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Abstract

Studying the shape of phylogenetic trees under different random models is an important issue in
evolutionary biology. In this paper, we propose a general framework for deriving detailed statistical
results for patterns in phylogenetic trees under the Yule-Harding model and the uniform model, two of
the most fundamental random models considered in phylogenetics. Our framework will unify several
recent studies which were mainly concerned with the mean value and the variance. Moreover, refined
statistical results such as central limit theorems, Berry-Esseen bounds, local limit theorems, etc. are
obtainable with our approach as well. A key contribution of the current study is that our results are
applicable to the whole range of possible sizes of the pattern.

1 Introduction

Phylogenetic trees are the standard tool in evolutionary biology for depicting the ancestor history of a sef
of given species (or taxa); see page 117 in Darwin’s famous bdokpnsequently, their properties have
been extensively studied. In particular, the investigation of the probabilistic behavior of parameters relatec
to the shape of phylogenetic trees under different random models has evolved into a major issue in recer
decades. The reason for this is multi-fold: such results can be used in statistical tests, e.g., for testin
the appropriateness of a random model; they enhance our understanding of the process that generates
data; they yield conclusions about possible outcomes of evolution; etc.; for further motivation we refer the
reader to ], [29], [3(], [36] and references therein.

First, we will make precise the notation of phylogenetic trees. Throughout this paper, phylogenetic
trees will be binary trees, where the external nodes represent the species and the internal nodes repres:
their ancestors. Moreover, all trees considered will be rooted meaning that we assume that the set of speci
has a common ancestor. Finally, branch lengths will be ignored, i.e., we will just look at the topology of
the tree. So, the family of phylogenetic trees of sizes the family of plane, rooted, unlabelled binary
trees withn external nodes (and consequently- 1 internal nodes).
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Next, we will equip the family of phylogenetic trees of sizevith a random model. In this paper, we
will consider the two most fundamental random models of evolutionary biologyYuleHarding model
and theuniform modelsee B7].

First, the Yule-Harding modellf], [4]] is defined by a tree evolution process: the tree grows by
choosing at random one of the leaves and replacing it by a cherry (an internal node with two children); we
stop when a tree with external nodes is constructed. This is the top-down construction of a phylogenetic
tree of sizen under the Yule-Harding model. Alternatively, a bottom-up construction can be used as
well: start withn external nodes and successively choose a random pair and coalesce the two nodes; sto
when only one node (the root) is left. It is easy to see that the random models arising from these two
constructions are the same. Moreover, it is easy to see as well that the Yule-Harding model is the same &
the permutation model of binary search trees considered in computer sciencd; see [

The usage of the Yule-Harding model is well motivated since it provides an easy way of mimicking
how the data might have evolved over time. Note, however, that it does not assign the same probability tc
every phylogenetic tree of size This motivates a second model which does assign the same probability
and is hence calledniform model(or PDA modelsee B]). Although less motivated from a practical
point of view, the usage of this model is justified as well by a couple of theoretical results;] sg&]].
Moreover, this model has also been investigated in computer science, where it is calledatae model
see [.7] and references therein. The name comes from the fact that the number of phylogenetic trees o
sizen is given by then — 1-st Catalan number, subsequently denoted’hy; (a proof of this can be found
in standard textbook on enumerative combinatorics suci@s[[39] and [14]).

This paper will be concerned with a study of statistical properties of the occurrence of patterns in
phylogenetic trees under the above two random models. Here, the word “pattern” will be used in a rathel
broad sense, namely, any subset of the set of all phylogenetic trees of a fixédasizee considered as
pattern. Moreover, throughout this work, we will fix the notatitp, to denote the number of occurrences
of this pattern in a random phylogenetic tree of size

For both random models abo\E,, ; satisfies

Xn,k i Xln,k: + X;—]n,ka (n > k)? (1)

where X, x, X ., and [, are independent random variables; , has the same distribution a$, , and

I,, is the size of the left subtree of the root. This distributional recurrence is nothing more than the mathe-
matical formulation of the trivial observation that the number of occurrences of a pattern is the sum of the
number of occurrences of the pattern in the left and in the right subtree of the root. The initial conditions
of this recurrence are given by, , = 0 for n < k£ and X}, is a Bernoulli random variable with success
probability p,. that equals the probability that a phylogenetic tree of sibelongs to our pattern. In order

to avoid ambiguity, we will assume that > 0 throughout this work. Note that this probabilistic descrip-
tion of X,, ;. already implies that stochastic propertiesXof; just depend o, and not on the specific
pattern.

In order to make the above more lucid, we recall some of the patterns previously considered in lit-
erature. The first and most straightforward pattern is the set of all trees of.siZée root of such a
subtree in a phylogenetic tree of sizes calledk-pronged nodgsee 6] and [27] for the special case of
k = 2. Hence, in this situationy,, ; counts the number of such nodes. The second pattern is the set of
k-caterpillarsalso considered in3[]. Here, the pattern consists of phylogenetic trees of kitteat have
an internal node which is descendent of all other internal nodes. A final pattern is given by the set of all
phylogenetic trees of size with either left or right subtree of the root empty. Hepg, . is the same as
the number of taxa witiminimal clade sizé if £ > 3; see [l]. A related parameter was also considered
in computer science; seé€][ The probabilitiespy, for these three patterns under the above two random
models are easily obtained and collected in Tdble

2



Table 1: Values opy,

| Pattern | Yule-Harding Model| Uniform Model |
k-pronged nodes 1 1
k-caterpillars 282 /(K — 1)! 282 /Oy
nodes with minimal clade size 2/(k—1) 2C%_2/Cr1

The aim of this paper is to study momentsXof ;. as well as more refined properties such as limit laws,
rates of convergence, local limit theorems, etc. Therefore, we will use the settifyy a@gnsequently,
our setting will contain all three cases discussed above as special cases. Agrémged nodes and
k-caterpillars, mean and variance were derived3f] under the Yule-Harding model by a bottom-up
approach. We will re-derive these results usihyg §o, in contrast to6], our approach will be top-down.

We will see that our approach is technically easier and also allows us to derive higher moments and mort
refined properties. Here, we should mention thatkigaronged nodes our results were already sketched

in [1€]; see also 1] for related results. As for the uniform model, only resultsikepronged nodes with

k = 2 have been obtained before; sé€][ Mean value and variance of the number of nodes with minimal
clade sizek have been derived inl] under the Yule-Harding model. Moreover, the authors4hdlso
derived a central limit theorem of,, . for fixed k. Again, we will re-derive all those results and add many
new ones as well as prove corresponding results under the uniform model.

Before we start to explain our results in more details, it should be mentioned that the beha¥jgr of
for fixed £ is well understood. Here, a detailed description of the stochastic properti€s ,ofollows
from results in computer science; seé€jf [19)], [21] for the Yule-Harding model and. /] for the uniform
model. However, from an application point of view, results which hold uniformly &me more desirable.

So, one of the main contributions of this paper is to provide results whesallowed to grow withn.
Proving such results will involve multivariate asymptotics which in recent years has evolved in a major
topic in analytic combinatorics; se€|[[1]], [17], [20], [27] and [31], [37], [33], [34].

Now, we will discuss our findings in more details. For the sake of simplicity, we will choose the
number of nodes with minimal clade sizeas a guiding example. For our general results, we refer the
reader to Sectio and Sectior8.

First, we consider the Yule-Harding model. Here, we have the following results for mean value and
variance.

Theorem 1. For k& < n,

4dn
E(X =
(Xnr) (k — Dk(k + 1)
and ( 4(4k* — 27k + 11
(4k7 +11)n , ifn > 2k;
(k— 1)2k(k + 1)2(2k — 1)(2k + 1)
A(4k — 32k + 20) .
Var(X, 1) = : fn=2k
ar(Xow) =\ 7 — 1P(k+ D22k — 1) o
4(k* — k — 4n)n :
fk 2k.
|k — 1)2R2(k + 1)’ hhrsns
In particular, fork < n andk — oo,
4
E(X,4) ~ Var(Xog) ~ —=,  (n — 00)



Moreover, the first order asymptotic of all higher moments will be derived as well. This will then allow
us to study limit laws. Note that for fixeld a central limit theorem follows from previous results; sed.[
We will show that the central limit theorem continues to hold for some rangeiwithoo. Moreover, we
will derive the Berry-Esseen bound as well.

Theorem 2. Let3 < k = o(/n). Then,

P (X"’k — E(Xns) < x) — &(2)

sup
—oo<r<o0

()

where®(z) denotes the distribution function of the standard normal random variable.

Var(Xn’k)

The above range will turn out to be the largest possible range for which a central limit theorem holds.
Hence, the normal distribution just provides a good approximatiort femall. From a practical point
of view, this is quite unsatisfactory. Therefore, we will show that approximating by a Poisson random
variable works well in a much larger range and is hence more desirable.

Theorem 3. Letk < nandk — oo. Then,

dry (X g, Po(E(X, 1)) = % >

More precisely, we have

O (1/k2a/(3a+1)) , |f n > k?’,
(g POEEne)) {o<n/k3+2a>, i 0 <k,

wherea = 2m/(2m + 1) with a fixed (but arbitrary)yn > 1.

So, only for very smalk one should use the normal distribution as an approximation. For the remaining
range, a Poisson random variable yields a better approximation.

As for the proofs of these results, we will use the elementary approach (in the sense that complex
analysis is avoided) fromlL[]; for more details see Sectidh

Now, we turn to the uniform model. Here, we will prove similar results as above. First, for mean value
and variance, we have the following theorem.

Theorem 4. (i) For constantk,

20—
and C (2k — 1)C?
2Ch— - _
Var(X,.s) = ( == ) n+0(1),  (n—oo).

(i) Fork — occandn — k — oo,




(i) For constant, — k =1 > 0,

(X, = DG <1) (- oo),

221+1 n
e Var(x, ) = {204 (1 - w) o (1) e

221+1 221+1 n

Moreover, we again have a central limit theorem with Berry-Esseen bound that holds fok:small

k3/4
=0(— ).
NLD
Again, the central limit theorem does not hold beyond this range. However, as above, we have a
Poisson approximation result.

Theorem 5. Let3 < k = o(n?*?). Then,

b (Xn,k “E(Xu) _ x) o)
Var(X,, 1)

sup
—oo<r<oo

Theorem 6. Letk — oo andn — k — oo. Then,

dry (X, Po(E(X, k) = = Z

More precisely,

O (1/\/E) o if > k2
dry (Xn g, Po(E(Xnk)) = § O (n/k?),  if k't <n < k%2
O (B(Xnp), ifn<kl¥e

wheree > 0 is an arbitrarily small constant.

So, X, i, is again well approximated by a Poisson random variable uklessither very small or very
large. In the latter two cases, the Poisson random variable has to be replaced by a standard normal randc
variable and a Bernoulli random variable, respectively.

The proofs of the results in the uniform case will follow from a rather different method compared to the
approach used in the Yule-Harding case. This is largely due to the fact that involved generating functions
can be solved explicitly. Hence, the results are obtained more easily by using complex-analytic tools. For
more details we refer the reader to Secton

In order to conclude the introduction, we give a brief sketch of the paper. First, since we intend to
prove results for two different random models, we will split the paper into two parts; the first part (Section
2) will discuss the Yule Harding model and the second part (Se8&)itime uniform model. Every part will
consist of three subsections which will be concerned with deriving results for moments, discussing the
validity of the central limit theorem, and finally proving our Poisson approximation results, respectively.
We will end the paper with some concluding remarks.

Notations.Subsequently will always denote a small positive real number arallarge constant. More-
over, the values of bothandc may be different from one occurrence to the next.



2 Yule-Harding Model

In this section, we are going to investigate the statistical properti&s, gfunder the Yule-Harding model.
As already mentioned in the introduction, we will use the elementary method introducéd mHich
was based on studying the underlying recurrence satisfied by the moments and applying the method c
moments and its refinements.

In fact, some of the results below will follow similarly as ifif] and in order to avoid repetition we
will not give any details. We will, however, discuss in details a more simplified proof of the central limit
theorem (without the Berry-Esseen bound) and refined bounds for the total variation distance; the formel
will constitute a simplification of the approach inll| for k-pronged nodes as well.

2.1 Moments

In this section we will compute moments &f, ;. Therefore, we will work out in details the approach
briefly sketched in]6] for k-pronged nodes; seé] for a similar approach. This part should be compared
with [36] where the same results are proved fepronged nodes ank-caterpillars, but with a more
complicated approach.

First, note thatX,, , satisfies {) with

1
P([n:j):n_l, 1<j<n-1,

where the latter follows straightforwardly from the probabilistic description of the random model.
Next, we consideP, ;. (z) = E(exp{ X, xz}). Then, () translates into

n—1
1
—1 Pji(2)Pazjr(2), (n>Fk)

Jj=1

Pn,k(z) =

with P, ,(z) = 1 forn < k and Py () = px(e* — 1) + 1. Differentiating this recurrence: times and
evaluating at = 0 give a corresponding recurrence for tihheth moment. The key observation is that all
these recurrences are of the following type

n—1

2
A | = 1 Zamk -+ bn’k, (TL > ]{7),

n —

J=1

wherea,, , = 0 forn < k, b, = 0forn < k, a;y is determined by the initial conditions amngl;, for

n > k is a function of moments of lower order. Moreover, a similar computation reveals that also all

central moments satisfy a recurrence of the latter shape. So, we start by investigating this recurrence.
First, this recurrence can be easily solved. Therefore, congiderl)a,, , — (n — 2)a,_1 and iterate

the resulting recurrence. Then, fox< | < n,

n bk n(l —1)
= — 2 S b, — —=b 2
I<j<n
on bk
= —airr +2n _ + by k- (3)
k(k+ 1) k;nm +1)



In order to find the mean value, we #gt, = 0 anday , = p;, in the last formula above. Then,

2pin
nk = E Xn = T i\
Obviously, ik x = pr andu, , = 0 forn < k.
The computation of the varianeg , := Var(X, ) is slightly more involved. First, note that the
variance satisfies the above recurrence with

(n > k).

n—1
1
bne = T (tjk + fin—jik — tink)”
j=1
A lengthy computation gives
2(k = 1)(3k — 2)p7 N
by = 3(n—1)k (k‘—{—l)’ ’
SO T VG et ). S
3k(k + 1)2(2k —-1) 7 ’
Then, by plugging this into) with [ = 2k,
2 _ N o (k —1)*pin

Tnd = ok 7%k T Bk + 1)2(2k + 1)
wheren > 2k. So, we first need to computg, ..

Lemma 1. We have ) )
2 2(4k* + 2k — 2 + (k* — 14k + 9)pr ) s
2k.k (k4 1)2(2k — 1)
Proof. First, observe thak , only takes on the values 1,2. A simple combinatorial argument shows
that P(Xor , = 2) = p2/(2k — 1). The other probabilities are easily computed from the latter by

4py,
k+1

al"ldp<_)(2]€7]C = 2) + P(Xglﬁk = 1) + P(ng’k = 0) = 1. Overall,

= E(Xokx) = 2P(Xokp = 2) + P(Xopp = 1)

2, with probability p? /(2k — 1);
X2k,k =<1, with probability4pk/(k + 1) — 2pi/(2k} - 1);
0, with probability 1l — 4py/(k + 1) + p2/(2k — 1).

The result follows now by a straightforward computatiod.
Plugging the latter result into the formula above together with some simplifications yields

o2 2(4k3 + 4k* — k — 1 — (11k* — 5)pr)prn
ok k(k+1)2(2k —1)(2k + 1) ’

for n > 2k. Finally, for the range: < 2k, we deduce from the above result for the mean value

2 2(k? + k — 2npy)prn
n.k k2(k + 1)2

To sum up, we have proved the following result.
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Proposition 1. We have,

2ppn :
— f k:
Kkt1) TN
Fnke = 3 py, if n==Fk;
0, ifn<k
and ) , ) ,
2(4k° + 4k* — k — 1 — (11k* — 5)pk)pkn’ it n > 20
k(k+1)2(2k — 1)(2k + 1)
2(4k2 + 2k — 2 + (K> — 14k + 9)pi)pr .
, if n =2k;
) (k+1)2(2k—1)
Tnge = N 2(k* + k — 2npy)pen .
fk 2k;
EIEE , if k <n <2k
pr(l — pr), if n=k;
0, if n <k.

\

The latter result immediately gives the following corollary.
Corollary 1. Ask — oo, we have

2pkn
Hnk ™ Ui,k ~ T2 (n — o0).

Moreover, higher moments could be computed by this approach as well. The computation, however,
becomes more and more involved. We will see in the next section that this problem becomes easier whe
only the main order term in the asymptotic expansion is sought.

2.2 Central limit theorem
Now, we will turn to limiting distributions ofX,, ;.. First, it is well known that for fixed:, the following
central limit theorem holds (see Hwang and Neiningei)[

Xn - Mn

ok = Bk 4 wr(0,1).

On,k

Moreover, the Berry-Esseen bound was derived by Hwangdhdnd isO(n=1/2).
Our first result extends the range of validity of the above central limit theorem.

Theorem 7. Letp,n/k*> — oo. Then,

Xnk — Hnk i>/\/(0,1).
On,k

Due to the result for constat we can focus ok — co asn — oo. First, consider?, ;(z) =
E(exp{(Xsx — tnx)z}). Then, () translates into

n—1

D Pir(2)Pajr(2)e 5 (n > k) (4)

Jj=1

Pn,k(z) =

1
n—1



with P, x(2) = 1 forn < k and Py x(2) = e P**(pre* — pp + 1) and
An,j,k: = Mj,k + Hn—jk — Hnk-

Next, we introduceélf;’,‘f) = E(X,x — pnx)™. Differentiating @) m times(m > 1) and settingz = 0
reveal

n—1

(m)
Ajk +Bnk’

-1

Jj=1

whereA!") = 0forn < k, Akk = pi(1 — pi)™ + (1 — pi)(—px)™ and

B _ A i1 A(lz A
n,k Z (Zl,lg,lg)n—lz n—j,k—n,jk" (5)

11 +’L"2 fig =m
0<i1,ia<m

We first consider the case = 2. Here,A(Qi =02 1+ and as already mentioned in the previous section

2 _
B nk n_lenjk

Even though we have obtained an asymptotic expansion of the variahce-as in Corollary1, we give
here a second and more simplified proof of this result. Therefore, observe that-fér

0, ifk<j<n-—Kk

O(pr/k), ifj<kj#n—korj>n—k,j#k;
o+ OWi/k), Hj=kj#n—korj=n—Fkj#k;
2pr + O(pr/k), fj=kandj=n—k

Apjr =

which yields

2p7/(n —1) + O (W/K?),  if n # 2k;
13/ — 1)+ O R/, ifn =2k,

where all implied constants are absolute. Plugging this iIBl)tdf(en reveals

enton. 82

2p(1 — p)n Pk D
2 — 4 k
Ink = 7 2z + knz j+1)+0 k:3+n
k<]<n
2pkn Prn pk
where the implied constant is absolute. So, we obtain the bound
Dk
which holds uniformly inn andk with n > k. Moreover, ifk — co asn — oo, we have
2pkn
Ok~ 5 W)

Next, we are going to show that botb) @nd (7) can be extended to all moment as well. Therefore, we
will use (3) together with induction. This is a standard method that is called “moment-pumping” and was
applied to numerous problems; ségdnd references therein.

We first extend §).



Proposition 2.Form > 1,
m Pr PE1 m/2
i’k) © ( { k2 ’ ( ]{?2 > })

Proof. First, note that the claim trivially holds for. = 1 and was proved fom = 2 above. Now, we
assume that the claim holds for all with m’ < m. We will establish that it holds famn as well.
Before starting with the proof, we need a notation. For fiketknote byj, the smallest integer such
Now, we can start with the proof. First considéy &nd break the involved sums into two parts

i1+i2+iz3=m j=k or j=n—k i1+i2+iz=m
0<i1,i2<m 0<iy,io<m  j#k, j;én k

uniformly inn > k.

We will bound the two parts separately. We start with the first one. Therefore, observe that

1 m i i
2, =0 n Z ( . ')Al(ck)An kkAngkk

11,19, 1=
11+i2+i3=m 172,73
0<i1,i2<m

Pk P (pEn\m=D/20 py
- AD ( ) L
=0 ( Z > ( B +
Next, we will consider the second part which we again break into two parts

n—1

Z Z + Z Z =: Y1 + Mapo.

i1+i2=m i1+i2+iz=m Jj=1
0<ii,i2<m j#k, ];én k 0<iyig<m, 0<iz j#k, j#n—k

The second of the two sums can be bounded as follows

1 m il (3 7
Yoo=0 ” Z ( . ) ZAE,k)Anz)]kAnggk

11,19, 1
i1+i2+ig=m 1,%2,%3 i<k
0<41,i2<m, 0<i3

- Pe (P (m=1/2 pp

(B ar.) o () ),
i=0 j<k

So, what is left is to bound, ;. Therefore, we break it into three parts

DD D P D DR D DD D

iitio=m  j<ji, j£k  i1Ftiz=m jp<j<n—ji iytig=m j>n—ji, jEn—k
0<i1,i9<m 0<i1,ia<m 0<i1,ia<m

=: Y011+ 212+ 213

Due to symmetry, the bound for the first and last of the three sums will be the same. Therefore, we will
concentrate on the first one which can be treated as follows

m—1 , (m—1)/2 ,
. . @) kz 94 -
Y11= L <m> E AW Am=) { (Ok/n) (P /k7) ) s N> L]k;

-1 i<ins K O ((prn/k*)?), n < 24y



Finally, we have

m—1
1 m 1 m—1
Swa= o (1) X ARAY)
1

1= Je<g<n—jg

—0 ((%)m/an (’f) /lei/Q(l - x)(m_iwdx> —0 <(%)m/2) .

1=

Collecting all terms above yields
B _ o[ (P miz o pEn\2 o p 8
w=o((r) + () +% (8)

for m > 5. Now we plug this together Wltbﬁkk = O (py) into (3) and obtain

(m) _ Drn P, n m/2—2 | P Y230 9 (m)
An,k_(9<?>+(9<km > + o Zl+—k > >+Bn7k

k<j<n k<j<n k<j<n
pen | (DEn\™/?
=9 < e+ () ) |
Form = 4, we have to replace the second termaplty (p.n/k?)%/2. The claim then follows as above.
Form = 3, we have to be slightly more careful. Here the second terng)itngs to be replaced by

the above bound fax; ; ;. Since the above arguments still work for the first and third tern8)jyv{e just
have to concentrate on the contribution of the new second term. Therefore, observe that

nz 2211: (pkn Z 1+pk]kn Z j_2>:(’)<%>.

k<j<n k<j<2j 25 <j<n

Hence, also in this case, we obtain the claimed bound. This concludes the induction step and hence ot
claim is established.1
Next, we will refine our previous result for the range where the claimed central limit theorem holds.

Proposition 3. For pn/k* — oo andk — oo asn — oo, we have
2m—1 prm\ /2
A =o ((?) ) 5

(2m) 2ppn\"
An,k Ngm( k2 ) )

for m > 1, whereg,, = (2m)!/(2™m!).

Proof. We again use induction om. Note that form = 1 the first assertion is trivial and the second
assertion follows from&). Now, assume the assertions hold forrallwith m’ < m. We will show that
they hold form as well.

Therefore, we again first considé) ( Note that the proof of the last proposition yields

1 i) 1/2
A= (e T Ao ((5)"),

i=1 Je<ij<n—jg
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wherej, is defined as in the proof of the last proposition. We fixan 0 and split the sum into three parts

Z > +Z > +Z S =D+ %+

1=1 jp<j<en =1 5n<]<(1 e =1 (1 en<]<n Ik

We first concentrate on the second of the three parts. Therefore, we consider two casesl Ei&ty it 1
is odd, then eitheior 2m — 1 — 7 is odd. Hence,

2m—2 1—e
_ prn\ ™12 2m —1 i/2 (2m—1-i)/2 _ prn\m—1/2
Yo=o0 <<?) ; ( ; ) /6 z"%(1 — ) dz | =0 (ﬁ) .

Secondly, ifl = 2m is even, then the above reasoning shows that the sum over the odd indacethe
same bound as above. As for the sum over the even indices, we have

T2 2m) 1 20\ " = [2m e
21) (2m— 21) k i m—i
. <21)ﬁ Z A kAnik ( L2 ) ; <2i)gigm—i/€ (1 — )" da.

en<j<(l—e)n

So, overall

mm—1 1—e
2pin 2m i m—i
E2N< 12 ) E (2i)gigmi/ z'(1 —x)""da.
i=1 €

As for the first and third sum above, using the uniform bound from our last proposition shows that
21 = 23 = O(EEQ) .

So, by lettinge — 0, we see that the main contribution comes from the second sum. Overall, we have

2m—1 prn\m—1/2
B ):0<(?) )?

em) - (2pm\"
Bn,k Ngm< k2 > ’

m—1 . .
B 2m I'e+1)I'(m—1+1 m—1

— \ 2i I'(m+2) m+1

where

Now, we plug this together Witlﬁﬁ,(fl = O (pg) into (3). This gives

BWY BY
A0, = o (B) +2n Ih o N B0
mE TR 2 3 +1) 2 jG+1n

k<j<en en<j<n

wheree > 0 is again fixed. Using our uniform bound from the last proposition again shows that the main
contribution comes from the third and fourth term. First,ffer 2m — 1, we have

m— 1/ m—1/2 m—1/2
(2m-1) _ m=5/2 4 - Prn
An,k < f2m—1 Z / < ) > =0 (( k2 ) ) ’

12



Finally, forl = 2m, we have

m B 2pin mort m— B 2pin m
Agk)NQQm(k—Z) /x 2dw+gm< k];) :

€

Letting e — 0 and simplifying the right hand side yield the claimed result also for even moments. This
concludes the induction step and hence the proof is finished as well.

Theorem?7 now follows from the previous proposition by the theorem dédkret-Shohat; seé&fj.

As for the Berry-Esseen bound, we can use the method frapwfhich constitutes a refinement of the
previous approach. Since there are only minor technical differences compared to the situation discussed |
[1€], we only state the result and omit the proof detalils.

Theorem 8. Letp,n/k* — oo. Then,

X, —
sup 'P (nk—“nk < x) — O(x)

—oco<r <00 On,k

2.3 Poisson approximation

With the proof method introduced in the last section, it can be shown that the limit distributiop,ois
Poisson fop,n/k? — ¢ > 0; see [L1] for similar results. Hence, Theorefgives the maximal range for
which the central limit theorem holds.

Instead of proving such a result, we will prove the stronger Poisson approximation result stated in the
introduction for the special case of nodes with given minimal clade size. Before, we can do so, we neec
local limit theorems forX,, .. The following two results also follow from the method ird].

Proposition 4. (i) Letpyn/k? — oco. Then,

P( Xk = [ ftng +2001])) = RS (1 +0 <(1 +l1af’) \/%))

/92
2oy,

uniformly inz = o((prn)*//k/3).

(i) Letk <n. Then,

1 2
_ fn, pin
P(X,r=1)=e “M—( l!k) + O (—]53 )

uniformly in/.

From the last proposition together with the bounds from Proposttfithe last section, we will obtain
quite sharp bounds for the total variation distance betw€gp and a Poisson random variable with the
same mean. Note that these bounds improve upon the bounds gived in |

Theorem 9. Letk < nandk — oo. Then,

O ((pr/ k) GDY i e > 1

d Xn 7P n - .
1v(Xnk Po(jine)) {O((pk/k?)a',un,k)v e < 1

wherea = 2m/(2m + 1) with a fixed (but arbitrary)n > 1.

13



Proof. We start by considering the case wherg, > 1. Here, we will split the sum in the formula of the
total variation distance into two parts

Iy (Ko Polm)) =3 30 3 Y lel=Eiat @
1= pn k| <n\/Bn & 1= pen k|20 /Bn e
wheren will be chosen below. In order to bound the second part, observe that from Propd@sition
P(| Xk — fngel = 1y/Hng) = O (n72™) (10)
for all m > 1. Moreover, the same bound holds as well whgry, is replaced byPo(s.,, ). Consequently,
%y =0 (n")

for all m > 1.
Now, we consider three cases. First assumehat> k?/p; and choose) = (k/py)¢ with e > 0
sufficiently small. By Propositiod, part (i), we have

P(Xnr=1)= \/ﬁ exp <—%) (1 +0 ((1 + 2% + |x!3)%)) (11)

uniformly for = with |z| < », wherex is such that = pu, x + =,/fi.x. Here, we used the following

expansion for the variance
=i (1+0(3)

which follows from Propositiorl. Next, by the well-known local limit theorem for the Poisson distribution

_ (Mn k)l 1 ( (l Hn, k)2> ( ( 3
Hn.k = _ 1+0((1+
€ l' 2 - exXp 2 ", ( |.T’ )

again uniformly inx with |x| < n. Plugging this intd:;, we obtain

-0 (2)

7))

The same bound holds fék, as well. Hence, for the first range, we obtain the estirpaté which is even
better than the claimed one.

As second range, we conside/p, )2/ G+ < u, . < k?/p? and again choose= k¢/p,. Then, the
above reasoning works as well with the only difference thdt in (11) has to be replaced by, /jz,, 1
So, the bound foE; becomes

o(i) o™

Again the same bound holds f@k as well. Hence, we are done in this range.
For the third range, we consider< i, < (k/p;)>*/®**) and choose) = (k/(pyu’/7))"/m+V.
Moreover, we use the expansion of Proposidgpart (ii) instead of {1) above. This yields the following

bound ) st
_ M _ @ «@ a+1
-0 () o (%)),
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Again the same bound holds fak. Consequently, the claim is proved for this range as well.
For the final range wherg, ;. < 1, we split the sum in the formula for the total variation distance
slightly different

1 1
dTV(Xn,ImPO(:un,k)):E > ||+§ Y =T+, (12)

Il_/"“n,k|<77 |Z_U7z,k‘2"7

wheren = (k/px)"/ ™1, Then, as in the third case above, we obtainfpthe bound

w10 () -0 ((2) )

As for X5, we use Propositio# and obtain

-0 () 0 (%) 1)

Hence, the claimed result follows in the present case as well. This concluded the droof.

Remarkl. The bounds in the previous theorem are still not optimal. In order to get better bounds, one
needs to improve upon the second local limit theorem of Propogitiédm improvement in the same style
as in the (easier) uniform case below will lead to the following sharp bound

v (X Po(jin) = O (25 - min{1, s} )

3 Uniform Model

Now, we will turn to the uniform model which assigns the same probability to every phylogenetic tree
of sizen. Here, we will use a completely different approach based on complex-analytic tools from the
analysis of algorithms. The latter area is concerned with analyzing algorithms on random inputs. One of
the standard approaches to do this is to use generating functions. If the generating functions are explic
(which will be the case here), then asymptotic properties of the encoded sequences are most easiest o
tained from complex-analytic properties of the functions. Many sophisticated tools have been developec
along this line. Most of the tools can be considered classic by now and are found in the standard textbook:
of the area; seell], [23], [24], [29], [4]).

In particular, the case of fixedis quickly derived by these standard tools (see below for more detailed
references). Hence, we will mainly focus on the case whkeaseallowed to grow withn which will turn
out to be more involved. Here, we will use an approach introduced]ifof studying the number of
predecessors in random mappings which itself was based on singularity analysis, a standard method frol
the analysis of algorithms. However, we will make some technical improvements to obtain the optimal
Berry-Esseen bound as well as sharp bounds for the total variation distance.

3.1 Moments

We will start by investigating mean value and variance. As already mentioned in the introductipn,
satisfies {) as well. The crucial difference is the distributioni@fwhich is given as

P<1n=j>=%’_“‘l”, (1<j<n)

15



First, we introduce the probability generating functigp.(v) = E(u*~*). Then, the above recur-
rence becomes

n—1 . Cn, .
Quiru) =) %Qm(u)Qn_m(u), (n > k)

7j=1
with initial conditions@,, x(u) = 1 for n < k andQyx(u) = pix(u — 1) + 1. Next, we introduce the
bivariate generating function

Gr(u, z) = Z Cro1Qn e (u)2".

n>1

Then, the above recurrence translates into the following quadratic equation
Gr(u, 2) = Giu, 2)? + Cr_ipr(u — 1)2% + 2

with solution

1— \/1 —4C,1pr(u — 1)2F — 42
5 .
So, compared with the Yule-Harding case, the generating function is here explicitly computable. This will
make things much more easier. All results below will be deduced with the helBpf (
First, we can quickly compute moments from the last expression by differentiation. For instance,

1 0

G 5nGuw2)

Gr(u, z) = (13)

_ Cr—1D% (2K 1 _ (n—k~+1)Cy1Cr_ipr
u=1 Cn—l vV 1— 42 Cn—l

Hn ke = E(Xn,k) -

for n > k. Obviously,u, = 0 forn < k.
As for the variance, a similar computation reveals

1 02

o (n —2k+2)(n—2k+1)C?_,Ch_ops1ps
Cn—l 8’&2

E(Xn,k:(Xn,k: - 1)) = u=1 C 1

Gr(u, 2)

for n > 2k. Consequentlyy?. , := Var(X, ) equals

(n —k+1)Cr1Crip n (n—2k+2)(n— 2k + 1)CF_ Crapripy, (n —k+ 1)°CE,Ch i,

14
Cn— 1 Cn— 1 02_1 ( )

for n > 2k. The corresponding formula for the range< n < 2k follows from the above expression for
the mean value. The remaining range k is trivial.
Overall, we have the following expression for mean and variance.

Proposition 5. We have,

(TL —k + 1)Ck_1Cn_kpk

if n > k;
Hnk = Cn—l -
0, ifn<k
and
(14), if n > 2k;
Uik _ (TL —k+ 1)Ckflcnfkpk(cn—21 - (Tl —k+ 1)Ck,1Cn,kpk)7 T <n< 2]{7
7 Cn—l
0, if n <k.
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This proposition gives the following corollary.

Corollary 2.  (a) For constantk,

Cr-1Dk (k —1)Chr_1ps 1
Mn,k == 4k—1 n + 2 i 4k‘—1 + O ﬁ ) (n - OO)

and, asn — oo,

52— [ Ceape (2k — 1)CE_1p} "t (k= 1)Crapr (3K — 4k + 1)CF_ 1} Lol
n,k 4k—1 42k—2 9. gk—1 9. 42k—2 n)’

(b) Ask — ccandn — k — oo,

2 Dk
Mk ™~ Un,k ~ WTL, (n — OO)

(c) For constantn — k=1 > 0,

(l + 1)Clpnfl 1
Mn,k:T+O 5 ) (n—>oo)

and P :%(1_%)+0(1), (n — o0).

nk 4! 4l n

Proof. All results can easily be derived with Maple from the following well-known expansion for the
Catalan numbers (see page 186ia]]

4n 9 1

We just indicate how to show part (b). Therefore, note thakfer en with ¢ < 1, we have

Cr-1Dk Pk
ok = =g " +0 (ﬁ ) (n — o0) (15)
and C (2k — 1)C?_ p?
—1D - Yy b
O'i,k; = ( ijl ‘- 42k,2k : k) n+ @ (\/_%) ) (n - OO) (16)

By expanding’;_; as well, the claim is easily proved. So, what is left is to show that bgmandafl,k
tend to0 ask > en andn — k — oo. Therefore, we use the following expansion for the mean

B o) o)) e

From this the claim follows. The variance is slightly more involved, but handled similady.
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3.2 Central Limit Theorem

Now, we turn to limit laws. As for the Yule-Harding Model, we start by briefly discussing the case of fixed
k. Here, a result from the treatise of Flajolet and Sedgewick (see Theorem 1X.1Z]jriimediately
gives the following central limit theorem

Xn,k — Hn,k
On,k

—L, N(0,1).

Moreover, the above result also yields the Berry-Esseen bound which is of@(det’?).

So, we can again concentrate on the dase oco. Here, we will use a variant of the proof of the above
result to show that the central limit theorem remains valid in the (maximal) range whegre- oo; a
similar approach was used iA|[

Theorem 10. Letpin/k*? — oco. Then,

X’n,,k — Hn,k i> N(O, 1)

On,k

For the proof of the above theorem, we have to revisit the proof of Theorem 1X.124jrhich
roughly consisted of two parts: first using a uniform version of singularity analysis (see Lemma 1X.2 in
[14]) and then applying the quasi-power theorem (see Theorem IX2/h [In the current situation, the
largest differences will occur in the first step since also uniformity is needed.

We start by collecting a couple of properties d8).

Lemma 2. The three properties below hold férsuitable large.
(i) For |u| <1+ ¢, the polynomial
F(u,z) :=1—4C,_pp(u—1)zF —42 =0

has a unique, analytic solutign,(u) inside the circldz| < 1/4 + ¢/k. Moreover,

1 Ch_ip kC?_  p? e
prlu) = 5 = =5 (=D + 2 =12+ O 55 |u =1 (17)

uniformly inw with ju| < 1 +e.

(i) We have,

B Vk—4(k = 1)px(u) 1~ ) +0 (pk\/Ell - Z/Pk(u)\3/2)

Grlu,2) = 2 pr(u

DO | —

uniformly for|u| < 1+¢, |z — pr(u)| < 1/k, andarg(l — z/pg(u)) # .
(i) Gg(u, z) is uniformly bounded fofu| < 1 +¢, |z| < 1/4+ ¢/k, andarg(1l — z/pi(u)) # 7.

Proof. Let |u| < 1+ ¢. In order to prove the existence and uniqueness of a solutidf{ afu) = 0, we
use Rouchk’s theorem (see page 270 in] or any standard textbook on complex analysis). Therefore, we
choosef(z) = 1 — 4z, g(z) = —4Cy_1pr(u — 1)z*. Then, for a suitable constant,

1 4c
‘9(2)| < 132 < m < 1f(2)]
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for all z with |z| = 1/4 + ¢/k andk sufficiently large. Hence, the existence and uniquenegs(af) is
established. Moreover, singg(u) is a simple root, we have

dF

%(% pr(u)) # 0.

Consequently, the implicit function theorem implies thatu) is analytic foru with |u| < 1 + e. Finally,
(17) follows from F'(u, pr.(u)) = 0 by implicit differentiation. This concludes the proof of part (i).
In order to prove part (ii), we expand(u, z) aroundz = pi(u). This yields

F(u,2) = (k — 4(k — 1) pp(u)) (1 - plju)) +0 (\/Epk (1 _ p;ju))2> ,

where|u| < 1+ e and|z| < 1/4 + ¢/k. Plugging this into 13) together with another Taylor series
expansion gives the claimed result.

Finally, part (iii) is trivial. 1

From the latter result, we can deduce the following proposition.

Proposition 6. For ¢ < k < Cn/(Inn)? with c and C' large enough,

ka(u) _ \/k —4(k — 1)p(u) pk(u)fn (1 Lo (pk:\/E)>

4n n
uniformly inu with |u| < 1+ e.

Proof. This follows from the properties of the above lemma together with the traditional proof method
used in singularity analysis; se&/]. We only have to be careful that the contour of integration is inside
the domain, where we have a unique singularity. The latter is ensurédafith £ < Cn/(Inn)?. 1

Now, we can prove TheorefD.

Proof of TheoreniO. First by the above proposition,

Qua (€)= exp {—nln (4py, (¢"/7*)) +1/21n (k — 4(k — 1)py (€"/7+)) } (1 +0 (%)) '

Then, by using17) and a lengthy computation,

. , t2 t| + [t]? 1
g (€8/7nk) = tank — —bn 1+40(———)4+0(— 18
Qn.x(e ) = exp {Z Qn,k B ,k} ( = NG (18)
uniformly in |t| < Co,, %, Wwhere
~n Crape b — n (Capy 2k =1)CF i}
Ak = a BT nk = 2 . pgk—1 A2k—2 :

Next, by (L5) and (6),

Consequently, the characteristic function satisfies

i ; 2 t+ ¢ 1

n t = 7'tlu‘n,l»c/O'n,lc n 7't/crn,k — t /2 1 O —| O JE—

Pni(t) =€ Qu, (e"7mF) = ¢ + o o\ &

uniformly in |t| < Co,, x. The result follows from this by &vy’s continuity theorem; seef]. 1
Finally, also the (optimal) Berry-Esseen bound can be derived.
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Theorem 11. Letp,n/k%/? — co. Then,

X,
sup 'P (M—M < x> — &(2)

—oo<r<00 Onk

k.3/4
o)
Y230
Proof. This follows from the expansion for the characteristic function in the above proof together with the
Berry-Esseen inequality; see. |

3.3 Poisson Approximation

As in the Yule-Harding case, the central limit theorem just holds in the rangg0f= co. We will again
show that a Poisson random variable approximaigs well in a much larger range @f.
Before we can make the last statement precise, we again have to prove local limit theorems.

Proposition 7. (i) Letpyn/k%? — co. Then,

6—272/2 E3/4
P(Xpp = |fng +2051|) = —F/——= (1 + O ((1 + |:L‘|3) ))
\ /27T0'7217k VPET

uniformly inz = o (pen) /¢ /E'/4).

(i) Letk < cn/(Inn)2. Then,
l 2
P(Xo = 1) = e-tons Bk (ZM) Lo <pk\/E>

{! k2 n

uniformly in/.

Proof. Part (i) follows from expansionl®) and Cauchy’s formula; see for instance’] where a similar
local limit theorem is derived.

As for part (i), we will actually prove a more refined result than the one claimed above.

We first consider the range wheke/pi < p,, < ek/pi with e > 0 suitable small. Then from
Propositiong, (17) and Taylor series expansion

Qni(u) = exp {amk(u — 1)+ by p(u — 12 +0 (%m — 1|3) } (1 + O (pm/%)) , (29)

n

where

angp = (n+(k—1)/2)

Cr1Dk peVk
4k—1 = Hn,k + O ( n

DPron,k
b = O = ).
From Cauchy’s formula, we obtain

1 du
P(Xn,k = l) = 5 Qn,k(u)m

21 |u|=1

:/ —|—/ +/ =: I + I + I3,
lu—1]<n1,|ul=1 n2>lu—1|>n1, ul=1 lu—1]>n2,|u|=1

20
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wheren, = (i) "2 ¢ andn, = ()~ 4. We first bound the third integral

Pifn,k

I3 < exp {—C\/Mn,k +0 ( N/ ) } < exp {—coy/Iink | »

wherec, is a suitable, positive constant. Next, for the second integral, observe that

1 - Pkln,k du
I -— ean,k(u 1) (1 + O ( . (u — 1)2>) —— < exp _C(Mn7k)2€ .
ne>lu—1|>n1,|ul=1 \/E 1 { }

= om

Finally, for the first integral, we use the above expansion and obtain

I, = ¢ Hnk (Hn,k)l 140 Prfin k A(l) + pi,ui,kA(g) Lo & 1+e€ 1 (20)
1 I Ve MR T Vi) Vix )’

where

I(r—1 21
2
,unJg Hn K

Q
An,k,l =

and

-nHl-2)(1-3) 4l-1Hl-2) 6l(l-1 41

(-D0-2)(=3) 4-Hu-2) 6= 4 |
Mn,k Iun,k: /J“n,k Hn,k

Overall, we obtain the claimed result of the proposition as special case.

For the remaining range of, ;. < k¢/p;° the above line of reasoning does not work since the estimates
of I, and I3 are not necessarily small. However, here we do not need to break the integral into three
parts since higher order terms in the above expansion are small anyway. More precisely, from the abov:
expansion and Cauchy’s formula

1 du
P(Xor=1)=— /I . Qn,k(u)m

21

l 2 k
_ e—un,k(“’;_;k) (1 +0 <%ASLZ>) +0 (pkl;nk n pk;/_> | (21)

WhereAS}w is as above. This concludes the proof of part (ii) of the propositidn.
From the last proposition, we can deduce our claimed result.

@ _
An,k,l —

Theorem 12.Letk — oo andn — k — oco. Then,

O (pu/VE - min{L e} i i = (or/VE)
O (Mn,k) 3 If Iun,k < (pk/\/E)lii
wheree > 0 is an arbitrarily small constant.

dry (Xnk, Po(finr)) = {

Proof. First, note that the proof of this result is trivial for the range wherge — 0 (this is the range where
pen/k*? — 0 andn — k — o0). This follows from the following estimate

- (fin k)l

dry (X, Po(pinp)) < ) [P(Xnp = 1) — e Hmk i

|
= {!
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Hence, we can focus on the other ranges. First assumg,that 1. Here, we proceed as in the proof
of the corresponding result for the Yule-Harding model. Consequently, we first split the sum in the formula
for the total variation distance as ifl)( In order to bound the second sum, observe that

P(IXpk = fnk] = 1y/Hng) < e7Hnk = IWVIRER (e5%nk) |
wheres will be chosen below. FronlQ), we obtain
E (eSX"v’“) =0 (e“"”“(es_l))
uniformly for s with |s| < 1/, /jz,, . Plugging this into the bound above and choosirg 1/, /i, ;. yields
P(|Xo g = tngl = 13/ing) = O (e77) .
A similar bound holds whelX,, ; is replaced byPo(s,, ). Hence,
Sy =0 (7). (22)

In order to bound the first sum i®), we consider three cases. The first case, wpgre> ek /p; is
treated as in the proof of Theoredn

For the second case, we assume #dp? < 1, < €ek/pi, wheree is a suitable small constant.
Then, we choose = k¢/pi. We can useZ0) in order to get the bound

S —0 Prtnk Ze_umk (#n,k)lAu) 4 Pi#i,k otk (#n,k)lA(Q) Lo Dk
1 \/E I n,k,l L I n,k,l \/E .

1>0 >0

Next, observe that

_ ) (,un,k)l 1 _
Ze i,k 0 A&,L,l = Ze Hon e

>0 Mnk 1>0

el S

Hn k

Similarly,
Ze_#nk(unk) A® O( 1 )
I n,k,l T MQ '
1>0 n,k

Plugging the latter two estimates into the above bound yields

-0 (2)

Due to 2) and our choice of) the same bound holds fal, as well. This proves the claim in this case.
As for the third and final case, we consider the rahge y,, ;. < k¢/p:° and again choose = k¢/p3c.
Then, we useZ1) to get the bound

pw K u k . pinul} R
Zl n, Z —Hn,k n, ,fll)i,,l +O kn 77 I[,Ln7k 7

n
>0

The first term is treated as above. The second term can be further bounded as

3/2 2—5e 2—2¢
PN pk\/E (pk) (pk) 1 Dh
Vg < | —= + | —= e
k n VHnE S\ L NG Sk >V
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Hence, we get the same bound ¥oras above. Moreover, again due(f2) the same bound holds fak,
as well. Hence, the result is for this case established as well.
Next, assume that, ,, < 1. Here, we usel2). In order to bound:, observe that

P(|Xn,k: - /ln,k| > 77) < g7 Kk TN, (ean,k) ]

From (19), we obtain
]E (esxn,,k) — (9 <eﬂn,k(65_1))

uniformly for s with |s| < ¢ wherec is an arbitrary constant. Consequently,
P(I X — png| = 1) = O (e7) .
The same bound holds f®o(., ;) as well. Hence,
1=0 (e_cn) .

Now, we again choosg = k¢/p:c. ForX;, we obtain

2
Dhebon Pininge  DeVED
Y1 =0 O .
1 < \/E )+ ( i + - )

For the second term, we obtain

pinpns | pivkn ( P )“6 - ( P )“ﬁ L _ Paiing
k n \/E " \/E ﬂ'n,k \/E

The same bound holds fal, as well. Hence, the Theorem is proved.

4 Conclusion

In this paper, we proposed a general framework for deriving statistical properties of the occurrences of
patterns in phylogenetic trees under the Yule-Harding model and the uniform model. An important feature
of the current study is that our results are useful for the whole range of possible sizes of the pattern. Apar
from exact and asymptotic expansions for mean value and variance, we were mainly concerned with limit
laws. We demonstrated that for both models the Poisson distribution provides a good approximation for
almost the whole range of the size of the pattern. When the pattern size is small, however, the norma
distribution should be used. For the uniform model, we have in addition a small range with large pattern
size, where the Bernoulli distribution yields a better approximation. Moreover, we also obtained sharp
bounds for the error of approximation.

Inrecent years, phenomena of the above type have been observed for shape parameters of many discr
structures and the name “phase change” has been ascribed to them. Hence, our results show that the lin
law of the number of occurrence of a given pattern in a random phylogenetic tree provides yet another
example of a phase change, namely, it changes from normal to Poisson for pattern sizes that are fixed t
pattern sizes that grow to infinity as the size of the tree tends to infinity. Moreover, for the uniform model,
there is a second phase change to Bernoulli for pattern sizes that are close to the size of tree.
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