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Abstract

We show that a wide class of linear cost measures (such as the number of leaves) in randomd-
dimensional point quadtrees undergo a change in limit laws: if the dimensiond = 1, . . . , 8, then the
limit law is normal; ifd ≥ 9 then there is no convergence to a fixed limit law. Stronger approximation
results such as convergence rates and local limit theorems are also derived for the number of leaves,
additional phase changes being unveiled. Our approach is new and very general, and also applicable to
other classes of search trees. A brief discussion of Devroye’s grid-trees (coveringm-ary search trees
and quadtrees as special cases) is given. We also propose an efficient numeric procedure for computing
the constants involved to high precision.

1 Introduction

Phase transitions in random combinatorial objects issuingfrom computer algorithms have received much
recent attention by computer scientists, probabilists, and statistical physists, especially for NP-complete
problems. We address in this paper the change of the limit laws from normal to non-convergence of some
cost measures in random point quadtrees when the dimension varies. The phase change phenomena1, as
well as the asymptotic tools we develop (based mostly on linear operators), are of some generality. We will
discuss the corresponding phase changes in Devroye’s random grid-trees (see [12]) for which a complete
description of the phase changes will be given.

aPartially supported by National Science Council of ROC under the GrantNSC-93-2115-M-019-001.
bPartially supported by National Science Council of ROC under the GrantNSC-93-2119-M-009-003.
cPartially supported by a Research Award of the Alexander vonHumboldt Foundation.
1We use mostly “phase change” instead of “phase transition” because the dimension in our problem takes only positive

integers.

1



b
P1

b
P2

b
P3

b
P4

b

P5

b
P6

P1

P2

P3

P4

P5

P6

Figure 1:A configuration of6 points in the unit square and the corresponding quadtree.

Point quadtrees. Point quadtrees, first introduced by Finkel and Bentley [16], are useful spatial and
indexing data structures in computational geometry and forlow-dimensional points in diverse applications
in practice; see de Berg et al. [9], Samet [43, 44] for more information. In this paper,we will say quadtrees
instead of point quadtreesfor simplicity.

Given a sequence of points inRd, the quadtree associated with this point sequence is constructed as
follows. The first point is placed at the root and then splits the underlying space into2d smaller regions
(or quadrants), each corresponding to one of the2d subtrees of the root. The remaining points are directed
to the quadrants (or the corresponding subtrees), and the subtrees are then constructed recursively by the
same procedure. See Figure1 for a plot of d = 2. Whend = 1, quadtrees are simply binary search
trees. Thus quadtrees can be viewed as one of the many different extensions of binary search trees; see
[7, 12, 37].

Random quadtrees. To study the typical shapes or cost measures of quadtrees, weassume that the given
points are uniformly and independently chosen from[0, 1]d, whered ≥ 1, and then construct the quadtree
associated with the random sequence; the resulting quadtree is called arandom quadtree.

Several shape parameters and cost measures in random quadtrees have been studied, reflecting in dif-
ferent levels certain typical complexity of algorithms on quadtrees.

• Depth (distance of a randomly chosen node to the root): [12, 13, 17, 19, 20];

• Total path length (sum of distances of all nodes to the root):[17, 19, 40];

• Cost of partial-match queries: [4, 17, 38, 41];

• Node types: [19, 26, 34, 35, 36];

• Height (distance of the longest path to the root): [10, 12].

In particular, the asymptotic normality of the depth was first proved in Flajolet and Lafforgue [20] (see
also [12]), and the non-normal limit law for the total path length in Neininger and R̈uschendorf [40].

The number of leaves. For concreteness and simplicity, we present the phase change phenomena through
the number of leaves, denoted byXn = Xn,d, in random quadtrees ofn points. The extension to more
general cost measures will be discussed later.
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Whend = 1, it is known thatXn (the number of leaves in random binary search trees ofn nodes) is
asymptotically normally distributed with mean and variance asymptotic ton/3 and2n/45, respectively;
see [11, 18]. A local limit theorem is also given in [18].

For d ≥ 2, Flajolet et al. (see [19]) first derived the closed-form expression for the expectedvalue of
Xn

E(Xn) = n −
∑

2≤k≤n

(
n

k

)

(−1)k[k]!
∑

2≤j≤k

1

[j]!
(n ≥ 1), (1)

where[k]! :=
∏

3≤j≤k(1 − 2d/jd) for k ≥ 3 and[2]! := 1, and then showed that

E(Xn) ∼ µdn,

where

µd := 1 − 2

d

∏

ℓ≥3

1

1 −
(

2
ℓ

)d
+ 2d+1

∑

j≥2

1

[j]!

∑

h≥1

1

(h + j)((h + j)d − 2d)
; (2)

see (50) for an alternative expression. In particular,µ1 = 1/3 andµ2 = 4π2 − 39; see [26, 36].

The phase change. Our first result says that whend increases, there is a change of nature for the limit
distribution ofXn.

Theorem 1. (i) If 1 ≤ d ≤ 8, then
Xn − µdn

σd

√
n

M→ N(0, 1),

where
M→ denotes convergence of all moments andN(0, 1) is the standard normal random variable (zero

mean and unit variance). The constantsσd are given in (52).
(ii) If d ≥ 9, then the sequence of random variables(Xn − E(Xn))/

√

V(Xn) does not converge to a
fixed limit law.

In the first case, convergence in distribution of(Xn − µdn)/
√

σ2
dn is also implied.

Why phase change? One key (analytic) reason why the limiting behavior ofXn changes its nature for
d ≥ 9 is because of the second order term in the asymptotic expansion ofE(Xn)

E(Xn) = µdn + G1(β log n)nα + o(nα + nε) (d ≥ 2), (3)

whereα := 2 cos(2π/d) − 1, β := 2 sin(2π/d), andG1(x) is a bounded,1-periodic function; see (49) for
an explicit expression. Ifd ≤ 8, thenα < 1/2; andα ∈ (1/2, 1) if d ≥ 9; see Table1 for numeric values
of α.

d 2 3 4 5 6 7 8 9
α −3 −2 −1 −0.38 0 0.24 0.41 0.53

Table 1:Approximate numeric values ofα = 2 cos(2π/d) − 1 for d from2 to 9.
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From this expansion, we can derive the asymptotics of the variance

V(Xn) ∼
{

σ2
dn, if 1 ≤ d ≤ 8;

G2(β log n)n2α, if d ≥ 9,
(4)

whereG2(x) is a bounded,1-periodic function.
Intuitively, we see that the periodicity in (3) becomes more pronounced asd grows (see Figure2),

implying larger and larger variance in (4), so that in the end(Xn − E(Xn))/
√

V(Xn) does not converge
to a fixed limit law.

Phase changes in other search trees.The situation here is similar to several phase change phenomena
already studied in the literature in many varieties of random search trees and related algorithms:m-ary
search trees, fringe-balanced binary search trees, generalized quicksort, etc; see [2, 3, 7, 15, 28, 29].
See also Janson [33] for a very complete description of phase changes in urn models, which are closely
connected to many random search trees.

However, the analytic context here is much more involved than previously studied search trees because,
as we will see, the underlying differential equation is no more of Cauchy-Euler type, which demands more
delicate analysis.

Phase changes in random fragmentation models.The same phase change phenomenon as leaves in
random quadtrees was first observed in Dean and Majumdar [8], where they proposedrandom continuous
fragmentation modelsto explain heuristicallythe phase changes in random search trees. Their continuous
model corresponding to quadtrees is as follows. Pick a pointin [0, x]d uniformly at random (x ≫ 1),
which then splits the space into2d smaller hyperrectangles. Continue the same procedure in thesub-
hyperrectangles whose volumes are larger than unity. The process stops when all sub-hyperrectangles
have volumes less than unity. They argue heuristically thatthe total number of splittings undergoes a
phase change: “While we can rigorously prove that the distribution is indeed Gaussian in the sub-critical
regime [d ≤ 8], we have not been able to calculate the full distribution inthe super-critical regime [d ≥ 9]”;
see [8].

Recently, Janson (private communication) showed that the same type of phase change can be con-
structed by considering the number of nodes at distanceℓ satisfyingℓ mod d ≡ j, 0 ≤ j < d, in random
binary search trees, or equivalently, the number of nodes using the(ℓ + 1)-st coordinate as discriminators
in randomk-d trees, whereℓ mod d ≡ j.

Recurrence. By the recursive nature of the problem proper,Xn satisfies the recurrence

Xn
D
= X

(1)
J1

+ · · · + X
(2d)
J
2d

+ δn,1 (n ≥ 1), (5)

with X0 = 0, where the symbol
D
= denotes equality in distribution, theJi’s and theX

(i)
n

D
= Xn’s are

independent,δn,1 denotes the Kronecker symbol, and

πn,j := P(J1 = j1, · · · J2d = j2d)

=

(
n − 1

j1, . . . , j2d

) ∫

[0,1]d
q1(x)j1 · · · q2d(x)j

2d dx,
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denotes the probability that the2d subtrees of the root are of sizesj1, . . . , j2d . Here dx = dx1 · · · dxd

amd theqi(x)’s denote the volumes of the hyperrectangles split by a random pointx = (x1, . . . , xd). We
can arrange theqi(x)’s as follows

qh(x) =
∏

1≤i≤d

((1 − bi)xi + bi(1 − xi)) (1 ≤ h ≤ 2d), (6)

where(b1, . . . , bd)2 stands for the binary representation ofh− 1 (the first few digits being completed with
zeros if⌊log2(h − 1)⌋ < d − 1, so that0 = (0, . . . , 0

︸ ︷︷ ︸

d

)2, 1 = (0, . . . , 0
︸ ︷︷ ︸

d−1

, 1)2, etc.).

The moment-transfer approach. By (5), all moments ofXn (centered or not) satisfy the same recur-
rences of the form

An = Bn + 2d
∑

0≤j<n

πn,jAj (n ≥ 1), (7)

with A0 and{Bn}n≥1 given, where

πn,j =

(
n − 1

j

) ∫

[0,1]d
(x1 · · ·xd)

j (1 − x1 · · ·xd)
n−1−j dx. (8)

Many different expressions forπn,j can be found in [19, 34]; see also [25].
To prove the limit distribution, we apply themoment-transfer approach, which has proved successful in

diverse problems of recursive nature. We have applied the approach to and developed the required asymp-
totic tools for many problems, includingm-ary search trees, generalized quicksort and most variations
of quicksort, bucket digital search trees, maximum-findingalgorithms in distributed networks, maxima in
right triangle; see the survey paper [29] for more references.

The basic idea of the approach is, because all moments satisfy the same recurrence (7), to incorporate
the analysis of the asymptotics of higher moments into developing the so-calledasymptotic transfer, which,
roughly speaking, infers asymptotics ofAn from that of Bn. Such an approach always reduces most
analysis to obtaining the first or second moments, the remaining part being more or less mechanical. It
also offers the possibility of refining the limit theorems bystronger approximation results like convergence
rates and local limit theorems, the new ingredients needed being developed in [28] for m-ary search trees;
see also [1].

Second phase change.The refined moment-transfer approach (see [28]) shows thatXn undergoes a
second phase change in convergence rate to normal limit law (often referred to as the Berry-Esseen bound).
Our result says that the convergence rate to normal law is of ordern−1/2 when1 ≤ d ≤ 7, but is of a poorer
ordern−3(3/2−

√
2) ≈ n−0.24 whend = 8. Both rates are optimal modulo the implied constants. We will

indeed derive local limit theorems forXn, which are more precise and informative than convergence in
distribution.

Resolution of the recurrence (7). Exact solutionsof the recurrence (7) were first investigated by Flajolet
et al. in [19] (see also [36, 39]), based mainly on the crucial introduction of the Euler transform.Asymptotic
propertiesof (7) were also thoroughly examined in [19], using powerful complex-analytic tools. Their
approach is very efficient in deriving the asymptotic expansions, but requires stronger information on the
given “toll sequence”Bn.
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In this paper, we show that the exact solution given via Eulertransform in [19] (see (19)) can also be
obtained by using the usual Poisson generating functions. Although this approach is essentially the same
as the Euler transform on ordinary generating functions, itoffers an operational advantage in simplifying
the calculation of the exact variance; see Section3.2.

Asymptotic transfer of the recurrence (7). We will develop the asymptotic transfer needed for deriving
asymptotics of moments. Most proofs of previously known phase changes in random search trees and
quicksort algorithms rely more or less on developing the asymptotic transfer for Cauchy-Euler differential
equations (abbreviated as DEs) of the form

Polynomial(ϑ)ξ(z) = η(z), (9)

whereη is independent ofξ andϑ := (1 − z)(d/dz). The main transfer problem under this framework is
to derive asymptotics of[zn]ξ(z) when that of[zn]η(z) is known, where[zn]ξ(z) denotes the coefficient of
zn in the Taylor expansion off . A very general, elementary asymptotic theory for such DEs with a large
number of applications is given in [7], the origin of such a development being traceable to Sedgewick’s
analysis on quicksort (see [45]).

For quadtrees, the DE satisfied by the generating functionA(z) :=
∑

n Anz
n is given by

ϑ(zϑ)d−1(A(z) − B(z)) = 2dA(z), (10)

which is not of the type (9) but can be rewritten in the extended form

P0(ϑ)A(z) = ϑ(zϑ)d−1B(z) +
∑

1≤j<d

(1 − z)jPj(ϑ)A(z), (11)

whereP0(x) = xd − 2d and thePj(x)’s are polynomials of degreed; see (23).
We then extend the iterative operator approach introduced in [5] to analyzing the expected cost of

partial match queries in randomk-d trees. The approach turns out to be very useful for extended Cauchy-
Euler DEs of the form (11); see [6] for another application to consecutive records in random sequences.

The main differences of the current application from the previous ones are:(i) we consider general
non-homogeneous part (or toll functions) rather than specific ones;(ii) the method of Frobenius (and the
method of annihilators) used in our previous papers is avoided and replaced by a more uniform elementary
argument, the resulting proof being completely elementaryand requiring almost no knowledge on DE;
(iii) we give not only necessary but also sufficient conditions forall transfers we developed; the same
proof for the sufficiency part also easily modified for proving the necessity in all cases, keeping uniformity
of the approach;(iv) the proof we give in its current form is easily amended for more general DEs with
polynomial coefficients;(v) we put forth means of simplifying the expressions for the constants involved;
the resulting expressions are in some cases simpler than those derived in [19]; also our expressions are
easily amended for numeric purposes.

A universal condition for asymptotic linearity? One main result our approach can achieve states that
An is asymptotically linearAn ∼ Kn if and only if Bn = o(n) and the series

∑

n Bnn
−2 is convergent,

whereK is explicitly given in terms of theBn’s; see (16). It is interesting to see that exactly the same con-
dition for the asymptotic linearity ofAn holds for other recurrences appearing in quicksort,m-ary search
trees, generalized quicksort, and many others; see [7]. Note that the expression for the linearity constant
K differs from one case to another. The series condition|∑n Bnn

−2| < ∞ also arises in many other
problems such as generalized subadditive inequalities, divide-and-conquer algorithms, large deviations,
etc.; see [31] and the references therein. Is there a deeper reason why theseries condition is so universal?
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Organization of the paper. In the next Section2, we develop general asymptotic transfer results, which
can be applied to more general shape characteristics and cost measures. In Sections3 and4, we study
the phase change phenomena exhibited by the number of leavesand discuss the extension to general cost
measures. Effective numerical procedures will also be given of computing the limiting mean and variance
constants forXn. The extension of our consideration to Devroye’s grid-trees (see [12]) is given in the final
section.

Notation. Throughout this paper, the notation[zn]f(z) denotes the coefficient ofzn in the Taylor ex-
pansion off . The generic symbolε always represents some small quantity whose value may vary from
one occurrence to another; similarly, the generic symbolc stands for a suitable constant. We define two
operatorsDz := d/dz andϑ := (1 − z)Dz. The same set of symbols{Bn, B(z), B∗(s)} is used for
the sequenceBn, its generating functionB(z) =

∑

n Bnz
n, and its factorial series or Mellin transform

B∗(s) =
∫ 1

0
(1 − x)s−1B(x) dx, respectively.

2 Asymptotic transfer of the quadtree recurrence

We develop the asymptotic tools in this section by proving the different types of asymptotic transfer needed
for later uses. A salient feature of our transfers is that theasymptotic condition in each case is not only
sufficient but also proved to be necessary.

Three types of asymptotic transfer. For simplicity, we assumeA0 = 0 since otherwise the difference
is given explicitly byA0(2

d − 1)n + A0; see (19).

Theorem 2. LetAn be defined by the recurrence (7) with A0 and{Bn}n≥1 given. Then

(i) (Small toll functions)

An ∼ KBn iff Bn = o(n) and
∣
∣
∣

∑

n

Bnn
−2

∣
∣
∣ < ∞, (12)

where the constantKB is given in (16);

(ii) (Linear toll functions) Assume thatBn = cn + un, wherec ∈ C andun is a sequence of complex
numbers. Then

An ∼ 2

d
cn log n + K1n iff un = o(n) and

∣
∣
∣

∑

n

unn
−2

∣
∣
∣ < ∞, (13)

whereK1 := cK2 + Ku with Ku defined by replacing the sequenceBn by un in (16) andK2 given
explicitly by

K2 := −1 − 2

d
+ 2γ +

2

d

∑

1≤j<d

ψ(2 − 2e2jπi/d), (14)

ψ being the logarithmic derivative of the Gamma function (see[14]);

(iii) (Large toll functions) Assume thatℜ(υ) > 1 andc ∈ C. Then

Bn ∼ cnυ iff An ∼ c(υ + 1)d

(υ + 1)d − 2d
nυ. (15)

More refinements to (12) under stronger assumptions onBn will be proved below.
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The linearity constant. Given a sequenceBn, define the constantKB by the series

KB =
2

d

∑

k≥0

VkB
∗(k + 2), (16)

which is absolutely convergent under the condition (12) onBn, whereVk is defined recursively byVk = 0
whenk < 0, V0 = 1, and

Vk =
∑

1≤ℓ<d

Pℓ(k + 2)

P0(k + 2)
Vk−ℓ (k ≥ 1), (17)

and the functionB∗ is given by

B∗(s) :=

∫ 1

0

B(x)(1 − x)s−1 dx =
∑

j≥1

Bjj!

s(s + 1) · · · (s + j)
, (18)

when the integral and series converge. Here the polynomialsPj(x)’s are given in (23). Note that when
d = 1, Vk = δk,0, so thatKB = 2B∗(2); see [30].

2.1 Euler transform and Poissonization

Euler transform. Flajolet et al. proposed in [19] an approach via Euler transform for solving the recur-
rence (7); their result is

An = A0 + n
(
(2d − 1)A0 + B1

)
+

∑

2≤k≤n

(
n

k

)

(−1)k
∑

2≤j≤k

(
B⋆

j − B⋆
j−1

) ∏

j<ℓ≤k

(

1 − 2d

ℓd

)

, (19)

for n ≥ 0, whereB⋆
n denotes the Euler transform of the sequenceBn

B⋆
n :=

∑

1≤j≤n

(
n

j

)

(−1)jBj.

As one can see from (19), the appearance ofB⋆
n and the power of−1 makes the asymptotics ofAn less

transparent.

Poissonization. An alternative way of deriving (19) is as follows. Consider the Poisson generating
functions of both sequences:̃A(z) := e−z

∑

n≥0 Anz
n/n! and B̃(z) := e−z

∑

n≥1 Bnz
n/n!. Then (7)

translates into

Ã′(z) + Ã(z) = B̃′(z) + B̃(z) + 2d

∫

[0,1]d
Ã(x1 · · · xdz) dx,

with the initial conditionÃ(0) = A0. Let Ãn := n![zn]Ã(z) andB̃n := n![zn]B̃(z). Then

Ãn + Ãn−1 = B̃n + B̃n−1 +
2d

nd
Ãn−1 (n ≥ 1), (20)

(for convenience, definingB0 = B̃0 = 0). Observe that

Ãn = (−1)nA⋆
n = (−1)n

∑

0≤k≤n

(
n

k

)

(−1)kAk,
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andB̃n = (−1)nB⋆
n. By iterating the recurrence (20) and by taking into account the initial values, we

obtain (19).
Although the approach is essentially the same as that via Euler transform, it is helpful in deriving a

dimension-free expression for, say the variance ofXn; see Section3.2. It also offers the possibility of
obtaining the asymptotics ofAn by the usual Mellin transform techniques.

Asymptotics of the recurrence (7). A very powerful complex-analytic approach is proposed in [19]
to the asymptotics of (7). The main idea is to apply singularity analysis (see [21]); so one needs the
asymptotics of the generating function

∑

n Anz
n for z ∼ 1, which, by the Euler transform, leads to the

study of the generating functionA⋆(t) :=
∑

n A⋆
nt

n for t near−∞. For that purpose, they apply integral
representation forA⋆(−t) of the form

A⋆(−t) =
1

2πi

∫ c+i∞

c−i∞

πts

sin πs
ϕ(s) ds,

for suitably chosenc andϕ(s) satisfyingϕ(k) = A⋆
k for k ≥ 2. The determination of such an “analytic

extrapolation” ofA⋆
k to complexs is crucial.

The major limitation of this approach is that when the given sequenceBn is, say only known up to
O(nα) or ∼ nα for someα, it is not obvious how to find an analytic extrapolation and then to deduce
the right order ofAn because of the underlying “exponential cancellations of order”: roughly,

(
n
k

)
has

its largest term of order2nn−1/2, but most of our sequences grow only polynomially inn; see [23] for
asymptotics on alternating binomial sums.

Alternatively, one might try the usual Mellin analysis forÃ(z) (or its truncated functions); again ana-
lytic properties of the involved function atσ ± i∞ may be very challenging.

Note that the valueA0 and the sequence{Bn}n≥1 are enough to completely determine the sequence
An. This property will be useful in our numeric procedure; see Section3.2.

2.2 Asymptotic transfer I. Small toll functions

We prove the first case of Theorem2 in this section by extending the approach we proposed beforefor the
analysis ofk-d trees. The main idea is to write the underlying DE in the form of certain “perturbed” DE
of Cauchy-Euler type, and then to use some iterative operatorarguments.

The DE. Let A(z) =
∑

n≥0 Anz
n andB(z) =

∑

n≥1 Bnzn. Then the recurrence (7) translates into the
DE (10), which becomes simpler by consideringf := A − B:

(
ϑ(zϑ)d−1 − 2d

)
f(z) = 2dB(z). (21)

This DE can be re-written as the “perturbed” Cauchy-Euler DE
{

P0(ϑ)f(z) = g(z) + 2dB(z);
g(z) :=

∑

1≤j<d(1 − z)jPj(ϑ)f(z),
(22)

whereP0(x) = xd − 2d, and by induction

Pj(x) = (−1)j−1[zd−1−j]
∏

0≤r≤j

x − r

1 − z(x − r)
(1 ≤ j < d). (23)
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Note that allPj ’s are polynomials of degreed; they can also be computed recursively as follows. Write

ϑ(zϑ)d−1f(z) =
∑

0≤j<d

(1 − z)jP̃d,j(ϑ)f(z).

ThenPj(x) = −P̃d,j(x) for 1 ≤ j < d. Here P̃d,j(x) = (x − j)(P̃d−1,j(x) − P̃d−1,j−1(x)) with the
boundary conditions̃P1,0(x) = x, P̃d,j(x) = 0 if j < 0 or j ≥ d.

Let λj ’s denote the zeroes ofP0(x) = 0, namely,λj = 2e2jπi/d for 0 ≤ j < d. In particular,λ0 = 2.

All initial conditions zero. For convenience, we assume temporarily that all initial values are zeros
f (j)(0) = 0 for 0 ≤ j < d. This implies thatϑjf(0) = 0 for 0 ≤ j < d since

ϑjf(z) =
∑

0≤ℓ≤j

(−1)j+ℓS(j, ℓ)(1 − z)ℓf (ℓ)(z),

whereS(j, ℓ) represents the Stirling numbers of the second kind.

The Cauchy-Euler solution. Regarding the DE (22) as a Cauchy-Euler DE, we can then decompose the
DE as follows.

(ϑ − λd−1) · · · (ϑ − λ1)(ϑ − 2)f(z) = g(z) + 2dB(z), (24)

whose solution (exact or asymptotic) can be obtained by successively solving the first-order DE of the
form

(ϑ − υ)ξ(z) = η(z),

which is given by

ξ(z) = ξ(0)(1 − z)−υ + (1 − z)−υ

∫ z

0

(1 − t)υ−1η(t) dt,

in the sense of formal power series; see [7].
Since all initial conditions are zero, we thus obtain the solution

f(z) =
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[g + 2dB](z), (25)

where

Iυ[φ](z) = (1 − z)−υ

∫ z

0

(1 − x)υ−1φ(x) dx. (26)

Note that the functiong involves itselff .
Thus the next steps consist of(i) clarifying the changes in asymptotic approximation under consecutive

applications of the linear operators, and(ii) simplifying the resulting leading constants.

Asymptotic transfer for the linear operator.

Lemma 1 ([7]). (i) (Small toll functions) Letυ ∈ C. If
∫ 1

0
(1 − x)υ−1φ(x) dx converges, then

[zn]Iυ[φ](z) ∼ nυ−1

Γ(υ)

∫ 1

0

(1 − x)υ−1φ(x) dx, (27)

whereΓ denotes the Gamma function.

10



(ii) (Large toll functions) Letυ ∈ C. If [zn]φ(z) ∼ cnτ , wherec ∈ C andℜ(τ) > ℜ(υ) − 1, then

[zn] Iυ[φ](z) ∼ c

τ + 1 − υ
nτ . (28)

Note that ifυ = 0,−1, . . . in case(i), then the∼-transfer (27) becomes ano-transfer; similarly, if
c = 0 in case(ii), then (28) becomes ano-transfer.
Proof. (Sketch) The estimate (27) follows from (26), and (28) from the expression

[zn] Iυ[φ](z) =
Γ(n + υ)

Γ(n + 1)

∑

0≤k<n

Γ(k + 1)

Γ(k + 1 + υ)
[zk]φ(z); (29)

see [7].

Asymptotic linearity. We now prove the small toll functions part of Theorem2 when Bn = o(n)

and
∑

n Bnn−2 converges. The assumption that the series
∑

n Bnn−2 converges implies that|
∫ 1

0
(1 −

x)B(x) dx| < ∞. Assume at the moment that
∣
∣
∣
∣

∫ 1

0

(1 − x)g(x) dx

∣
∣
∣
∣
< ∞. (30)

Then by applying consecutively Lemma1, we obtain

An = [zn]f(z) + Bn =
K ′

P ′
0(2)

n + o(n), (31)

where

K ′ :=

∫ 1

0

(1 − x)
(
g(x) + 2dB(x)

)
dx =

∑

j≥0

[zj]g(z) + 2dBj

(j + 1)(j + 2)
. (32)

The next step is to prove (30).

Proof of (30). Define

Λ(s) :=

∫ 1

0

(1 − x)s−1P0(ϑ)f(x) dx,

where theϑ-operator is understood to be(1 − x)d/dx.
SinceBn = o(n) = o(n1+ε), An = o(n1+ε) by (46) below. Thusf(x) = O((1−x)−2−ε) for 0 ≤ x < 1

and
P0(ϑ)f(x) = O(f (d)(x)) = O((1 − x)−d−2−ε),

for 0 ≤ x < 1. It follows thatΛ(s) is finite for sufficiently larges, says ≥ s0 ≥ d + 2 + ε. We show that
we can takes0 = 2. Note thatΛ(s) is an analytic function in the half-planeℜ(s) ≥ 2, but for our purposes
we need only real values ofs.

Lemma 2 ([5]). Let p(x) andq(x) be two polynomials of degrees at mostd. Assume thatφ(x) is defined
in the unit interval withφ(j)(0) = 0 for 0 ≤ j < k. Then

∫ 1

0

(1 − x)s−1
(
p(ϑ)q(ϑ)−1

)
φ(x) dx =

p(s)

q(s)

∫ 1

0

(1 − x)s−1φ(x) dx, (33)

provided thatq(s) 6= 0 and that both integrals converge.

11



Substituting (22) into the integral and applying (33), we see thatΛ(s) satisfies the difference equation

Λ(s) = 2dB∗(s) +
∑

1≤j<d

Pj(j + s)

P0(j + s)
Λ(j + s). (34)

By assumption,B∗(s) is finite for s ≥ 2. Also Λ(s) is bounded fors ≥ d + 2 + ε as showed above. Thus
by iterating the equation (34), we deduce thatΛ(s) is finite fors ≥ 2.

This proves (30) because

∫ 1

0

(1 − x)g(x) dx =

∫ 1

0

(1 − x)
(
P0(ϑ)f(x) − 2dB(x)

)
dx,

and from (32), it follows thatK ′ = Λ(2).

Further simplification of the constant K ′. Taking firsts = 2 in (34) and then iterating the recurrence
(34) N times, we get

K ′ = K ′
N +

∑

1≤j≤N(d−1)+1

eN,j

P0(j + N + 1)
Λ(j + N + 1),

wheree1,j = Pj(j + 2) for 1 ≤ j ≤ d,

eN,j :=
∑

1≤ℓ≤d

Pℓ(j + N + 1)

P0(j + N + 1 − ℓ)
eN−1,j+1−ℓ (1 ≤ j ≤ N(d − 1) + 1),

for N ≥ 2, and

K ′
N = 2d



B∗(2) +
∑

1≤j≤(N−1)d

B∗(j + 2)

P0(j + 2)

∑

1≤ℓ≤j

eℓ,j+1−ℓ



 ,

for N ≥ 0.
SinceΛ(N) → 0 asN → ∞, we have

K ′ = lim
N→∞

K ′
N = 2d

(

B∗(2) +
∑

j≥1

B∗(j + 2)

P0(j + 2)

∑

1≤ℓ≤j

eℓ,j+1−ℓ

)

.

Define

Vk :=
1

P0(k + 2)

∑

1≤ℓ≤k

eℓ,k+1−ℓ.

ThenVk satisfies (17) and we have

K ′ = 2d
∑

k≥0

B∗(k + 2)Vk.

It follows, by (31), thatKB = K ′/P ′
0(2).
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Absolute convergence of the series representation (16) for KB. There is noa priori reason that the
series representation forKB in (16) is convergent. We show that under the assumptions onBn in (12) the
series in (16) is indeed absolutely convergent.

Observe first that by the factorial series expression in (18)

B∗(k + 2) = O(k−2).

We need then an estimate forVk.
If d = 2, thenP1(s) = s(s − 1), and we can solve the recurrence ofVk explicitly, giving

Vk = 12
k + 1

(k + 3)(k + 4)
(k ≥ 0). (35)

Consequently,

KB = 12
∑

k≥0

k + 1

(k + 3)(k + 4)
B∗(k + 2)

= 12

∫ 1

0

B(x)

(
1 + 2x

(1 − x)3
log

1

x
− 5 + x

2(1 − x)2

)

dx;

see also [36, 39].

Lemma 3. The sequenceVk satisfies the estimate

Vk = O
(
k−1(log k)d−2

)
, (36)

for d ≥ 2.

The order is tight; indeed, we can derive a more precise asymptotic approximation; see (39) below.
Proof.We first show that the generating functionV (z) of Vk satisfies the DE

Dz (z(1 − z)Dz)
d−1 (

z2V (z)
)
− 2dzV (z) = 0. (37)

By Cauchy’s integral representation forVk

Vk =
1

2πi

∮

|w|=ε

w−k−1V (w) dw =
1

2πi

∮

|w−1|=ε

(1 − w)−k−1V (1 − w) dw.

Then, by the relation (see (17)),

P0(k + 2)Vk −
∑

1≤ℓ<d

Pℓ(k + 2)Vk−ℓ = 0,

we have

0 =
1

2πi

∮

|w−1|=ε

(1 − w)V (1 − w)

[

P0(k + 2)(1 − w)−k−2 −
∑

1≤ℓ<d

Pℓ(k + 2)(1 − w)−k+ℓ−2

]

dw

=
1

2πi

∮

|w−1|=ε

(1 − w)V (1 − w)
[
ϑw(wϑw)d−1 − 2d

]
(1 − w)−k−2 dw,

13



by the definition of thePj ’s, whereϑw := (1 − w)d/dw. It follows, by multiplying both sides byzk and
then summing over all nonnegativek, that

Id(z) − 2dV (z) = 0,

where

Id(z) :=
1

2πi

∮

|w−1|=ε

(1 − w)V (1 − w)
[
ϑw(wϑw)d−1

] (1 − w)−2

1 − z
1−w

dw.

By successive integration by parts, we have

Id(z) =
(−1)d

2πi

∮

|w−1|=ε

(1 − w)−2

1 − z
1−w

Dw (w(1 − w)Dw)d−1 (
(1 − w)2V (1 − w)

)
dw

=
1

2πi

∮

|w|=ε

w−2

1 − z
w

Dw (w(1 − w)Dw)d−1 (
w2V (w)

)
dw,

whereDw := d/dw. This proves (37).
By Frobenius method (see [32]), we seek solutions of the formV (z) = (1 − z)−sξ(1 − z) with ξ

analytic at zero. Substituting such a form into (37) gives ford = 1

I1(z) ∼ ξ(0)s(1 − z)−s−1 (z ∼ 1).

By induction, we obtain
Id(z) ∼ ξ(0)sd(1 − z)−s−1 (z ∼ 1).

Thus, the indicial equation issd = 0, implying that

V (z) = O
(
logd−1 |1 − z|

)
(z ∼ 1).

It follows, by singularity analysis (see [21]), thatVk satisfies the estimate (36). This proves Lemma3.

A more precise approximations to the asymptotics ofVk. Since the generating function of the se-
quenceVk satisfies the explicit, homogeneous DE (37), we can derive more precise asymptotic estimates
as follows.

By applying either the Euler transform approach of [19] or the Poisson generating functions, we obtain

Vk =
∑

1≤ℓ≤k+1

(
k + 1

ℓ

)

(−1)ℓ+1ℓ
∏

1≤j<d

Γ(3 − λj)Γ(ℓ + 1)

Γ(ℓ + 2 − λj)
(k ≥ 0).

Consequently, we have the integral representation (see [23])

Vk =
1

2πi

∫ ε+i∞

ε−i∞

Γ(k + 2)Γ(1 − s)

Γ(k + 2 − s)

∏

1≤j<d

Γ(3 − λj)Γ(s + 1)

Γ(s + 2 − λj)
ds. (38)

From this representation, we can show that

Vk ∼ d2d−1(2d − 1)

(d − 2)!
k−1(log k)d−2, (39)
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for d ≥ 2 and largek. Note that the leading constants first grows and then decreases to zero
{

d2d−1(2d − 1)

(d − 2)!

}

d≥2

=
{
12, 84, 240, 4131

3
, 504, 474 2

15
, 3622

3
, 2333

5
, 12919

21
, 631531

2835
, · · ·

}
.

Since the leading constants are quite large for smalld, the convergence of the series (16) is poor for small
d; we will propose a more efficient numeric procedure for computing KB.

In particular, ifd = 2, the integrand has three simple poles ats = −1,−2, and−3, and the residues of
these poles add up to12(k + 1)/((k + 3)(k + 4)), in accordance with (35). But for d ≥ 3, the resulting
expressions are more complicated because there are infinitely many poles.

An integral representation for the constantKB. By substituting the expression (38) of Vk in (16), we
obtain

KB =
2

2dπi

∫ c+i∞

c−i∞
Υ(s)

∏

1≤j<d

Γ(3 − λj)Γ(s + 1)

Γ(s + 2 − λj)
ds, (40)

where

Υ(s) :=
∑

k≥0

B∗(k + 2)
Γ(k + 2)Γ(1 − s)

Γ(k + 2 − s)
,

and c > −1 lies in the half-plane where the series on the right-hand side converges. Thus if analytic
properties ofΥ are known, thenKB can be further simplified; see for example (44). Also if d = 2, then
KB = 12(Υ(−1) − 2Υ(−2) + Υ(−3)); see (35).

Nonzero initial conditions. We now prove that the linearity constantKB is of the form (16) even with
nonzero initial conditions.

We start from making all the initial conditions zero

f̄(z) := f(z) −
∑

0≤j<d

(Aj − Bj)z
j,

so that, by (21),
(
ϑ(zϑ)d−1 − 2d

)
f̄(z) = 2dB(z) + 2dC(z),

where (for convenience, definingB0 = 0)

C(z) :=
∑

0≤j<d

(Aj − Bj) zj − 2−d
(
ϑ(zϑ)d−1

)

(
∑

0≤j<d

(Aj − Bj)z
j

)

.

By the same approach as above, we obtainAn ∼ K̄n, where the linearity constant̄K is given by

K̄ =
2

d

∑

k≥0

VkB
∗(k + 2) +

2

d

∑

k≥0

Vk

∫ 1

0

(1 − x)k+1
∑

0≤j<d

(Aj − Bj)x
j dx + c̄.

Here

c̄ := −21−d

d

∑

k≥0

Vk

∫ 1

0

(1 − x)k+1
(
ϑx(xϑx)

d−1
)

(
∑

0≤j<d

(Aj − Bj)x
j

)

dx

= −21−d

d

∫ 1

0

(1 − x)V (1 − x)
(
ϑx(xϑx)

d−1
)

(
∑

0≤j<d

(Aj − Bj)x
j

)

dx.
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By the same argument used to derive the DE satisfied byV (z), we have

c̄ = −21−d

d

∫ 1

0

(
∑

0≤j<d

(Aj − Bj)(1 − x)j

)

Dx (x(1 − x)Dx)
d−1 (

x2V (x)
)

dx.

But by (37)
Dx (x(1 − x)Dx)

d−1 (
x2V (x)

)
= 2dxV (x);

it follows that

c̄ = −2

d

∫ 1

0

(1 − x)V (1 − x)

(
∑

0≤j<d

(Aj − Bj)x
j

)

dx.

Thus

K̄ =
2

d

∑

k≥0

VkB
∗(k + 2);

this proves that the linearity constant is of the same form (16), which amounts to saying thatwe do not
need to nullify the initial conditions.

An efficient numeric procedure. The above proof suggests a useful numeric procedure for computing
the constantKB. The crucial observation is that the firstd terms we choose to be subtracted fromf̄ play no
special role in our proof, meaning that we can indeed subtract a sufficiently large number, sayN , of initial
terms fromf , resulting in a series form forKB with convergence rate(log k)d−2k−N . This is because the
right-hand side of the DE is of orderzN−1, which yields, after taking the finite Mellin transform, theorder
k−N for largek. Such a procedure quickly leads to a good numeric approximation to the leading constant
KB to high precision. We will apply this procedure to the constants appearing in the mean and variance of
the number of leaves in Section3.2

Necessity in (12). Assume thatAn ∼ cn for some constantc. The special form (8) or the following one
(see [19])

πn,j =
1

(d − 1)!

(
n − 1

j

) ∫ 1

0

(− log t)d−1tj(1 − t)n−1−j dt,

can be used to prove thatBn = o(n) by (7). We propose instead a proof based again on linear operators,
the advantage being generally applicable to more complicated recurrences while keeping uniformity of the
proof.

By (21)

B(z) = A(z) − 2d
(

ϑ−1
(
z−1ϑ−1

)d−1
)

A(z)

= A(z) − 2d
(

I0 ◦
(
z−1

I0

)d−1
)

[A](z).

SinceAn ∼ cn, we have, by (28),

[zn]I0[A](z) ∼ c

2
n, [zn]z−1

I0[A](z) ∼ c

2
n.

Applying successively these estimates yields

[zn]2d
(

I0 ◦
(
z−1

I0

)d−1
)

[A](z) ∼ cn.

16



ThusBn = o(n).
We then prove that|∑n Bnn

−2| < ∞ by showing thatB∗(2) is finite. By (34), it suffices to show that
Λ(2) is finite. SinceAn ∼ cn andBn = o(n), we deduce thatf(x) = O((1 − x)−2) for 0 ≤ x < 1. It
follows that

Λ(2) = lim
s→2+

Λ(s)

= lim
s→2+

P0(s)

∫ 1

0

(1 − x)s−1f(x) dx

= O(1).

This complete the proof of (12).

2.3 Asymptotic transfer II. Linear toll functions

We prove part(ii) of Theorem2 in this section. By the result of part(i), it suffices to consider the case
whenBn ≡ n for n ≥ 1. ThenB(z) = z/(1 − z)2.

All initial conditions zero. It is simpler, as in part(i), to consider

f̄(z) := A(z) − B(z) −
∑

0≤j<d

(Aj − Bj)z
j,

so thatf̄ satisfies the DE
(
ϑ(zϑ)d−1 − 2d

)
f̄(z) = 2dB(z) + 2dC(z),

with zero initial conditions, where

C(z) :=
(
2−dϑ(zϑ)d−1 − 1

) ∑

1≤j<d

(Aj − Bj)z
j.

Thenf̄ satisfies the DE
P0(ϑ)f̄(z) = 2dB(z) + 2dC(z) + g(z),

whereg is defined in (22), and forn ≥ d

An = [zn]
(
f̄(z) + B(z)

)

= n + [zn]
(
Iλd−1

· · · ◦ Iλ1
◦ I2

) [
2dB + 2dC + g

]
(z).

An expression for the iterates of theI-operators. Observe first that by integration by parts

(Iυ ◦ Iτ ) [ξ](z) =
1

τ − υ
Iτ [ξ](z) − 1

τ − υ
Iυ[ξ](z) (υ 6= τ),

so that by induction

(
Iλd−1

◦ · · · ◦ Iλ0

)
[ξ](z) =

∑

0≤j<d

Iλj
[ξ](z)

∏

ℓ6=j (λj − λℓ)
. (41)

Thus

f̄(z) =
∑

0≤j<d

Iλj
[2dB + 2dC + g](z)

P ′
0(λj)

.
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The contribution of 2dB(z). By applying (41), we have

[zn]
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[2dB](z) =

∑

0≤j<d

2d

P ′
0(λj)

[zn]Iλj
[B](z)

=
2d

P ′
0(2)

[zn]

(

(1 − z)−2 log
1

1 − z
− (1 − z)−2

)

+
∑

1≤j<d

2d

(2 − λj)P ′
0(λj)

[zn](1 − z)−2 + o(n).

Now

∑

1≤j<d

2d

(2 − λj)P ′
0(λj)

=
1

d

∑

1≤j<d

λj

2 − λj

=
2

d

∑

1≤j<d

1

2 − λj

− d − 1

d

=
P ′′

0 (2)

dP ′
0(2)

− d − 1

d

= −d − 1

2d
.

Thus

[zn]
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[2dB](z)

= [zn]

(
2

d

1

(1 − z)2
log

1

1 − z
− d + 3

2d

1

(1 − z)2

)

+ o(n)

=
2

d
n log n +

(
2γ

d
− 1

2
− 7

2d

)

n + o(n), (42)

since

[zn](1 − z)−2 log
1

1 − z
= (n + 1)

∑

1≤j≤n

j−1 − n

= n log n + (γ − 1)n + O(log n).

The contribution of 2dC(z) and g(z). Similarly, by (27),

[zn]
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[2dC](z) =

2

d
C∗(2)n + o(n),

whereC∗(s) :=
∫ 1

0
C(x)(1 − x)s−1 dx, and

[zn]
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[g] (z) =

21−d

d
[zn]I2 [g] (z) + o(n)

=
21−d

d
g∗(2)n + o(n),

provided thatg∗(2) is finite, whereg∗(s) :=
∫ 1

0
(1 − x)s−1g(x) dx.
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Boundness ofg∗(2). To justify thatg∗(2) is finite, we use the same argument as in the proof forΛ(s)
above. Again by Lemma2

g∗(s) =
∑

1≤j<d

∫ 1

0

(1 − x)j+s−1Pj(ϑ)P0(ϑ)−1
(
2dB(x) + 2dC(x) + g(x)

)
dx

=
∑

1≤j<d

Pj(j + s)

P0(j + s)

∫ 1

0

(1 − x)j+s−1
(
2dB(x) + 2dC(x) + g(x)

)
dx

=
∑

1≤j<d

Pj(j + s)

P0(j + s)

(
2dB∗(j + s) + 2dC∗(j + s) + g∗(j + s)

)
,

where

B∗(s) =

∫ 1

0

x(1 − x)s−3 dx =
1

(s − 1)(s − 2)
.

SinceB∗(s) is finite fors > 2, g∗(s) is well-defined fors > 1.
Iterating the recurrence as in part(i) gives

g∗(2) =
∑

j≥0

Vj

∑

1≤ℓ<d

Pℓ(j + ℓ + 2)

P0(j + ℓ + 2)

(
2dB∗(j + ℓ + 2) + 2dC∗(j + ℓ + 2)

)

=
∑

k≥1

(
2dB∗(k + 2) + 2dC∗(k + 2)

) ∑

1≤ℓ<d

Pℓ(k + 2)

P0(k + 2)
Vk−ℓ

= 2d
∑

k≥1

Vk

k(k + 1)
+ 2d

∑

k≥1

VkC
∗(k + 2),

whereVk is defined in (17).

Collecting all estimates. Combining this with (42), we obtain

An =
2

d
n log n + K2n + o(n),

where

K2 =
2γ

d
+

1

2
− 7

2d
+

2

d

∑

k≥1

Vk

k(k + 1)
+

2

d

∑

k≥0

VkC
∗(k + 2).

The last series
∑

k≥0 VkC
∗(k + 2) is identically zero by the same argument used in part(i) for nonzero

initial conditions.

Final simplification. We now show that

∑

k≥1

Vk

k(k + 1)
=

∑

1≤j<d

ψ(3 − λj) − (d − 1)(1 − γ), (43)

and this will prove (14) by the relationsψ(3 − λj) = ψ(2 − λj) + (2 − λj)
−1 and

∑

1≤j<d

1

2 − λj

=
d − 1

4
.
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For that purpose, we substitute the integral representation (38) into the series and then sum over all positive
indicesk, giving

∑

k≥1

Vk

k(k + 1)
=

1

2πi

∫ ε+i∞

ε−i∞

1

(s − 1)2

∏

1≤j<d

Γ(3 − λj)Γ(s + 1)

Γ(s + 2 − λj)
ds. (44)

Moving the line of integration to the right and taking into account the residue of the unique pole encoun-
tered ats = 1, we obtain (43) by absolute convergence.

A different expression for K2. Yet another expression forK2 was derived in [19]

K2 =
2γ

d
+

3

2
− 3

2d
− 2d+1

∑

k≥3

1

k(kd − 2d)
.

Equating the two expressions ofK2 leads to the identity

2d+1
∑

k≥3

1

k(kd − 2d)
= 3 − 2

d
(d − 1)γ − 2

d

∑

1≤j<d

ψ(3 − λj) (d ≥ 1),

which can be proved using the relations

ψ(z + 1) = −γ +
∑

j≥1

z

j(j + z)
,

(see [14, p.15, Eq. (3)]) and
∑

1≤j<d

2 − λj

k + 2 − λj

= d − 1 − k
∑

1≤j<d

1

k + 2 − λj

= d − 1 − k

(
d(k + 2)d−1

(k + 2)d − 2d
− 1

k

)

.

Necessity. Consider the case whenAn = c0n log n + c1n + o(n), wherec0 = 2/d. Then, similarly as in
part(i), we need the elementary estimate

[zn]I0[A](z) =
1

n

∑

0≤j<n

Aj

=
1

n

∑

1≤j<n

(c0j log j + c1j) + o(n)

=
c0

2
n log n +

(c1

2
− c0

4

)

n + o(n).

The same estimate holds for[zn]z−1
I0[A](z). Iterating the estimates, we obtain

[zn]2d
(

I0 ◦
(
z−1

I0

)d−1
)

[A](z) = c0n log n +

(

c1 −
d

2
c0

)

n + o(n).

Consequently,

Bn =
d

2
c0n + o(n) = n + o(n).

ThusBn − n = o(n) and the remaining proof uses the same argument as in part(i). This completes the
proof of (13).
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2.4 Asymptotic transfer III. Large toll functions

We prove the asymptotic transfer (15) for large toll functions. For general divide-and-conquerrecurrences,
such a case is always easier than that of small toll functions, one simple reason being that the major
contribution comes from a few large terms instead of summingover all small parts like the small toll
functions case. More precisely, we expect that most contribution comes from the term2dB(z) in (22), the
other termg(z) being asymptotically negligible.

Assume thatBn ∼ cnυ, whereυ > 1. We start again from (25), which gives

An = Bn + [zn]
(
Iλd−1

◦ · · · Iλ1
◦ I2

)
[g + 2dB](z)

= Bn + A[1]
n + A[2]

n ,

where, by successive applications of (28), we have

A[2]
n := 2d[zn]

(
Iλd−1

◦ · · · Iλ1
◦ I2

)
[B](z)

∼ c2d

P0(υ + 1)
nυ.

To estimateA[1]
n , we first considerg∗(s) =

∫ 1

0
(1−x)s−1g(x) dx, which, by (34), satisfies the recurrence

equation

g∗(s) =

∫ 1

0

(1 − x)s−1
(
P0(ϑ)f(x) − 2dB(x)

)
dx

=
∑

1≤j<d

Pj(j + s)

P0(j + s)

(
g∗(j + s) + 2dB∗(j + s)

)
, (45)

for sufficiently larges. SinceBn ∼ cnυ, we deduce thatB∗(s) is finite fors > υ + 1. The same argument
as forΛ(s) shows thatg∗(s) is finite fors > υ. This implies, in particular, that

∣
∣
∣
∣

∫ 1

0

(1 − x)υ−εg(x) dx

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
Γ(υ + 1 − ε)

∑

k≥0

Γ(k + 1)

Γ(k + υ + 2 − ε)
[zk]g(z)

∣
∣
∣
∣
∣
< ∞.

Now by (29) with υ = 2

[zn]I2[g](z) = (n + 1)
∑

0≤k<n

[zk]g(z)

(k + 1)(k + 2)
.

Let Sk :=
∑

0≤j≤k Γ(j + 1)[zj]g(z)/Γ(j + υ + 2 − ε). ThenSk = O(1) and, by partial summation,

(n + 1)
∑

0≤k<n

[zk]g(z)

(k + 1)(k + 2)
= (n + 1)

∑

0≤k<n

Γ(k + 1)

Γ(k + υ + 2 − ε)
[zk]g(z) · Γ(k + υ + 2 − ε)

Γ(k + 3)

= (1 − υ + ε)(n + 1)
∑

0≤k≤n

Sk
Γ(k + υ + 2 − ε)

Γ(k + 4)
+ O(nυ−ε)

= O(nυ−ε).

Applying now successively (28), we obtainA[1]
n = O(nυ−ε) = o(nυ).

From these estimates, it follows that

An ∼ cnυ +
c2d

(υ + 1)d − 2d
nυ,

which implies the sufficiency part of (15).
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Necessity in (15). Assume thatAn ∼ K3cn
υ, whereK3 = (υ + 1)d/((υ + 1)d − 2d). Then, similarly to

the necessity proof for case(i),

[zn]2d
(

I0 ◦
(
z−1

I0

)d−1
)

[A](z) ∼ 2d

(υ + 1)d
nυ,

by successive applications of (28). Then

Bn ∼ K3c

(

1 − 2d

(υ + 1)d

)

nυ ∼ cnυ.

Simple transfers for the quadtree recurrence (7). The same proof also gives the followingO- and
o-transfers.

Lemma 4. Assumev > 1. Then

Bn = O(nv) iff An = O(nv). (46)

The same result holds withO replaced byo.

Note that the results for large toll functions can also be proved by other elementary means, but the
proof given here based on iterative operators applies for all cases, and is thus more general and uniform.

Recurrence of the Cauchy-Euler part. The preceding analysis shows that whenBn is larger than lin-
ear, the contribution fromg(z) to An is asymptotically negligible. Thus in this caseAn ∼ A

[2]
n , where

P0(ϑ)(A[2](z) − B(z)) = 2dB(z), or in terms of recurrence

A[2]
n = Bn + 2d

∑

0≤j<n

π̃n,jA
[2]
j ,

where

π̃n,j =
1

n

∑

j<j1<···<jd−1<n

1

j1 · · · jd−1

,

which is to be compared with the alternative expression forπn,j (see [19])

πn,j =
1

n

∑

j<j1≤···≤jd−1≤n

1

j1 · · · jd−1

.

2.5 Asymptotic transfer IV. Further refinements

When more precise information onBn is available, we can refine the preceding approach and obtain
more effective approximations toAn. We consider the following two cases for later use. Recall that
2e2πi/d = α + 1 + iβ.

Proposition 1. Assume thatAn satisfies (7).

(i) If Bn ∼ cnυ, wherec, υ ∈ C andα < ℜ(υ) < 1, then

An = KBn +
c(υ + 1)d

(υ + 1)d − 2d
nυ + o(nℜ(υ) + nε),

whereKB is defined in (16).
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(ii) If Bn = o(nα), then

An = KBn + K(λ1)n
α+iβ + K(λ2)n

α−iβ + o(nα + nε), (47)

where theK(λj)’s are defined in (48). If theBk’s are all real, thenK(λ1) = K(λ2).

Proof.The proof consists of refining the analysis for the small tollfunctions part of Theorem2 using the
arguments for large toll functions.

Case(i). SinceBn ∼ cnυ, the series in (12) obviously converges. Thus, by (29), we first have

[zn]I2[g + 2dB](z) = (n + 1)

(
∑

k≥0

gk + 2dBk

(k + 1)(k + 2)
−

∑

k≥n

gk + 2dBk

(k + 1)(k + 2)

)

= K ′n − n
∑

k≥n

gk

(k + 1)(k + 2)
− c2d

1 − υ
nυ + o(nℜ(υ)) + O(1),

wheregk := [zk]g(z) andK ′ =
∫ 1

0
(1 − x)

(
g(x) + 2dB(x)

)
dx.

By the same arguments used forg∗(s) in (45), we deduce thatB∗(s) is finite for s > ℜ(υ) + 1 and
g∗(s) is bounded fors > ℜ(υ). It follows, by the same summation by parts argument used forA

[1]
n , that

n
∑

k≥n

gk

(k + 1)(k + 2)
= O

(
nℜ(υ)−ε

)
.

Thus

[zn]I2[g + 2dB](z) = K ′n − c2d

1 − υ
nυ + o(nℜ(υ)) + O(1).

We may assume thatℜ(υ) > 0; otherwise all error terms are absorbed ino(nε).
Consider now

[zn] (Iλ1
◦ I2) [g + 2dB](z) =

Γ(n + λ1)

Γ(n + 1)

∑

0≤k<n

Γ(k + 1)

Γ(k + 1 + λ1)

(

K ′k − c2d

1 − υ
kυ + o(kℜ(υ) + kε)

)

=
K ′

2 − λ1

n − c2d

(1 − υ)(υ + 1 − λ1)
nυ + o(nℜ(υ) + nε),

again by (29). Repeating the same procedure, we obtain

An − Bn = [zn]f(z) =
K ′

P ′
0(2)

n +
c 2d

P0(υ + 1)
nυ + o(nℜ(υ) + nε),

which proves(i) sinceKB = K ′/P ′
0(2).

Case(ii). Now, similarly as above, we have

[zn]I2[g + 2dB](z) = K ′n + o(nα + nε),

[zn]Iλj
[g + 2dB](z) = K ′

jn
λj−1 + o(nα + nε),
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where

K ′
j :=

1

Γ(λj)

∫ 1

0

(1 − x)λj−1
(
g(x) + 2dB(x)

)
dx (j = 1, 2).

Substituting these estimates into (41) gives

[zn] (Iλ2
◦ Iλ1

◦ I2) [g + 2dB](z) =
K ′

(2 − λ1)(2 − λ2)
n +

K ′
1

(λ1 − 2)(λ1 − λ2)
nλ1−1

+
K ′

2

(λ2 − 2)(λ2 − λ1)
nλ2−1 + o(nα + nε).

Applying successively (28) to the remaining operatorsIλj
for j = 3, . . . d − 1, we obtain (47), where

K(λj) =
2d

P ′
0(λj)Γ(λj)

∑

k≥0

B∗(λj + k)Vk(λj) (j = 1, 2), (48)

whereVk(λj) satisfies the recurrence

Vk(λj) =
∑

1≤ℓ<d

Pi(λj + ℓ)

P0(λj + ℓ)
Vk−ℓ(λj),

with Vk(λj) = 0 if k < 0 andV0(λj) = 1.
The same proof for proving Lemma3 also implies thatVk(λj) satisfies the DE

Dz (z(1 − z)Dz)
d−1 (

zλjV (z)
)
− 2dzλj−1V (z) = 0,

and it follows thatVk(λj) = O
(
k−1(log k)d−2

)
. This justifies the absolute convergence of the series (48).

In a similar way, we also have the following simpler transfer.

Corollary 1. Assume thatℜ(υ) < 1 andυ 6= α ± iβ. If Bn = O(nℜ(υ)), thenAn = KBn + O(nℜ(υ) +
nα + nε); if Bn = o(nℜ(υ)), thenAn = KBn + o(nℜ(υ)) + O(nα + nε).

3 Limit laws of Xn: from normal to periodic

We prove first Theorem1 in this section. Although the first part of Theorem1 is implied by Theorem4
below, we give the main steps of the proof by the moment-transfer approach for more logical reasons: first
the mean and variance are needed by both proofs (although with different degrees of precision); second, the
main hard part of the proof of Theorem4 consists in refining the estimates of some recursive functionals
of moments. We then sketch extensions of the same types of limit results to other toll functions.

The proofs here rely strongly on the different types of asymptotic transfer we developed in Section2.

3.1 Limit theorems for the number of leaves

Expected number of leaves. By (5), we see that the mean number of leaves in a random quadtree ofn
nodes satisfies the recurrence (7) with Bn = δn,1 andA0 = 0. ThenB(x) = x andB∗(s) = s−1(s + 1)−1.
Applying (47), we obtain

E(Xn) = µdn + c+nα+iβ + c−nα−iβ + o(nα + nε), (49)
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for d ≥ 1, wherec+ = K(λ1) andc− = K(λ2) with B∗(s) = s−1(s + 1)−1. In particular,

µd =
2

d

∑

k≥0

Vk

(k + 2)(k + 3)
.

This proves (3) with G1(x) = c+eiβx + c−e−iβx; see Figure2 for a plot of the fluctuations of the error
terms. We now show that

µd =
2d+1

d

∑

k≥2

1

kd[k]!

(

(k − 1)
∑

1≤j<d

(ψ(k + 1 − λj) − ψ(k)) − 2

)

, (50)

for d ≥ 2, which gives an alternative expression to (2).
To prove (50), we apply the integral representation (40), where

Υ(s) :=
∑

k≥0

Γ(k + 2)Γ(1 − s)

(k + 2)(k + 3)Γ(k + 2 − s)

= s2ψ′(−s) + s − 1

2
(ℜ(s) < 1).

Now Υ has double poles at all positive integers. Summing over all residues of the double poles of the
integrand in (40), we obtain (50) by absolute convergence (sinceΥ(s) = O(|s|−1) as|s| → ∞ ands is at
leastε away from all positive integers). Note that

(k − 1)
∑

1≤j<d

(ψ(k + 1 − λj) − ψ(k)) − 2 = d − 1 + O(k−1);

thus the general terms in (50) decrease at the rateO(k−d).
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Figure 2:Periodic fluctuations ofn−α(E(Xn) − µdn) for n = 4, . . . , 1000 andd = 6, . . . , 10.
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Recurrence of higher moments. For higher moments, we start from the by now standard trick ofshifting
the mean; thus we consider the moment generating function

Mn(y) := E

(

exp

(

Xn − µdn − µd

2d − 1

)

y

)

,

which satisfies, by (5), the recurrence

Mn(y) =
∑

j1+···+j
2d=n−1

πn,jMj1(y) · · ·Mj
2d

(y) (n ≥ 2),

with the initial conditionsM0(y) = e−µdy/(2d−1) andM1(y) = e(1−2dµd/(2d−1))y. Note that the additional
factorµd/(2

d − 1) subtracted has the effect of keeping the recurrence simpler.
DefineMn,k := M

(k)
n (0) = E

(
(Xn − µdn − µd/(2

d − 1))k
)
. ThenMn,k satisfies the recurrence

Mn,k = Qn,k + 2d
∑

0≤j<n

πn,jMj,k (n ≥ 2),

with the initial conditionsM0,k = (−1)kµk
d/(2

d − 1)k andM1,k = (1 − 2dµd/(2
d − 1))k, where

Qn,k =
∑

j1+···+j
2d=n−1

i1+···+i
2d=k

i1,...,i
2d<k

(
k

i1, . . . , i2d

)

πn,jMj1,i1 · · ·Mj
2d ,i

2d
(n ≥ 2).

Note that by (3)

Mn,1 =

{
O (nα + nε) , if 1 ≤ d ≤ 8;
G1(β log n)nα + o(nα), if d ≥ 9.

(51)

Variance. We now prove the asymptotic estimate (4). First we have, by symmetry,

Qn,2 = 2d+1
∑

j1+···+j
2d=n−1

πn,jMj1,1

(
Mj2,1 + · · · + Mj

2d ,1

)
.

If 1 ≤ d ≤ 8, then the estimate (51) implies thatQn,2 = O(n1−2ε). Thus a straightforward application
of (12) yields

Mn,2 = E

((

Xn − µdn − µd

2d − 1

)2
)

∼ σ2
dn,

which, byV(Xn) = Mn,2 − M2
n,1 and (51), implies (4). Hereσ2

d is given by

σ2
d =

2

d

∑

k,m≥0

Vkm!Qm,2

(k + 2) · · · (k + m + 2)
, (52)

with Q0,2 andQ1,2 properly defined. We will consider numeric evaluations ofσ2
d later.

If d ≥ 9, then, by (51),

Qn,2 = 2d+1
∑

j1+···+j
2d=n−1

πn,j

(

c+jα+iβ
1 + K(λ2)j

α−iβ
1

)

×
∑

2≤ℓ≤2d

(

c+jα+iβ
ℓ + K(λ2)j

α−iβ
ℓ

)

+ o(n2α).
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By the strong law of large numbers, we have

Qn,2 = 2d+1

∫

[0,1]d

∑

2≤ℓ≤2d

(

c2
+q1(x)α+iβqℓ(x)α+iβn2α+2iβ

+ c+c−
(
q1(x)α+iβqℓ(x)α−iβ + q1(x)α−iβqℓ(x)α+iβ

)
n2α

+ c2
−q1(x)α−iβqℓ(x)α−iβn2α−2iβ

)

dx + o(n2α),

where theqh(x)’s are defined in (6). The integrals can be simplified as follows.

η(u, v) :=

∫

[0,1]d
q1(x)u

∑

2≤ℓ≤2d

qℓ(x)v dx

=
∑

0≤ℓ<d

(
d

ℓ

)(
1

u + v + 1

)ℓ (
Γ(u + 1)Γ(v + 1)

Γ(u + v + 2)

)d−ℓ

=

(
1

u + v + 1
+

Γ(u + 1)Γ(v + 1)

Γ(u + v + 2)

)d

−
(

1

u + v + 1

)d

, (53)

for ℜ(u),ℜ(v) > −1. Thus

Qn,22
−d−1 = c2

+η(α + iβ, α + iβ)n2α+2iβ + 2c−c+η(α + iβ, α − iβ)n2α

+ c2
−η(α − iβ, α − iβ)n2α−2iβ + o(n2α).

Transferring this approximation term by term using (15) gives

Mn,2 = G̃2(β log n)n2α + o(n2α),

where

G̃2(u) := 2d+1c2
+η(α + iβ, α + iβ)

(2α + 2iβ + 1)d

P0(2α + 2iβ + 1)
e2iβu

+ 2d+2c−c+η(α + iβ, α − iβ)
(2α + 1)d

P0(2α + 1)

+ 2d+1c2
−η(α − iβ, α − iβ)

(2α − 2iβ + 1)d

P0(2α − 2iβ + 1)
e−2iβu.

This proves (4) with G2(x) = G̃2(x) − G1(x)2.

Asymptotic normality for 1 ≤ d ≤ 8. The same arguments used above for the variance also apply for
Mn,k for k ≥ 3. By induction, we obtain







Mn,2k ∼ (2k)!

2kk!
σ2k

d n2k;

Mn,2k−1 = o(nk−1/2),

for k ≥ 1; details are omitted here for conciseness; see [3] for a similar proof. This proves the first part of
Theorem1.
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Periodic fluctuations for d ≥ 9. In this case, the same calculations forV(Xn) can be extended to show
that

E

((

Xn − µdn − µd

2d − 1

)k
)

∼ G̃k(β log n)nkα (k ≥ 2); (54)

where theG̃k’s are bounded periodic functions. Then the proof that thereis no fixed limit law for(Xn −
E(Xn))/

√

V(Xn) follows the same arguments used in [3].
Instead of giving the messy details of the proof for (54), we sketch the proof for

‖Xn − µdn − 2ℜ(nα+iβX)‖p = o(nα) (p ≥ 2), (55)

where‖Z‖ = (E|X|p)1/p denotes the usualLp norm. HereX is a random variable withE(X) = c+ (see
(49)) and defined by

X
D
= 〈U〉α+iβ

1 X(1) + · · · + 〈U〉α+iβ
2d X(2d),

where theX(i)’s are independent copies ofX and the〈U〉i’s are the volumes of the2d quadrants split by a
random point in[0, 1]d. Part(ii) of Theorem1 also follows from (55).

It suffices to provep = 2, the remaining cases following by induction. The argumentsused here are
modified from those in [15] for randomm-ary search trees.

Define

ξn :=
∥
∥
∥Xn − µdn − 2

∑

1≤j≤2d

ℜ
(

Jα+iβ
j X(j)

)∥
∥
∥

2
,

ηn :=
∥
∥
∥2

∑

1≤j≤2d

ℜ
(

Jα+iβ
j X(j)

)

− 2
∑

1≤j≤2d

ℜ
(

nα+iβ〈U〉α+iβ
j X(j)

)∥
∥
∥

2
.

We prove thatξn, ηn = o(nα), which will then imply (55) for p = 2.
First by the decomposition

ξn ≤ ‖Xn − µdn‖2 + 2d+2‖Jα+iβ
1 X(1)‖2,

we deduce thatξn = O(nα). Then by the recurrence (5), we have the inequality

ξ2
n ≤

∑

1≤j≤2d

E
(
ξJj

+ ηJj

)2
+ o(n2α).

This, together with the estimate

ηn ≤ 2d+2nα‖X(1)‖2

∥
∥
∥

(
J1

n

)α+iβ

− 〈U〉α+iβ
2

∥
∥
∥

2
= o(nα),

gives

ξ2
n ≤ 2d

∑

0≤j<n

πn,jξ
2
j + o(n2α)

= o(n2α),

by theo-version of (46).
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d µd ≈
2 0.47841 76043 57434 47533 79639 99504 60454 12547 97628
3 0.56850 70194 06572 68270 35257 03246 03680 11920 50021
4 0.63168 48783 52998 69050 68769 97892 90145 67365 77851
5 0.67906 23676 94926 62299 74554 08602 48628 92348 92646
6 0.71615 83294 69847 70674 65510 61878 16738 93088 58805
7 0.74609 46112 09331 64803 70711 94105 57503 99390 36451
8 0.77079 60778 85838 99509 15248 99261 83895 90393 54520
9 0.79152 59978 40106 48407 81034 62942 59540 22737 03660
10 0.80915 45900 27608 17078 62137 34456 57737 58997 15908

Table 2: Approximate numeric values ofµd for d = 2, . . . , 10.

3.2 Numerics ofµd and σ2

d

We consider means of computing numerically the constantsµd andσ2
d.

Numerical values ofµd. To compute the constantsµd to high precision, one can use either (2) or (50)
by the standard procedure: compute the first few terms exactly and estimate the remaining terms by their
asymptotic behaviors.

An alternative procedure is described in the last section. Consider f̄(z) := f(z) − ∑

2≤j<N Ajz
j

(A1 = B1 andBn = 0 for n ≥ 2) for a suitably large numberN , say50. Exact values ofAn can be easily
computed by the exact expression (1) whenn is small. Observe that

ϑ(zϑ)d−1
∑

j≥N

cjz
j =

∑

j≥N−1

c′jz
j.

Thus the right-hand side of the DE

(
ϑ(zϑ)d−1 − 2d

)
f̄ = 2dz −

(
ϑ(zϑ)d−1 − 2d

) ∑

2≤j<N

Ajz
j,

contains only monomialszj with N < j < N + d. Then the newB∗(s) is of orders−N for larges,
implying a better convergence rate for the series (16) sinceVk remains the same and can be computed
recursively. Then we need only compute the first few terms (10 for example) of the series (16) to give the
required degree of precision. In this way, we obtain Table3.2. Such a procedure is also useful for other
constants such asσ2

d.

Expressions forσ2
d. We first derive more explicit expressions forMn,2 in (52) before computingσ2

d.
We start from the bivariate generating functionF (z, y) :=

∑

n≥0 E(eXny)zn/n!, which satisfies, by
(5), the equation

∂

∂z
F (z, y) = ey − 1 +

∫

[0,1]d
F (q1(x)z, y) · · ·F (q2d(x)z, y) dx.

In particular,F (z, 0) = ez.
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Then the Poisson generating function

F̃ (z, y) = e−z
∑

n≥0

Mn(y)
zn

n!
= e−z

∑

n≥0

E(e(Xn−µdn−µd/(2d−1))y)
zn

n!

satisfies the equation

F̃ (z, y) +
∂

∂z
F̃ (z, y) = e−z(ey − 1)e−2dµdy/(2d−1) +

∫

[0,1]d
F̃ (q1(x)z, y) · · · F̃ (q2d(x)z, y) dx.

Let F̃ (z, y) =
∑

j≥0 F̃j(z)yj/j!. Then

F̃ ′
1(z) + F̃1(z) = e−z + 2d

∫

[0,1]d
F̃1(x1 · · · xdz) dx,

with the initial conditionF̃1(0) = −µd/(2
d − 1). The coefficientsun := n![zn]F̃1(z) satisfy

un+1 + un = (−1)n +
2d

(n + 1)d
un,

which, after iterating, can be solved to be

un = (−1)n−1
∑

2≤k≤n

∏

k<ℓ≤n

(

1 − 2d

ℓd

)

= (−1)n−1[n]!
∑

2≤k≤n

1

[j]!
,

for n ≥ 2, with u0 = −µd/(2
d − 1) andu1 = 1 − µd.

For F̃2(z), we have the same type of equation

F̃ ′
2(z) + F̃2(z) = g̃2(z) + 2d

∫

[0,1]d
F̃2(x1 · · ·xdz) dx,

with the initial conditionF̃2(0) = µ2
d/(2

d − 1)2, where

g̃2(z) :=

(

1 − 2d+1µd

2d − 1

)

e−z + 2d

∫

[0,1]d
F̃1(x1 · · ·xdz)

∑

2≤ℓ≤2d

F̃1(qℓ(x)z) dx. (56)

Observe that

n![zn]2d

∫

[0,1]d
F̃1(x1 · · ·xdz)

∑

2≤ℓ≤2d

F̃1(qℓ(x)z) dx = 2d
∑

0≤j≤n

(
n

j

)

ujun−jη(j, n − j),

whereη(j, n − j) is defined in (53).
By (56), we then have forn ≥ 0

vn := n!(−1)n[zn]g̃2(z) = 1 − 2d+1µd

2d − 1
+ 2d(−1)n

∑

0≤j≤n

(
n

j

)

ujun−jη(j, n − j).

It follows that
n![zn]F̃2(z) = (−1)n−1[n]!

∑

1≤k<n

vk

[k + 1]!
(n ≥ 2),
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d σ2
d ≈

2 0.06145 73978 66984 07284 36701 54743 66750 63784
3 0.06802 65800 83909 72781 61723 15284 91262 75906
4 0.07090 19719 94546 02309 70950 30497 53882 55032
5 0.07261 12472 86535 68765 26637 38060 39503 98071
6 0.07449 21253 93111 00674 61761 51696 97039 29930
7 0.07731 76983 93655 71830 91768 87307 89088 95507
8 0.08123 98836 52827 96294 47650 19430 64044 32562

Table 3: Approximate numeric values ofσ2
d for d = 2, . . . , 8. Note thatσ2

1 = 2/45 ≈ 0.04444 . . . .

with F̃2(0) = µ2
d/(2

d − 1)2 andF̃ ′
2(0) = 1 − 2d+1µd/(2

d − 1) + (2d + 1)µ2
d/(2

d − 1), and consequently

Mn,2 = E

(

Xn − µd

(

n +
1

2d − 1

))2

=
µ2

d

(2d − 1)2
+

(

1 − 2d+1µd

2d − 1
+

2d + 1

2d − 1
µ2

d

)

n −
∑

2≤k≤n

(
n

k

)

(−1)k[k]!
∑

1≤j<k

vj

[j + 1]!
.

This provides a less dimension dependent expression for computingMn,2 for small values ofn needed for
computing the approximate values ofσ2

d in Table3.2.
Note that for1 ≤ d ≤ 8, Mn,1 = O(n0.42) and

V(Xn) = Mn,2 − M2
n,1 = E

(

Xn − µd

(

n +
1

2d − 1

))2

− M2
n,1;

Thus to compute the limiting constantσ2
d of V(Xn)/n, it suffices to computeMn,2.

By the same procedure for computingµd, we obtain Table3.2.
Note that

Qn,2 = [zn−1]ez g̃2(z) =
∑

0≤j<n

(
n − 1

j

)

(−1)jvj (n ≥ 1).

For consistency, we can defineQ0,2 := µ2
d/(2

d−1)2. ThenQ1,2 = v0 = 1−2d+1µd/(2
d−1)+2dµ2

d/(2
d−1)

and forn ≥ 2

Qn,2 = 2d
∑

0≤m<n

(
n − 1

m

)
∑

0≤j≤m

(
m

j

)

ujum−jη(j,m − j).

3.3 Phase change of other cost measures

Consider the random variables defined recursively by

Yn
D
= Y

(1)
J1

+ · · · + Y
(2d)
J
2d

+ Tn (n ≥ 1), (57)

with Y0 given, where the(Y (i)
n )’s are independent copies ofYn andTn is a known random variable (often

called “toll function”).
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3.3.1 Phase change of general toll functions

Our method of proof extends easily to cover a wide class of toll functions. We formulate a simple result
for deterministic toll functions as follows.

Theorem 3. If Tn = O(n1/2(log n)−1/2−ε) andTn is not identically1 for all n ≥ 1, then

Yn − µ′
dn

σ′
d

√
n

D→ N(0, 1),

for 1 ≤ d ≤ 8, whereµ′
d andσ′

d are constants; ifd ≥ 9, then the sequence of random variables(Yn −
E(Yn))/

√

V(Yn) does not converge to a fixed limit law.

The proof follows from that for Theorem1 and is omitted. Both constantsµ′
d andσ′

d can be computed
by the same procedure as forµd andσd.

By the recurrence

V(Yn) =
∑

0≤j<n

πn,j

(
E(Yj1) + · · · + E(Yj

2d
) − E(Yn) + Tn

)2
+ 2d

∑

0≤j<n

πn,jV(Yj),

we see that the variance is identically zero iffTn ≡ 1 for n ≥ 1. In this case,Yn ≡ n (the total number of
nodes in the tree). This also implies, when applying (12), the identity

2

d

∑

k≥0

Vk

(k + 1)(k + 2)
= 1 (d ≥ 1). (58)

The same method of proof we used for proving Theorem1 also applies to cover the case whenTn ∼√
n, which still leads to asymptotic normality forYn when1 ≤ d ≤ 8 with linear mean but with variance

of ordern log n. The same non-existence of fixed limit law also holds in the wider rangeTn = o(nα) when
d ≥ 9. More cases can be clarified as in [7]. Since the number of concrete examples (directly related to
cost measures of algorithms or quadtrees) is limited, we stop from considering other general limit results.

3.3.2 Concrete examples and extensions

We briefly discuss instead a few instances ofTn studied before in the literature.

Paging. The page usage of random quadtrees was studied in [26] and [19]; it can be regarded as a
generalization of the number of leaves and satisfies (57) with Tn = 1 whenn > b, andTn = 0 otherwise,
whereb ≥ 0 is a predetermined structural constant. We can also viewYn as enumerating the number of
nodesx with subtree sizes rooted atx larger thanb.

By Theorem3, the page usage in random quadtrees undergoes the same type ofphase change (of limit
laws) as the number of leaves. The mean constant is given by

µ′
d(b) =

2

d

∑

k≥0

(b + 1)!Vk

(k + 1)(k + 2) · · · (k + b + 2)
.
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If d = 2, then (see (35))

µ′
2(b) = 12(b + 1)!

∑

k≥0

(k + 1)!

(k + 3)(k + 4)(k + b + 2)!

= 12(b + 1)

∫ 1

0

(1 − x)bx−3

(

(1 − x) log(1 − x) + x − x2

2
− x3

6

)

dx

= 6b2 + 9b + 1 − b(b + 1)2π2 + 6b(b + 1)2
∑

1≤j≤b

j−2,

which coincides with the expression first derived in [26].
Ford ≥ 3, expressions forµ′

d are less explicit. We first simplifyΥ(s) (see (40)) as follows.

Υ(s) =
∑

k≥0

(b + 1)!

(k + 2) · · · (k + b + 2)
· Γ(k + 1)Γ(1 − s)

Γ(k + 2 − s)

= (b + 1)
∑

0≤ℓ≤b

(
b

ℓ

)

(−1)ℓΩℓ+2(s),

where

Ωa(s) :=

∫ 1

0

(1 − x)−s
∑

k≥0

xk

k + a
dx (ℜ(s) < 1; a = 0, 1, . . . ),

(whena = 0, the term corresponding tok = 0 is dropped). Obviously,Ω0(s) = (s − 1)−2, and

Ω1(s) =
∑

k≥1

1

(s − k)2
= ψ′(1 − s) (ℜ(s) < 1).

By an integration by parts, we have the recurrence

Ωa+1(s) =
s

a
Ωa(s + 1) +

1

a2
− 1

as
(a ≥ 1).

By induction

Ωa(s) =

(
s + a − 2

a − 1

)

ψ′(1 − s) + poly1(a; s) (a = 1, 2, . . . ),

where poly1(a; s) is a polynomial of degreea− 2 such thatΩa(s) is of growth order|s|−1 at infinity (with
|s − k| ≥ ε). More precisely, since

ψ′(1 − s) =
∑

j≥0

(−1)j+1
Bjs

−j−1 (|s| → ∞, | arg(−s)| ≤ π − ε),

where theBj ’s denote Bernoulli numbers (see [14, p. 47, Eq. (7)])

poly1(a; s) =
∑

1≤j<a

sj−1
∑

j≤ℓ<a

|s(a − 1, ℓ)|
(a − 1)!

(−1)j−ℓ
Bj−ℓ (a ≥ 2),

where thes(a − 1, j)’s denote Stirling numbers of the first kind. From this expression, we deduce the
representation

Υ(s) =
(−1)b

b!
s(s − 1) · · · (s − b)ψ′(1 − s) + poly2(b; s),
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where poly2(b; s) is a polynomial of degreeb such thatΥ(s) is of growth order|s|−1 at infinity (with
|s − k| ≥ ε).

Then the integrand in the integral (40) has simple poles ats = 1, 2, . . . , b and double poles ats =
b + 1, b + 2, . . . . Summing over all residues of the poles yields

µ′
d(b) =

2d+1

d

∑

1≤k≤b

(−1)k

(
b
k

)
(k + 1)dk[k + 1]!

+
2d+1

d

∑

k>b

(−1)b(b + 1)
(

k
b+1

)

(k + 1)dk[k + 1]!

(
∑

1≤j<d

(ψ(k + 2 − λj) − ψ(k + 1)) − ψ(k + 1) + ψ(k − b)

)

.

Note that the last series diverges forb ≥ d. Numerically, the procedure we used for computingµd is
preferable.

Whenb ≥ d, we can use the recurrence

µ′
d(b) = 2−d

∑

0≤j≤d

Rd,jµ
′
d(b + j − 1) (b ≥ 1), (59)

so that once the values{µ′
d(0), . . . , µ′

d(d− 1)} are known, all values ofµ′
d(b) for higher values ofb can be

computed successively. HereRd,j is defined recursively asR0,0 := 1 and

Rd,j = (b + j + 1)Rd−1,j − (b + j − 1)Rd−1,j−1 (0 ≤ j ≤ d), (60)

with Rd,j = 0 whenj < 0 or j > d. The recurrence (59) is proved using the DE (37) and successive
integration by parts as follows.

µ′
d(b) =

2

d

∫ 1

0

(1 − x)b+1V (x) dx

=
21−d

d

∫ 1

0

(1 − x)b

x2
(x(1 − x)D)d x2V (x) dx

=
21−d

d

∫ 1

0

(1 − x)bRd(x)V (x) dx,

whereRd(x) = Rd(b; x) is defined by

Rd(x) :=
x2

(1 − x)b
(−Dx(1 − x))d (1 − x)b

x2

=
∑

0≤j≤d

Rd,j(1 − x)j,

with Rd,j satisfying (by induction) the recurrence (60). Thus (59) follows. Note that whenb = 0

µ′
d(0) =

2

d

∫ 1

0

(1 − x)V (x) dx =
21−d

d

∫ 1

0

V (x) dx = 1,

which can be proved directly by (40); see also (58).
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Node sorts. If Tn is equal to the probability that the root hasb nonempty subtrees, where0 ≤ b ≤ 2d,
thenYn represents the number of nodes in random quadtrees having exactlyb nonempty subtrees. The same
type of phase change phenomenon holds since the toll function is bounded; see [34, 35] for expressions
for the probability the root havingb subtrees.

In general, ifTn = δn,b, whereb ≥ 0, then the limitsµ′
d = µ′

d(b) of E(Yn)/n are calleduniversal
constantsin [36] since for general toll functionsTn with linear mean the linearity constant can be expressed
in terms of theµ′

d(b)’s as
∑

b≥1 Tbµ
′
d(b). Expressions forµ′

d(b) can be derived similar to the previous case.
We have

Υ(s) = Υb(s) =
∑

k≥0

b!Γ(k + 1)Γ(1 − s)

(k + 2) · · · (k + b + 2)Γ(k + 2 − s)

= −
∑

0≤ℓ≤b

(
b

ℓ

)

(−1)ℓ(ℓ + 1)Ωℓ+2(s)

= (−1)b+1 s2(s − 1) · · · (s − b + 1)

b!
ψ′(1 − s) + poly3(b; s),

where poly3(b; s) is a polynomial of degreeb such thatΥ(s) is of growth order|s|−1 at infinity (with
|s − k| ≥ ε). Also µ′

d(b) satisfies the recurrence

µ′
d(b) = 2−d

∑

0≤j≤d

Rd,jµ
′
d(b + j − 1) (b ≥ 1),

with Rd,j satisfyingRd,j = (b + j)Rd−1,j − (b + j − 1)Rd−1,j−1 for 0 ≤ j ≤ d. Note that in this case
Rd,0 = bd andRd,j = (−1)d−1(Pj−1(−b) − Pj(−b)) for 1 ≤ j ≤ d.

Total path length. In this case,Tn = n−1. Although Theorem3 does not apply, our method of moments
does, and we obtain convergence of all moments of(Yn−E(Yn))/n to some non-normal limit law for each
d ≥ 1; see [40], and [30] for similar details. In particular, the mean satisfies (see(14))

E(Yn) ∼ 2

d
n log n −

(

2 +
2

d
− 2γ − 2

d

∑

1≤j<d

ψ(2 − λj)

)

n,

and the variance is asymptotic toK4n
2, where

K4 =
3d

3d − 2d

∫

[0,1]d



1 +
2

d

∑

1≤j≤2d

qj(x) log qj(x)





2

dx.

To evaluate the integral, let

η̃(u, v) =

∫

[0,1]d
q1(x)u

∑

1≤ℓ≤2d

qℓ(x)v dx.

Thenη̃(u, v) = η(u, v) + 1/(u + v + 1)d, whereη is defined in (53), so that

η̃(u, v) =

(
1

u + v + 1
+

Γ(u + 1)Γ(v + 1)

Γ(u + v + 2)

)d

.
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It follows that

K4 =
3d

3d − 2d

(

1 +
4

d
· ∂

∂v
η̃(0, v)

∣
∣
∣
v=1

+
4

d2
2d ∂2

∂u∂v
η̃(u, v)

∣
∣
∣
u=1,v=1

)

=
3d

3d − 2d
· 21 − 2π2

9d
;

see also [40].
Unlike the number of leaves and other small cost measures, there is no change of limit law for total

path length since the order of the variance is not alterned for increasingd.

Expected profiles (or depth). Denote byZn,k the number of nodes at distancek to the root; theZn,k’s
are informative shape characteristics often referred to asthe profilesof the trees. ThedepthDn is the
distance of a randomly chosen node (alln nodes being equally likely) to the root. Then the probability that
the depth isk equalsE(Zn,k)/n. Consider the level polynomialsLn(y) :=

∑

k E(Zn,k)y
k. ThenLn(y)

satisfies the recurrence
Ln(y) = 1 + 2dy

∑

0≤j<n

πn,jLj(y) (n ≥ 1),

with L0(y) = 0; see [19]. The same analysis for the small toll functions part of Theorem2 (and the error
analysis in Section2.5) appliesmutatis mutandisand yields

Ln(y) = K(y)n2y1/d−1 + O
(

n2ℜ(y1/de2πi/d)−1 + nε
)

, (61)

where theO-term holds uniformly fory lying in some complex neighborhood of unity, and

K(y) =
2dy1/d

d

∑

k≥2

∏

3≤ℓ≤k(1 − 2y1/d/ℓ)

kd−1
∏

3≤ℓ≤k(1 − 2dy/ℓd)

(

(k − 1)
∑

1≤j<d

(
ψ(k + 1 − λjy

1/d) − ψ(k)
)
− 1

)

.

Thus the asymptotic normality (with optimal Berry-Esseen bound) of the depthDn follows from (61) and
the so-called quasi-power approximation theorems; see [24, Sec. IX.5] or [27]. Note that

K(1) =
2d+1

d

∑

k≥2

1

kd[k]!

(
∑

1≤j<d

(ψ(k + 1 − λj) − ψ(k)) − 1

k − 1

)

= 1 (d ≥ 2);

compare (58).
A considerable simplification of the expression forK(y) can be obtained by applying the finite differ-

ence integral representation for the closed-form expression (see [19])

Ln(y) = n − (1 − y)
∑

2≤k≤n

(
n

k

)

(−1)k
∏

3≤j≤k

(

1 − 2d

jd
y

)

(n ≥ 0),

giving

Ln(y) = − 1

2πi

∫ 1

2
+i∞

1

2
−i∞

Γ(n + 1)Γ(−s)

Γ(n + 1 − s)Γ(s + 1)d

∏

0≤ℓ<d

Γ(s + 1 − λℓy
1/d)

Γ(2 − λℓy1/d)
ds.

Then, by moving the line of integration to the left and summing the simple poles encountered, we obtain

Ln(y) =
1

1 − 2dy
+ K(y)n2y1/d−1

(

1 + O
(

n−ε + n−2ℜ(y1/d(1−e2πi/d))
))

,
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uniformly for |y| ≥ 2−d + ε, where

K(yd) :=
1

Γ(2y)d(2y − 1)

∏

1≤ℓ<d

Γ(2y(1 − e2ℓπi/d))

Γ(2 − 2ye2ℓπi/d)
.

This explicit expression and the quasi-power theorems in [27] also give more precise estimates for the
mean and variance of the depth

E(Dn) =
2

d
log n + [t] logK(et) + o(1),

V(Dn) =
2

d2
log n + 2[t2] logK(et) + o(1),

where

[t] logK(et) = K2 − 1 = −2 − 2

d
+ 2γ +

2

d

∑

1≤j<d

ψ(2 − λj),

2[t2] logK(et) =
2

d
(1 + γ) − 2π2

3d
+

2

d2
+

2

d2

∑

1≤j<d

(ψ(2 − λj) + 2(1 − λj)ψ
′(2 − λj)) .

Note thatnE(Dn) equals the expected total path length, orAn whenBn = n − 1.

4 Second phase change: convergence rates and local limit theorems
for Xn

We consider the convergence rate and local limit theorem forXn, which undergo another phase change.
Local limit theorems are more informative and precise than asymptotic normality. We use characteristic
functions and standard Fourier analysis (see [42]), the main estimate needed being based on the refined
method of moments introduced in [28] and the refined asymptotic transfers developed in Section2.5.

Local limit theorems. To state our result, let

ᾱ :=

{
1/3, if 1 ≤ d ≤ 7;√

2 − 1, if d = 8.

Theorem 4. Uniformly forx = o(n1/2−ᾱ),

P

(

Xn =
⌊

Xn + x
√

V(Xn)
⌋)

=
e−x2/2

√

2πV(Xn)

(
1 + O

(
(1 + |x|3)n−3(1/2−ᾱ)

))
.

The error terms in both cases are, up to the implied constants, optimal. Numerically,3(1/2 − ᾱ) ≈
0.2573 when d = 8. This local limit theorem (in the range of moderate deviations) also implies the
following convergence rate

sup
x∈R

∣
∣
∣
∣
∣
P

(

Xn − E(Xn)
√

V(Xn)
< x

)

− Φ(x)

∣
∣
∣
∣
∣
=

{
O(n−1/2), if 1 ≤ d ≤ 7;

O(n−3(3/2−
√

2)), if d = 8,
(62)

whereΦ(x) = (2π)−1/2
∫ x

−∞ e−t2/2 dt.
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Moment generating function ofXn normalized by that of a normal distribution with the same mean
and variance. Let Πn(y) := E(eXny) andφn(y) := e−E(Xn)y−V(Xn)y2/2Πn(y). From the recurrence (5),
we have

φn(y) =
∑

j1+···+j
2d=n−1

πn,jφj1(y) · · ·φj
2d

(y)e∆n,jy+∇n,jy
2

(n ≥ 1),

with φ0(y) = 1, where

∆n,j = δn,1 + E(Xj1) + · · · + E(Xj
2d

) − E(Xn),

∇n,j =
1

2

(
V(Xj1) + · · · + V(Xj

2d
) − V(Xn)

)
.

Note thatφn(y) is in general not a moment generating function.

Recurrences. Defineφn,k := φ
(k)
n (0). Then by the recurrence ofφn(y), we have

φn,k = ψn,k + 2d
∑

0≤j<n

πn,jφj,k (n ≥ 1),

whereφ0,k = 0 and

ψn,k =
∑

i0+i1+···+i
2d+2i

2d+1
=k

0≤i1,...,i
2d<k

k!

i0! · · · i2d !i2d+1!

∑

j1+···+j
2d=n−1

πn,jφj1,i1 · · ·φj
2d ,i

2d
∆i0

n,j∇
i
2d+1

n,j .

A uniform upper bound for φn,k. Recall thatᾱ = 1/3 when1 ≤ d ≤ 7, andᾱ =
√

2 − 1 whend = 8.
We will prove, by an inductive argument, that

|φn,k| ≤ k!Aknkᾱ (k, n ≥ 0), (63)

whereA is a suitable constant that will be specified later. Note that(63) holds fork = 0, 1, 2.

An upper bound for ∆n,j. By the estimate (49), we have

∆n,j = O (nα) =

{
O

(
n1/3−ε

)
, if 1 ≤ d ≤ 7;

O
(

n
√

2−1
)

, if d = 8,
(64)

uniformly for all tuples(j1, . . . , j2d).

An upper bound for ∇n,j. We need to refine the asymptotic estimate (4). Since the variance satisfies the
recurrence

V(Xn) =
∑

j1+···+j
2d=n−1

πn,j∆
2
n,j + 2d

∑

0≤j<n

πn,jV(Xj),

and the first sum on the right-hand side is bounded above by

∑

j1+···+j
2d=n−1

πn,j∆
2
n,j =

{
O

(
n2/3−2ε

)
, if 1 ≤ d ≤ 7;

O
(

n2
√

2−2
)

, if d = 8,
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we obtain, by applying Corollary (1),

V(Xn) = σ2
dn +

{
O

(
n2/3−2ε

)
, if 1 ≤ d ≤ 7;

O
(

n2(
√

2−1)
)

, if d = 8.

This implies that

∇n,j =

{
O

(
n2/3−2ε

)
, if 1 ≤ d ≤ 7;

O
(

n2(
√

2−1)
)

, if d = 8.
(65)

An estimate for φn,3. From (64) and (65), it follows that

ψn,3 =

{
O (n1−ε) , if 1 ≤ d ≤ 7;

O
(

n3(
√

2−1)
)

, if d = 8.

Thus (63) holds fork = 3 by applying (12) when1 ≤ d ≤ 7 and (15) whend = 8.

Induction. For higher values ofk, we use the estimates (by (64) and (65))

|∆n,j| ≤ K5n
ᾱ, |∇n,j| ≤ K6n

2ᾱ, (66)

uniformly for all tuples(j1, . . . , j2d).
Assume that (63) holdsφn,i for i < k. Then by (66) and induction

|ψn,k| ≤ k!nkᾱ
∑

i0+···+i
2d+2i

2d+1
=k

0≤i1,...,i
2d<k

Ai1+···+i
2d

Ki0
5 K

i
2d+1

6

i0!i2d+1!

∑

j1+···+j
2d=n−1

πn,j

(
j1

n

)i1ᾱ

· · ·
(

j2d

n

)i
2d ᾱ

≤ k!nkᾱeK5+K6

∑

0≤ℓ≤k

AℓS(ℓ), (67)

where

S(ℓ) :=
∑

i1+···+i
2d=ℓ

∑

j1+···+j
2d=n−1

πn,j

(
j1

n

)i1ᾱ

· · ·
(

j2d

n

)i
2d ᾱ

.

An estimate for S(ℓ). We now show thatS(ℓ) → 0 asℓ → ∞.

Lemma 5. For ℓ ≥ 0

S(ℓ) ≤ c(ℓᾱ + 1)−d (d ≥ 1), (68)

wherec > 0 is independent ofℓ andn.

Proof. First, by the strong law of large numbers

S(ℓ) ≤ c

∫

[0,1]d

∑

i1+···+i
2d=ℓ

∏

1≤h≤2d

qh(x)ihᾱdx

= c2d[zℓ]

∫

[0,1/2]d

∏

1≤h≤2d

1

1 − qh(x)ᾱz
dx.
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Observe that the smallest term among theqh(x)’s is q2d(x) = (1 − x1) · · · (1 − xd) whenx ∈ [0, 1/2]d.
Thus the dominant term for largeℓ comes fromq2d(x), and it follows that

[zℓ]

∫

[0,1/2]d

∏

1≤h≤2d

1

1 − qh(x)ᾱz
dx ∼

∫

[0,1/2]d
q2d(x)ℓᾱ

∏

1≤h<2d

1

1 − qh(x)/q2d(x)
dx

∼
∫

[0,1/2]d
(1 − x1)

ℓᾱ · · · (1 − x1)
ℓᾱ dx

∼ (ℓᾱ + 1)−d.

This proves (68).

Proof of (63). Substituting the estimate (68) into (67), we obtain

|ψn,k| ≤
c

(kᾱ + 1)d
k!Aknkᾱ.

Then, by the asymptotic transfer (15),

|φn,k| ≤
c′

(kᾱ + 1)d
k!Aknkᾱ,

wherec′ is independent ofn andk. Thusc′/(kᾱ + 1)d < 1 for large enoughk, sayk ≥ k0. Hence, (63)
follows by suitably tuningA for k ≤ k0; see [1] for similar details.

An estimate for the characteristic function for small y. Denote byϕn(y) = Πn(iy/
√

V(Xn)). Then,
by (63) and the Taylor series expansion,

∣
∣
∣ϕn(y) − e−y2/2

∣
∣
∣ = O

(

|y|3n−3(1/2−ᾱ)e−y2/2
)

(69)

for |y| ≤ ε0n
1/2−ᾱ, whereε0 > 0 is sufficiently small.

A uniform estimate for Πn(iy) for |y| ≤ ε. From (69), we deduce that

|Πn(iy)| ≤ e−ε1(n+1)y2

(n ≥ 3), (70)

for |y| ≤ ε0n
−ᾱ, whereε1 is a suitably chosen small constant.

We now prove that the estimate (70) indeed holds for|y| ≤ ε2, ε2 > 0 being a small constant. To that
purpose, choosen0 large enough and setε2 := ε0n

−ᾱ
0 . Then, (70) holds for3 ≤ n ≤ n0 and|y| ≤ ε2. For

n > n0, by (5) and induction,

|Πn(iy)| ≤
∑

j1+···+j
2d=n−1

πn,j|Πj1(iy)| · · · |Πj
2d

(iy)|

≤ e−ε1(n+1)y2−ε1(2d−2)y2

≤ e−ε1(n+1)y2

.

This concludes the induction proof.
Reformulating the estimate (70) yields the following global estimate forϕn(y)

|ϕn(y)| = O
(

e−εny2
)

(n ≥ 3), (71)

uniformly for |y| ≤ ε2n
1/2.
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Berry-Esseen bounds and local limit theorems. The convergence rates (62) now follows by (69), (71)
and the Berry-Esseen smoothing inequality

sup
x

∣
∣
∣
∣
∣
P

(

Xn − E(Xn)
√

V(Xn)
< x

)

− Φ(x)

∣
∣
∣
∣
∣
= O

(

R−1
n +

∫ Rn

Rn

∣
∣
∣
∣
∣

ϕn(y) − e−y2/2

y

∣
∣
∣
∣
∣

dt

)

,

whereRn := εn3(1/2−ᾱ); see [42].
For local limit theorems, we first observe that the span ofXn is 1 by induction, so that (70) can be

extended to|y| ≤ π (again by induction). Then Theorem4 follows by applying the Fourier inversion
formula

P(Xn = k) =
1

2π

∫ π

−π

e−ikyΠn(iy) dy,

wherek =
⌊

E(Xn) + x
√

V(Xn)
⌋

; see Figure3.
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Figure 3: Left: A Sedgewick plot of the absolute difference betweenP(Xn = k) and
e−(k−E(Xn))2/(2V(Xn))/

√

2πV(Xn) for n = 20, 22, . . . , 64 and ⌊0.35n⌋ ≤ k ≤ ⌊0.7n⌋ (normalized in
the unit interval) whend = 2. Right: the histogram ofP(Xn = k) for d = 3, n = 30 andk = 12, . . . , 23,
together with the corresponding normal curve (having the same mean and variance).

Extensions to general cost measures.The same method of proof applies to other cost measures in
random quadtrees. In particular, Assume thatTn in (57) is deterministic and satisfiesTn = O(nρ), where
ρ < 1/2. If 1 ≤ d ≤ 7, then we have the following Berry-Esseen bounds forYn.

sup
x

∣
∣
∣
∣
∣
P

(

Xn − E(Xn)
√

V(Xn)
< x

)

− Φ(x)

∣
∣
∣
∣
∣
=







O(n−1/2), if ρ < 1/3;
O(n−1/2 log n), if ρ = 1/3;
O(n−3(1/2−ρ)), if 1/3 < ρ < 1/2.
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Whend = 8, then

sup
x

∣
∣
∣
∣
∣
P

(

Xn − E(Xn)
√

V(Xn)
< x

)

− Φ(x)

∣
∣
∣
∣
∣

=







O(n−3(3/2−
√

2)), if ρ <
√

2 − 1;

O(n−3(3/2−
√

2)(log n)3), if ρ =
√

2 − 1;

O(n−3(1/2−ρ)), if
√

2 − 1 < ρ < 1/2.

The corresponding local limit theorems can be derived whenYn assumes only integer values.

5 Randomd-dimensional grid-trees

We consider briefly the phase changes in random grid-trees inthis section, the required asymptotic transfers
being also given.

Grid trees. Devroye [12] extended thed-dimensional point quadtrees andm-ary search trees as follows.
Instead of choosing the first point as the root, one chooses, say the firstm − 1 points (m ≥ 2) and places
them at the root. Thesem − 1 points then split the space intomd smaller regions (called grids) when no
pair of points is collinear. Each node in the corresponding grid-tree has at mostmd subtrees. Whenm = 2,
grid-trees are quadtrees; whend = 1, grid-trees reduce to the usualm-ary search trees; see [37].

Random grid-trees. Fix m ≥ 2 andd ≥ 1 throughout this section. Assume that the input is a sequence
of n random points uniformly and independently chosen from[0, 1]d. Construct the grid-tree from this
sequence. The resulting tree is called arandom grid-tree.

Phase changes of the number of leaves.For simplicity of presentation, we consider the number of
leaves in random grid-trees, denoted byXn.

m 2 3 4 5, . . . , 8 9, . . . , 26
d 1, . . . , 8 1, . . . , 4 1, . . . , 3 1, 2 1

Table 4: The setS of all pairs of(m, d) for which Xn is asymptotically normally distributed. The two
boundary cases(2, 26) (m-ary search trees) and(1, 8) (quadtrees) are both underlined.

Theorem 5. If (m, d) ∈ S, whereS is given in Table4, then

Xn − E(Xn)
√

V(Xn)

M→ N(0, 1);

if m ≥ 2, d ≥ 1 and (m, d) 6∈ S, then the sequence of random variables(Xn − E(Xn))/
√

V(Xn) does
not converge to a fixed limit law.

More refined results (and more phase changes) can be derived as in the case of quadtrees.
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Recurrence ofXn. The recurrence ofXn now has the form

Xn
D
=

∑

1≤j≤md

X
(j)
Jj

+ δn,1, (n ≥ 1),

with X0 = 0, whereXn, X
(1)
n , . . . , X

(md)
n , (J1, . . . , Jmd) are independent andXn

D
= X

(j)
n , 1 ≤ j ≤ md.

Moreover, the splitting probabilities can be expressed as

πn,j = P (J1 = j1, . . . , Jmd = jmd)

=

(
n − m + 1

j1, . . . , jmd

) ∫

([0,1]d)m−1

∏

1≤h≤md

h−1=(b1,...,bd)m

qh(x1, . . . ,xm−1)
jhdx1 . . . dxm−1

for all j1 + · · · + jmd = n − m + 1, where

qh(x1, . . . ,xm−1) =
∏

1≤i≤d

∑

0≤ℓ<m

1{ℓ}(bi)
(

x
(i)
(ℓ+1) − x

(i)
(ℓ)

)

,

with x(ℓ) denoting theℓ-th order statistic ofx1, . . . , xm−1 (x(0) := 0, xm := 1).

Recurrence of moments. All moments satisfy recurrences of the form

An = Bn + md
∑

0≤j≤n−m+1

πn,jAj, (n ≥ m − 1), (72)

whereπn,j denotes the probability that a specified subtree (say the first) of the root hasj nodes.
We now show thatπn,j can be expressed in the form

πn,j =
∑

j≤j1≤···≤jd−1≤n−m+1

(
n−1−jd−1

m−2

)

(
n

m−1

)

∏

1≤i<d

(
ji−ji−1+m−2

m−2

)

(
ji+m−1

m−1

) . (73)

To that purpose, we first splitπn,j as follows.

πn,j =
∑

j≤i1≤i2≤···≤id−1≤n−m+1

̟j;i1,...,id−1
,

where̟j;i1,...,id−1
denotes the probability that then random points are distributed in thed-dimensional unit

cube in the following way: the firstm − 1 points, denoted byx1, . . . ,xm−1, split [0, 1]d into md grids and
the remaining points are placed in these grids such that grids of the form

[

0, x
(1)
(1)

]

× · · · ×
[

0, x
(i)
(1)

]

×
[

x
(i+1)
(1) , 1

]

(i = 0, · · · , d),

containn − m − id−1 + 1, id−1 − id−2, . . . , i1 − j, j random points, respectively.
By definition, we have

̟j;i1,...,id−1
(

n−m+1
i0,i1−i0,...,id−id−1

) =

∫

([0,1]d)m−1

∏

1≤i≤d

(

x
(i)
(1)

)id−i
(

1 − x
(i)
(1)

)id−i+1−id−i

dx1 . . . dxm−1

=
∏

1≤r≤d

∫

[0,1]m−1

(

x
(r)
(1)

)id−r
(

1 − x
(r)
(1)

)id−r+1−id−r

dx
(r)
1 . . . dx

(r)
m−1, (74)
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wherei0 := j andid := n − m + 1. It remains to evaluate integrals of the form
∫

[0,1]m−1

xρ
(1)

(
1 − x(1)

)τ
dx1 . . . dxm−1,

whereρ, τ ≥ 0. By dividing the domain of integration into(m−1)! sets of the form{(x1, . . . , xm−1)|xσ(1) <
· · · < xσ(m−1)}, whereσ runs through all permutations ofm − 1 elements

∫

[0,1]m−1

xρ
(1)

(
1 − x(1)

)τ
dx1 . . . dxm−1 = (m − 1)!

∫

0≤x1≤···≤xm−1≤1

xρ
1 (1 − x1)

τ dx1 . . . dxm−1

= (m − 1)

∫ 1

0

xρ
1 (1 − x1)

β+m−2 dx1

= (m − 1)
Γ(ρ + 1)Γ(τ + m − 1)

Γ(ρ + τ + m)
,

by symmetry. Substituting this expression into (74) gives the desired result (73).

The DE. Let A(z) =
∑

n≥0 Anz
n, B(z) =

∑

n≥1 Bnzn, andf = A − B. Then the recurrence (72)
translates into the DE

(1 − z)m−1
D

m−1
(
zm−1(1 − z)m−1

D
m−1

)d−1
f(z) = m!dA(z),

or, in terms of theϑ-operator,

ϑm−1
(

zm−1ϑm−1
)d−1

f(z) = m!dA(z), (75)

whereϑm−1 = ϑ(ϑ + 1) · · · (ϑ + m − 2).

The normal form. We then rewrite the DE in the form

P0(ϑ)f(z) =
∑

1≤j≤(m−1)(d−1)

(1 − z)jPj(ϑ)f(z) + m!dB(z),

where thePj ’s are polynomials of degreedm. In particular,

P0(ϑ) = (ϑm−1)d − m!d =
∏

1≤j≤d

(

ϑm−1 − m!e2jπi/d
)

.

The unique case when the above DE reduces to a pure Cauchy-Euler type isd = 1. Also the “lineariza-
tion” achieved by the Euler transform does not seem to work directly for m ≥ 3. This says that it is not
obvious how to derive an explicit expression such as (38) whenm ≥ 3.

Zeros of P0(x). Our method of proof for deriving the asymptotic transfers ismostly operational and
requires only limited properties of the zeros of the indicial polynomialP0(x). The proofs of the following
properties are straightforward and thus omitted.

• The zero with the largest real part isx = 2. All other zeros have real parts strictly less than2.

• All zeros ofP0(x) are simple (we need only this property forx = 2 and the second largest zeros in
real part).

Other properties similar to those for the cased = 1 (m-ary search trees) can be derived as in [37, Ch. 3].
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Asymptotic transfers. We state the main asymptotic transfers needed for proving Theorem5.
Let Hm :=

∑

1≤j≤m 1/j denotes the harmonic numbers. Define

KB :=
1

d(Hm − 1)

∑

k≥0

VkB
∗(k + 2), (76)

when the series converges, whereVk is defined recursively byVk = 0 whenk < 0, V0 = 1, and

Vk =
∑

1≤ℓ≤(m−1)(d−1)

Pℓ(k + 2)

P0(k + 2)
Vk−ℓ (k ≥ 1),

andB∗(s) :=
∫ 1

0
B(x)(1 − x)s−1 dx when the integral converges.

Theorem 6. LetAn be defined by the recurrence (72) with A0 and{Bn}n≥1 given. Then

(i) (Small toll functions)

An ∼ KBn iff Bn = o(n) and
∣
∣
∣

∑

n

Bnn
−2

∣
∣
∣ < ∞,

where the constantKB is given in (76);

(ii) (Linear toll functions) Assume thatBn = cn + un, wherec ∈ C andun is a sequence of complex
numbers. Then

An ∼ c

d(Hm − 1)
n log n + K1n iff un = o(n) and

∣
∣
∣

∑

n

unn
−2

∣
∣
∣ < ∞.

HereK1 := cK2 + Ku with Ku defined by replacing the sequenceBn by un in (76) andK2 given
explicitly by

K2 :=
1

d(Hm − 1)

(
∑

k≥1

Vk

k(k + 1)
+ γ − 2 − d

2
(Hm − 1) +

H
(2)
m − 1

2(Hm − 1)

)

,

whereH
(2)
m :=

∑

1≤j≤m 1/j2.

(iii) (Large toll functions) Assume thatℜ(υ) > 1 andc ∈ C. Then

Bn ∼ cnυ iff An ∼ c((υ + 1)m−1)d

((υ + 1)m−1)d − m!d
nυ.

In particular, ifd = 1, thenVk = δk,0 and

KB =
B∗(2)

Hm − 1
=

1

Hm − 1

∑

k≥0

Bk

(k + 1)(k + 2)
;

see [3].

45



Growth order of Vk for grid-trees. The sequenceVk satisfies the DE

(
(Dzz + m − 2) · · · (Dzz + 1)Dzz(1 − z)m−1

)d−1

× (Dzz + m − 2) · · · (Dzz + 1)Dz

(
z2V (z)

)
− m!dzV (z) = 0,

implying that the solution of the formV (z) = (1 − z)−sφ(1 − z) has the indicial equation

sd(s + 1)d · · · (s + m − 2)d = 0.

Thus we deduce that
Vk = O

(
k−1(log k)c

)
,

for somec ≥ d− 2. This implies that the series in (76) is convergent for both cases of small and linear toll
functions.

Refining the asymptotic transfer for small toll functions. To derive the second-order term forE(Xn)
andV(Xn), we also need the following types of transfer.

Let α + 1 denote the real part of the second largest zeros ofP0(x) (all zeros arranged in decreasing
order according to their real parts), andβ > 0 denote the absolute value of the imaginary part of either
zero.

Proposition 2. Assume thatAn satisfies (72).

(i) If Bn ∼ cnυ, wherec ∈ C andα < ℜ(υ) < 1, then

An = KBn +
c((υ + 1)m−1)d

((υ + 1)m−1)d − m!d
nυ + o(nυ + nε),

whereKB is defined in (76).

(ii) If Bn = o(nα), then

An = KBn + K(λ1)n
α+iβ + K(λ2)n

α−iβ + o(nα + nε),

where theK(λj)’s are constants whose expressions are similarly defined as in(48). If theBk’s are
all real, thenK(λ1) = K(λ2).

These types of transfer and the inductive arguments used forquadtrees can be applied to prove local
limit theorems forXn with optimal convergence rates. Limit theorems for many other shape parameters
can also be derived. We mention only the application to totalpath length.

Total path length. Neininger and R̈uschendorf [40] derived a general limit law for the total path length
in random split trees of Devroye (see [12]), which cover in particular grid-trees. Their result is based on
the assumption that the expected total path length satisfiesasymptoticallycn log n + c′n. Our asymptotic
transfer for linear toll functions shows that this is the case for grid-trees. This proves the limit law for the
total path length in random grid-trees. Note that the limit law can also be derived directly by method of
moments and our asymptotic transfer for large toll functions.
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6 Conclusions

We extended in this paper the asymptotic theory for Cauchy-Euler DEs developed in [7] to essentially DEs
with polynomial coefficients (often referred to asholonomic DEs) andz = 0 not an irregular singularity.
Not only the results are very general, but also the method of proof requires almost no knowledge on DEs.
Indeed, since all our manipulations are based on linear operators, only properties of the first-order DEs
are used, which can be further avoided by completely operating on recurrences of quicksort type (see
[30]). The main feature of such an approach is that all differential operators are regarded as coefficient-
transformers, so that no analytic properties are needed forthe functions involved.

We applied the general asymptotic transfers developed in this paper to clarify the phase changes of
limit laws in quadtrees and more general grid-trees. Further applications to distributional properties of
profiles of random search trees will be given elsewhere.

For more methodological interest, we conclude this paper bymentioning an alternative approach to
proving general asymptotic transfers forAn (under suitable growth information onBn) based solely on the
theory of differential equations. Such an approach was inspired by the series of papers by Flajolet and his
coauthors (see [17, 20, 22, 26]). We start from the method of Frobenius and seeks solutionsof the form
(1− z)−λkφ(1− z) for the homogeneous DE(ϑ(zϑ)d−1 − 2d)f(z) = 0, whereφ(z) is analytic atz = 0. A
detailed information on the zeros ofP0(x) is needed; in particular, we can show that whend is a multiple
of 6 there are two pairs of non-real zeros differing by integers (in that case, logarithmic terms need to be
introduced). Then we use the method of variation of parameters (see [32]) for the non-homogeneous DE;
a long and laborious calculation of the Wronskians then leadsto the form

f(z) =
∑

0≤j<d

ξj(z)(1 − z)−λj

+ 2d
∑

0≤j<d

ηj(z)(1 − z)−λj

∫ z

0

(1 − t)λj−1B(t)
∑

0≤r≤κd

ζj,r(t)
(

log
z

t

)r

dt, (77)

whereκd ≤ (d − 1)2 andξj, ηj, ζj,r are functions analytic in the unit circle satisfying
∑

n |[zn]χ(z)| <
∞, whereχ ∈ {ξj, ηj, ζj,r}. Similar expressions can be derived for

∑

1≤j<d(1 − z)jPj(ϑ)f . Then the
sufficiency proofs of the transfers (12), (13), (15) are reduced to deriving asymptotic transfers for integrals
of the form

ξ(z)(1 − z)−υ

∫ z

0

(1 − t)υ−1B(t)η(t)
(

log
z

t

)r

dt.

Such a general approach, although quickly gives the generalform of the solution, does not seem easily
amended for getting expressions for the leading constants (similar to most asymptotic problems on DEs
and linear differential systems); also for more general DEssuch as (75), the precise characterizetion of the
zero locations (of their differences) requires more delicate analysis.
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