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What is a Phylogenetic Tree?

X . . . a finite set

A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled
by X.
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What is a Phylogenetic Network?

X . . . a finite set.

Definition

A phylogenetic network is a rooted DAG which satisfies:

(a) the root has in-degree 0 and out-degree 2;

(b) a node with out-degree 0 has in-degree 1 and the number of such
nodes is card(X);

(c) all other nodes have either out-degree 2 and in-degree 1 or out-degree
1 and in-degree 2.

Remark.

A leaf-labeled phylogenetic network is a network whose leaves are
labeled by X;

A vertex-labeled phylogenetic network is a network with all nodes
labeled.
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Two Examples

Example 1: phylogenetic network which is not a tree-child network.

Example 2: tree-child network which is not a normal network.
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Some further Notation

Definition

A node with out-degree 2 and in-degree 1 is called a tree node;

A node with out-degree 1 and in-degree 2 is called a reticulation node.

` . . . number of leaves;
t . . . number of tree nodes;
k . . . number of reticulation nodes;
n . . . total number of nodes.

Lemma

The total number of nodes n is odd and we have:

`+ k = t+ 2 =
n+ 1

2
.
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Counting Phylogenetic Trees (i)

T̃` . . . set of leaf-labeled phylogenetic trees;
Tn . . . set of vertex-labeled phylogenetic trees.

Obviously, we have

#T̃` =
1

2

`−1∑
k=1

(
`

k

)(
#T̃k

)
·
(

#T̃`−k
)
, (` ≥ 2),

and |T̃1| = 1. Thus, by setting

T (z) =
∑
`≥1

(
#T̃`

) z`
`!

we obtain that

T (z)− z =
1

2
T (z)2

=⇒ T (z) = 1−
√

1− 2z.
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Counting Phylogenetic Trees (ii)

Thus,
#T̃` = (2`− 3)!!

and by Stirling’s formula

#T̃` ∼
1√
2

(
2

e

)`

``−1.

Moreover, with ` = (n+ 1)/2,

#Tn =

(
n

`

)
(`− 1)!

(
#T̃`

)
=

(
n

`

)
(n− 1)!21−`.

Thus, again by Stirling’s formula,

#Tn ∼
√

2 (1− (−1)n)

(√
2

e

)n

nn−1.
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Counting Phylogenetic Networks

A less-precise version of the previous result is:

#T̃` = 2` log `+O(`)

and
#Tn = 2n logn+O(n),

where log denotes the logarithm to base 2.

GN n . . . set of vertex-labeled phylogenetic networks.

Theorem (McDiarmid, Semple, Welsh; 2015)

We have,
#GN n = 2

3
2
n logn+O(n).
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Tree-Child and Normal Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node
has at least one child which is not a reticulation node.

T̃` . . . # of leaf-labeled tree-child networks;
Tn . . . # of vertex-labeled tree-child networks.

Definition

A tree-child network is called normal network if whenever there is a
directed path between two nodes of length at least two, there is no edge
between the two nodes.

Ñ` . . . # of leaf-labeled normal networks;
Nn . . . # of vertex-labeled normal networks.
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Counting Tree-Child and Normal Networks

Theorem (McDiarmid, Semple, Welsh; 2015)

We have,
(c1`)

2` ≤ Ñ` ≤ T̃` ≤ (c2`)
2`.

Theorem (McDiarmid, Semple, Welsh; 2015)

We have,
(c1n)

5
4
n ≤ Nn ≤ Tn ≤ (c2n)

5
4
n.

Theorem (McDiarmid, Semple, Welsh; 2015)

We have,
Ñ` = o(T̃`) and Nn = o(Tn).
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2` ≤ Ñ` ≤ T̃` ≤ (c2`)
2`.

Theorem (McDiarmid, Semple, Welsh; 2015)

We have,
(c1n)

5
4
n ≤ Nn ≤ Tn ≤ (c2n)

5
4
n.

Theorem (McDiarmid, Semple, Welsh; 2015)

We have,
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Leaves and Reticulation Nodes

Recall that
`+ k = (n+ 1)/2.

Theorem (McDiarmid, Semple, Welsh; 2015)

(i) For almost all vertex-labeled phylogenetic networks:

` = o(n) and k ∼ n/2.

(ii) For almost all vertex-labeled tree-child and normal networks:

` ∼ n/4 and k ∼ n/4.

(iii) For almost all leaf-labeled tree child and normal networks:

k ∼ ` and n ∼ 4`.
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Counting Vertex-labeled Networks with k = 1

T1,n . . . # of vertex-labeled tree-child networks with 1 reticulation nodes;
N1,n . . . # of vertex-labeled normal networks with 1 reticulation nodes.

Theorem (Semple & Steel; 2006)

We have,

T1,2n+1 = (2n+ 1)!2n
(
n4−n

(
2n

n

)
− 1

2

)
and

N1,2n+1 = (2n+ 1)!2n
(

(n+ 2)4−n
(

2n

n

)
− 3

2

)
Thus,

T1,n ∼ N1,n ∼
√

2

4
(1− (−1)n)

(√
2

e

)n

nn+1

Michael Fuchs (NCCU) Counting Phylogenetic Networks November 17th, 2019 13 / 40



Counting Vertex-labeled Networks with k = 1

T1,n . . . # of vertex-labeled tree-child networks with 1 reticulation nodes;
N1,n . . . # of vertex-labeled normal networks with 1 reticulation nodes.

Theorem (Semple & Steel; 2006)

We have,

T1,2n+1 = (2n+ 1)!2n
(
n4−n

(
2n

n

)
− 1

2

)
and

N1,2n+1 = (2n+ 1)!2n
(

(n+ 2)4−n
(

2n

n

)
− 3

2

)
Thus,

T1,n ∼ N1,n ∼
√

2

4
(1− (−1)n)

(√
2

e

)n

nn+1

Michael Fuchs (NCCU) Counting Phylogenetic Networks November 17th, 2019 13 / 40



Exact Results for small k and `

Zhang (2019+) found recursions and obtained the following tables.

k \ ` 2 3 4 5 6 7

1 2 21 228 2805 39330 623385
2 42 1272 30300 696600 16418430
3 2544 154500 6494400 241204950
4 309000 31534200 2068516800

Table: Number of tree-child networks for small k and `

k \ ` 3 4 5 6 7 8

1 3 54 855 14040 248535 4787370
2 48 2310 78120 2377620 70749000
3 1920 184680 11038530 536524830
4 146520 23797302 2217404379

Table: Number of normal networks for small k and `
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Counting Vertex-labeled Networks with k = 2

T2,n . . . # of vertex-labeled tree-child networks with k reticulation nodes;
N2,n . . . # of vertex-labeled normal networks with k reticulation nodes.

Theorem (Zhang; 2019+)

We have,

T2,2n+1 = (2n+ 1)!21−n
n−3∑
j=1

(
2j

j

)(
2n− 2j − 2

n− j − 1

)
j(2j + 1)(2n− j − 3)

2n− 2j − 3

+ (2n+ 1)!(n− 1)(n− 2)2n−4 − (2n+ 1)!(2n− 3)!

3 · 2n−2(n− 3)!(n− 2)!
.

Zhang asked for a similar exact formula for N2,2n+1.
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Counting Vertex-labeled Networks with Fixed k

Tk,n . . . # of vertex-labeled tree-child networks with k reticulation nodes;
Nk,n . . . # of vertex-labeled normal networks with k reticulation nodes.

Theorem (F., Gittenberger, Mansouri; 2019)

There exist a positive constant ck > 0 such that

Tk,n ∼ Nk,n ∼ ck (1− (−1)n)

(√
2

e

)n

nn+2k−1.

In particular,

c1 =

√
2

4
; c2 =

√
2

32
; c3 =

√
2

384
.

Thus, asymptotically almost all vertex-labeled tree-child networks are
normal networks.
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Colored Motzkin Skeletons and Sparsened Skeletons

Consider a phylogenetic network and do the following:

Color all reticulation nodes red;

For each reticulation node, pick an incoming edge and delete it. Color
the other endpoint of the deleted edge green.

We call the resulting tree a (colored) Motzkin skeleton.

Lemma

For a tree-child network with k reticulation nodes, each (colored) Motzkin
skeleton is a Motzkin tree with 2k unary nodes.

Sparsened skeleton: ancestor relationship of the green nodes in a Motzkin
skeleton.
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Motzkin Trees with the Tree-Child Property (i)

Motzkin Tree with TCP:

Motzkin trees where each non-leaf node has at least one child which is not
an unary node.

M`,n . . . # of vertex-labeled Motzkin trees with TCP and ` unary nodes.

Set

M(z, y) =
∑
n≥1

∑
`≥0

M`,ny
` z

n

n!
.

Denote by Mu(z, y) and Mb(z, y) all Motzkin trees with TCP whose root
is unary and binary.

Then,
Mu(z, y) = zy(z +Mb(z, y))
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Motzkin Trees with the Tree-Child Property (ii)

and
Mb(z, y) =

z

2
((z +Mb(z, y))2 + 2zy(z +Mb(z, y))2).

Solving gives

Mb(z, y) =
1−

√
1− 2z2 − 4yz3

z(1 + 2yz)
− z

and

Mu(z, y) = u
1−

√
1− 2z2 − 4yz3

1 + 2yz

and thus

M(z, y) = z +Mu(z, y) +Mb(z, y)

=
(1 + yz)

(
1−

√
1− 2z2 − 4yz3

)
z(1 + 2yz)

.
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Vertex-labeled Normal Networks with k = 1 (i)

Sparsened skeleton consist of a single green node.

Motzkin skeletons:

Attached trees are Motzkin trees with TCP.

Edge from g is NOT allowed to point on the subtree attached to g, to any
node on the path to x and to the root of subtrees attached to that path.
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Vertex-labeled Normal Networks with k = 1 (ii)

N1(z) . . . EGF of # of vertex-labeled normal networks with k = 1.

Then,

N1(z) =
1

2

∂

∂y

zM(z, 0)

1− zM̃(z, y)

∣∣∣
y=0

,

where
M̃(z, y) = z +Mb(z, y).

Proposition

We have,

N1(z) = z
ã1(z

2)− b̃1(z2)
√

1− 2z2

(1− 2z2)3/2
.

where ã1(z) = −3z + 2 and b̃1(z) = −z + 2.
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where ã1(z) = −3z + 2 and b̃1(z) = −z + 2.

Michael Fuchs (NCCU) Counting Phylogenetic Networks November 17th, 2019 21 / 40



Vertex-labeled Tree-Child Networks with k = 1

T1(z) . . . EGF of # of vertex-labeled tree-child networks with k = 1.

Then,

T1(z) =
1

2

∂

∂y

zM̃(z, y)

1− zM(z, y)

∣∣∣
y=0

,

where
M̃(z, y) = z +Mb(z, y).

Proposition

We have,

T1(z) = z
ã1(z

2)− b̃1(z2)
√

1− 2z2

(1− 2z2)3/2
.

where ã1(z) = b̃1(z) = z.
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Vertex-labeled Normal Networks with k = 2 (i)

We use y1, y2 for the endpoints of the edges from g1 and g2.

Motzkin skeletons arising when g1 and g2 are adjacent:

EGF is given by:

∂y1
∂y2

z2M̃(z, 0)

(1− zM̃(z, y1))(1− zM̃(z, y1 + y2))

∣∣∣
y1=y2=0

− z7M̃(z, 0)4

(1− zM̃(z, 0))5
.
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Vertex-labeled Normal Networks with k = 2 (ii)

Motzkin skeletons arising when g1 and g2 are in different branches:

EGF is given by:

1

2
∂y1∂y2

z3M̃(z, y1)M̃(z, y2)

(1 − zM̃(z, y1 + y2))(1 − (z + z2y1)M̃(z, y1 + y2))(1 − (z + z2y2)M̃(z, y1 + y2))

∣∣∣
y1=y2=0

+ ∂y2

z5M̃(z, y2)
2M̃(z, 0)

(1 − zM̃(z, y2))4

∣∣∣
y2=0

.
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Vertex-labeled Normal Networks with k = 2 (iii)

N2(z) . . . EGF of # of vertex-labeled normal networks with k = 2.

Proposition

We have,

N2(z) = z
ã2(z

2)− b̃2(z2)
√

1− 2z2

(1− 2z2)7/2
.

where ã2(z) = 11z4 − 66z3 + 50z2 − 8z and b̃2(z) = −28z3 + 42z2 − 8z.

Theorem

We have,

N2,2n+1 = (2n+1)!
1

3
·2n−1(3n−7)

(
2n(n2 + 9n− 4)

(2n− 1)4n

(
2n

n

)
− 3(n+ 1)

)
.
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Vertex-labeled Tree-Child Networks with k = 2

T2(z) . . . EGF of # of vertex-labeled normal networks with k = 2.

Proposition

We have,

T2(z) = z
ã2(z

2)− b̃2(z2)
√

1− 2z2

(1− 2z2)7/2
.

where ã2(z) = −z + 8 and b̃2(z) = 8.

Theorem

We have,

T2,2n+1 = (2n+ 1)!2n−1(n− 1)(n− 2)

(
2n(3n− 1)

3(2n− 1)4n

(
2n

n

)
− 1

)
.
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Vertex-labeled Normal Networks with k = 3 (i)

We use y1, y2, y3 for the endpoints of the three edges from g1, g2, g3.

One possible type of Motzkin skeletons:
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Generating Paths

If two red nodes are on a path, the tree-child condition must be satisfied.

Paths can be specified as:

Q Q Q
+ ++{ε}=Q

which leads to

Q = {ε} ∪ {◦}×Q×M̃∪ {◦}×Q× ({•}×M̃)∪ {◦}× ({•}×Q)×M̃,

and
P = Q∪ {•} × Q.

Thus,

P (z, y, ȳ, ỹ, ŷ) =
1 + zŷ

1− (z + z2y + z2ȳ)M̃(z, ỹ)
.
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1− (z + z2y + z2ȳ)M̃(z, ỹ)
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which leads to

Q = {ε} ∪ {◦}×Q×M̃∪ {◦}×Q× ({•}×M̃)∪ {◦}× ({•}×Q)×M̃,

and
P = Q∪ {•} × Q.

Thus,

P (z, y, ȳ, ỹ, ŷ) =
1 + zŷ

1− (z + z2y + z2ȳ)M̃(z, ỹ)
.
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1

2

z5M̃(z, y1 + y2)M̃(z, y1 + y3)M̃(z, y2 + y3)

1 − zM̃(z, y1 + y2 + y3)
P (z, 0, y1 + y2, y1 + y2 + y3, 0)

× P (z, 0, y1 + y3, y1 + y2 + y3, 0)P (z, 0, y2 + y3, y1 + y2 + y3, 0)P (z, 0, y3, y1 + y2 + y3, 0)

+
z5M̃(z, y2)M̃(z, y3)M̃(z, y2 + y3)

1 − zM̃(z, y2 + y3)
P (z, y1, y3, y2 + y3, 0)P (z, 0, y2, y2 + y3, 0)P (z, 0, y3, y2 + y3, 0)

2

+
z5M̃(z, y2)M̃(z, y3)M̃(z, y2 + y3)

1 − zM̃(z, y2 + y3)
P (z, y1, y2, y2 + y3, 0)

× P (z, 0, y3, y2 + y3, 0)P (z, 0, y2, y2 + y3, 0)P (z, 0, 0, y2 + y3, 0)

+
z5M̃(z, y1)M̃(z, y2)M̃(z, y1 + y2)

1 − zM̃(z, y1 + y2)
P (z, y3, y2, y1 + y2, y3)

× P (z, 0, y1, y1 + y2, 0)P (z, 0, y2, y1 + y2, 0)P (z, 0, 0, y1 + y2, 0)

+
z5M̃(z, y1)M̃(z, y2)M̃(z, y1 + y2)

1 − zM̃(z, y1 + y2)
P (z, y3, 0, y1 + y2, 0)

× P (z, 0, y1, y1 + y2, 0)P (z, 0, y2, y1 + y2, 0)P (z, 0, 0, y1 + y2, 0)

+
z5M̃(z, y3)

2M̃(z, 0)

(1 − zM̃(z, y3))3
P (z, y1, 0, y3, 0)P (z, y2, 0, y3, 0) +

1

2

z5M̃(z, y3)
2M̃(z, 0)

(1 − zM̃(z, y3))4
P (z, y1 + y2, 0, y3, 0)

+
z5M̃(z, y2)

2M̃(z, 0)

(1 − zM̃(z, y2))3
P (z, y1, 0, y2, 0)P (z, y3, 0, y2, y3)

+
z5M̃(z, y2)

2M̃(z, 0)

(1 − zM̃(z, y2))3
P (z, y1 + y3, 0, y2, y3)P (z, y3, 0, y2, 0)

+
z5M̃(z, y2)

2M̃(z, 0)

(1 − zM̃(z, y2))3
P (z, y1, 0, y2, 0)P (z, y3, 0, y2, 0).
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Vertex-labeled Normal Networks with k = 3 (iii)

The three other types of Motzkin skeletons:

The EGFs have been added up and divided by 8 (since every network is
generated exactly 8 times by our method).
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Vertex-labeled Tree-Child Networks with k = 3

T3(z) . . . EGF of # of vertex-labeled tree-child networks with k = 3.

Proposition

We have,

T3(z) = z
ã2(z

2)− b̃2(z2)
√

1− 2z2

(1− 2z2)11/2
.

where ã3(z) = −35z6 + 175z5 and b̃3(z) = 34z6 + 175z5.

Theorem

With p(n) = (n− 4)(n− 3)(n− 2), we have

T3,2n+1 = (2n+ 1)!
1

3
· 2n−6p(n)

(
64n2(n− 1)

(2n− 1)4n

(
2n

n

)
− (48n− 65)

)
.
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Vertex-labeled Normal Networks with k = 3 (iv)

N3(z) . . . EGF of # of vertex-labeled normal networks with k = 3.

Proposition

We have,

N3(z) = z
ã3(z

2)− b̃3(z2)
√

1− 2z2

(1− 2z2)11/2
.

Recall that

N1(z) = z
ã1(z

2)− b̃1(z2)
√

1− 2z2

(1− 2z2)3/2

and

N2(z) = z
ã2(z

2)− b̃2(z2)
√

1− 2z2

(1− 2z2)7/2
,

with suitable polynomials a1(z), a2(z), b1(z) and b2(z).
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Vertex-labeled Normal Networks with General k

Induction on k gives the following result.

Proposition

We have,

Nk(z) = z
ãk(z2)− b̃k(z2)

√
1− 2z2

(1− 2z2)2k−1/2
.

where ãk(z) and b̃k(z) are suitable polynomials.

From this, an asymptotic expansion can be obtained by singularity analysis.

P. Flajolet and A. M. Odlyzko (1990). Singularity analysis of generating
functions, SIAM Journal on Algebraic and Discrete Methods, 3:2, 216–240.
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Singularity Analysis

Recall

Nk(z) = z
ãk(z2)− b̃k(z2)

√
1− 2z2

(1− 2z2)2k−1/2
.

This function has two dominant singularities at z = 1/
√

2 and z = −1/
√

2
with singularity expansions

Nk(z)
z→±1/

√
2∼ ± ãk(1/2)

4k(1∓
√

2z)2k−1/2
.

Then,

n![zn]Nk(z) ∼ n!
ãk(1/2)

4k

(
[zn]

1

(1−
√

2z)2k−1/2
− [zn]

1

(1 +
√

2z)2k−1/2

)
∼ ck(1− (−1)n)

(√
2

e

)n

nn+2k−1,

where ck =
√

2πãk(1/2)/(4kΓ(2k − 1/2)).

Michael Fuchs (NCCU) Counting Phylogenetic Networks November 17th, 2019 34 / 40



Singularity Analysis

Recall

Nk(z) = z
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2πãk(1/2)/(4kΓ(2k − 1/2)).

Michael Fuchs (NCCU) Counting Phylogenetic Networks November 17th, 2019 34 / 40



Singularity Analysis

Recall

Nk(z) = z
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ck > 0 (i)

Consider as Motzkin sekeleton the caterpillar:

e1

e2

g

Generate normal networks where g is only allowed to point at e1 and e2
and recursively for the other green nodes.

EGF of # of these normal networks has the same shape as that for all
normal networks.
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ck > 0 (ii)

Ck,n . . . # of vertex-labeled normal networks with k reticulation nodes
arising from the caterpillar skeleton.

Proposition

There exists a positive constant dk > 0 such that

Ck,n ∼ dk (1− (−1)n)

(√
2

e

)n

nn+2k−1.

This implies that ck with

Nk,n ∼ ck (1− (−1)n)

(√
2

e

)n

nn+2k−1

is also positive.
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Counting Leaf-labeled Networks with Fixed k

T̃`,n . . . # of leaf-labeled tree-child networks with k reticulation nodes;
Ñ`,n . . . # of laef-labeled normal networks with k reticulation nodes.

# of leaf-labeled networks is closely related to the # of vertex-labeled
networks because of the following lemma.

Lemma

The descendant sets for any two nodes in a tree-child network (and thus
also normal network) are different.

Theorem

We have,

T̃`,n ∼ Ñ`,n ∼ 23k−1ck

(
2

e

)`

``+2k−1.
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Counting all Networks

Motzkin skeleton does not necessarily have 2k unary nodes:

r1

r2

r1

r2 r3

In both cases, a leaf becomes a colored node!

One needs consider more types of Motzkin skeleton for the counting.

For the leaf-labeled case, one has to cope with symmetries.
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Summary and References

Results for tree-child and normal networks:

- M. Fuchs, B. Gittenberger, M. Mansouri (2019). Counting
phylogenetic networks with few reticulation vertices: tree-child and
normal networks, Australas. J. Combin., 73:2, 385–423.

- M. Fuchs, B. Gittenberger, M. Mansouri. Exact enumeration of
phylogenetic networks with few reticulation vertices, preprint.

Results for general networks:

- M. Mansouri. Counting general phylogenetic networks with few
reticulation vertices, preprint.

Other classes of phylogenetic networks have also been counted
recently, e.g.,

- M. Bouvel, P. Gambette, M. Mansouri. Counting phylogenetic
networks of level 1 and 2, ArXiv::1909.10460.
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There are many more classes of phylogenetic networks:

http://phylnet.univ-mlv.fr/

Thanks for your attention!
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