THE VARIANCE FOR PARTIAL MATCH RETRIEVALS in k-dimensional Bucket Digital Trees $(\approx 1/2)$ joint with Hsien-Kuei Hwang and Vytas Zacharovas)

Michael Fuchs

Department of Applied Mathematics National Chiao Tung University

Hsinchu, Taiwan

AofA2010, July 8th, 2010

 Ω

Introduced by Coffman and Eve (1970).

メロメ メ都 メメ きょくきょ

Introduced by Coffman and Eve (1970).

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 \Rightarrow

Introduced by Coffman and Eve (1970).

 \equiv

イロト イ部 トメ ヨ トメ ヨト

Introduced by Coffman and Eve (1970).

 \equiv

Introduced by Coffman and Eve (1970).

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Introduced by Coffman and Eve (1970).

 \equiv

イロト イ部 トメ ヨ トメ ヨト

Introduced by Coffman and Eve (1970).

 \equiv

Introduced by Coffman and Eve (1970).

 \equiv

イロト イ部 トイヨ トイヨト

Introduced by Coffman and Eve (1970).

 \equiv

Introduced by Coffman and Eve (1970).

 \Rightarrow

Introduced by Coffman and Eve (1970).

 \equiv

Introduced by Coffman and Eve (1970).

Random Model: 0-1 are generated independently and equally likely.

 QQ

Shape Parameters

• Depth

Konheim, Newman, Knuth, Devroye, Louchard, Szpankowski

Partial Match Queries

Flajolet, Puech, Kirschenhofer, Prodinger, Szpankowski, Schachinger

\bullet # of Occurrences of Patterns

Knuth, Flajolet, Sedgewick, Prodinger, Kirschenhofer

Key-Wise Path Length

Flajolet, Sedgewick, Prodinger, Kirschenhofer, Szpankowski, Hubalek

Node-Wise Path Length

Fuchs, Hwang, Zacharovas

 QQ

K ロ ▶ | K 伺 ▶ | K ヨ ▶

Previous Approaches

• Rice Method

Introduced by Flajolet and Sedgewick for digital search trees with bucket size one.

Approach of Flajolet and Richmond

Introduced for the analysis of bucket digital search trees. Based on Euler transform, Mellin transform, and singularity analysis.

Approach via Analytic Depoissonization

Introduced by Jacquet & Regnier and Jacquet & Szpankowski. Based on saddle point method and Mellin transform.

4 0 8

• Schachinger's Approach

Largely elementary.

 QQ

Shape parameters X_n satisfy the recurrence:

$$
X_{n+b} \stackrel{d}{=} X_{I_n} + X_{n-I_n}^* + T_n
$$

- $I_n\stackrel{d}{=}\mathsf{Binomial}(n,1/2);$
- $X_n \stackrel{d}{=} X_n^*$;
- X_n, X_n^*, I_n independent.
- T_n toll-function.

K 御 ⊁ K 君 ⊁ K 君

4 0 8

Poissonization

Moments satisfy the recurrence:

$$
f_{n+b} = 2^{1-n} \sum_{j=0}^{n} {n \choose j} f_j + g_n.
$$

 2990

イロト イ部 トイヨ トイヨト

Poissonization

Moments satisfy the recurrence:

$$
f_{n+b} = 2^{1-n} \sum_{j=0}^{n} {n \choose j} f_j + g_n.
$$

Consider Poisson-generating function of f_n and g_n , i.e.,

$$
\tilde{f}(z) := e^{-z} \sum_{n \ge 0} f_n \frac{z^n}{n!}, \qquad \tilde{g}(z) := e^{-z} \sum_{n \ge 0} g_n \frac{z^n}{n!}.
$$

 \equiv

 4 ロ } 4 4 9 } 4 \equiv } -4

Poissonization

Moments satisfy the recurrence:

$$
f_{n+b} = 2^{1-n} \sum_{j=0}^{n} {n \choose j} f_j + g_n.
$$

Consider Poisson-generating function of f_n and g_n , i.e.,

$$
\tilde{f}(z) := e^{-z} \sum_{n \ge 0} f_n \frac{z^n}{n!}, \qquad \tilde{g}(z) := e^{-z} \sum_{n \ge 0} g_n \frac{z^n}{n!}.
$$

Then,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).
$$

4 0 8

 \rightarrow \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow \rightarrow

 \equiv

 \equiv

Poissonized Variance

Poisson Heuristic:

$$
f_n
$$
 sufficiently smooth $\implies \tilde{f}(n) \approx f_n$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Poissonized Variance

Poisson Heuristic:

$$
f_n
$$
 sufficiently smooth $\implies \tilde{f}(n) \approx f_n$.

 \tilde{f}_2, \tilde{f}_1 Poisson-generating functions of second moment and mean.

イロト イ母 トイヨ トイヨト

Poissonized Variance

Poisson Heuristic:

$$
f_n
$$
 sufficiently smooth $\implies \tilde{f}(n) \approx f_n$.

 \tilde{f}_2, \tilde{f}_1 Poisson-generating functions of second moment and mean.

Poissonized Variance:

• If mean is sublinear,

$$
\tilde{V}(z) = \tilde{f}_2(z) - \tilde{f}_1(z)^2.
$$

4 0 8

 Ω

→ 何 ト → ヨ ト → ヨ ト

Poisson Heuristic:

$$
f_n
$$
 sufficiently smooth $\implies \tilde{f}(n) \approx f_n$.

 \tilde{f}_2, \tilde{f}_1 Poisson-generating functions of second moment and mean.

Poissonized Variance:

o If mean is sublinear,

$$
\tilde{V}(z) = \tilde{f}_2(z) - \tilde{f}_1(z)^2.
$$

o If mean is linear,

$$
\tilde{V}(z) = \tilde{f}_2(z) - \tilde{f}_1(z)^2 - z\tilde{f}'_1(z)^2.
$$

4 0 8

目

 Ω

Jacquet-Szpankowski-admissibility (JS-admissibility)

 $\tilde{f}(z)$ is called JS-admissible if

(I) Uniformly for $|\arg(z)| \leq \epsilon$,

$$
\tilde{f}(z) = \mathcal{O}\left(|z|^\alpha \log^\beta |z|\right),\,
$$

(O) Uniformly for $\epsilon < |\arg(z)| < \pi$,

$$
f(z) := e^z \tilde{f}(z) = \mathcal{O}\left(e^{(1-\epsilon)|z|}\right).
$$

 \leftarrow \Box

K @ ▶ K 코 ▶ K 코

 Ω

Jacquet-Szpankowski-admissibility (JS-admissibility)

 $\tilde{f}(z)$ is called JS-admissible if

(I) Uniformly for $|\arg(z)| \leq \epsilon$,

$$
\tilde{f}(z) = \mathcal{O}\left(|z|^\alpha \log^\beta |z|\right),\,
$$

(O) Uniformly for $\epsilon < |\arg(z)| < \pi$,

$$
f(z) := e^z \tilde{f}(z) = \mathcal{O}\left(e^{(1-\epsilon)|z|}\right).
$$

Theorem (Jacquet and Szpankowski) If $\tilde{f}(z)$ is JS-admissible, then

$$
f_n \sim \tilde{f}(n) - \frac{n}{2}\tilde{f}''(n) + \cdots
$$

 \equiv

 QQQ

Depoissonization

JS-admissibility satisfies closure properties:

- (i) \tilde{f}, \tilde{g} JS-admissible, then $\tilde{f} + \tilde{g}$ JS-admissible.
- (ii) \tilde{f} JS-admissible, then \tilde{f}' JS-admissible. Etc.

4 0 8

 QQ

Depoissonization

JS-admissibility satisfies closure properties:

(i)
$$
\tilde{f}, \tilde{g}
$$
 JS-admissible, then $\tilde{f} + \tilde{g}$ JS-admissible.

(ii) \tilde{f} JS-admissible, then \tilde{f}' JS-admissible. Etc.

Proposition

Consider

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).
$$

We have.

$$
\tilde{g}(z) \text{ JS-admissible } \implies \tilde{f}(z) \text{ JS-admissible.}
$$

イロト イ押 トイヨト イヨ

 QQQ

We start from,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).
$$

重

 2990

イロト イ部 トイヨ トイヨト

We start from,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).
$$

Applying Laplace transform,

$$
(s+1)^{b}\mathscr{L}[\tilde{f}(z);s] = 4\mathscr{L}[\tilde{f}(z);2s] + \mathscr{L}[\tilde{g}(z);s] + p(s).
$$

with $p(s)$ a polynomial.

4 日下

K 御 ▶ K 君 ▶ K 君 ▶

 QQ

We start from,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}^{(j)}(z) = 2\tilde{f}(z/2) + \tilde{g}(z).
$$

Applying Laplace transform,

$$
(s+1)^{b}\mathscr{L}[\tilde{f}(z);s] = 4\mathscr{L}[\tilde{f}(z);2s] + \mathscr{L}[\tilde{g}(z);s] + p(s).
$$

with $p(s)$ a polynomial.

Define,

$$
Q(s) := \sum_{l \geq 1} \left(1 - \frac{s}{2^l}\right)
$$

and $Q_{\infty} := Q(1)$.

 \leftarrow \Box

K 御 ▶ K 君 ▶ K 君 ▶

 \equiv \cap α

Set

$$
\bar{f}(s) := \frac{\mathscr{L}[\tilde{f}(z);s]}{Q(-s)^b}, \qquad \bar{g}(s) := \frac{\mathscr{L}[\tilde{g}(z);s] + p(s)}{Q(-2s)^b}.
$$

造

 2990

イロト イ部 トイヨ トイヨト

Set

$$
\bar{f}(s) := \frac{\mathscr{L}[\tilde{f}(z);s]}{Q(-s)^b}, \qquad \bar{g}(s) := \frac{\mathscr{L}[\tilde{g}(z);s] + p(s)}{Q(-2s)^b}.
$$

Then,

$$
\bar{f}(s) = 4\bar{f}(2s) + \bar{g}(s).
$$

重

 299

イロト イ部 トイヨ トイヨト

Set

$$
\bar{f}(s) := \frac{\mathscr{L}[\tilde{f}(z);s]}{Q(-s)^b}, \qquad \bar{g}(s) := \frac{\mathscr{L}[\tilde{g}(z);s] + p(s)}{Q(-2s)^b}.
$$

Then,

$$
\bar{f}(s) = 4\bar{f}(2s) + \bar{g}(s).
$$

Applying Mellin transform,

$$
\mathscr{M}[\bar{f}(s);\omega] = \frac{\mathscr{M}[\bar{g}(s);\omega]}{1 - 2^{2-\omega}}.
$$

イロト イ母 トイヨ トイヨト

重

Set

$$
\bar{f}(s) := \frac{\mathscr{L}[\tilde{f}(z);s]}{Q(-s)^b}, \qquad \bar{g}(s) := \frac{\mathscr{L}[\tilde{g}(z);s] + p(s)}{Q(-2s)^b}.
$$

Then,

$$
\bar{f}(s) = 4\bar{f}(2s) + \bar{g}(s).
$$

Applying Mellin transform,

$$
\mathscr{M}[\bar{f}(s); \omega] = \frac{\mathscr{M}[\bar{g}(s); \omega]}{1 - 2^{2-\omega}}.
$$

From this, an asymptotic expansion of $\tilde{f}(z)$ as $z \to \infty$ is obtained via inverse Mellin transform and inverse Laplace transform.

 QQ

K ロ ▶ | K 伺 ▶ | K ヨ ▶

Our Approach vs. Flajolet-Richmond

÷.

 299

Variance for Key-Wise Path Length

Theorem

We have.

$$
Var(X_n) \sim nP_2(\log_2 n),
$$

where $P_2(z)$ is a one-periodic function with Fourier coefficients

$$
\frac{1}{L\Gamma(2+2\pi ir/L)}\int_0^\infty \frac{s^{1+2\pi ir/L}}{Q(-2s)^b}\int_0^\infty e^{-zs}\tilde{h}(z)\mathrm{d}z\mathrm{d}s
$$

with $L := \log 2$.

Here, $h(z)$ is a function of the Poisson generating function of the mean.

 Ω

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯
Fourier Coefficients

Theorem

For $b=1$,

$$
\frac{Q_{\infty}}{L\Gamma(2+2\pi ir/L)}\n\sum_{j_1,j_2,j_3\geq 0}\n\frac{(-1)^{j_1}2^{-\binom{j_1+1}{2}+2\pi irj_1/L}}{Q_{j_1}Q_{j_2}Q_{j_3}2^{j_2+j_3}}\varphi(2+2\pi ir/L;2^{-j_1-j_2}+2^{-j_1-j_3})
$$

with
$$
Q_j = \prod_{l=1}^j (1 - 2^l)
$$
 and
\n
$$
\varphi(\omega; x) = \frac{\pi (1 + x^{\omega - 2}((\omega - 2)x + 1 - \omega))}{(x - 1)^2 \sin(\pi \omega)}.
$$

Michael Fuchs (NCTU) **[Partial Match Retrievals](#page-0-0)** July 8th, 2010 14 / 28

 $E = 990$

メロト メ都 トメ 君 トメ 君 ト

$$
-\frac{28}{3L} - \frac{39}{4} - 2 \sum_{l \geq 1} \frac{l2^{l}}{(2^{l} - 1)^{2}} + \frac{2}{L} \sum_{l \geq 1} \frac{1}{2^{l} - 1} + \frac{\pi^{2}}{2L^{2}} + \frac{2}{L^{2}}
$$
\n
$$
-\frac{2}{L} \sum_{l \geq 3} \frac{(-1)^{l+1}(l-5)}{(l+1)l(l-1)(2^{l} - 1)}
$$
\n
$$
+\frac{2}{L} \sum_{l \geq 1} (-1)^{l} 2^{-\binom{l+1}{2}} \left(\frac{L(1 - 2^{-l+1})/2 - 1}{1 - 2^{-l}} - \sum_{r \geq 2} \frac{(-1)^{r+1}}{r(r-1)(2^{r+l} - 1)} \right)
$$
\n
$$
-\frac{2Q(1)}{L} + \sum_{l \geq 2} \frac{1}{2^{l} Q_{l}} \sum_{r \geq 0} \frac{(-1)^{r} 2^{-\binom{r+1}{2}}}{Q_{r}} Q_{r+l-2}.
$$
\n
$$
\cdot \left(- \sum_{j \geq 1} \frac{1}{2^{j+r+l+2} - 1} \left(2^{l+1} - 2l - 4 + 2 \sum_{i=2}^{l-1} {l+1 \choose i} \frac{1}{2^{r+i-1} - 1} \right) + \frac{2}{(1 - 2^{-l-r})^{2}} + \frac{2l+2}{(1 - 2^{l-l-r})^{2}} - \frac{2}{L} \frac{1}{1 - 2^{l-l-r}} + \frac{2}{L} \sum_{j=1}^{l+1} {l+1 \choose j} \frac{1}{2^{r+j} - 1}
$$
\n
$$
- 2 \sum_{j=2}^{l+1} {l+1 \choose j} \frac{1}{2^{r+j-1} - 1} + \frac{2}{L} \sum_{j=0}^{l+1} {l+1 \choose j} \sum_{i \geq 1} \frac{(-1)^{i}}{(i+1)(2^{r+j+i} - 1)} + \sum_{l \geq 3} \sum_{r=2}^{l-1} {l+1 \choose r} \frac{Q_{r-2}Q_{l-r-1}}{2^{l} Q_{l}} \sum_{j \geq l+1} \frac{1}{2^{j} -
$$

Michael Fuchs (NCTU) [Partial Match Retrievals](#page-0-0) July 8th, 2010 15 / 28

 299

k-d Bucket Digital Search Trees

Let R_1, \ldots, R_n be k-dimensional data, i.e., R_i consist of k 0-1 strings

$$
R_{i,1} = \left(R_{i,1}^{[1]}, R_{i,1}^{[2]}, R_{i,1}^{[3]}, \dots\right),
$$

$$
\vdots
$$

$$
R_{i,k} = \left(R_{i,k}^{[1]}, R_{i,k}^{[2]}, R_{i,k}^{[3]}, \dots\right).
$$

 \leftarrow \Box

÷

Э×

 298

k-d Bucket Digital Search Trees

Let R_1, \ldots, R_n be k-dimensional data, i.e., R_i consist of k 0-1 strings

$$
R_{i,1} = \left(R_{i,1}^{[1]}, R_{i,1}^{[2]}, R_{i,1}^{[3]}, \ldots\right),
$$

$$
\vdots
$$

$$
R_{i,k} = \left(R_{i,k}^{[1]}, R_{i,k}^{[2]}, R_{i,k}^{[3]}, \ldots\right).
$$

Shuffling yields

$$
\tilde{R}_i = \left(R_{i,1}^{[1]},\ldots,R_{i,k}^{[1]},R_{i,1}^{[2]},\ldots,R_{i,k}^{[2]},\ldots\right).
$$

Use $\tilde{R}_1,\ldots,\tilde{R}_n$ to construct the usual bucket digital search tree.

 QQQ

イロト イ押 トイヨト イヨ

k-d Bucket Digital Search Trees

Let R_1, \ldots, R_n be k-dimensional data, i.e., R_i consist of k 0-1 strings

$$
R_{i,1} = \left(R_{i,1}^{[1]}, R_{i,1}^{[2]}, R_{i,1}^{[3]}, \ldots\right),
$$

$$
\vdots
$$

$$
R_{i,k} = \left(R_{i,k}^{[1]}, R_{i,k}^{[2]}, R_{i,k}^{[3]}, \ldots\right).
$$

Shuffling yields

$$
\tilde{R}_i = \left(R_{i,1}^{[1]},\ldots,R_{i,k}^{[1]},R_{i,1}^{[2]},\ldots,R_{i,k}^{[2]},\ldots\right).
$$

Use $\tilde{R}_1,\ldots,\tilde{R}_n$ to construct the usual bucket digital search tree.

 $\longrightarrow k-d$ bucket digital search tree.

 QQQ

イロト イ押 トイヨト イヨ

Let $Q=(Q_1,\ldots,Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.

D. Ω

イロト イ押ト イヨト イヨト

- Let $Q=(Q_1,\ldots,Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.
- Construct a shuffled record \tilde{Q} as before.

÷

 QQ

おくこと

4 0 8

- Let $Q=(Q_1,\ldots,Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.
- Construct a shuffled record \tilde{Q} as before.
- Cost: $=\#$ nodes visited when \tilde{Q} is used as search query.

 QQQ

- Let $Q=(Q_1,\ldots,Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.
- Construct a shuffled record \tilde{Q} as before.
- Cost: $=\#$ nodes visited when \ddot{Q} is used as search query.
- The cost only depends on the *partial match pattern* $q \in \{S, \star\}^k$ *,* where

$$
q_i = \begin{cases} S, & \text{if } Q_i \text{ is a 0-1 string;} \\ \star, & \text{if } Q_i \text{ is unspecified.} \end{cases}
$$

 QQQ

- Let $Q=(Q_1,\ldots,Q_k)$ be a *partial match query*, where Q_i is either a 0-1 string or a an undefined string.
- Construct a shuffled record \tilde{Q} as before.
- Cost: $=\#$ nodes visited when \ddot{Q} is used as search query.
- The cost only depends on the *partial match pattern* $q \in \{S, \star\}^k$ *,* where

$$
q_i = \begin{cases} S, & \text{if } Q_i \text{ is a 0-1 string;} \\ \star, & \text{if } Q_i \text{ is unspecified.} \end{cases}
$$

• Cost will be denoted by $X_{q,n}$, where n is the size of the tree.

 QQQ

Distributional Recurrence

Similar as before,

$$
X_{q,n+b} \stackrel{d}{=} \begin{cases} X_{q',I_n} + X_{q',n-I_n}^* + 1, & \text{if } q = (\star, \ldots); \\ X_{q',I_n} + 1, & \text{if } q = (S, \ldots), \end{cases}
$$

where q^\prime denotes the cyclic shift to the left.

造

メロト メ都 トメ ヨ トメ ヨ

 2990

Distributional Recurrence

Similar as before,

$$
X_{q,n+b} \stackrel{d}{=} \begin{cases} X_{q',I_n} + X_{q',n-I_n}^* + 1, & \text{if } q = (\star, \ldots); \\ X_{q',I_n} + 1, & \text{if } q = (S, \ldots), \end{cases}
$$

where q^\prime denotes the cyclic shift to the left.

Applying Poisson generating function gives for the moments

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z),
$$

where $q^{(l)}$ is the cyclic shift applied l times and $\delta_{l+1}\in\{1,2\}.$

- 3

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Mean Value

Theorem (Kirschenhofer and Prodinger 1994) For $b = 1$ and u the number of unspecified coordinates, $\mathbf{E}(X_{q,n}) \sim u^{u/k} P_1(\log_2 n^{1/k}),$ where $P_1(z)$ is one-periodic with Fourier coefficients $\mathscr{M}[1/(sQ(-2s)^b);\omega_r]$ $kL\Gamma(1+\omega_r)$ \sum $k-1$ $_{l=0}$ $\delta_1 \dots \delta_l 2^{-\omega_r l}$ with $w_r = u/k + 2\pi i r/(kL)$.

KOD KARD KED KED B YOUR

Depoissonization

Since mean value is sublinear, Poissonized variance is given by

$$
\tilde{V}_q(z) := \tilde{f}_{q,2}(z) - \tilde{f}_{q,1}(z)^2.
$$

 -990 高

イロト イ部 トイヨ トイヨト

Depoissonization

Since mean value is sublinear, Poissonized variance is given by

$$
\tilde{V}_q(z) := \tilde{f}_{q,2}(z) - \tilde{f}_{q,1}(z)^2.
$$

Depoissonization is done via the following result $+$ closure properties.

Proposition

Consider

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z).
$$

We have.

$$
\tilde{g}_{q^{(l)}}(z) \text{ JS-admissible } \implies \tilde{f}_{q^{(l)}}(z) \text{ JS-admissible.}
$$

画

 QQ

イロト イ母 トイヨ トイヨト

Mean, Second Moment and Variance

We have,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}_{q,1}^{(j)}(z) = \delta_1 \tilde{f}_{q',1}(z/2) + 1
$$

メロメ メ都 メメ きょくきょ

重

 2990

Mean, Second Moment and Variance

We have,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}_{q,1}^{(j)}(z) = \delta_1 \tilde{f}_{q',1}(z/2) + 1
$$

and

$$
\sum_{j=0}^{b} {b \choose j} \tilde{f}_{q,2}^{(j)}(z) = \delta_1 \tilde{f}_{q',2}(z/2) + \tilde{g}_{q,2}(z).
$$

where

$$
\tilde{g}_{q,2}(z) = \begin{cases} 4\tilde{f}_{q',1}(z/2) + 2\tilde{f}_{q',1}(z/2)^2 + 1, & \text{if } q^{(l)} = (\star, \ldots); \\ 2\tilde{f}_{q',1}(z/2) + 1, & \text{if } q^{(l)} = (S, \ldots). \end{cases}
$$

Michael Fuchs (NCTU) [Partial Match Retrievals](#page-0-0) July 8th, 2010 21 / 28

重

 2990

イロト イ部 トメ ヨ トメ ヨト

Mean, Second Moment and Variance

We have,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}_{q,1}^{(j)}(z) = \delta_1 \tilde{f}_{q',1}(z/2) + 1
$$

and

$$
\sum_{j=0}^{b} {b \choose j} \tilde{f}_{q,2}^{(j)}(z) = \delta_1 \tilde{f}_{q',2}(z/2) + \tilde{g}_{q,2}(z).
$$

where

$$
\tilde{g}_{q,2}(z) = \begin{cases} 4\tilde{f}_{q',1}(z/2) + 2\tilde{f}_{q',1}(z/2)^2 + 1, & \text{if } q^{(l)} = (\star, \ldots); \\ 2\tilde{f}_{q',1}(z/2) + 1, & \text{if } q^{(l)} = (S, \ldots). \end{cases}
$$

 $\tilde{f}_{q,1}(z), \tilde{f}_{q,2}(z)$ are JS-admissible and hence $\tilde{V}_q(n) \sim \text{Var}(X_n).$

造

 QQ

イロト イ部 トメ ヨ トメ ヨト

We start from,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z).
$$

重

 2990

イロト イ部 トイヨ トイヨト

We start from,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z).
$$

Applying Laplace transform,

$$
(s+1)^b[\tilde{f}_{q^{(l)}}(z);s]=2\delta_{l+1}\mathscr{L}[\tilde{f}_{q^{(l+1)}}(z);2s]+\mathscr{L}[\tilde{g}_{q^{(l)}}(z);s]+p(s),
$$

where $p(s)$ is some polynomial.

4 0 8

 Ω

K 御 ▶ K 君 ▶ K 君 ▶

We start from,

$$
\sum_{j=0}^b \binom{b}{j} \tilde{f}_{q^{(l)}}^{(j)}(z) = \delta_{l+1} \tilde{f}_{q^{(l+1)}}(z/2) + \tilde{g}_{q^{(l)}}(z).
$$

Applying Laplace transform,

$$
(s+1)^b[\tilde{f}_{q^{(l)}}(z);s]=2\delta_{l+1}\mathscr{L}[\tilde{f}_{q^{(l+1)}}(z);2s]+\mathscr{L}[\tilde{g}_{q^{(l)}}(z);s]+p(s),
$$

where $p(s)$ is some polynomial.

Next normalize,

$$
\bar{f}_{q^{(l)}}(s) = \frac{\mathscr{M}[\tilde{f}_{q^{(l)}}(z);s]}{Q(-s)^b}, \qquad \bar{g}_{q^{(l)}}(s) = \frac{\mathscr{M}[\tilde{g}_{q^{(l)}}(z);s] + p(s)}{Q(-2s)^b}.
$$

 \equiv

 QQ

イロト イ押ト イヨト イヨト

This yields,

$$
\bar{f}_{q^{(l)}}(s)=2\delta_{l+1}\bar{f}_{q^{(l+1)}}(2s)+\bar{g}_{q^{(l)}}(s).
$$

 2990

イロト イ部 トイヨ トイヨト

This yields,

$$
\bar{f}_{q^{(l)}}(s)=2\delta_{l+1}\bar{f}_{q^{(l+1)}}(2s)+\bar{g}_{q^{(l)}}(s).
$$

By iteration

$$
\bar{f}_q(s) = 2^{k+u} \bar{f}_q(2^k s) + \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^l \bar{g}_{q^{(l)}}(2^l s).
$$

画

 2990

イロト イ部 トイヨ トイヨト

This yields,

$$
\bar{f}_{q^{(l)}}(s)=2\delta_{l+1}\bar{f}_{q^{(l+1)}}(2s)+\bar{g}_{q^{(l)}}(s).
$$

By iteration

$$
\bar{f}_q(s) = 2^{k+u} \bar{f}_q(2^k s) + \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^l \bar{g}_{q^{(l)}}(2^l s).
$$

Applying Mellin transform

$$
\mathscr{M}[\bar{f}_q(s); \omega] = \frac{1}{1 - 2^{k - \omega k + u}} \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^{l - \omega l} \mathscr{M}[\bar{g}_{q^{(l)}}(s); \omega].
$$

造

イロト イ押ト イヨト イヨト

 299

This yields,

$$
\bar{f}_{q^{(l)}}(s)=2\delta_{l+1}\bar{f}_{q^{(l+1)}}(2s)+\bar{g}_{q^{(l)}}(s).
$$

By iteration

$$
\bar{f}_q(s) = 2^{k+u} \bar{f}_q(2^k s) + \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^l \bar{g}_{q^{(l)}}(2^l s).
$$

Applying Mellin transform

$$
\mathscr{M}[\bar{f}_q(s); \omega] = \frac{1}{1 - 2^{k - \omega k + u}} \sum_{l=0}^{k-1} \delta_1 \cdots \delta_l 2^{l - \omega l} \mathscr{M}[\bar{g}_{q^{(l)}}(s); \omega].
$$

The analysis is completed by Inverse Mellin $+$ Laplace.

画

 QQ

 \rightarrow \equiv \rightarrow

K ロ ▶ | K 伺 ▶ | K ヨ ▶

Variance

Theorem

For u the number of unspecified coordinates,

$$
Var(X_{q,n}) \sim n^{u/k} P_2(\log_2 n^{1/k}),
$$

where $P_2(z)$ is one-periodic with Fourier coefficients

$$
\frac{1}{kL\Gamma(1+\omega_r)}\sum_{l=0}^{k-1}\delta_1 \dots \delta_l 2^{-\omega_r l}
$$

$$
\int_0^\infty \frac{s^{\omega_r}}{Q(-2s)^b} \left(\int_0^\infty e^{-zs}\tilde{h}_q^l(z)dz + p(s)\right)ds
$$

with $p(s)$ a polynomial and $\tilde{h}_{q}^{l}(z)$ a function of the Poisson generating function of the mean.

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Fourier coefficients

Corollary

For $b=1$,

$$
\frac{1}{kLQ_{\infty}\Gamma(1+\omega_{r})}\sum_{l=0}^{k-1}\delta_{1}\cdots\delta_{l}2^{-\omega_{r}l}
$$
\n
$$
\sum_{j_{1},j_{2},j_{3}\geq 0}\frac{(-1)^{j_{1}}\bar{\delta}_{q^{(l)},j_{2}}\bar{\delta}_{q^{(l)},j_{3}}2^{-\binom{j_{1}}{2}+(1-\omega_{r})j_{1}}}{2^{j_{2}+j_{3}}Q_{j_{1}}Q_{j_{2}}Q_{j_{3}}}\varphi(\omega_{r};2^{j_{1}-j_{2}}+2^{j_{1}-j_{3}})
$$

with

$$
\bar{\delta}_{q,j} = \sum_{l\geq 0} \frac{(-1)^l 2^{-\binom{l+1}{2}}}{Q_l} \prod_{h=1}^{l+j} \delta_h.
$$

and $\varphi(\omega; x) = \pi(x^{\omega} - 1) / (\sin(\pi \omega)(x - 1)).$

 299

イロト イ部 トイミト イミト

• Tries: data is only stored in the leaves.

← ロ ▶ → イ 同

 \blacktriangleright \blacktriangleleft Э× -4 画

舌

 299

- Tries: data is only stored in the leaves.
- PATRICIA tries: one-way branching is suppressed.

4 0 8

÷

 QQ

- Tries: data is only stored in the leaves.
- PATRICIA tries: one-way branching is suppressed.

4 0 8

 Ω

- Tries: data is only stored in the leaves.
- PATRICIA tries: one-way branching is suppressed.

 $X_{q,n} = \#$ of internal nodes visited by the query.

 Ω

(□) (f)

• Flajolet and Puech showed that for $b = 1$

$$
\mathbf{E}(X_{q,n}) \sim n^{u/k} P_1(\log_2 n^{1/k}).
$$

造

メロメ メ都 メメ きょくきょ

 299

• Flajolet and Puech showed that for $b = 1$

$$
\mathbf{E}(X_{q,n}) \sim n^{u/k} P_1(\log_2 n^{1/k}).
$$

 \bullet Kirschenhofer and Prodinger generalized this to arbitrary b .

4 0 8

 \rightarrow \rightarrow \rightarrow

画

 QQ

• Flajolet and Puech showed that for $b = 1$

$$
\mathbf{E}(X_{q,n}) \sim n^{u/k} P_1(\log_2 n^{1/k}).
$$

- \bullet Kirschenhofer and Prodinger generalized this to arbitrary b.
- Kirschenhofer, Prodinger and Szpankowski showed that for $k = 2$ and $b=1$

$$
Var(X_{q,n}) \sim n^{u/k} P_2(\log_2 n^{1/k}).
$$

They conjectured that the same result also holds for general k .

 QQQ

イロト イ母 トイヨ トイヨト

• Flajolet and Puech showed that for $b = 1$

$$
\mathbf{E}(X_{q,n}) \sim n^{u/k} P_1(\log_2 n^{1/k}).
$$

- \bullet Kirschenhofer and Prodinger generalized this to arbitrary b.
- Kirschenhofer, Prodinger and Szpankowski showed that for $k = 2$ and $b=1$ $\text{Var}(X_{q,n}) \sim n^{u/k} P_2(\log_2 n^{1/k}).$

They conjectured that the same result also holds for general
$$
k
$$
.

• Schachinger proved the above conjecture.

 Ω

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow B$

Variance for Tries

Theorem

For u the number of unspecified coordinates,

$$
\text{Var}(X_{q,n}) \sim n^{u/k} P_2(\log_2 n^{1/k}),
$$

where $P_2(z)$ is one-periodic with Fourier coefficients

$$
\frac{\Gamma(-\omega_r)}{kL} \left(\delta(2^{-\omega_r}) \left(\binom{-\omega_r + b}{b} - 2^{\omega_r} \sum_{j_1, j_2 = 0}^b \binom{j_1 + j_2}{j_1} \binom{-\omega_r + j_1 + j_2}{j_1 + j_2} 2^{-j_1 - j_2} \right) - \sum_{l \ge b+1} \binom{-l + b}{b} \binom{-\omega_r + l + b}{b} \binom{\omega_r}{l} \frac{2^{1-l} \sigma(2^{-\omega_r}, 2^{-l})}{1 - 2^{-lk + u}} \right),
$$

where

$$
\delta(z) = \sum_{j=0}^{k-1} \delta_1 \cdots \delta_j z^j, \qquad \sigma(z_1, z_2) = \sum_{j_1, j_2=0}^{k-1} \delta_1 \cdots \delta_{j_1+j_2+1} z_1^{j_1} z_2^{j_2}.
$$

重

 299

 $\prec \equiv$

一心 悪 下

(ロ) (d) →