_1-j_2}+2^{-j_1-j_3})$$

with
$$Q_j = \prod_{l=1}^j (1-2^l)$$
 and

$$\varphi(\omega; x) = \frac{\pi(1+x^{\omega-2}((\omega-2)x+1-\omega))}{(x-1)^2\sin(\pi\omega)}.$$

Michael Fuchs (NCTU)

≣▶◀≣▶ ≣ ∽Qペ July 8th, 2010 14 / 28

<ロ> (日) (日) (日) (日) (日)

$$\begin{split} &-\frac{28}{3L} - \frac{39}{4} - 2\sum_{l \ge 1} \frac{l2^l}{(2^l - 1)^2} + \frac{2}{L} \sum_{l \ge 1} \frac{1}{2^l - 1} + \frac{\pi^2}{2L^2} + \frac{2}{L^2} \\ &-\frac{2}{L} \sum_{l \ge 3} \frac{(-1)^{l+1}(l - 5)}{(l + 1)l(l - 1)(2^l - 1)} \\ &+ \frac{2}{L} \sum_{l \ge 1} (-1)^l 2^{-\binom{l+1}{2}} \left(\frac{L(1 - 2^{-l+1})/2 - 1}{1 - 2^{-l}} - \sum_{r \ge 2} \frac{(-1)^{r+1}}{r(r - 1)(2^{r+l} - 1)} \right) \\ &- \frac{2Q(1)}{L} + \sum_{l \ge 2} \frac{1}{2^l Q_l} \sum_{r \ge 0} \frac{(-1)^r 2^{-\binom{r+1}{2}}}{Q_r} Q_{r+l-2} \\ &\cdot \left(-\sum_{j \ge 1} \frac{1}{2^{j+r+l+2} - 1} \left(2^{l+1} - 2l - 4 + 2\sum_{i=2}^{l-1} \binom{l+1}{i} \frac{1}{2^{r+i-1} - 1} \right) \right) \\ &+ \frac{2}{(1 - 2^{-l-r})^2} + \frac{2l + 2}{(1 - 2^{1-l-r})^2} - \frac{2}{L} \frac{1}{1 - 2^{1-l-r}} + \frac{2}{L} \sum_{j=1}^{l+1} \binom{l+1}{j} \frac{1}{2^{r+j-1}} \\ &- 2\sum_{j=2}^{l+1} \binom{l+1}{j} \frac{1}{2^{r+j-1} - 1} + \frac{2}{L} \sum_{j=0}^{l+1} \binom{l+1}{j} \sum_{i\ge 1} \frac{(-1)^i}{(i+1)(2^{r+j+i} - 1)} \right) \\ &+ \sum_{l\ge 3} \sum_{r=2}^{l-1} \binom{l+1}{r} \frac{Q_{r-2}Q_{l-r-1}}{2^l Q_l} \sum_{j\ge l+1} \frac{1}{2^{j-1}} - 2[FH]_0 - [F^2]_0. \end{split}$$

Michael Fuchs (NCTU)

July 8th, 2010 15 / 28

k-d Bucket Digital Search Trees

Let R_1, \ldots, R_n be k-dimensional data, i.e., R_i consist of k 0-1 strings

$$R_{i,1} = \left(R_{i,1}^{[1]}, R_{i,1}^{[2]}, R_{i,1}^{[3]}, \ldots \right),$$

$$\vdots$$

$$R_{i,k} = \left(R_{i,k}^{[1]}, R_{i,k}^{[2]}, R_{i,k}^{[3]}, \ldots \right).$$

3

k-d Bucket Digital Search Trees

Let R_1, \ldots, R_n be k-dimensional data, i.e., R_i consist of k 0-1 strings

$$R_{i,1} = \left(R_{i,1}^{[1]}, R_{i,1}^{[2]}, R_{i,1}^{[3]}, \dots \right),$$

$$\vdots$$

$$R_{i,k} = \left(R_{i,k}^{[1]}, R_{i,k}^{[2]}, R_{i,k}^{[3]}, \dots \right).$$

Shuffling yields

$$\tilde{R}_i = \left(R_{i,1}^{[1]}, \dots, R_{i,k}^{[1]}, R_{i,1}^{[2]}, \dots, R_{i,k}^{[2]}, \dots \right).$$

Use $\tilde{R}_1, \ldots, \tilde{R}_n$ to construct the usual bucket digital search tree.

Michael Fuchs (NCTU)

・ロン ・四 ・ ・ ヨン ・ ヨン

k-d Bucket Digital Search Trees

Let R_1, \ldots, R_n be k-dimensional data, i.e., R_i consist of k 0-1 strings

$$R_{i,1} = \left(R_{i,1}^{[1]}, R_{i,1}^{[2]}, R_{i,1}^{[3]}, \dots \right),$$

$$\vdots$$

$$R_{i,k} = \left(R_{i,k}^{[1]}, R_{i,k}^{[2]}, R_{i,k}^{[3]}, \dots \right).$$

Shuffling yields

$$\tilde{R}_i = \left(R_{i,1}^{[1]}, \dots, R_{i,k}^{[1]}, R_{i,1}^{[2]}, \dots, R_{i,k}^{[2]}, \dots \right).$$

Use $\tilde{R}_1, \ldots, \tilde{R}_n$ to construct the usual bucket digital search tree. $\longrightarrow k$ -d bucket digital search tree.

Michael Fuchs (NCTU)

• Let $Q = (Q_1, \ldots, Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.

イロト イポト イヨト イヨト 二日

- Let $Q = (Q_1, \ldots, Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.
- Construct a shuffled record \tilde{Q} as before.

- Let $Q = (Q_1, \ldots, Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.
- Construct a shuffled record \tilde{Q} as before.
- Cost:=# nodes visited when \tilde{Q} is used as search query.

- Let $Q = (Q_1, \ldots, Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.
- Construct a shuffled record \tilde{Q} as before.
- Cost:=# nodes visited when \tilde{Q} is used as search query.
- The cost only depends on the partial match pattern $q \in \{S, \star\}^k$, where

$$q_i = \begin{cases} S, & \text{if } Q_i \text{ is a } 0\text{-}1 \text{ string}; \\ \star, & \text{if } Q_i \text{ is unspecified.} \end{cases}$$

- Let $Q = (Q_1, \ldots, Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.
- Construct a shuffled record \tilde{Q} as before.
- Cost:=# nodes visited when \tilde{Q} is used as search query.
- The cost only depends on the partial match pattern $q \in \{S, \star\}^k$, where

$$q_i = \begin{cases} S, & \text{if } Q_i \text{ is a } 0\text{-}1 \text{ string}; \\ \star, & \text{if } Q_i \text{ is unspecified.} \end{cases}$$

• Cost will be denoted by $X_{q,n}$, where n is the size of the tree.

Distributional Recurrence

Similar as before,

$$X_{q,n+b} \stackrel{d}{=} \begin{cases} X_{q',I_n} + X_{q',n-I_n}^* + 1, & \text{if } q = (\star, \ldots); \\ X_{q',I_n} + 1, & \text{if } q = (S, \ldots), \end{cases}$$

where q' denotes the cyclic shift to the left.

3

Distributional Recurrence

Similar as before,

$$X_{q,n+b} \stackrel{d}{=} \begin{cases} X_{q',I_n} + X_{q',n-I_n}^* + 1, & \text{if } q = (\star, \ldots); \\ X_{q',I_n} + 1, & \text{if } q = (S, \ldots), \end{cases}$$

where q' denotes the cyclic shift to the left.

Applying Poisson generating function gives for the moments

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z),$$

where $q^{(l)}$ is the cyclic shift applied l times and $\delta_{l+1} \in \{1, 2\}$.

イロト イポト イヨト イヨト

Mean Value

Theorem (Kirschenhofer and Prodinger 1994) For b = 1 and u the number of unspecified coordinates,

 $\mathbf{E}(X_{q,n}) \sim u^{u/k} P_1(\log_2 n^{1/k}),$

where $P_1(z)$ is one-periodic with Fourier coefficients

$$\frac{\mathscr{M}[1/(sQ(-2s)^b);\omega_r]}{kL\Gamma(1+\omega_r)}\sum_{l=0}^{k-1}\delta_1\dots\delta_l 2^{-\omega_r l}$$

with $w_r = u/k + 2\pi i r/(kL)$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Depoissonization

Since mean value is sublinear, Poissonized variance is given by

$$\tilde{V}_q(z) := \tilde{f}_{q,2}(z) - \tilde{f}_{q,1}(z)^2.$$

(日) (周) (三) (三)

э

Depoissonization

Since mean value is sublinear, Poissonized variance is given by

$$\tilde{V}_q(z) := \tilde{f}_{q,2}(z) - \tilde{f}_{q,1}(z)^2.$$

Depoissonization is done via the following result + closure properties.

Proposition

Consider

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z).$$

We have,

$${{ ilde g}_{q^{(l)}}(z)}$$
 JS-admissible \implies ${{ ilde f}_{q^{(l)}}(z)}$ JS-admissible.

3

Mean, Second Moment and Variance

We have,

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}_{q,1}^{(j)}(z) = \delta_1 \tilde{f}_{q',1}(z/2) + 1$$

(日) (周) (三) (三)

3

Mean, Second Moment and Variance

We have,

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}_{q,1}^{(j)}(z) = \delta_1 \tilde{f}_{q',1}(z/2) + 1$$

and

$$\sum_{j=0}^{b} {\binom{b}{j}} \tilde{f}_{q,2}^{(j)}(z) = \delta_1 \tilde{f}_{q',2}(z/2) + \tilde{g}_{q,2}(z).$$

where

$$\tilde{g}_{q,2}(z) = \begin{cases} 4\tilde{f}_{q',1}(z/2) + 2\tilde{f}_{q',1}(z/2)^2 + 1, & \text{if } q^{(l)} = (\star, \ldots); \\ 2\tilde{f}_{q',1}(z/2) + 1, & \text{if } q^{(l)} = (S, \ldots). \end{cases}$$

Michael Fuchs (NCTU)

July 8th, 2010 21 / 28

3

Mean, Second Moment and Variance

We have,

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}_{q,1}^{(j)}(z) = \delta_1 \tilde{f}_{q',1}(z/2) + 1$$

and

$$\sum_{j=0}^{b} {\binom{b}{j}} \tilde{f}_{q,2}^{(j)}(z) = \delta_1 \tilde{f}_{q',2}(z/2) + \tilde{g}_{q,2}(z).$$

where

$$\tilde{g}_{q,2}(z) = \begin{cases} 4\tilde{f}_{q',1}(z/2) + 2\tilde{f}_{q',1}(z/2)^2 + 1, & \text{if } q^{(l)} = (\star, \ldots); \\ 2\tilde{f}_{q',1}(z/2) + 1, & \text{if } q^{(l)} = (S, \ldots). \end{cases}$$

 $\tilde{f}_{q,1}(z), \tilde{f}_{q,2}(z)$ are JS-admissible and hence $\tilde{V}_q(n) \sim \operatorname{Var}(X_n)$.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

We start from,

$$\sum_{j=0}^{b} {\binom{b}{j}} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z).$$

<ロ> (日) (日) (日) (日) (日)

We start from,

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z).$$

Applying Laplace transform,

$$(s+1)^{b}[\tilde{f}_{q^{(l)}}(z);s] = 2\delta_{l+1}\mathscr{L}[\tilde{f}_{q^{(l+1)}}(z);2s] + \mathscr{L}[\tilde{g}_{q^{(l)}}(z);s] + p(s),$$

where p(s) is some polynomial.

(日) (四) (王) (王) (王)

We start from,

$$\sum_{j=0}^{b} {b \choose j} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z).$$

Applying Laplace transform,

$$(s+1)^{b}[\tilde{f}_{q^{(l)}}(z);s] = 2\delta_{l+1}\mathscr{L}[\tilde{f}_{q^{(l+1)}}(z);2s] + \mathscr{L}[\tilde{g}_{q^{(l)}}(z);s] + p(s),$$

where p(s) is some polynomial.

Next normalize,

$$\bar{f}_{q^{(l)}}(s) = \frac{\mathscr{M}[\tilde{f}_{q^{(l)}}(z);s]}{Q(-s)^b}, \qquad \bar{g}_{q^{(l)}}(s) = \frac{\mathscr{M}[\tilde{g}_{q^{(l)}}(z);s] + p(s)}{Q(-2s)^b}.$$

イロト 不得 トイヨト イヨト 二日

This yields,

$$\bar{f}_{q^{(l)}}(s) = 2\delta_{l+1}\bar{f}_{q^{(l+1)}}(2s) + \bar{g}_{q^{(l)}}(s).$$

イロン イヨン イヨン イヨン

This yields,

$$\bar{f}_{q^{(l)}}(s) = 2\delta_{l+1}\bar{f}_{q^{(l+1)}}(2s) + \bar{g}_{q^{(l)}}(s).$$

By iteration

$$\bar{f}_q(s) = 2^{k+u} \bar{f}_q(2^k s) + \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^l \bar{g}_{q^{(l)}}(2^l s).$$

・ロン ・四 ・ ・ ヨン ・ ヨン

This yields,

$$\bar{f}_{q^{(l)}}(s) = 2\delta_{l+1}\bar{f}_{q^{(l+1)}}(2s) + \bar{g}_{q^{(l)}}(s).$$

By iteration

$$\bar{f}_q(s) = 2^{k+u} \bar{f}_q(2^k s) + \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^l \bar{g}_{q^{(l)}}(2^l s).$$

Applying Mellin transform

$$\mathscr{M}[\bar{f}_q(s);\omega] = \frac{1}{1-2^{k-\omega k+u}} \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^{l-\omega l} \mathscr{M}[\bar{g}_{q^{(l)}}(s);\omega].$$

(日) (周) (三) (三)

2

This yields,

$$\bar{f}_{q^{(l)}}(s) = 2\delta_{l+1}\bar{f}_{q^{(l+1)}}(2s) + \bar{g}_{q^{(l)}}(s).$$

By iteration

$$\bar{f}_q(s) = 2^{k+u} \bar{f}_q(2^k s) + \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^l \bar{g}_{q^{(l)}}(2^l s).$$

Applying Mellin transform

$$\mathscr{M}[\bar{f}_q(s);\omega] = \frac{1}{1-2^{k-\omega k+u}} \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^{l-\omega l} \mathscr{M}[\bar{g}_{q^{(l)}}(s);\omega].$$

The analysis is completed by Inverse Mellin + Laplace.

Michael Fuchs (NCTU)

3

→ Ξ →

Image: A math a math

Variance

Theorem

For u the number of unspecified coordinates,

$$\operatorname{Var}(X_{q,n}) \sim n^{u/k} P_2(\log_2 n^{1/k}),$$

where $P_2(z)$ is one-periodic with Fourier coefficients

$$\frac{1}{kL\Gamma(1+\omega_r)} \sum_{l=0}^{k-1} \delta_1 \dots \delta_l 2^{-\omega_r l} \int_0^\infty \frac{s^{\omega_r}}{Q(-2s)^b} \left(\int_0^\infty e^{-zs} \tilde{h}_q^l(z) \mathrm{d}z + p(s) \right) \mathrm{d}s$$

with p(s) a polynomial and $\tilde{h}_q^l(z)$ a function of the Poisson generating function of the mean.

Michael Fuchs (NCTU)

July 8th, 2010 24 / 28

イロト 不得 トイヨト イヨト 二日

Fourier coefficients

Corollary

For b = 1,

$$\frac{1}{kLQ_{\infty}\Gamma(1+\omega_{r})}\sum_{l=0}^{k-1}\delta_{1}\cdots\delta_{l}2^{-\omega_{r}l}$$
$$\sum_{j_{1},j_{2},j_{3}\geq0}\frac{(-1)^{j_{1}}\bar{\delta}_{q^{(l)},j_{2}}\bar{\delta}_{q^{(l)},j_{3}}2^{-\binom{j_{1}}{2}+(1-\omega_{r})j_{1}}}{2^{j_{2}+j_{3}}Q_{j_{1}}Q_{j_{2}}Q_{j_{3}}}\varphi(\omega_{r};2^{j_{1}-j_{2}}+2^{j_{1}-j_{3}})$$

with

$$\bar{\delta}_{q,j} = \sum_{l \ge 0} \frac{(-1)^l 2^{-\binom{l+1}{2}}}{Q_l} \prod_{h=1}^{l+j} \delta_h.$$

and $\varphi(\omega; x) = \pi(x^{\omega} - 1)/(\sin(\pi\omega)(x - 1)).$

(日) (四) (王) (王) (王)

• Tries: data is only stored in the leaves.

3

- Tries: data is only stored in the leaves.
- PATRICIA tries: one-way branching is suppressed.

3

- Tries: data is only stored in the leaves.
- PATRICIA tries: one-way branching is suppressed.

-

- - E

- Tries: data is only stored in the leaves.
- PATRICIA tries: one-way branching is suppressed.

 $X_{q,n} = \#$ of internal nodes visited by the query.

• Flajolet and Puech showed that for b = 1

$$\mathbf{E}(X_{q,n}) \sim n^{u/k} P_1(\log_2 n^{1/k}).$$

イロト イヨト イヨト

3

 $\bullet\,$ Flajolet and Puech showed that for b=1

$$\mathbf{E}(X_{q,n}) \sim n^{u/k} P_1(\log_2 n^{1/k}).$$

• Kirschenhofer and Prodinger generalized this to arbitrary b.

3

• Flajolet and Puech showed that for b = 1

$$\mathbf{E}(X_{q,n}) \sim n^{u/k} P_1(\log_2 n^{1/k}).$$

- Kirschenhofer and Prodinger generalized this to arbitrary b.
- Kirschenhofer, Prodinger and Szpankowski showed that for k = 2 and b = 1 $Var(X_{a,n}) \sim n^{u/k} P_2(\log_2 n^{1/k}).$

They conjectured that the same result also holds for general
$$k$$
.

• Flajolet and Puech showed that for b = 1

$$\mathbf{E}(X_{q,n}) \sim n^{u/k} P_1(\log_2 n^{1/k}).$$

- Kirschenhofer and Prodinger generalized this to arbitrary b.
- Kirschenhofer, Prodinger and Szpankowski showed that for k = 2 and b = 1 $Var(X_{a,n}) \sim n^{u/k} P_2(\log_2 n^{1/k}).$

They conjectured that the same result also holds for general k.

• Schachinger proved the above conjecture.

Variance for Tries

Theorem

For u the number of unspecified coordinates,

$$\operatorname{Var}(X_{q,n}) \sim n^{u/k} P_2(\log_2 n^{1/k}),$$

where $P_2(z)$ is one-periodic with Fourier coefficients

$$\frac{\Gamma(-\omega_r)}{kL} \left(\delta(2^{-\omega_r}) \left(\binom{-\omega_r+b}{b} - 2^{\omega_r} \sum_{\substack{j_1,j_2=0\\j_1,j_2=0}}^{b} \binom{j_1+j_2}{j_1} \binom{-\omega_r+j_1+j_2}{j_1+j_2} 2^{-j_1-j_2} \right) - \sum_{\substack{l\ge b+1\\b}} \binom{-l+b}{b} \binom{-\omega_r+l+b}{b} \binom{\omega_r}{l} \frac{2^{1-l}\sigma(2^{-\omega_r},2^{-l}))}{1-2^{-lk+u}} \right),$$

where

$$\delta(z) = \sum_{j=0}^{k-1} \delta_1 \cdots \delta_j z^j, \qquad \sigma(z_1, z_2) = \sum_{j_1, j_2=0}^{k-1} \delta_1 \cdots \delta_{j_1+j_2+1} z_1^{j_1} z_2^{j_2}.$$

æ

→

・ロト ・回ト ・ヨト