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Bucket Digital Search Tree

Introduced by Coffman and Eve (1970).
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Shape Parameters

Depth

Konheim, Newman, Knuth, Devroye, Louchard, Szpankowski

Partial Match Queries

Flajolet, Puech, Kirschenhofer, Prodinger, Szpankowski, Schachinger

# of Occurrences of Patterns

Knuth, Flajolet, Sedgewick, Prodinger, Kirschenhofer

Key-Wise Path Length

Flajolet, Sedgewick, Prodinger, Kirschenhofer, Szpankowski, Hubalek

Node-Wise Path Length

Fuchs, Hwang, Zacharovas
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Previous Approaches

Rice Method

Introduced by Flajolet and Sedgewick for digital search trees with
bucket size one.

Approach of Flajolet and Richmond

Introduced for the analysis of bucket digital search trees. Based on
Euler transform, Mellin transform, and singularity analysis.

Approach via Analytic Depoissonization

Introduced by Jacquet & Regnier and Jacquet & Szpankowski. Based
on saddle point method and Mellin transform.

Schachinger’s Approach

Largely elementary.
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Distributional Recurrence

Shape parameters Xn satisfy the recurrence:

Xn+b
d= XIn +X∗n−In + Tn

In
d= Binomial(n, 1/2);

Xn
d= X∗n;

Xn, X
∗
n, In independent.

Tn toll-function.

Root

Size:

In

Size:

n−In

0 1
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Poissonization

Moments satisfy the recurrence:

fn+b = 21−n
n∑
j=0

(
n

j

)
fj + gn.

Consider Poisson-generating function of fn and gn, i.e.,

f̃(z) := e−z
∑
n≥0

fn
zn

n!
, g̃(z) := e−z

∑
n≥0

gn
zn

n!
.

Then,
b∑

j=0

(
b

j

)
f̃ (j)(z) = 2f̃(z/2) + g̃(z).
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Poissonized Variance

Poisson Heuristic:

fn sufficiently smooth =⇒ f̃(n) ≈ fn.

f̃2, f̃1 Poisson-generating functions of second moment and mean.

Poissonized Variance:

If mean is sublinear,

Ṽ (z) = f̃2(z)− f̃1(z)2.

If mean is linear,

Ṽ (z) = f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2.
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Jacquet-Szpankowski-admissibility (JS-admissibility)

f̃(z) is called JS-admissible if

(I) Uniformly for | arg(z)| ≤ ε,

f̃(z) = O
(
|z|α logβ |z|

)
,

(O) Uniformly for ε < | arg(z)| ≤ π,

f(z) := ez f̃(z) = O
(
e(1−ε)|z|

)
.

Theorem (Jacquet and Szpankowski)

If f̃(z) is JS-admissible, then

fn ∼ f̃(n)− n

2
f̃
′′
(n) + · · · .
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Depoissonization

JS-admissibility satisfies closure properties:

(i) f̃ , g̃ JS-admissible, then f̃ + g̃ JS-admissible.

(ii) f̃ JS-admissible, then f̃ ′ JS-admissible. Etc.

Proposition

Consider
b∑

j=0

(
b

j

)
f̃ (j)(z) = 2f̃(z/2) + g̃(z).

We have,

g̃(z) JS-admissible =⇒ f̃(z) JS-admissible.

Michael Fuchs (NCTU) Partial Match Retrievals July 8th, 2010 9 / 28



Depoissonization

JS-admissibility satisfies closure properties:

(i) f̃ , g̃ JS-admissible, then f̃ + g̃ JS-admissible.

(ii) f̃ JS-admissible, then f̃ ′ JS-admissible. Etc.

Proposition

Consider
b∑

j=0

(
b

j

)
f̃ (j)(z) = 2f̃(z/2) + g̃(z).

We have,

g̃(z) JS-admissible =⇒ f̃(z) JS-admissible.

Michael Fuchs (NCTU) Partial Match Retrievals July 8th, 2010 9 / 28



Laplace-Mellin Approach (i)

We start from,
b∑

j=0

(
b

j

)
f̃ (j)(z) = 2f̃(z/2) + g̃(z).

Applying Laplace transform,

(s+ 1)bL [f̃(z); s] = 4L [f̃(z); 2s] + L [g̃(z); s] + p(s).

with p(s) a polynomial.

Define,

Q(s) :=
∑
l≥1

(
1− s

2l
)

and Q∞ := Q(1).
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Laplace-Mellin Approach (ii)

Set

f̄(s) :=
L [f̃(z); s]
Q(−s)b

, ḡ(s) :=
L [g̃(z); s] + p(s)

Q(−2s)b
.

Then,
f̄(s) = 4f̄(2s) + ḡ(s).

Applying Mellin transform,

M [f̄(s);ω] =
M [ḡ(s);ω]
1− 22−ω .

From this, an asymptotic expansion of f̃(z) as z →∞ is obtained via
inverse Mellin transform and inverse Laplace transform.
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Our Approach vs. Flajolet-Richmond

asymptotics

of f̃(z) as

|z| → ∞

asymptotics

of Laplace
Q(−s)

Laplace
Q(−s)

Euler
Q(−s)

asymptotics

of Euler
Q(−s)

asymptotics

of A(z)

as z ∼ 1

EGF

f(z)

Laplace

transform

of e−zf(z)

Euler

transform

of A(z)

OGF

A(z)

de-Poi by

saddle-point

Mellin

transform

singularity

analysis

=
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Variance for Key-Wise Path Length

Theorem

We have,
Var(Xn) ∼ nP2(log2 n),

where P2(z) is a one-periodic function with Fourier coefficients

1
LΓ(2 + 2πir/L)

∫ ∞
0

s1+2πir/L

Q(−2s)b

∫ ∞
0

e−zsh̃(z)dzds

with L := log 2.

Here, h̃(z) is a function of the Poisson generating function of the mean.

Michael Fuchs (NCTU) Partial Match Retrievals July 8th, 2010 13 / 28



Fourier Coefficients

Theorem

For b = 1,

Q∞
LΓ(2 + 2πir/L)∑
j1,j2,j3≥0

(−1)j12−(j1+1
2 )+2πirj1/L

Qj1Qj2Qj32j2+j3
ϕ(2 + 2πir/L; 2−j1−j2 + 2−j1−j3)

with Qj =
∏j
l=1(1− 2l) and

ϕ(ω;x) =
π(1 + xω−2((ω − 2)x+ 1− ω))

(x− 1)2 sin(πω)
.
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−
28

3L
−

39

4
− 2

∑
l≥1

l2l

(2l − 1)2
+

2

L

∑
l≥1

1

2l − 1
+

π2

2L2
+

2

L2

−
2

L

∑
l≥3

(−1)l+1(l − 5)

(l + 1)l(l − 1)(2l − 1)

+
2

L

∑
l≥1

(−1)l2
−
(

l+1
2

)L(1− 2−l+1)/2− 1

1− 2−l
−
∑
r≥2

(−1)r+1

r(r − 1)(2r+l − 1)


−

2Q(1)

L
+
∑
l≥2

1

2lQl

∑
r≥0

(−1)r2
−
(

r+1
2

)
Qr

Qr+l−2·

·
(
−
∑
j≥1

1

2j+r+l+2 − 1

(
2l+1 − 2l − 4 + 2

l−1∑
i=2

(l + 1

i

) 1

2r+i−1 − 1

)

+
2

(1− 2−l−r)2
+

2l + 2

(1− 21−l−r)2
−

2

L

1

1− 21−l−r
+

2

L

l+1∑
j=1

(l + 1

j

) 1

2r+j − 1

− 2

l+1∑
j=2

(l + 1

j

) 1

2r+j−1 − 1
+

2

L

l+1∑
j=0

(l + 1

j

)∑
i≥1

(−1)i

(i+ 1)(2r+j+i − 1)

)

+
∑
l≥3

l−1∑
r=2

(l + 1

r

)Qr−2Ql−r−1

2lQl

∑
j≥l+1

1

2j − 1
− 2[FH]0 − [F 2]0.
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k-d Bucket Digital Search Trees

Let R1, . . . , Rn be k-dimensional data, i.e., Ri consist of k 0-1 strings

Ri,1 =
(
R

[1]
i,1, R

[2]
i,1, R

[3]
i,1, . . .

)
,

...

Ri,k =
(
R

[1]
i,k, R

[2]
i,k, R

[3]
i,k, . . .

)
.

Shuffling yields

R̃i =
(
R

[1]
i,1, . . . , R

[1]
i,k, R

[2]
i,1, . . . , R

[2]
i,k, . . .

)
.

Use R̃1, . . . , R̃n to construct the usual bucket digital search tree.

−→ k-d bucket digital search tree.
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Partial Match Queries

Let Q = (Q1, . . . , Qk) be a partial match query, where Qi is either a
0-1 string or a an undefined string.

Construct a shuffled record Q̃ as before.

Cost:=# nodes visited when Q̃ is used as search query.

The cost only depends on the partial match pattern q ∈ {S, ?}k,
where

qi =

{
S, if Qi is a 0-1 string;
?, if Qi is unspecified.

Cost will be denoted by Xq,n, where n is the size of the tree.
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Distributional Recurrence

Similar as before,

Xq,n+b
d=

{
Xq′,In +X∗q′,n−In + 1, if q = (?, . . .);
Xq′,In + 1, if q = (S, . . .),

where q′ denotes the cyclic shift to the left.

Applying Poisson generating function gives for the moments

b∑
j=0

(
b

j

)
f̃

(j)

q(l)
(z) = δl+1f̃q(l+1)(z/2) + g̃q(l)(z),

where q(l) is the cyclic shift applied l times and δl+1 ∈ {1, 2}.
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Mean Value

Theorem (Kirschenhofer and Prodinger 1994)

For b = 1 and u the number of unspecified coordinates,

E(Xq,n) ∼ uu/kP1(log2 n
1/k),

where P1(z) is one-periodic with Fourier coefficients

M [1/(sQ(−2s)b);ωr]
kLΓ(1 + ωr)

k−1∑
l=0

δ1 . . . δl2−ωrl

with wr = u/k + 2πir/(kL).
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Depoissonization

Since mean value is sublinear, Poissonized variance is given by

Ṽq(z) := f̃q,2(z)− f̃q,1(z)2.

Depoissonization is done via the following result + closure properties.

Proposition

Consider
b∑

j=0

(
b

j

)
f̃

(j)

q(l)
(z) = δl+1f̃q(l+1)(z/2) + g̃q(l)(z).

We have,

g̃q(l)(z) JS-admissible =⇒ f̃q(l)(z) JS-admissible.
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Mean, Second Moment and Variance

We have,
b∑

j=0

(
b

j

)
f̃

(j)
q,1 (z) = δ1f̃q′,1(z/2) + 1

and
b∑

j=0

(
b

j

)
f̃

(j)
q,2 (z) = δ1f̃q′,2(z/2) + g̃q,2(z).

where

g̃q,2(z) =

{
4f̃q′,1(z/2) + 2f̃q′,1(z/2)2 + 1, if q(l) = (?, . . .);
2f̃q′,1(z/2) + 1, if q(l) = (S, . . .).

f̃q,1(z), f̃q,2(z) are JS-admissible and hence Ṽq(n) ∼ Var(Xn).
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Laplace-Mellin Approach (i)

We start from,

b∑
j=0

(
b

j

)
f̃

(j)

q(l)
(z) = δl+1f̃q(l+1)(z/2) + g̃q(l)(z).

Applying Laplace transform,

(s+ 1)b[f̃q(l)(z); s] = 2δl+1L [f̃q(l+1)(z); 2s] + L [g̃q(l)(z); s] + p(s),

where p(s) is some polynomial.

Next normalize,

f̄q(l)(s) =
M [f̃q(l)(z); s]
Q(−s)b

, ḡq(l)(s) =
M [g̃q(l)(z); s] + p(s)

Q(−2s)b
.
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Laplace-Mellin Approach (ii)

This yields,
f̄q(l)(s) = 2δl+1f̄q(l+1)(2s) + ḡq(l)(s).

By iteration

f̄q(s) = 2k+uf̄q(2ks) +
k−1∑
l=0

δ1 · · · δl2lḡq(l)(2
ls).

Applying Mellin transform

M [f̄q(s);ω] =
1

1− 2k−ωk+u

k−1∑
l=0

δ1 · · · δl2l−ωlM [ḡq(l)(s);ω].

The analysis is completed by Inverse Mellin + Laplace.
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Variance

Theorem

For u the number of unspecified coordinates,

Var(Xq,n) ∼ nu/kP2(log2 n
1/k),

where P2(z) is one-periodic with Fourier coefficients

1
kLΓ(1 + ωr)

k−1∑
l=0

δ1 . . . δl2−ωrl

∫ ∞
0

sωr

Q(−2s)b

(∫ ∞
0

e−zsh̃lq(z)dz + p(s)
)

ds

with p(s) a polynomial and h̃lq(z) a function of the Poisson generating
function of the mean.
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Fourier coefficients

Corollary

For b = 1,

1
kLQ∞Γ(1 + ωr)

k−1∑
l=0

δ1 · · · δl2−ωrl

∑
j1,j2,j3≥0

(−1)j1 δ̄q(l),j2 δ̄q(l),j32−(j1
2 )+(1−ωr)j1

2j2+j3Qj1Qj2Qj3
ϕ(ωr; 2j1−j2 + 2j1−j3)

with

δ̄q,j =
∑
l≥0

(−1)l2−(l+1
2 )

Ql

l+j∏
h=1

δh.

and ϕ(ω;x) = π(xω − 1)/(sin(πω)(x− 1)).
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Variants of Digital Search Trees

Tries: data is only stored in the leaves.

PATRICIA tries: one-way branching is suppressed.

D2

D4

D1 D3

0 1

1

0 1

0 1

D2

D4

D1 D3

0 1

0 1

0 1

Xq,n = # of internal nodes visited by the query.
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Previous Results for Tries

Flajolet and Puech showed that for b = 1

E(Xq,n) ∼ nu/kP1(log2 n
1/k).

Kirschenhofer and Prodinger generalized this to arbitrary b.

Kirschenhofer, Prodinger and Szpankowski showed that for k = 2 and
b = 1

Var(Xq,n) ∼ nu/kP2(log2 n
1/k).

They conjectured that the same result also holds for general k.

Schachinger proved the above conjecture.
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Variance for Tries

Theorem

For u the number of unspecified coordinates,

Var(Xq,n) ∼ nu/kP2(log2 n
1/k),

where P2(z) is one-periodic with Fourier coefficients

Γ(−ωr)

kL

(
δ(2−ωr )

(−ωr + b

b

)
− 2ωr

b∑
j1,j2=0

(j1 + j2

j1

)(−ωr + j1 + j2

j1 + j2

)
2−j1−j2


−
∑

l≥b+1

(−l + b

b

)(−ωr + l + b

b

)(ωr

l

)21−lσ(2−ωr , 2−l))

1− 2−lk+u

)
,

where

δ(z) =

k−1∑
j=0

δ1 · · · δjzj , σ(z1, z2) =

k−1∑
j1,j2=0

δ1 · · · δj1+j2+1z
j1
1 zj2

2 .
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