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Abstract

Studying the shape of phylogenetic trees under different random models is an important issue in
evolutionary biology. In this paper, we propose a general framework for deriving detailed statistical
results for patterns in phylogenetic trees under the Yule-Harding model and the uniform model, two of
the most fundamental random models considered in phylogenetics. Our framework will unify several
recent studies which were mainly concerned with the mean value and the variance. Moreover, refined
statistical results such as central limit theorems, Berry-Esseen bounds, local limit theorems, etc. are
obtainable with our approach as well. A key contribution of the current study is that our results are
applicable to the whole range of possible sizes of the pattern.

1 Introduction

Phylogenetic trees are the standard tool in evolutionary biology for depicting the ancestor history of a set
of given species (or taxa); see page 117 in Darwin’s famous book [7]. Consequently, their properties have
been extensively studied. In particular, the investigation of the probabilistic behavior of parameters related
to the shape of phylogenetic trees under different random models has evolved into a major issue in recent
decades. The reason for this is multi-fold: such results can be used in statistical tests, e.g., for testing
the appropriateness of a random model; they enhance our understanding of the process that generates the
data; they yield conclusions about possible outcomes of evolution; etc.; for further motivation we refer the
reader to [3], [29], [30], [36] and references therein.

First, we will make precise the notation of phylogenetic trees. Throughout this paper, phylogenetic
trees will be binary trees, where the external nodes represent the species and the internal nodes represent
their ancestors. Moreover, all trees considered will be rooted meaning that we assume that the set of species
has a common ancestor. Finally, branch lengths will be ignored, i.e., we will just look at the topology of
the tree. So, the family of phylogenetic trees of sizen is the family of plane, rooted, unlabelled binary
trees withn external nodes (and consequentlyn− 1 internal nodes).
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Next, we will equip the family of phylogenetic trees of sizen with a random model. In this paper, we
will consider the two most fundamental random models of evolutionary biology: theYule-Harding model
and theuniform model; see [37].

First, the Yule-Harding model [18], [41] is defined by a tree evolution process: the tree grows by
choosing at random one of the leaves and replacing it by a cherry (an internal node with two children); we
stop when a tree withn external nodes is constructed. This is the top-down construction of a phylogenetic
tree of sizen under the Yule-Harding model. Alternatively, a bottom-up construction can be used as
well: start withn external nodes and successively choose a random pair and coalesce the two nodes; stop
when only one node (the root) is left. It is easy to see that the random models arising from these two
constructions are the same. Moreover, it is easy to see as well that the Yule-Harding model is the same as
the permutation model of binary search trees considered in computer science; see [5].

The usage of the Yule-Harding model is well motivated since it provides an easy way of mimicking
how the data might have evolved over time. Note, however, that it does not assign the same probability to
every phylogenetic tree of sizen. This motivates a second model which does assign the same probability
and is hence calleduniform model(or PDA modelsee [3]). Although less motivated from a practical
point of view, the usage of this model is justified as well by a couple of theoretical results; see [1], [28].
Moreover, this model has also been investigated in computer science, where it is called theCatalan model;
see [12] and references therein. The name comes from the fact that the number of phylogenetic trees of
sizen is given by then−1-st Catalan number, subsequently denoted byCn−1 (a proof of this can be found
in standard textbook on enumerative combinatorics such as [38], [39] and [14]).

This paper will be concerned with a study of statistical properties of the occurrence of patterns in
phylogenetic trees under the above two random models. Here, the word “pattern” will be used in a rather
broad sense, namely, any subset of the set of all phylogenetic trees of a fixed sizek will be considered as
pattern. Moreover, throughout this work, we will fix the notationXn,k to denote the number of occurrences
of this pattern in a random phylogenetic tree of sizen.

For both random models above,Xn,k satisfies

Xn,k
d
= XIn,k + X∗

n−In,k, (n > k), (1)

whereXn,k, X
∗
n,k, andIn are independent random variables,X∗

n,k has the same distribution asXn,k, and
In is the size of the left subtree of the root. This distributional recurrence is nothing more than the mathe-
matical formulation of the trivial observation that the number of occurrences of a pattern is the sum of the
number of occurrences of the pattern in the left and in the right subtree of the root. The initial conditions
of this recurrence are given byXn,k = 0 for n < k andXk,k is a Bernoulli random variable with success
probabilitypk that equals the probability that a phylogenetic tree of sizek belongs to our pattern. In order
to avoid ambiguity, we will assume thatpk > 0 throughout this work. Note that this probabilistic descrip-
tion of Xn,k already implies that stochastic properties ofXn,k just depend onpk and not on the specific
pattern.

In order to make the above more lucid, we recall some of the patterns previously considered in lit-
erature. The first and most straightforward pattern is the set of all trees of sizek. The root of such a
subtree in a phylogenetic tree of sizen is calledk-pronged node; see [36] and [27] for the special case of
k = 2. Hence, in this situation,Xn,k counts the number of such nodes. The second pattern is the set of
k-caterpillarsalso considered in [36]. Here, the pattern consists of phylogenetic trees of sizek that have
an internal node which is descendent of all other internal nodes. A final pattern is given by the set of all
phylogenetic trees of sizek with either left or right subtree of the root empty. Here,Xn,k is the same as
the number of taxa withminimal clade sizek if k ≥ 3; see [4]. A related parameter was also considered
in computer science; see [8]. The probabilitiespk for these three patterns under the above two random
models are easily obtained and collected in Table1.
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Table 1: Values ofpk

Pattern Yule-Harding Model Uniform Model

k-pronged nodes 1 1
k-caterpillars 2k−2/(k − 1)! 2k−2/Ck−1

nodes with minimal clade sizek 2/(k − 1) 2Ck−2/Ck−1

The aim of this paper is to study moments ofXn,k as well as more refined properties such as limit laws,
rates of convergence, local limit theorems, etc. Therefore, we will use the setting of (1). Consequently,
our setting will contain all three cases discussed above as special cases. As fork-pronged nodes and
k-caterpillars, mean and variance were derived in [36] under the Yule-Harding model by a bottom-up
approach. We will re-derive these results using (1). So, in contrast to [36], our approach will be top-down.
We will see that our approach is technically easier and also allows us to derive higher moments and more
refined properties. Here, we should mention that fork-pronged nodes our results were already sketched
in [16]; see also [11] for related results. As for the uniform model, only results onk-pronged nodes with
k = 2 have been obtained before; see [27]. Mean value and variance of the number of nodes with minimal
clade sizek have been derived in [4] under the Yule-Harding model. Moreover, the authors in [4] also
derived a central limit theorem ofXn,k for fixedk. Again, we will re-derive all those results and add many
new ones as well as prove corresponding results under the uniform model.

Before we start to explain our results in more details, it should be mentioned that the behavior ofXn,k

for fixed k is well understood. Here, a detailed description of the stochastic properties ofXn,k follows
from results in computer science; see [13], [19], [21] for the Yule-Harding model and [14] for the uniform
model. However, from an application point of view, results which hold uniformly ink are more desirable.
So, one of the main contributions of this paper is to provide results wherek is allowed to grow withn.
Proving such results will involve multivariate asymptotics which in recent years has evolved in a major
topic in analytic combinatorics; see [9], [10], [17], [20], [22] and [31], [32], [33], [34].

Now, we will discuss our findings in more details. For the sake of simplicity, we will choose the
number of nodes with minimal clade sizek as a guiding example. For our general results, we refer the
reader to Section2 and Section3.

First, we consider the Yule-Harding model. Here, we have the following results for mean value and
variance.

Theorem 1. For k < n,

E(Xn,k) =
4n

(k − 1)k(k + 1)

and

Var(Xn,k) =



4(4k4 − 27k2 + 11)n

(k − 1)2k(k + 1)2(2k − 1)(2k + 1)
, if n > 2k;

4(4k3 − 32k + 20)

(k − 1)2(k + 1)2(2k − 1)
, if n = 2k;

4(k3 − k − 4n)n

(k − 1)2k2(k + 1)2
, if k < n < 2k.

In particular, for k < n andk →∞,

E(Xn,k) ∼ Var(Xn,k) ∼
4n

k3
, (n →∞).
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Moreover, the first order asymptotic of all higher moments will be derived as well. This will then allow
us to study limit laws. Note that for fixedk, a central limit theorem follows from previous results; see [21].
We will show that the central limit theorem continues to hold for some range withk →∞. Moreover, we
will derive the Berry-Esseen bound as well.

Theorem 2. Let3 ≤ k = o( 3
√

n). Then,

sup
−∞<x<∞

∣∣∣∣∣P
(

Xn,k − E(Xn,k)√
Var(Xn,k)

≤ x

)
− Φ(x)

∣∣∣∣∣ = O
(

k3/2

√
n

)
,

whereΦ(x) denotes the distribution function of the standard normal random variable.

The above range will turn out to be the largest possible range for which a central limit theorem holds.
Hence, the normal distribution just provides a good approximation fork small. From a practical point
of view, this is quite unsatisfactory. Therefore, we will show that approximating by a Poisson random
variable works well in a much larger range and is hence more desirable.

Theorem 3. Letk < n andk →∞. Then,

dTV (Xn,k, Po(E(Xn,k))) =
1

2

∑
l≥0

∣∣∣∣P (Xn,k = l)− e−E(Xn,k) (E(Xn,k))
l

l!

∣∣∣∣→ 0.

More precisely, we have

dTV (Xn,k, Po(E(Xn,k))) =

{
O
(
1/k2α/(3α+1)

)
, if n ≥ k3;

O (n/k3+2α) , if n < k3,

whereα = 2m/(2m + 1) with a fixed (but arbitrary)m ≥ 1.

So, only for very smallk one should use the normal distribution as an approximation. For the remaining
range, a Poisson random variable yields a better approximation.

As for the proofs of these results, we will use the elementary approach (in the sense that complex
analysis is avoided) from [16]; for more details see Section2.

Now, we turn to the uniform model. Here, we will prove similar results as above. First, for mean value
and variance, we have the following theorem.

Theorem 4. (i) For constantk,

E(Xn,k) =
2Ck−2

4k−1
n +O(1), (n →∞),

and

Var(Xn,k) =

(
2Ck−2

4k−1
−

(2k − 1)C2
k−2

42k−3

)
n +O(1), (n →∞).

(ii) For k →∞ andn− k →∞,

E(Xn,k) ∼ Var(Xn,k) ∼
n√
4πk3

(n →∞).
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(iii) For constantn− k = l ≥ 0,

E(Xn,k) =
(l + 1)Cl

22l+1
+O

(
1

n

)
, (n →∞),

and

Var(Xn,k) =
(l + 1)Cl

22l+1

(
1− (l + 1)Cl

22l+1

)
+O

(
1

n

)
, (n →∞).

Moreover, we again have a central limit theorem with Berry-Esseen bound that holds for smallk.

Theorem 5. Let3 ≤ k = o(n2/3). Then,

sup
−∞<x<∞

∣∣∣∣∣P
(

Xn,k − E(Xn,k)√
Var(Xn,k)

≤ x

)
− Φ(x)

∣∣∣∣∣ = O
(

k3/4

√
n

)
.

Again, the central limit theorem does not hold beyond this range. However, as above, we have a
Poisson approximation result.

Theorem 6. Letk →∞ andn− k →∞. Then,

dTV (Xn,k, Po(E(Xn,k)) =
1

2

∑
l≥0

∣∣∣∣P (Xn,k = l)− e−E(Xn,k) (E(Xn,k))
l

l!

∣∣∣∣→ 0.

More precisely,

dTV (Xn,k, Po(E(Xn,k)) =


O
(
1/
√

k
)

, if n ≥ k3/2;

O (n/k2) , if k1+ε ≤ n < k3/2;

O (E(Xn,k)) , if n < k1+ε,

whereε > 0 is an arbitrarily small constant.

So,Xn,k is again well approximated by a Poisson random variable unlessk is either very small or very
large. In the latter two cases, the Poisson random variable has to be replaced by a standard normal random
variable and a Bernoulli random variable, respectively.

The proofs of the results in the uniform case will follow from a rather different method compared to the
approach used in the Yule-Harding case. This is largely due to the fact that involved generating functions
can be solved explicitly. Hence, the results are obtained more easily by using complex-analytic tools. For
more details we refer the reader to Section3.

In order to conclude the introduction, we give a brief sketch of the paper. First, since we intend to
prove results for two different random models, we will split the paper into two parts; the first part (Section
2) will discuss the Yule Harding model and the second part (Section3) the uniform model. Every part will
consist of three subsections which will be concerned with deriving results for moments, discussing the
validity of the central limit theorem, and finally proving our Poisson approximation results, respectively.
We will end the paper with some concluding remarks.

Notations.Subsequently,ε will always denote a small positive real number andc a large constant. More-
over, the values of bothε andc may be different from one occurrence to the next.
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2 Yule-Harding Model

In this section, we are going to investigate the statistical properties ofXn,k under the Yule-Harding model.
As already mentioned in the introduction, we will use the elementary method introduced in [16] which
was based on studying the underlying recurrence satisfied by the moments and applying the method of
moments and its refinements.

In fact, some of the results below will follow similarly as in [16] and in order to avoid repetition we
will not give any details. We will, however, discuss in details a more simplified proof of the central limit
theorem (without the Berry-Esseen bound) and refined bounds for the total variation distance; the former
will constitute a simplification of the approach in [11] for k-pronged nodes as well.

2.1 Moments

In this section we will compute moments ofXn,k. Therefore, we will work out in details the approach
briefly sketched in [16] for k-pronged nodes; see [11] for a similar approach. This part should be compared
with [36] where the same results are proved fork-pronged nodes andk-caterpillars, but with a more
complicated approach.

First, note thatXn,k satisfies (1) with

P (In = j) =
1

n− 1
, 1 ≤ j ≤ n− 1,

where the latter follows straightforwardly from the probabilistic description of the random model.
Next, we considerPn,k(z) = E(exp{Xn,kz}). Then, (1) translates into

Pn,k(z) =
1

n− 1

n−1∑
j=1

Pj,k(z)Pn−j,k(z), (n > k)

with Pn,k(z) = 1 for n < k andPk,k(z) = pk(e
z − 1) + 1. Differentiating this recurrencem times and

evaluating atz = 0 give a corresponding recurrence for them-th moment. The key observation is that all
these recurrences are of the following type

an,k =
2

n− 1

n−1∑
j=1

aj,k + bn,k, (n > k),

wherean,k = 0 for n < k, bn,k = 0 for n ≤ k, ak,k is determined by the initial conditions andbn,k for
n > k is a function of moments of lower order. Moreover, a similar computation reveals that also all
central moments satisfy a recurrence of the latter shape. So, we start by investigating this recurrence.

First, this recurrence can be easily solved. Therefore, consider(n− 1)an,k − (n− 2)an−1,k and iterate
the resulting recurrence. Then, fork < l < n,

an,k =
n

l
al,k + 2n

∑
l<j<n

bj,k

j(j + 1)
+ bn,k −

n(l − 1)

l(l + 1)
bl,k (2)

=
2n

k(k + 1)
ak,k + 2n

∑
k<j<n

bj,k

j(j + 1)
+ bn,k. (3)
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In order to find the mean value, we setbn,k = 0 andak,k = pk in the last formula above. Then,

µn,k := E(Xn,k) =
2pkn

k(k + 1)
, (n > k).

Obviously,µk,k = pk andµn,k = 0 for n < k.
The computation of the varianceσ2

n,k := Var(Xn,k) is slightly more involved. First, note that the
variance satisfies the above recurrence with

bn,k =
1

n− 1

n−1∑
j=1

(µj,k + µn−j,k − µn,k)
2 .

A lengthy computation gives

bn,k =


2(k − 1)(3k − 2)p2

k

3(n− 1)k(k + 1)
, if n > 2k;

4(k − 1)(3k2 − k − 1)p2
k

3k(k + 1)2(2k − 1)
, if n = 2k.

Then, by plugging this into (2) with l = 2k,

σ2
n,k =

n

2k
σ2

2k,k −
(k − 1)2p2

kn

k(k + 1)2(2k + 1)
,

wheren > 2k. So, we first need to computeσ2
2k,k.

Lemma 1. We have

σ2
2k,k =

2(4k2 + 2k − 2 + (k2 − 14k + 9)pk)pk

(k + 1)2(2k − 1)
.

Proof. First, observe thatX2k,k only takes on the values0, 1, 2. A simple combinatorial argument shows
thatP (X2k,k = 2) = p2

k/(2k − 1). The other probabilities are easily computed from the latter by

4pk

k + 1
= E(X2k,k) = 2P (X2k,k = 2) + P (X2k,k = 1)

andP (X2k,k = 2) + P (X2k,k = 1) + P (X2k,k = 0) = 1. Overall,

X2k,k =


2, with probabilityp2

k/(2k − 1);

1, with probability4pk/(k + 1)− 2p2
k/(2k − 1);

0, with probability1− 4pk/(k + 1) + p2
k/(2k − 1).

The result follows now by a straightforward computation.
Plugging the latter result into the formula above together with some simplifications yields

σ2
n,k =

2(4k3 + 4k2 − k − 1− (11k2 − 5)pk)pkn

k(k + 1)2(2k − 1)(2k + 1)
,

for n > 2k. Finally, for the rangen < 2k, we deduce from the above result for the mean value

σ2
n,k =

2(k2 + k − 2npk)pkn

k2(k + 1)2
.

To sum up, we have proved the following result.
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Proposition 1. We have,

µn,k =


2pkn

k(k + 1)
, if n > k;

pk, if n = k;

0, if n < k

and

σ2
n,k =



2(4k3 + 4k2 − k − 1− (11k2 − 5)pk)pkn

k(k + 1)2(2k − 1)(2k + 1)
, if n > 2k;

2(4k2 + 2k − 2 + (k2 − 14k + 9)pk)pk

(k + 1)2(2k − 1)
, if n = 2k;

2(k2 + k − 2npk)pkn

k2(k + 1)2
, if k < n < 2k;

pk(1− pk), if n = k;

0, if n < k.

The latter result immediately gives the following corollary.

Corollary 1. Ask →∞, we have

µn,k ∼ σ2
n,k ∼

2pkn

k2
, (n →∞).

Moreover, higher moments could be computed by this approach as well. The computation, however,
becomes more and more involved. We will see in the next section that this problem becomes easier when
only the main order term in the asymptotic expansion is sought.

2.2 Central limit theorem

Now, we will turn to limiting distributions ofXn,k. First, it is well known that for fixedk, the following
central limit theorem holds (see Hwang and Neininger [21])

Xn,k − µn,k

σn,k

d−→ N (0, 1).

Moreover, the Berry-Esseen bound was derived by Hwang in [19] and isO(n−1/2).
Our first result extends the range of validity of the above central limit theorem.

Theorem 7. Letpkn/k2 →∞. Then,

Xn,k − µn,k

σn,k

d−→ N (0, 1).

Due to the result for constantk, we can focus onk → ∞ asn → ∞. First, considerP̄n,k(z) =
E(exp{(Xn,k − µn,k)z}). Then, (1) translates into

P̄n,k(z) =
1

n− 1

n−1∑
j=1

P̄j,k(z)P̄n−j,k(z)e∆n,j,kz (n > k) (4)
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with P̄n,k(z) = 1 for n < k andP̄k,k(z) = e−pkz(pke
z − pk + 1) and

∆n,j,k = µj,k + µn−j,k − µn,k.

Next, we introduceA(m)
n,k = E(Xn,k − µn,k)

m. Differentiating (4) m times(m ≥ 1) and settingz = 0
reveal

A
(m)
n,k =

2

n− 1

n−1∑
j=1

A
(m)
j,k + B

(m)
n,k ,

whereA
(m)
n,k = 0 for n < k, A

(m)
k,k = pk(1− pk)

m + (1− pk)(−pk)
m and

B
(m)
n,k =

∑
i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

)
1

n− 1

n−1∑
j=1

A
(i1)
j,k A

(i2)
n−j,k∆

i3
n,j,k. (5)

We first consider the casem = 2. Here,A(2)
n,k = σ2

n,k and as already mentioned in the previous section

B
(2)
n,k =

1

n− 1

n−1∑
j=1

∆2
n,j,k.

Even though we have obtained an asymptotic expansion of the variance ask →∞ in Corollary1, we give
here a second and more simplified proof of this result. Therefore, observe that forn > k

∆n,j,k =


0, if k < j < n− k;

O(pk/k), if j < k, j 6= n− k or j > n− k, j 6= k;

pk +O(pk/k), if j = k, j 6= n− k or j = n− k, j 6= k;

2pk +O(pk/k), if j = k andj = n− k

which yields

A
(2)
k,k = pk(1− pk), B

(2)
n,k =

{
2p2

k/(n− 1) +O (p2
k/k

2) , if n 6= 2k;

4p2
k/(2k − 1) +O (p2

k/k
2) , if n = 2k,

where all implied constants are absolute. Plugging this into (3) then reveals

σ2
n,k =

2pk(1− pk)n

k2
+ 4p2

kn
∑

k<j<n

1

(j − 1)j(j + 1)
+O

(
pkn

k3
+

p2
k

n

)
,

=
2pkn

k2
+O

(
pkn

k3
+

p2
k

n

)
,

where the implied constant is absolute. So, we obtain the bound

σ2
n,k = O

(pkn

k2

)
(6)

which holds uniformly inn andk with n > k. Moreover, ifk →∞ asn →∞, we have

σ2
n,k ∼

2pkn

k2
. (7)

Next, we are going to show that both (6) and (7) can be extended to all moment as well. Therefore, we
will use (3) together with induction. This is a standard method that is called “moment-pumping” and was
applied to numerous problems; see [6] and references therein.

We first extend (6).
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Proposition 2. For m ≥ 1,

A
(m)
n,k = O

(
max

{
pkn

k2
,
(pkn

k2

)m/2
})

uniformly inn > k.

Proof. First, note that the claim trivially holds form = 1 and was proved form = 2 above. Now, we
assume that the claim holds for allm′ with m′ < m. We will establish that it holds form as well.

Before starting with the proof, we need a notation. For fixedk denote byjk the smallest integer such
thatpkjk/k

2 ≥ 1.
Now, we can start with the proof. First consider (5) and break the involved sums into two parts

B
(m)
n,k =

∑
i1+i2+i3=m
0≤i1,i2<m

∑
j=k or j=n−k

+
∑

i1+i2+i3=m
0≤i1,i2<m

n−1∑
j=1

j 6=k, j 6=n−k

=: Σ1 + Σ2.

We will bound the two parts separately. We start with the first one. Therefore, observe that

Σ1 = O

 1

n

∑
i1+i2+i3=m
0≤i1,i2<m

(
m

i1, i2, i3

)
A

(i1)
k,k A

(i2)
n−k,k∆

i3
n,k,k


= O

(
pk

n

m−1∑
i=0

A
(i)
n−k,k

)
= O

(
pk

n

(pkn

k2

)(m−1)/2

+
pk

n

)
.

Next, we will consider the second part which we again break into two parts

Σ2 =
∑

i1+i2=m
0≤i1,i2<m

n−1∑
j=1

j 6=k, j 6=n−k

+
∑

i1+i2+i3=m
0≤i1,i2<m, 0<i3

n−1∑
j=1

j 6=k, j 6=n−k

=: Σ2,1 + Σ2,2.

The second of the two sums can be bounded as follows

Σ2,2 = O

 1

n

∑
i1+i2+i3=m

0≤i1,i2<m, 0<i3

(
m

i1, i2, i3

)∑
j<k

A
(i1)
j,k A

(i2)
n−j,k∆

i3
n,j,k


= O

(
pk

kn

m−1∑
i=0

∑
j<k

A
(i)
n−j,k

)
= O

(
pk

n

(pkn

k2

)(m−1)/2

+
pk

n

)
.

So, what is left is to boundΣ2,1. Therefore, we break it into three parts

Σ2,1 ≤
∑

i1+i2=m
0≤i1,i2<m

∑
j≤jk, j 6=k

+
∑

i1+i2=m
0≤i1,i2<m

∑
jk<j<n−jk

+
∑

i1+i2=m
0≤i1,i2<m

∑
j≥n−jk, j 6=n−k

=: Σ2,1,1 + Σ2,1,2 + Σ2,1,3.

Due to symmetry, the bound for the first and last of the three sums will be the same. Therefore, we will
concentrate on the first one which can be treated as follows

Σ2,1,1 =
1

n− 1

m−1∑
i=1

(
m

i

) ∑
j≤jk, j 6=k

A
(i)
j,kA

(m−i)
n−j,k =

{
O
(
(jk/n) (pkn/k2)

(m−1)/2
)

, n > 2jk;

O ((pkn/k2)2) , n ≤ 2jk.

10



Finally, we have

Σ2,1,2 =
1

n− 1

m−1∑
i=1

(
m

i

) ∑
jk<j<n−jk

A
(i)
j,kA

(m−i)
n−j,k

= O

((pkn

k2

)m/2
m−1∑
i=1

(
m

i

)∫ 1

0

xi/2(1− x)(m−i)/2dx

)
= O

((pkn

k2

)m/2
)

.

Collecting all terms above yields

B
(m)
n,k = O

((pkn

k2

)m/2

+
(pkn

k2

)2

+
pk

k

)
(8)

for m ≥ 5. Now we plug this together withA(m)
k,k = O (pk) into (3) and obtain

A
(m)
n,k = O

(pkn

k2

)
+O

(
p

m/2
k n

km

∑
k<j<n

jm/2−2 +
p2

kn

k4

∑
k<j<n

1 +
pkn

k

∑
k<j<n

j−2

)
+ B

(m)
n,k

= O
(

pkn

k2
+
(pkn

k2

)m/2
)

.

Form = 4, we have to replace the second term in (8) by (pkn/k2)3/2. The claim then follows as above.
For m = 3, we have to be slightly more careful. Here the second term in (8) has to be replaced by

the above bound forΣ2,1,1. Since the above arguments still work for the first and third term in (8), we just
have to concentrate on the contribution of the new second term. Therefore, observe that

n
∑

k<j<n

Σ2,1,1

j2
= O

(
p2

kn

k4

∑
k<j≤2jk

1 +
pkjkn

k2

∑
2jk<j<n

j−2

)
= O

(pkn

k2

)
.

Hence, also in this case, we obtain the claimed bound. This concludes the induction step and hence our
claim is established.

Next, we will refine our previous result for the range where the claimed central limit theorem holds.

Proposition 3. For pkn/k2 →∞ andk →∞ asn →∞, we have

A
(2m−1)
n,k = o

((pkn

k2

)m−1/2
)

;

A
(2m)
n,k ∼ gm

(
2pkn

k2

)m

,

for m ≥ 1, wheregm = (2m)!/(2mm!).

Proof. We again use induction onm. Note that form = 1 the first assertion is trivial and the second
assertion follows from (6). Now, assume the assertions hold for allm′ with m′ < m. We will show that
they hold form as well.

Therefore, we again first consider (5). Note that the proof of the last proposition yields

B
(l)
n,k =

l−1∑
i=1

(
l

i

)
1

n− 1

∑
jk<j<n−jk

A
(i)
j,kA

(l−i)
n−j,k + o

((pkn

k2

)l/2
)

,

11



wherejk is defined as in the proof of the last proposition. We fix anε > 0 and split the sum into three parts

l−1∑
i=1

∑
jk<j≤εn

+
l−1∑
i=1

∑
εn<j<(1−ε)n

+
l−1∑
i=1

∑
(1−ε)n≤j<n−jk

=: Σ1 + Σ2 + Σ3.

We first concentrate on the second of the three parts. Therefore, we consider two cases. First, ifl = 2m−1
is odd, then eitheri or 2m− 1− i is odd. Hence,

Σ2 = o

((pkn

k2

)m−1/2
2m−2∑
i=1

(
2m− 1

i

)∫ 1−ε

ε

xi/2(1− x)(2m−1−i)/2dx

)
= o

((pkn

k2

)m−1/2
)

.

Secondly, ifl = 2m is even, then the above reasoning shows that the sum over the odd indicesi has the
same bound as above. As for the sum over the even indices, we have

m−1∑
i=1

(
2m

2i

)
1

n

∑
εn<j<(1−ε)n

A
(2i)
j,k A

(2m−2i)
n−j,k ∼

(
2pkn

k2

)m m−1∑
i=1

(
2m

2i

)
gigm−i

∫ 1−ε

ε

xi(1− x)m−idx.

So, overall

Σ2 ∼
(

2pkn

k2

)m m−1∑
i=1

(
2m

2i

)
gigm−i

∫ 1−ε

ε

xi(1− x)m−idx.

As for the first and third sum above, using the uniform bound from our last proposition shows that

Σ1 = Σ3 = O (εΣ2) .

So, by lettingε → 0, we see that the main contribution comes from the second sum. Overall, we have

B
(2m−1)
n,k = o

((pkn

k2

)m−1/2
)

;

B
(2m)
n,k ∼ ḡm

(
2pkn

k2

)m

,

where

ḡm =
m−1∑
i=1

(
2m

2i

)
gigm−i

Γ(i + 1)Γ(m− i + 1)

Γ(m + 2)
=

m− 1

m + 1
gm.

Now, we plug this together withA(l)
k,k = O (pk) into (3). This gives

A
(l)
n,k = O

(pkn

k2

)
+ 2n

∑
k<j<εn

B
(l)
j,k

j(j + 1)
+ 2n

∑
εn<j<n

B
(l)
j,k

j(j + 1)
+ B

(l)
n,k,

whereε > 0 is again fixed. Using our uniform bound from the last proposition again shows that the main
contribution comes from the third and fourth term. First, forl = 2m− 1, we have

A
(2m−1)
n,k = o

(
p

m−1/2
k n

k2m−1

∑
j<n

jm−5/2 +
( n

k3

)m−1/2
)

= o

((pkn

k2

)m−1/2
)

.

12



Finally, for l = 2m, we have

A
(2m)
n,k ∼ 2ḡm

(
2pkn

k2

)m ∫ 1

ε

xm−2dx + ḡm

(
2pkn

k2

)m

.

Letting ε → 0 and simplifying the right hand side yield the claimed result also for even moments. This
concludes the induction step and hence the proof is finished as well.

Theorem7 now follows from the previous proposition by the theorem of Fréchet-Shohat; see [26].
As for the Berry-Esseen bound, we can use the method from [16] which constitutes a refinement of the

previous approach. Since there are only minor technical differences compared to the situation discussed in
[16], we only state the result and omit the proof details.

Theorem 8. Letpkn/k2 →∞. Then,

sup
−∞<x<∞

∣∣∣∣P (Xn,k − µn,k

σn,k

≤ x

)
− Φ(x)

∣∣∣∣ = O
(

k
√

pkn

)
.

2.3 Poisson approximation

With the proof method introduced in the last section, it can be shown that the limit distribution ofXn,k is
Poisson forpkn/k2 → c ≥ 0; see [11] for similar results. Hence, Theorem7 gives the maximal range for
which the central limit theorem holds.

Instead of proving such a result, we will prove the stronger Poisson approximation result stated in the
introduction for the special case of nodes with given minimal clade size. Before, we can do so, we need
local limit theorems forXn,k. The following two results also follow from the method in [16].

Proposition 4. (i) Letpkn/k2 →∞. Then,

P (Xn,k = bµn,k + xσn,kc) =
e−x2/2√
2πσ2

n,k

(
1 +O

((
1 + |x|3

) k
√

pkn

))

uniformly inx = o((pkn)1/6/k1/3).

(ii) Letk < n. Then,

P (Xn,k = l) = e−µn,k
(µn,k)

l

l!
+O

(
p2

kn

k3

)
uniformly inl.

From the last proposition together with the bounds from Proposition2 of the last section, we will obtain
quite sharp bounds for the total variation distance betweenXn,k and a Poisson random variable with the
same mean. Note that these bounds improve upon the bounds given in [16].

Theorem 9. Letk < n andk →∞. Then,

dTV (Xn,k, Po(µn,k)) =

{
O
(
(pk/k)α/(3α+1)

)
, if µn,k ≥ 1;

O ((pk/k)α · µn,k) , if µn,k < 1,

whereα = 2m/(2m + 1) with a fixed (but arbitrary)m ≥ 1.
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Proof.We start by considering the case whereµn,k ≥ 1. Here, we will split the sum in the formula of the
total variation distance into two parts

dTV (Xn,k, Po(µn,k)) =
1

2

∑
|l−µn,k|<η

√
µn,k

|· · · |+ 1

2

∑
|l−µn,k|≥η

√
µn,k

|· · · | =: Σ1 + Σ2. (9)

whereη will be chosen below. In order to bound the second part, observe that from Proposition2,

P (|Xn,k − µn,k| ≥ η
√

µn,k) = O
(
η−2m

)
(10)

for all m ≥ 1. Moreover, the same bound holds as well whenXn,k is replaced byPo(µn,k). Consequently,

Σ2 = O
(
η−2m

)
for all m ≥ 1.

Now, we consider three cases. First assume thatµn,k ≥ k2/p2
k and chooseη = (k/pk)

ε with ε > 0
sufficiently small. By Proposition4, part (i), we have

P (Xn,k = l) =
1√

2πµn,k

exp

(
−(l − µn,k)

2

2µn,k

)(
1 +O

(
(1 + x2 + |x|3)pk

k

))
(11)

uniformly for x with |x| < η, wherex is such thatl = µn,k + x
√

µn,k. Here, we used the following
expansion for the variance

σ2
n,k = µn,k

(
1 +O

(pk

k

))
which follows from Proposition1. Next, by the well-known local limit theorem for the Poisson distribution

e−µn,k
(µn,k)

l

l!
=

1√
2πµn,k

exp

(
−(l − µn,k)

2

2µn,k

)(
1 +O

((
1 + |x|3

) 1
√

µn,k

))
again uniformly inx with |x| < η. Plugging this intoΣ1, we obtain

Σ1 = O
(pk

k

)
.

The same bound holds forΣ2 as well. Hence, for the first range, we obtain the estimatepk/k which is even
better than the claimed one.

As second range, we consider(k/pk)
2α/(3α+1) ≤ µn,k < k2/p2

k and again chooseη = kε/pε
k. Then, the

above reasoning works as well with the only difference thatpk/k in (11) has to be replaced by1/
√

µn,k.
So, the bound forΣ1 becomes

Σ1 = O
(

1
√

µn,k

)
= O

((pk

k

)α/(3α+1)
)

.

Again the same bound holds forΣ2 as well. Hence, we are done in this range.
For the third range, we consider1 ≤ µn,k < (k/pk)

2α/(3α+1) and chooseη = (k/(pkµ
3/2
n,k))1/(2m+1).

Moreover, we use the expansion of Proposition4, part (ii) instead of (11) above. This yields the following
bound

Σ1 = O
(

p2
kn

k3
η
√

µn,k

)
= O

((pk

k

)α/(3α+1)
)

.
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Again the same bound holds forΣ2. Consequently, the claim is proved for this range as well.
For the final range whereµn,k < 1, we split the sum in the formula for the total variation distance

slightly different

dTV (Xn,k, Po(µn,k)) =
1

2

∑
|l−µn,k|<η

|· · · |+ 1

2

∑
|l−µn,k|≥η

|· · · | =: Σ1 + Σ2, (12)

whereη = (k/pk)
1/(2m+1). Then, as in the third case above, we obtain forΣ1 the bound

Σ1 = O
(

p2
kn

k3
η

)
= O

((pk

k

)α

µn,k

)
.

As for Σ2, we use Proposition2 and obtain

Σ2 = O
(

µn,k

η2m

)
= O

((pk

k

)α

µn,k

)
.

Hence, the claimed result follows in the present case as well. This concluded the proof.

Remark1. The bounds in the previous theorem are still not optimal. In order to get better bounds, one
needs to improve upon the second local limit theorem of Proposition4. An improvement in the same style
as in the (easier) uniform case below will lead to the following sharp bound

dTV (Xn,k, Po(µn,k)) = O
(pk

k
·min{1, µn,k}

)
.

3 Uniform Model

Now, we will turn to the uniform model which assigns the same probability to every phylogenetic tree
of sizen. Here, we will use a completely different approach based on complex-analytic tools from the
analysis of algorithms. The latter area is concerned with analyzing algorithms on random inputs. One of
the standard approaches to do this is to use generating functions. If the generating functions are explicit
(which will be the case here), then asymptotic properties of the encoded sequences are most easiest ob-
tained from complex-analytic properties of the functions. Many sophisticated tools have been developed
along this line. Most of the tools can be considered classic by now and are found in the standard textbooks
of the area; see [14], [23], [24], [25], [40].

In particular, the case of fixedk is quickly derived by these standard tools (see below for more detailed
references). Hence, we will mainly focus on the case wherek is allowed to grow withn which will turn
out to be more involved. Here, we will use an approach introduced in [2] for studying the number of
predecessors in random mappings which itself was based on singularity analysis, a standard method from
the analysis of algorithms. However, we will make some technical improvements to obtain the optimal
Berry-Esseen bound as well as sharp bounds for the total variation distance.

3.1 Moments

We will start by investigating mean value and variance. As already mentioned in the introduction,Xn,k

satisfies (1) as well. The crucial difference is the distribution ofIn which is given as

P (In = j) =
Cj−1Cn−1−j

Cn−1

, (1 ≤ j < n).
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First, we introduce the probability generating functionQn,k(u) = E(uXn,k). Then, the above recur-
rence becomes

Qn,k(u) =
n−1∑
j=1

Cj−1Cn−1−j

Cn−1

Qj,k(u)Qn−j,k(u), (n > k)

with initial conditionsQn,k(u) = 1 for n < k andQk,k(u) = pk(u − 1) + 1. Next, we introduce the
bivariate generating function

Gk(u, z) =
∑
n≥1

Cn−1Qn,k(u)zn.

Then, the above recurrence translates into the following quadratic equation

Gk(u, z) = Gk(u, z)2 + Ck−1pk(u− 1)zk + z

with solution

Gk(u, z) =
1−

√
1− 4Ck−1pk(u− 1)zk − 4z

2
. (13)

So, compared with the Yule-Harding case, the generating function is here explicitly computable. This will
make things much more easier. All results below will be deduced with the help of (13).

First, we can quickly compute moments from the last expression by differentiation. For instance,

µn,k := E(Xn,k) =
1

Cn−1

[zn]
∂

∂u
Gk(u, z)

∣∣∣
u=1

=
Ck−1pk

Cn−1

[zn−k]
1√

1− 4z
=

(n− k + 1)Ck−1Cn−kpk

Cn−1

for n ≥ k. Obviously,µn,k = 0 for n < k.
As for the variance, a similar computation reveals

E(Xn,k(Xn,k − 1)) =
1

Cn−1

[zn]
∂2

∂u2
Gk(u, z)

∣∣∣
u=1

=
(n− 2k + 2)(n− 2k + 1)C2

k−1Cn−2k+1p
2
k

Cn−1

for n ≥ 2k. Consequently,σ2
n,k := Var(Xn,k) equals

(n− k + 1)Ck−1Cn−kpk

Cn−1

+
(n− 2k + 2)(n− 2k + 1)C2

k−1Cn−2k+1p
2
k

Cn−1

−
(n− k + 1)2C2

k−1C
2
n−kp

2
k

C2
n−1

(14)

for n ≥ 2k. The corresponding formula for the rangek ≤ n < 2k follows from the above expression for
the mean value. The remaining rangen < k is trivial.

Overall, we have the following expression for mean and variance.

Proposition 5. We have,

µn,k =


(n− k + 1)Ck−1Cn−kpk

Cn−1

, if n ≥ k;

0, if n < k

and

σ2
n,k =


(14), if n ≥ 2k;
(n− k + 1)Ck−1Cn−kpk(Cn−1 − (n− k + 1)Ck−1Cn−kpk)

C2
n−1

, if k ≤ n < 2k;

0, if n < k.
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This proposition gives the following corollary.

Corollary 2. (a) For constantk,

µn,k =
Ck−1pk

4k−1
n +

(k − 1)Ck−1pk

2 · 4k−1
+O

(
1

n

)
, (n →∞)

and, asn →∞,

σ2
n,k =

(
Ck−1pk

4k−1
−

(2k − 1)C2
k−1p

2
k

42k−2

)
n +

(k − 1)Ck−1pk

2 · 4k−1
−

(3k2 − 4k + 1)C2
k−1p

2
k

2 · 42k−2
+O

(
1

n

)
.

(b) Ask →∞ andn− k →∞,

µn,k ∼ σ2
n,k ∼

pk√
πk3/2

n, (n →∞).

(c) For constantn− k = l ≥ 0,

µn,k =
(l + 1)Clpn−l

4l
+O

(
1

n

)
, (n →∞)

and

σ2
n,k =

(l + 1)Clpn−l

4l

(
1− (l + 1)Clpn−l

4l

)
+O

(
1

n

)
, (n →∞).

Proof. All results can easily be derived with Maple from the following well-known expansion for the
Catalan numbers (see page 186 in [15])

Cn =
4n

√
πn3/2

(
1 +

9

8n
+O

(
1

n2

))
, (n →∞).

We just indicate how to show part (b). Therefore, note that fork ≤ εn with ε < 1, we have

µn,k =
Ck−1pk

4k−1
n +O

(
pk√
k

)
, (n →∞) (15)

and

σ2
n,k =

(
Ck−1pk

4k−1
−

(2k − 1)C2
k−1p

2
k

42k−2

)
n +O

(
pk√
k

)
, (n →∞). (16)

By expandingCk−1 as well, the claim is easily proved. So, what is left is to show that bothµn,k andσ2
n,k

tend to0 ask ≥ εn andn− k →∞. Therefore, we use the following expansion for the mean

µn,k =
pk√
π

(n

k

)3/2 1√
n− k

(
1 +O

(
1

k

)
+O

(
1

n− k

))
, (n →∞).

From this the claim follows. The variance is slightly more involved, but handled similarly..

17



3.2 Central Limit Theorem

Now, we turn to limit laws. As for the Yule-Harding Model, we start by briefly discussing the case of fixed
k. Here, a result from the treatise of Flajolet and Sedgewick (see Theorem IX.12 in [14]) immediately
gives the following central limit theorem

Xn,k − µn,k

σn,k

d−→ N (0, 1).

Moreover, the above result also yields the Berry-Esseen bound which is of orderO(n−1/2).
So, we can again concentrate on the casek →∞. Here, we will use a variant of the proof of the above

result to show that the central limit theorem remains valid in the (maximal) range whereµn,k → ∞; a
similar approach was used in [2].

Theorem 10. Letpkn/k3/2 →∞. Then,

Xn,k − µn,k

σn,k

d−→ N (0, 1).

For the proof of the above theorem, we have to revisit the proof of Theorem IX.12 in [14] which
roughly consisted of two parts: first using a uniform version of singularity analysis (see Lemma IX.2 in
[14]) and then applying the quasi-power theorem (see Theorem IX.9 in [14]). In the current situation, the
largest differences will occur in the first step since also uniformity ink is needed.

We start by collecting a couple of properties of (13).

Lemma 2. The three properties below hold fork suitable large.

(i) For |u| ≤ 1 + ε, the polynomial

F (u, z) := 1− 4Ck−1pk(u− 1)zk − 4z = 0

has a unique, analytic solutionρk(u) inside the circle|z| ≤ 1/4 + c/k. Moreover,

ρk(u) =
1

4
− Ck−1pk

4k
(u− 1) +

kC2
k−1p

2
k

42k−1
(u− 1)2 +O

(
p3

k

k5/2
|u− 1|3

)
(17)

uniformly inu with |u| ≤ 1 + ε.

(ii) We have,

Gk(u, z) =
1

2
−
√

k − 4(k − 1)ρk(u)

2

√
1− z

ρk(u)
+O

(
pk

√
k|1− z/ρk(u)|3/2

)
uniformly for|u| ≤ 1 + ε, |z − ρk(u)| ≤ 1/k, andarg(1− z/ρk(u)) 6= π.

(iii) Gk(u, z) is uniformly bounded for|u| ≤ 1 + ε, |z| ≤ 1/4 + c/k, andarg(1− z/ρk(u)) 6= π.

Proof. Let |u| ≤ 1 + ε. In order to prove the existence and uniqueness of a solution ofF (z, u) = 0, we
use Rouch́e’s theorem (see page 270 in [14] or any standard textbook on complex analysis). Therefore, we
choosef(z) = 1− 4z, g(z) = −4Ck−1pk(u− 1)zk. Then, for a suitable constantc1,

|g(z)| ≤ c1

k3/2
<

4c

k
≤ |f(z)|

18



for all z with |z| = 1/4 + c/k andk sufficiently large. Hence, the existence and uniqueness ofρk(u) is
established. Moreover, sinceρk(u) is a simple root, we have

dF

dz
(u, ρk(u)) 6= 0.

Consequently, the implicit function theorem implies thatρk(u) is analytic foru with |u| ≤ 1 + ε. Finally,
(17) follows fromF (u, ρk(u)) = 0 by implicit differentiation. This concludes the proof of part (i).

In order to prove part (ii), we expandF (u, z) aroundz = ρk(u). This yields

F (u, z) = (k − 4(k − 1)ρk(u))

(
1− z

ρk(u)

)
+O

(
√

kpk

(
1− z

ρk(u)

)2
)

,

where |u| ≤ 1 + ε and |z| ≤ 1/4 + c/k. Plugging this into (13) together with another Taylor series
expansion gives the claimed result.

Finally, part (iii) is trivial.
From the latter result, we can deduce the following proposition.

Proposition 6. For c ≤ k ≤ Cn/(ln n)2 with c andC large enough,

Qn,k(u) =

√
k − 4(k − 1)ρk(u)

4n
ρk(u)−n

(
1 +O

(
pk

√
k

n

))
uniformly inu with |u| ≤ 1 + ε.

Proof. This follows from the properties of the above lemma together with the traditional proof method
used in singularity analysis; see [14]. We only have to be careful that the contour of integration is inside
the domain, where we have a unique singularity. The latter is ensured fork with k ≤ Cn/(ln n)2.

Now, we can prove Theorem10.

Proof of Theorem10. First by the above proposition,

Qn,k(e
it/σn,k) = exp

{
−n ln

(
4ρk

(
eit/σn,k

))
+ 1/2 ln

(
k − 4(k − 1)ρk

(
eit/σn,k

))}(
1 +O

(
1√
n

))
.

Then, by using (17) and a lengthy computation,

Qn,k(e
it/σn,k) = exp

{
itan,k −

t2

2
bn,k

}(
1 +O

(
|t|+ |t|3

σn,k

)
+O

(
1√
n

))
(18)

uniformly in |t| ≤ Cσn,k, where

an,k =
n

σn,k

· Ck−1pk

4k−1
, bn,k =

n

σ2
n,k

(
Ck−1pk

4k−1
−

(2k − 1)C2
k−1p

2
k

42k−2

)
.

Next, by (15) and (16),

an,k −
µn,k

σn,k

= O
(

1

σn,k

)
, bn,k = O

(
1

σ2
n,k

)
.

Consequently, the characteristic function satisfies

ϕn,k(t) := e−itµn,k/σn,kQn,k

(
eit/σn,k

)
= e−t2/2

(
1 +O

(
|t|+ |t|3

σn,k

)
+O

(
1√
n

))
uniformly in |t| ≤ Cσn,k. The result follows from this by Ĺevy’s continuity theorem; see [35].

Finally, also the (optimal) Berry-Esseen bound can be derived.
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Theorem 11. Letpkn/k3/2 →∞. Then,

sup
−∞<x<∞

∣∣∣∣P (Xn,k − µn,k

σn,k

≤ x

)
− Φ(x)

∣∣∣∣ = O
(

k3/4

√
pkn

)
.

Proof.This follows from the expansion for the characteristic function in the above proof together with the
Berry-Esseen inequality; see [35].

3.3 Poisson Approximation

As in the Yule-Harding case, the central limit theorem just holds in the range ofµn,k →∞. We will again
show that a Poisson random variable approximatesXn,k well in a much larger range ofk.

Before we can make the last statement precise, we again have to prove local limit theorems.

Proposition 7. (i) Letpkn/k3/2 →∞. Then,

P (Xn,k = bµn,k + xσn,kc) =
e−x2/2√
2πσ2

n,k

(
1 +O

((
1 + |x|3

) k3/4

√
pkn

))

uniformly inx = o((pkn)1/6/k1/4).

(ii) Letk ≤ cn/(ln n)2. Then,

P (Xn,k = l) = e−µn,k
(µn,k)

l

l!
+O

(
p2

kn

k2

)
+O

(
pk

√
k

n

)
uniformly inl.

Proof. Part (i) follows from expansion (18) and Cauchy’s formula; see for instance [19] where a similar
local limit theorem is derived.

As for part (ii), we will actually prove a more refined result than the one claimed above.
We first consider the range wherekε/p2ε

k ≤ µn,k ≤ εk/p2
k with ε > 0 suitable small. Then from

Proposition6, (17) and Taylor series expansion

Qn,k(u) = exp

{
an,k(u− 1) + bn,k(u− 1)2 +O

(
p2

kµn,k

k
|u− 1|3

)}(
1 +O

(
pk

√
k

n

))
, (19)

where

an,k = (n + (k − 1)/2)
Ck−1pk

4k−1
= µn,k +O

(
pk

√
k

n

)
and

bn,k = O
(

pkµn,k√
k

)
.

From Cauchy’s formula, we obtain

P (Xn,k = l) =
1

2πi

∫
|u|=1

Qn,k(u)
du

ul+1

=

∫
|u−1|≤η1,|u|=1

+

∫
η2≥|u−1|>η1,|u|=1

+

∫
|u−1|>η2,|u|=1

=: I1 + I2 + I3,
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whereη1 = (µn,k)
−1/2+ε andη2 = (µn,k)

−1/4. We first bound the third integral

I3 � exp

{
−c
√

µn,k +O
(

pkµn,k√
k

)}
� exp

{
−c0

√
µn,k

}
,

wherec0 is a suitable, positive constant. Next, for the second integral, observe that

I2 =
1

2πi

∫
η2≥|u−1|>η1,|u|=1

ean,k(u−1)

(
1 +O

(
pkµn,k√

k
(u− 1)2

))
du

ul+1
� exp

{
−c(µn,k)

2ε
}

.

Finally, for the first integral, we use the above expansion and obtain

I1 = e−µn,k
(µn,k)

l

l!

(
1 +O

(
pkµn,k√

k
∆

(1)
n,k,l +

p2
kµ

2
n,k

k
∆

(2)
n,k,l

))
+O

((
pk√
k

)1+ε
1

√
µn,k

)
, (20)

where

∆
(1)
n,k,l =

∣∣∣∣∣ l(l − 1)

µ2
n,k

− 2l

µn,k

+ 1

∣∣∣∣∣
and

∆
(2)
n,k,l =

∣∣∣∣∣ l(l − 1)(l − 2)(l − 3)

µ4
n,k

− 4l(l − 1)(l − 2)

µ3
n,k

+
6l(l − 1)

µ2
n,k

− 4l

µn,k

+ 1

∣∣∣∣∣ .
Overall, we obtain the claimed result of the proposition as special case.

For the remaining range ofµn,k < kε/p2ε
k the above line of reasoning does not work since the estimates

of I2 and I3 are not necessarily small. However, here we do not need to break the integral into three
parts since higher order terms in the above expansion are small anyway. More precisely, from the above
expansion and Cauchy’s formula

P (Xn,k = l) =
1

2πi

∫
|u|=1

Qn,k(u)
du

ul+1

= e−µn,k
(µn,k)

l

l!

(
1 +O

(
pkµn,k√

k
∆

(1)
n,k,l

))
+O

(
p2

kµn,k

k
+

pk

√
k

n

)
, (21)

where∆
(1)
n,k,l is as above. This concludes the proof of part (ii) of the proposition.

From the last proposition, we can deduce our claimed result.

Theorem 12. Letk →∞ andn− k →∞. Then,

dTV (Xn,k, Po(µn,k)) =

{
O
(
pk/

√
k ·min{1, µn,k}

)
, if µn,k ≥ (pk/

√
k)1−ε;

O (µn,k) , if µn,k < (pk/
√

k)1−ε,

whereε > 0 is an arbitrarily small constant.

Proof.First, note that the proof of this result is trivial for the range whereµn,k → 0 (this is the range where
pkn/k3/2 → 0 andn− k →∞). This follows from the following estimate

dTV (Xn,k, Po(µn,k)) ≤
∑
l≥1

∣∣∣∣P (Xn,k = l)− e−µn,k
(µn,k)

l

l!

∣∣∣∣
= P (Xn,k ≥ 1) + P (Po(µn,k) ≥ 1) ≤ 2µn,k.
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Hence, we can focus on the other ranges. First assume thatµn,k ≥ 1. Here, we proceed as in the proof
of the corresponding result for the Yule-Harding model. Consequently, we first split the sum in the formula
for the total variation distance as in (9). In order to bound the second sum, observe that

P (|Xn,k − µn,k| ≥ η
√

µn,k) ≤ e−sµn,k−sη
√

µn,kE
(
esXn,k

)
,

wheres will be chosen below. From (19), we obtain

E
(
esXn,k

)
= O

(
eµn,k(es−1)

)
uniformly for s with |s| ≤ 1/

√
µn,k. Plugging this into the bound above and choosings = 1/

√
µn,k yields

P (|Xn,k − µn,k| ≥ η
√

µn,k) = O
(
e−η
)
.

A similar bound holds whenXn,k is replaced byPo(µn,k). Hence,

Σ2 = O
(
e−η
)
. (22)

In order to bound the first sum in (9), we consider three cases. The first case, whereµn,k ≥ εk/p2
k is

treated as in the proof of Theorem9.
For the second case, we assume thatkε/p2ε

k ≤ µn,k ≤ εk/p2
k, whereε is a suitable small constant.

Then, we chooseη = kε/p2ε
k . We can use (20) in order to get the bound

Σ1 = O

(
pkµn,k√

k

∑
l≥0

e−µn,k
(µn,k)

l

l!
∆

(1)
n,k,l +

p2
kµ

2
n,k

k

∑
l≥0

e−µn,k
(µn,k)

l

l!
∆

(2)
n,k,l

)
+O

(
pk√
k

)
.

Next, observe that∑
l≥0

e−µn,k
(µn,k)

l

l!
∆

(1)
n,k,l =

1

µ2
n,k

∑
l≥0

e−µn,k
(µn,k)

l

l!
|(l − µn,k)

2 − l| = O
(

1

µn,k

)
.

Similarly, ∑
l≥0

e−µn,k
(µn,k)

l

l!
∆

(2)
n,k,l = O

(
1

µ2
n,k

)
.

Plugging the latter two estimates into the above bound yields

Σ1 = O
(

pk√
k

)
.

Due to (22) and our choice ofη the same bound holds forΣ2 as well. This proves the claim in this case.
As for the third and final case, we consider the range1 ≤ µn,k ≤ kε/p2ε

k and again chooseη = kε/p2ε
k .

Then, we use (21) to get the bound

Σ1 = O

(
pkµn,k√

k

∑
l≥0

e−µn,k
(µn,k)

l

l!
∆

(1)
n,k,l

)
+O

(
p2

kηµ
3/2
n,k

k
+

pk

√
k

n
η
√

µn,k

)
,

The first term is treated as above. The second term can be further bounded as

p2
kηµ

3/2
n,k

k
+

pk

√
k

n
η
√

µn,k �
(

pk√
k

)2−5ε

+

(
pk√
k

)2−2ε

· 1
√

µn,k

� pk√
k
.
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Hence, we get the same bound forΣ1 as above. Moreover, again due to(22) the same bound holds forΣ2

as well. Hence, the result is for this case established as well.
Next, assume thatµn,k ≤ 1. Here, we use (12). In order to boundΣ2 observe that

P (|Xn,k − µn,k| ≥ η) ≤ e−sµn,k−sηE
(
esXn,k

)
.

From (19), we obtain
E
(
esXn,k

)
= O

(
eµn,k(es−1)

)
uniformly for s with |s| ≤ c wherec is an arbitrary constant. Consequently,

P (|Xn,k − µn,k| ≥ η) = O
(
e−cη

)
.

The same bound holds forPo(µn,k) as well. Hence,

Σ1 = O
(
e−cη

)
.

Now, we again chooseη = kε/p2ε
k . ForΣ1, we obtain

Σ1 = O
(

pkµn,k√
k

)
+O

(
p2

kηµn,k

k
+

pk

√
kη

n

)
.

For the second term, we obtain

p2
kηµn,k

k
+

pk

√
kη

n
�
(

pk√
k

)2−2ε

µn,k +

(
pk√
k

)2−2ε
1

µn,k

� pkµn,k√
k

.

The same bound holds forΣ2 as well. Hence, the Theorem is proved.

4 Conclusion

In this paper, we proposed a general framework for deriving statistical properties of the occurrences of
patterns in phylogenetic trees under the Yule-Harding model and the uniform model. An important feature
of the current study is that our results are useful for the whole range of possible sizes of the pattern. Apart
from exact and asymptotic expansions for mean value and variance, we were mainly concerned with limit
laws. We demonstrated that for both models the Poisson distribution provides a good approximation for
almost the whole range of the size of the pattern. When the pattern size is small, however, the normal
distribution should be used. For the uniform model, we have in addition a small range with large pattern
size, where the Bernoulli distribution yields a better approximation. Moreover, we also obtained sharp
bounds for the error of approximation.

In recent years, phenomena of the above type have been observed for shape parameters of many discrete
structures and the name “phase change” has been ascribed to them. Hence, our results show that the limit
law of the number of occurrence of a given pattern in a random phylogenetic tree provides yet another
example of a phase change, namely, it changes from normal to Poisson for pattern sizes that are fixed to
pattern sizes that grow to infinity as the size of the tree tends to infinity. Moreover, for the uniform model,
there is a second phase change to Bernoulli for pattern sizes that are close to the size of tree.
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