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Abstract
We show that a wide class of linear cost measures (such as the numbaves)lén randonal-
dimensional point quadtrees undergo a change in limit laws: if the dimedsierl, . . ., 8, then the

limit law is normal; ifd > 9 then there is no convergence to a fixed limit law. Stronger approximation
results such as convergence rates and local limit theorems are alseddervthe number of leaves,
additional phase changes being unveiled. Our approach is new gngereral, and also applicable to
other classes of search trees. A brief discussion of Devroye'sigid- (coveringn-ary search trees
and quadtrees as special cases) is given. We also propose ameffiicigeric procedure for computing
the constants involved to high precision.

1 Introduction

Phase transitions in random combinatorial objects isstnomg computer algorithms have received much
recent attention by computer scientists, probabilists, gtatistical physists, especially for NP-complete
problems. We address in this paper the change of the lim#& fewvn normal to non-convergence of some
cost measures in random point quadtrees when the dimenai@sy The phase change phenomena
well as the asymptotic tools we develop (based mostly omfinperators), are of some generality. We will
discuss the corresponding phase changes in Devroye’smmagdd-trees (se€lp]) for which a complete
description of the phase changes will be given.
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We use mostly “phase change” instead of “phase transiti@rabse the dimension in our problem takes only positive
integers.
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Figure 1:A configuration of points in the unit square and the corresponding quadtree.

Point quadtrees. Point quadtrees, first introduced by Finkel and Bentle§],[ are useful spatial and
indexing data structures in computational geometry antbf@rdimensional points in diverse applications
in practice; see de Berg et a][ Samet {3, 44] for more information. In this papewe will say quadtrees
instead of point quadtredsr simplicity.

Given a sequence of points &, the quadtree associated with this point sequence is cmstr as
follows. The first point is placed at the root and then splits tinderlying space int2f smaller regions
(or quadrants), each corresponding to one oPthsubtrees of the root. The remaining points are directed
to the quadrants (or the corresponding subtrees), and bieess are then constructed recursively by the
same procedure. See Figukdor a plot ofd = 2. Whend = 1, quadtrees are simply binary search
trees. Thus quadtrees can be viewed as one of the many difextensions of binary search trees; see
[7,12 37].

Random quadtrees. To study the typical shapes or cost measures of quadtreessuene that the given
points are uniformly and independently chosen friom|¢, whered > 1, and then construct the quadtree
associated with the random sequence; the resulting qeadtoalled aandom quadtree

Several shape parameters and cost measures in randomegsdatdive been studied, reflecting in dif-
ferent levels certain typical complexity of algorithms amagltrees.

e Depth (distance of a randomly chosen node to the rod®): 13, 17, 19, 20];
e Total path length (sum of distances of all nodes to the r¢a&i): 19, 40];

e Cost of partial-match queries4,[17, 38, 41];

e Node types: 19, 26, 34, 35, 36);

e Height (distance of the longest path to the rootp, [12].

In particular, the asymptotic normality of the depth wad fi®ved in Flajolet and Lafforgue] (see
also [L2]), and the non-normal limit law for the total path length ieiNinger and Rschendorf4Q.

The number of leaves. For concreteness and simplicity, we present the phase elpdrggnomena through
the number of leaves, denoted &y, = X,, 4, in random quadtrees of points. The extension to more
general cost measures will be discussed later.



Whend = 1, it is known thatX,, (the number of leaves in random binary search trees rmbdes) is
asymptotically normally distributed with mean and variamsymptotic ta:/3 and2n/45, respectively;
see [L1, 18]. A local limit theorem is also given inlg].

Ford > 2, Flajolet et al. (seel[9)) first derived the closed-form expression for the expeestdde of
A;L

B =n- ¥ (0 Y & ez, @

2<k<n 2<j<k
where[k]! := [[;;,(1 —2¢/j%) for k > 3 and[2]! := 1, and then showed that
E(Xn) ~ /“Ldna

where
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see B0) for an alternative expression. In particular,= 1/3 andu, = 47> — 39; see R6, 36].

The phase change. Our first result says that whehincreases, there is a change of nature for the limit
distribution ofX,,.

Theorem 1. (i) If 1 < d < 8, then
Xn = pan .«

Udvf_

where% denotes convergence of all moments and, 1) is the standard normal random variable (zero
mean and unit variance). The constaatsare given in b2).

(27) If d > 9, then the sequence of random variablés, — E(X,,))/+/V(X,) does not converge to a
fixed limit law.

2 N(0,1),

In the first case, convergence in distribution &f, — 14n)/+/c3n is also implied.

Why phase change? One key (analytic) reason why the limiting behavior0f changes its nature for
d > 9 is because of the second order term in the asymptotic exgpansE(.X,,)

E(X,) = pan + G1(Blogn)n® 4+ o(n® + n%) (d > 2), (3)

wherea := 2 cos(27/d) — 1, 5 := 2sin(27/d), andG, (=) is a bounded]-periodic function; see4@) for
an explicit expression. i < 8, thena < 1/2; anda € (1/2,1) if d > 9; see Tablél for numeric values
of a.

d| 2 3 4 5 6 7 8 9
all—-3]-2|-1]-038]0]0.24|041|0.53

Table 1:Approximate numeric values of= 2 cos(27/d) — 1 for d from2 to 9.



From this expansion, we can derive the asymptotics of tharves

5 .
on, if1<d<S8;
V(Xa) { Go(Blogn)n®®, if d > 9, (4)

whereG, () is a bounded]-periodic function.

Intuitively, we see that the periodicity irB becomes more pronounced agrows (see Figure),
implying larger and larger variance igd)( so that in the endX,, — E(X,,))/+/V(X,) does not converge
to a fixed limit law.

Phase changes in other search trees.The situation here is similar to several phase change phemam
already studied in the literature in many varieties of randsearch trees and related algorithms:ary
search trees, fringe-balanced binary search trees, deeerguicksort, etc; see?[ 3, 7, 15, 28, 29.
See also JansoRJ for a very complete description of phase changes in urn tspdéich are closely
connected to many random search trees.

However, the analytic context here is much more involved fir@viously studied search trees because,
as we will see, the underlying differential equation is naenaf Cauchy-Euler type, which demands more
delicate analysis.

Phase changes in random fragmentation models. The same phase change phenomenon as leaves in
random quadtrees was first observed in Dean and MajurBfjaviiere they proposedndom continuous
fragmentation model® explain heuristicallythe phase changes in random search trees. Their continuous
model corresponding to quadtrees is as follows. Pick a poifft, z]¢ uniformly at random £ > 1),
which then splits the space infty smaller hyperrectangles. Continue the same procedure isuibe
hyperrectangles whose volumes are larger than unity. Tbeeps stops when all sub-hyperrectangles
have volumes less than unity. They argue heuristically thattotal number of splittings undergoes a
phase change: “While we can rigorously prove that the digiob is indeed Gaussian in the sub-critical
regime [/ < 8], we have not been able to calculate the full distributiothmsuper-critical regimei[> 9]”;

see B].

Recently, Janson (private communication) showed that three dgpe of phase change can be con-
structed by considering the number of nodes at distérsagisfyingl mod d = j, 0 < j < d, in random
binary search trees, or equivalently, the number of nodieg tise (¢ + 1)-st coordinate as discriminators
in randomk-d trees, wheré mod d = ;.

Recurrence. By the recursive nature of the problem prop¥y, satisfies the recurrence
7 d
X, ZXW 4+ X 400 (=), (5)

with X, = 0, where the symbo!@: denotes equality in distribution, thé’s and thex” Z X,’s are
independenty,, ; denotes the Kronecker symbol, and

Tnj = P(Jl == jl? tee sz = de)

—1 ) )
Ji, -5 024/ Jio,1)4



denotes the probability that tt subtrees of the root are of sizgs. .., j,«. Heredx = dx;--- day
amd theg;(x)’s denote the volumes of the hyperrectangles split by a nanglointx = (z;,...,z4). We
can arrange the,(x)’s as follows

an(x) = H (1 =bi)w; + bi(1 — xy)) (1<h<29), (6)
1<i<d
where(by, . .., by)2 Stands for the binary representationof 1 (the first few digits being completed with
zeros if[logy,(h — 1)| <d — 1, sothat) = (0,...,0)2, 1 = (0,...,0,1),, etc.).
d d—1

The moment-transfer approach. By (5), all moments ofX,, (centered or not) satisfy the same recur-
rences of the form

0<j<n

with A, and{B,},>1 given, where

Tnj = <" ’ 1> / (1 za) (1 — a2y 2g)" 7 dx. (8)
J [0,1]¢
Many different expressions fat, ; can be found in19, 34]; see also25].

To prove the limit distribution, we apply thmoment-transfer approa¢twvhich has proved successful in
diverse problems of recursive nature. We have applied theoaph to and developed the required asymp-
totic tools for many problems, including-ary search trees, generalized quicksort and most vangtio
of quicksort, bucket digital search trees, maximum-findafgprithms in distributed networks, maxima in
right triangle; see the survey pap@€] for more references.

The basic idea of the approach is, because all momentsysthiessame recurrencé)( to incorporate
the analysis of the asymptotics of higher moments into dgreg the so-calledsymptotic transfemvhich,
roughly speaking, infers asymptotics df, from that of B,,. Such an approach always reduces most
analysis to obtaining the first or second moments, the ranwjmart being more or less mechanical. It
also offers the possibility of refining the limit theoremsdiyonger approximation results like convergence
rates and local limit theorems, the new ingredients neededylmleveloped in8] for m-ary search trees;
see also]].

Second phase change.The refined moment-transfer approach (s&¢)[shows thatX, undergoes a
second phase change in convergence rate to normal limibfi@n(referred to as the Berry-Esseen bound).
Our result says that the convergence rate to normal law isdefre~'/? whenl < d < 7, but is of a poorer
ordern—3(/2-v2) ~ =024 whend = 8. Both rates are optimal modulo the implied constants. We will
indeed derive local limit theorems fo¥,,, which are more precise and informative than convergence in
distribution.

Resolution of the recurrence {). Exact solution®f the recurrencer) were first investigated by Flajolet
etal. in [L9] (see also36, 39]), based mainly on the crucial introduction of the Eulensfrm. Asymptotic
propertiesof (7) were also thoroughly examined itg], using powerful complex-analytic tools. Their
approach is very efficient in deriving the asymptotic expams but requires stronger information on the
given “toll sequence’B,,.



In this paper, we show that the exact solution given via Eudersform in L9 (see (L9)) can also be
obtained by using the usual Poisson generating functiofikoi@gh this approach is essentially the same
as the Euler transform on ordinary generating functionsfférs an operational advantage in simplifying
the calculation of the exact variance; see Secsidn

Asymptotic transfer of the recurrence (7). We will develop the asymptotic transfer needed for deriving
asymptotics of moments. Most proofs of previously knowngghehanges in random search trees and
quicksort algorithms rely more or less on developing therasptic transfer for Cauchy-Euler differential
equations (abbreviated as DES) of the form

Polynomial?){(z) = n(z), (9)

wherer is independent of and? := (1 — z)(d/dz). The main transfer problem under this framework is
to derive asymptotics dt”]¢(z) when that of z2"|n(z) is known, wheréz"|£(z) denotes the coefficient of
z™ in the Taylor expansion of. A very general, elementary asymptotic theory for such DEB wlarge
number of applications is given ifT], the origin of such a development being traceable to Seubésy
analysis on quicksort (seéq]).

For quadtrees, the DE satisfied by the generating functian := > A,,2" is given by

I(20)* 71 (A(2) — B(2)) = 2°A(2), (10)
which is not of the typeq) but can be rewritten in the extended form
Py(9)A(z) = 0(20)""'B(2) + Y (1= 2/ Pi(9)A(2), (11)
1<j<d

whereRy(z) = z¢ — 2¢ and theP;(x)'s are polynomials of degre€& see 23).

We then extend the iterative operator approach introducg8]ito analyzing the expected cost of
partial match queries in randokad trees. The approach turns out to be very useful for exte@deichy-
Euler DEs of the formX1); see p] for another application to consecutive records in randequences.

The main differences of the current application from thevjones ones are(i) we consider general
non-homogeneous part (or toll functions) rather than sjpemnes;(ii) the method of Frobenius (and the
method of annihilators) used in our previous papers is @gahd replaced by a more uniform elementary
argument, the resulting proof being completely elemengamy requiring almost no knowledge on DE;
(#4i) we give not only necessary but also sufficient conditionsalbtransfers we developed; the same
proof for the sufficiency part also easily modified for prayihe necessity in all cases, keeping uniformity
of the approach(iv) the proof we give in its current form is easily amended for engeneral DEs with
polynomial coefficients(v) we put forth means of simplifying the expressions for thestants involved;
the resulting expressions are in some cases simpler thae therived in 19]; also our expressions are
easily amended for numeric purposes.

A universal condition for asymptotic linearity? One main result our approach can achieve states that
A, is asymptotically lineard,, ~ Kn if and only if B, = o(n) and the serie§" B,n"? is convergent,
whereK is explicitly given in terms of thé3,,’s; see (6). It is interesting to see that exactly the same con-
dition for the asymptotic linearity ofl,, holds for other recurrences appearing in quicksergry search
trees, generalized quicksort, and many others; gee\ote that the expression for the linearity constant
K differs from one case to another. The series conditiph), B,n 2| < oo also arises in many other
problems such as generalized subadditive inequalitiegjedand-conquer algorithms, large deviations,
etc.; see31] and the references therein. Is there a deeper reason wieties condition is so universal?

6



Organization of the paper. In the next Sectio, we develop general asymptotic transfer results, which
can be applied to more general shape characteristics ahadneasures. In Sectiorisand4, we study
the phase change phenomena exhibited by the number of leasletiscuss the extension to general cost
measures. Effective numerical procedures will also bergofecomputing the limiting mean and variance
constants forX,,. The extension of our consideration to Devroye’s griddrgsee 12)) is given in the final
section.

Notation. Throughout this paper, the notati¢ti'] f(z) denotes the coefficient af* in the Taylor ex-
pansion off. The generic symbat always represents some small quantity whose value may xamy f
one occurrence to another; similarly, the generic synatgibnds for a suitable constant. We define two
operatorsD, := d/dz and?d := (1 — z)D,. The same set of symbols3,,, B(z), B*(s)} is used for
the sequencd,,, its generating functiolB(z) = > B,2", and its factorial series or Mellin transform
B*(s) = fol(l — x)*"'B(x) dz, respectively.

2 Asymptotic transfer of the quadtree recurrence

We develop the asymptotic tools in this section by proviredtiferent types of asymptotic transfer needed
for later uses. A salient feature of our transfers is thatagymnptotic condition in each case is not only
sufficient but also proved to be necessary.

Three types of asymptotic transfer. For simplicity, we assumél, = 0 since otherwise the difference
is given explicitly byAy(2¢ — 1)n + Ay; see (9).

Theorem 2. Let A,, be defined by the recurrencé) fwith A, and{ B, },.>1 given. Then

(7) (Small toll functions)

A, ~ Kpn iff B, =o(n) and ‘Z B2 < oo, (12)

where the constank’ is given in (L6);

(77) (Linear toll functions) Assume th&, = cn + u,, wherec € C andu,, is a sequence of complex
numbers. Then

2 . -2
A, ~ gcnlogn + Kin iff u, =o(n)and ‘zﬂ: UpN ) < 00, (13)
where K, := cK, + K, with K, defined by replacing the sequenBg by u,, in (16) and K, given
explicitly by
1 _ g g . 2jmi/d
Ky = —1 d+27+d21/)(2 262/, (14)

1<5<d
1 being the logarithmic derivative of the Gamma function (Seg);
(7i1) (Large toll functions) Assume th&f(v) > 1 andc € C. Then

clv+1)*

B, ~en” iff A, ~ ———————n".
cn (U+1)d_2dn

(15)
More refinements tol) under stronger assumptions 8y will be proved below.
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The linearity constant. Given a sequencB,,, define the constarit z by the series
2
Kp = - E B*(k+2 16
B d " Vk ( + )v ( )

which is absolutely convergent under the conditibg) (on B,,, whereV}, is defined recursively by, = 0
whenk < 0, V, =1, and

Py(k+2)
= — V. E>1 17
Vi 1%3 Po(k—i—Z)ng (k=>1), (17)
<{<d
and the functionB* is given by
! B.j!
B*s::/Bx 1—2) tde = 2 —, (18)
(5) = | B -w) DT T

when the integral and series converge. Here the polynomidls)'s are given in £3). Note that when
d =1, Vi = 0, SO thatkz = 2B*(2); see B0].

2.1 Euler transform and Poissonization

Euler transform. Flajolet et al. proposed irlP] an approach via Euler transform for solving the recur-
rence {); their result is

Ay=Ag+n(2'-1DA+Bi)+ > (Z) -0 > B:-B1,) [] (1 — E—Z) . (19)

2<k<n 2<<k j<t<k
for n > 0, whereB; denotes the Euler transform of the sequeBge
B,= Y (") (—1)'B;.
1<5<n N

As one can see froni), the appearance @8’ and the power of-1 makes the asymptotics of,, less
transparent.

Poissonization. An alternative way of deriving1(9) is as follows. Consider the Poisson generating
functions of both sequencesi(z) := e} ., A,2"/nl and B(z) = e} ., B,z"/nl. Then ()
translates into

A'(z)+ A(z) = B'(2) + B(2) + Zd/ Azy - 242) dx,
[0,1]¢
with the initial conditionA(0) = Ay. Let A,, := n![2"]A(z) andB,, := n![z"]B(z). Then

d

o . 2
An + Anfl == Bn + anl + E Anfl (Tl Z 1)7 (20)

(for convenience, defining, = By = 0). Observe that

A=y = 1 3 ()0

0<k<n
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and B, = (—1)"Br. By iterating the recurrence() and by taking into account the initial values, we
obtain (9).

Although the approach is essentially the same as that vier E@nsform, it is helpful in deriving a
dimension-free expression for, say the varianceXf see SectiorB.2. It also offers the possibility of
obtaining the asymptotics of,, by the usual Mellin transform techniques.

Asymptotics of the recurrence 7). A very powerful complex-analytic approach is proposedif] [
to the asymptotics of7). The main idea is to apply singularity analysis (s&]), so one needs the
asymptotics of the generating function,, A,z" for = ~ 1, which, by the Euler transform, leads to the
study of the generating functiaa*(¢) := ) A*t" for t near—oo. For that purpose, they apply integral
representation foA*(—t) of the form

1 c+ioo ts
Aty = = / ™ (s ds,

2T Jo_joo SINTS

for suitably choser andy(s) satisfyingy(k) = Aj for £ > 2. The determination of such an “analytic
extrapolation” ofA; to complexs is crucial.

The major limitation of this approach is that when the giveguenceB,, is, say only known up to
O(n®) or ~ n“ for someq, it is not obvious how to find an analytic extrapolation andrtho deduce
the right order ofA,, because of the underlying “exponential cancellations deot roughly, (’;) has
its largest term of orde2™n~'/2, but most of our sequences grow only polynomiallyrinsee p3] for
asymptotics on alternating binomial sums.

Alternatively, one might try the usual Mellin analysis fx—i(z) (or its truncated functions); again ana-
lytic properties of the involved function at+ ioc may be very challenging.

Note that the valuel, and the sequencgB,, },~; are enough to completely determine the sequence
A,,. This property will be useful in our numeric procedure; seet®n3.2

2.2 Asymptotic transfer I. Small toll functions

We prove the first case of Theoréhin this section by extending the approach we proposed bé&fotbe
analysis ofk-d trees. The main idea is to write the underlying DE in therfaf certain “perturbed” DE
of Cauchy-Euler type, and then to use some iterative opeaagoments.

The DE. LetA(z) =) ., A.2" andB(z) = > ., B,2". Then the recurrencd) translates into the
DE (10), which becomes simpler by considerifig= A — B:

((z9)""" = 29) f(2) = 2?B(=). (21)
This DE can be re-written as the “perturbed” Cauchy-Euler DE

Po(9)f(2) = g(2) + 2¢B(2);
{ 9(2) = Yrcyeal = 2V POV F(2), (2)
wherePy(z) = z¢ — 24, and by induction

Py(a) = (=1 '] ]

0<r<j

(1<j<d). (23)



Note that allP;’s are polynomials of degre€ they can also be computed recursively as follows. Write
0(20)"" f(2) = Z (1= 2) Pay(9) f(2).
0<5<d

ThenPj(z) = —Py (z) for 1 < j < d. HerePy;(z) = (z — j)(Pi_1(z) — Py_y;_1(z)) with the

boundary condition®, o(z) = x, Py (x) = 0if j < 0o0rj > d.
Let \;'s denote the zeroes @} (x) = 0, namely,\; = 2¢%™/4 for 0 < j < d. In particular,\, = 2.

All initial conditions zero. For convenience, we assume temporarily that all initialgalare zeros
f9(0) = 0for0 < j < d. This implies that)’ f(0) = 0 for 0 < j < d since

PIE) = 3 (S GO - 2 F ),

0<L<y

whereS(j, ¢) represents the Stirling numbers of the second kind.

The Cauchy-Euler solution. Regarding the DEZ2) as a Cauchy-Euler DE, we can then decompose the
DE as follows.

(0 = Aa-1) - (9 = \)(9 = 2)f(2) = g(2) +2°B(2), (24)

whose solution (exact or asymptotic) can be obtained byessieely solving the first-order DE of the
form

(0 —v)&(z) = n(2),

which is given by

£(z) = E0)(1— =)™ + (1 — )™ / 1 () dr,

in the sense of formal power series; ség [
Since all initial conditions are zero, we thus obtain theisoh

f(Z) = (IAd—1 00 I>\1 o 12) [g + ZdB](Z)’ (25)

where
Ligl(z) = (1— =) / (1 - 2)(x) de. (26)

Note that the functiom involves itselff.
Thus the next steps consist(@f clarifying the changes in asymptotic approximation unaersecutive
applications of the linear operators, afit) simplifying the resulting leading constants.

Asymptotic transfer for the linear operator.

Lemma 1 ([7]). (i) (Small toll functions) Let € C. If fol(l — x)""1¢(z) dr converges, then

nv—l

#IRI1E) ~ Fr

1
| 1=yt a, 27)
0
wherel” denotes the Gamma function.

10



(1) (Large toll functions) Let € C. If [z"|¢(z) ~ en”, wherec € C andR(7) > R(v) — 1, then

C

[2"] L[¢](z) ~ mnT- (28)

Note that ifv = 0,—1,... in case(i), then the~-transfer 27) becomes am-transfer; similarly, if
c = 01in case(ii), then 8) becomes an-transfer.
Proof. (Sketch) The estimate{) follows from (26), and £8) from the expression

ILAE = S S Ty 29)

see[]. |

Asymptotic linearity. We now prove the small toll functions part of Theoréwhen B,, = o(n)
and)" B,n 2 converges. The assumption that the sefésB,n~? converges implies thdtfol(l —
z)B(z) dz| < co. Assume at the moment that

1
/ (1—2)g(z)dz| < oco. (30)
0
Then by applying consecutively Lemmawe obtain
K/
A, = [2"]f(2) + By = —7=n+ o(n), (32)
2"/ (2) Pz o)

where

K= [(1=2) (olo) +2B(w) dr = Y [lote) 125 (32)

S G+D0+2)

The next step is to prove().

Proof of (30). Define X
As) ;:/0 (1= )" ' Py(9) f () da,

where thej-operator is understood to & — x)d/dz.
SinceB,, = o(n) = o(n'*®), A,, = o(n'"¢) by (46) below. Thusf(z) = O((1—z)?¢)for0 < x < 1
and
Py(@) f(x) = O(fD(x)) = O((1 — )~47*7),
for 0 < z < 1. It follows thatA(s) is finite for sufficiently larges, says > sy > d + 2 + . We show that
we can takes, = 2. Note thatA(s) is an analytic function in the half-plari®(s) > 2, but for our purposes
we need only real values of

Lemma 2 ([5]). Letp(z) andg(x) be two polynomials of degrees at mdstAssume thab(x) is defined
in the unit interval withp)(0) = 0 for 0 < j < k. Then

1 — )5t ) é(x x—]Ls) 1 — ) to(z) dx
| =0 e ) oy ar = B2 [ (- a0t an (39

provided thaty(s) # 0 and that both integrals converge.

11



Substituting 22) into the integral and applyin®8), we see thal (s) satisfies the difference equation

Bi(j+s)

TR A(j + s). (34)

A(s) =2'B*(s) + Y

1<j<d

By assumption3*(s) is finite fors > 2. Also A(s) is bounded fos > d + 2 + ¢ as showed above. Thus
by iterating the equatior8é), we deduce thak(s) is finite for s > 2.
This proves 80) because

| a=ou@ar= [ 1= (RO -2Bw) a.
and from @2), it follows that K/ = A(2).

Further simplification of the constant K’. Taking firsts = 2 in (34) and then iterating the recurrence
(34) N times, we get

K =Ky+ A+ N +1),
1<j<N(d—1)+1 Po(j+N+1)

wheree; ; = P;(j +2) for1 < j <d,

Pj+ N +1) .
= i 1<i<N({d-1 1
EN,j lédpo(]_i_N_'_l_g) EN-1,j+1-¢ ( >7 > ( )+ )7

for N > 2, and
3 B*(j +2)
K/ — 2d B* 2 B'(j+2) N
N ( ()+1<'< P+ 2) Z'efuﬂ z),
/=4 105

for N > 0.
SinceA(N) — 0 asN — oo, we have

: B*(j +2)
K'=lim Ky =2" B (2)+ ) S0 Y eojrir |-
11 N < ( ) + PO(] + 2) €e,j+1 5)

N—oo
Jj>1

Define
Vi = —— E e y
k Po(k 2) Lk+1—¢

1<e<k

ThenV, satisfies {7) and we have

K'=2""B*(k+2)V.

k>0

It follows, by (31), thatK'z = K’/ P;(2).

12



Absolute convergence of the series representatioi) for Kz. There is noa priori reason that the
series representation féfz in (16) is convergent. We show that under the assumptionB,om (12) the
series in 16) is indeed absolutely convergent.

Observe first that by the factorial series expressiod @) (

B*(k +2)=0(k™?).

We need then an estimate .
If d =2, thenP;(s) = s(s — 1), and we can solve the recurrencélffexplicitly, giving

E+1

ey

(k > 0). (35)

Consequently,

k41
=12 B*(k+2
; ol kY

! 142 1
= 12/0 B(x) (ﬁ log; - %) dz;
see also36, 39.
Lemma 3. The sequenck, satisfies the estimate
Vi = O (k™' (logk)*?) (36)
ford > 2.

The order is tight; indeed, we can derive a more precise atiogpproximation; see39) below.
Proof. We first show that the generating functidiiz) of V;, satisfies the DE

D, (2(1 — z)D,)*" (2°V(z)) — 292V (z) = 0. (37)
By Cauchy'’s integral representation fgy

1 —k—1 1 —k—1
- . _- 1_ 1_ .
Vie = 5 w V(w) dw 5 (1—w) V(1 —w)dw

lw|=e |lw—1|=¢

Then, by the relation (sed7)),

Po(k+2)Vi— Y Pk +2)Viey =0,

1<t<d
we have
1
0=55 (L—w)V(A—w) |[Po(k+2)(1—w) 2= 3" P(k+2)(1—w) 2| dw
270 iy 11—
ho=1l=e 1<t<d
1
=-— (1= w)V(1 —w) [Pu(wdy,)™" =27 (1 = w) ™" dw,
270 1=

13



by the definition of theP;'s, whered,, := (1 — w)d/dw. It follows, by multiplying both sides by* and
then summing over all nonnegatikethat

Iy(z) — 2%V (2) =0,

where
1

1 (1 —w)™?

(1 — W)V(l — w) [ﬁw(@Uﬁw)d_l] 1— =

w—1|=¢ 1—w

Id(Z) : dw.

By successive integration by parts, we have

Ly(z) = (;3 fw_l_a (1:7“22@@,} (w(1 — w)Dy)* (1 — w)V(1 — w)) duw

1—w

1 L]D)w (w(1 — w)Dy,)* " (w?V (w)) dw,

- : z
211 lw|=¢ 1— w

whereD,, := d/dw. This proves §7).
By Frobenius method (se&7]), we seek solutions of the fori(z) = (1 — 2)7°¢(1 — 2) with ¢
analytic at zero. Substituting such a form in8Y) gives ford = 1

I(2) ~ €(0)s(1 — )57t (z~1).

By induction, we obtain
Iy(2) ~ €(0)s%(1— 2)=7L (2~ 1),
Thus, the indicial equation ig' = 0, implying that

V(z) =0 (log" "1 —2]) (z ~1).

It follows, by singularity analysis (se€]]), thatV,, satisfies the estimat&€). This proves Lemma. |

A more precise approximations to the asymptotics oft,. Since the generating function of the se-
quenceV;, satisfies the explicit, homogeneous D&E), we can derive more precise asymptotic estimates
as follows.

By applying either the Euler transform approachd][or the Poisson generating functions, we obtain

. (k—;1>(_1)4+1€1—[ DE- A o o

1<0<k+1 1<j<d P(0+2 =)

Consequently, we have the integral representation &2p [

1 [Tk +2)I(1 - s) (3 —)\)I(s+1)
Vi =— 1 ds. 38
"Tomi ). .. T(k+2-—25) 1<]11d F(s+2-))) ° (38)
From this representation, we can show that
d24-1(2¢ - 1)
~ -1 d—2

14



for d > 2 and large:. Note that the leading constants first grows and then dezsd¢aszero

(d—2)! 157 217 VY 2835”

Since the leading constants are quite large for sthdhe convergence of the serid) is poor for small
d; we will propose a more efficient numeric procedure for cotimaui z.

In particular, ifd = 2, the integrand has three simple poles at —1, —2, and—3, and the residues of
these poles add up t®2(k + 1)/((k + 3)(k + 4)), in accordance with35). But ford > 3, the resulting
expressions are more complicated because there are ilyfimiggy poles.

d27-1(2¢ — 1
{#} = {12,84,240,4133,504, 4742 3622,2332 12942 63231 ... } .
d>2

An integral representation for the constant Kz. By substituting the expressio3§) of V;, in (16), we

obtain
2 [otiee (3 — M) (s+1)
Kp= T J d 40
B~ 9dmi /C_m () H T(s+2—x) (40)
1<j<d

where

2 (1 —
=Y B4 ) B DLA =)
= Lk+2—29)

andc > —1 lies in the half-plane where the series on the right-hand s@hverges. Thus if analytic
properties off" are known, theriz can be further simplified; see for examp#el). Also if d = 2, then
Kp =12(T(-1) — 2Y(-2) + T(-3)); see B85).

Nonzero initial conditions. We now prove that the linearity constafit; is of the form (L6) even with
nonzero initial conditions.
We start from making all the initial conditions zero

f(z) = f(2) - Z (A; — By)#,

so that, by 21),
(9(z0)" = 29) f(2) = 2?B(2) + 2°C(2),

where (for convenience, defining, = 0)
Clz) ==Y (A= B;) 2 —27* (9(z0)"") ( > (4 - Bj)zJ) :
0<5<d 0<j<d
By the same approach as above, we obthjn~ Kn, where the linearity constaiif is given by

ZVkB*/{?+2 ka/ — )" Z(Aj—Bj)xjdx+é.

k;>0 k>0 0<j<d

Here

z.— 2 ka/ k+1 (ﬁx(xﬁxﬂfl) ( Z (Aj _ Bj)xj> dx

1-d o
_ _27 v - a) 00 ( > (- Bj)xf) de.

15



By the same argument used to derive the DE satisfied (ay, we have

S < S (4 - B - x)f) D, (#(1 = 2)Do)"~" (#*V (2) dr.

0 \o<j<d
But by (37)
D, (2(1 — 2)D,)*" (2?V (2)) = 2%V (2);

it follows that

_ 2 ! A

c= _Ez/o (1—2)V(1—z) ( Z (A; — Bj)x9> dz.

0<j<d
Thus 9
K= ST VB (k +2);
k>0

this proves that the linearity constant is of the same fat6), (which amounts to saying thate do not
need to nullify the initial conditions

An efficient numeric procedure. The above proof suggests a useful numeric procedure for atmgp
the constanis ;. The crucial observation is that the firsterms we choose to be subtracted frémplay no
special role in our proof, meaning that we can indeed sutdraafficiently large number, say, of initial
terms fromf, resulting in a series form fak 3 with convergence ratdog k)4-2k=%. This is because the
right-hand side of the DE is of ordef’—!, which yields, after taking the finite Mellin transform, theder
k—N for largek. Such a procedure quickly leads to a good numeric approiomét the leading constant
K to high precision. We will apply this procedure to the conttappearing in the mean and variance of
the number of leaves in Secti@m2

Necessity in (2). Assume that4,, ~ cn for some constant. The special form§) or the following one

(see [L9) X

can be used to prove th&t, = o(n) by (7). We propose instead a proof based again on linear operators
the advantage being generally applicable to more complicacurrences while keeping uniformity of the
proof.

By (21)

SinceA,, ~ cn, we have, byZ8),
"MLl () ~ 5m, (7] To[A) (=) ~ 5
Applying successively these estimates yields
[2"]24 (10 o (Z—IIO)C“) [A](2) ~ en.

16



ThusB,, = o(n).

We then prove that) " B,n 2| < co by showing that3*(2) is finite. By (34), it suffices to show that
A(2) is finite. SinceA,, ~ cn andB,, = o(n), we deduce thaf(z) = O((1 —z) %) for0 < z < 1. It
follows that

A(2) = lim A(s)

s—2t

s—2+

— O(1).

~ lim Po(s)/o (1— 27 f(z) do

This complete the proof ofL@).

2.3 Asymptotic transfer Il. Linear toll functions

We prove pariii) of Theorem?2 in this section. By the result of paft), it suffices to consider the case
whenB, = nforn > 1. ThenB(z) = z/(1 — 2)%

All initial conditions zero. Itis simpler, as in parti), to consider
f(2) = A(z) = B(z) = Y (4 = B))<,
0<j<d

so thatf satisfies the DE .
(9(z0)""" = 29) f(2) = 2"B(2) + 2°C(2),
with zero initial conditions, where
C(z) == (27"(20)"" = 1) Y (4; — By)7.
1<j<d
Thenf satisfies the DE )
Py(9)f(2) = 2°B(2) + 27C(2) + g(2),
whereg is defined in 22), and forn > d
A = [2"] (f(2) + B(2))
=n+["] (I, , oLy oL) [2B+2/C+g] (2).

An expression for the iterates of thel-operators. Observe first that by integration by parts

(LoL)[6(z) = ——L[E](z) — —

T—U T—U

so that by induction

L, [€](2)
0<j<d [Tes; (A = A0)

(I>\d—1 ©--+0 I)xo) [5](Z) = (41)

Thus
L, [2/B +27C + g](2)
Fy(A)

17



The contribution of 2¢B(z). By applying @1), we have

) (ool o L) RUBI() = Y s [0 [B)(2)
_sz
= 7 1 (0= - (-9
2d )
"2 @Ry 0 el
Now
24 1 A
1§Zj;d (2 = M) E5(A) ~d 1§j<d2 — A
2 1 d—1
=7 1;d 2— )\ T
@) d-1
T dPR)(2) d
d-1
TR
Thus
("] (Iny 0+ o Iy, 0 1) [2'B](2)
m(2_ 1 1 d+3 1
= [2"] (8(1_2)2 logl_z T Tog (1_2)2> + o(n)
:gnlogTH (%7_%_2%)"+0(n)7 (42)
since
[Zn](l—z) 210g :(n—l—l) Z ]—1_n

The contribution of 2¢C(z) and g(z). Similarly, by 27),
2] (Tn, 00T, 0 ) 2CI(2) = = C*(2)n + ofn),

whereC*(s) := [, C(x)(1 — z)*"' dz, and

2" (T, 0+ 0Ty, 0L) [g] () = —— ("L 9] (2) + ofn)

provided thay*(2) is finite, whereg*(s) := fol(l —x)* tg(z) dz.

18



Boundness ofg*(2). To justify thatg*(2) is finite, we use the same argument as in the proof\foi)
above. Again by Lemma

gs) =) /0 (1 =2 P (0) Ro(9) " (2°B(x) + 2C(x) + g(x)) dz

_ PG+s) [ Ly . N N da
s Po(j+s)/0 (1 — )1 (2/B(x) + 2°C(x) + g(2)) d
- 3 PO G 2O ) 4.

where

B*(s) = /0 (1 —2z) 7 de = m

SinceB*(s) is finite fors > 2, g*(s) is well-defined fors > 1.
Iterating the recurrence as in p&it gives

ng+€+2 d d
1% 2°B*(j + 0+ 2) +2°C (+2
7>0 1<i<d
Py(k+2)

=Z<zd3*<k+2>+2dc*<k+2>> 2 RGT2)

k>1 1<t<d ©?
V
k>1 ) k>1

whereV}, is defined in 17).

Collecting all estimates. Combining this with 42), we obtain

2
A, = gnlogn + Kon + o(n),

where

27y 2
K, =211 ‘ “(k 1 2),
2= T3~ d kzk+1 d;vkc( +2)

The last seried , ., ViC*(k + 2) is identically zero by the same argument used in parfor nonzero
initial conditions.

Final simplification. We now show that

kk—i—l Z P(B=X) = (d=1)(1—-7), (43)

E>1 1<j<d

and this will prove {4) by the relations)(3 — ;) = ¢(2 — ;) + (2 — ;)" ! and

1 d-1
2 2-), 4

1<j<d
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For that purpose, we substitute the integral representékg) into the series and then sum over all positive

indicesk, giving

1 /€+m 1 H L3 —X\)I(s+1)

— ds. (44)
k( k —I— 1) " 2rmi oo (s —1)2 \Sied ['(s+2—X\))

k>1

Moving the line of integration to the right and taking intccaant the residue of the unique pole encoun-
tered ats = 1, we obtain 43) by absolute convergence.

A different expression for K,. Yet another expression fdt, was derived in19]

2v 3 de1
K=Y
d = k(k®—2
Equating the two expressionsﬁfz leads to the identity
2
2d+1zk 2d: — — —1")/—-27?3 A) (d21)7
k>3 a 1<j<d

which can be proved using the relations

Yz +1) =

(see [L4, p.15, Eq. (3)]) and

2 -\ 1
S R R I ) ——
k42— \; Zk+2—)\

1<j<d 1<j<d

Necessity. Consider the case whety, = cynlogn + ¢in + o(n), wherecy = 2/d. Then, similarly as in
part(i), we need the elementary estimate

LA =~ S 4

0<j<n
1 L
=— ) (cojlogj+ c1j) + o(n)
n1<j<n
= Dnlogn+ (5 - 2)n+o(n).
=3 On ogn 5 1 o(n

The same estimate holds faf']z 711, A(z). Iterating the estimates, we obtain
[2"]2¢ (IO o (z_lIo)d_l> [A](2) = conlogn + (01 — gco) n+o(n).
Consequently,
B, = g con 4+ o(n) =n + o(n).

ThusB,, — n = o(n) and the remaining proof uses the same argument as ir{ipaihis completes the
proof of (13).
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2.4 Asymptotic transfer Ill. Large toll functions

We prove the asymptotic transfdrg) for large toll functions. For general divide-and-conqresrurrences,
such a case is always easier than that of small toll functions simple reason being that the major
contribution comes from a few large terms instead of sumnowvey all small parts like the small toll
functions case. More precisely, we expect that most carttdb comes from the terr2f B(z) in (22), the
other termy(z) being asymptotically negligible.
Assume thai3,, ~ cn”, wherev > 1. We start again from205), which gives
An = Bn -+ [Zn] (I>\d_1 O--- I>\1 e} IQ) [g + QdB](Z)
= B, + Al 4 AP
where, by successive applications 88), we have
A =29 (I, 0T, o L) [B](2)
c2¢ .
—_— N
Z%(U‘%l)

~

To estimated!!’, we first consideg*(s) = fol(l —2)*"1g(x) dz, which, by @4), satisfies the recurrence
equation

- Z PO”S (j+5)+ 2B +9)) (45)

for sufficiently larges. SinceB,, ~ cn, we deduce thaB*(s) is finite fors > v + 1. The same argument
as forA(s) shows thay*(s) is finite for s > v. This implies, in particular, that

/0(1—:1:)“59( Jdo| = [P +1-¢) Zrk+ii;_€>[k]g(z) <o
Now by (29) with v = 2
n _ [2"]g(2)
[2"]L2[g](2) = (n + 1)ngz<nm~

Let Sy := > o< ;< (G + D[#]9(2)/T(j + v + 2 —¢). ThenS, = O(1) and, by partial summation,

[2*]g(2) B I(k+1) A Fk+v+2—¢)
(n+1) D Gty Y 2 Thror2—ar W9 —Tg3

0<k<n 0<k<n

=(l-v+e)(n+1) Z Skr(k;:(Z::__i)_ 2 +O(n"=*)

=0(n""°).
Applying now successively2g), we obtainAll = O(n"~¢) = o(n").
From these estimates, it follows that
24
An ~ v - U’
cns + (U+1)d_2dn
which implies the sufficiency part o).
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Necessity in (5). Assume thatd,, ~ Kzcn?, whereKs; = (v + 1)%/((v + 1)4 — 2¢). Then, similarly to
the necessity proof for cagé),
2d

(2724 (10 o (zflxo)d‘1> A~ o

by successive applications &8§). Then

2d
B, ~ Ksc|1l———— ) n"~cn".
(v+1)4

Simple transfers for the quadtree recurrence {). The same proof also gives the followirdgr and
o-transfers.

Lemma 4. Assume» > 1. Then
B, =0(n") iff A,=0(n"). (46)
The same result holds with replaced byo.

Note that the results for large toll functions can also bes@doby other elementary means, but the
proof given here based on iterative operators applies f@aaks, and is thus more general and uniform.

Recurrence of the Cauchy-Euler part. The preceding analysis shows that whepis larger than lin-
ear, the contribution frong(z) to A,, is asymptotically negligible. Thus in this casg ~ A2 where
Py(9)(APN(2) — B(2)) = 2?B(z), or in terms of recurrence

AP =B, +20 Y 7,47,

0<j<n

1 1
Tnj = - Z —,

J<j1<-<ja—1<n Ji Jd-1

where

which is to be compared with the alternative expressionrfor(see [L9))

1 1
7Tn" = — —_—.
T on j<j1§~-z§;d_1§n Jurrrdd—
2.5 Asymptotic transfer IV. Further refinements

When more precise information oB, is available, we can refine the preceding approach and obtain
more effective approximations td,,. We consider the following two cases for later use. Recall tha
2e*/0 = o + 1+ if.

Proposition 1. Assume tha#l,, satisfies 7).

(i) If B, ~ cn’, wherec,v € Canda < £(v) < 1, then

c(v+1)4

o\t v R(v)
(U+1)d_2dn + o(n +n%),

An = KBTL +
whereK i is defined in 16).
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(17) If B, = o(n®), then
A, = Kgn+ KA)n® + K(\)n® + o(n® 4+ nf), (47)

where theK ();)’s are defined in48). If the B,’s are all real, thenk (\;) = K ()\,).

Proof. The proof consists of refining the analysis for the smallfiatictions part of Theorerfd using the
arguments for large toll functions.

Case(i). SinceB, ~ cn", the series in12) obviously converges. Thus, b29), we first have

d 24 B 9d B
i 25 =00 (3 g - )

k>0

9 c2 R(v)
= K'n — v v o1
n n; FED(E Y T +o(n™") + O(1),

whereg, := [*]g(z) and K’ = [;'(1 — ) (g(z) + 2?B(x)) da.
By the same arguments used fgis) in (45), we deduce thaB*(s) is finite fors > R(v) + 1 and
g*(s) is bounded fos > R(v). It follows, by the same summation by parts argument used forthat

9k v)—¢e

Thus
2

1—wv

[2"Iy[g + 2°B](2) = K'n — n' + o(n®)) + O(1).

We may assume thadt(v) > 0; otherwise all error terms are absorbed{n°).
Consider now

+)\1 /{7+1 62d
" (I, o1 2R L(n K'k— -2 kv 4 o(BR) 4 e
10 oL lo 281 = T S e (K e o )

K’ c2¢
= n —
2—-)\ (I=v)(v+1—=X\)

nv _I_O(néR(v) _l_ne)’

again by 29). Repeating the same procedure, we obtain

An = Bo= () = o g 2o (B0 4 ey
n n = 2" f(z —P6<2)n PO(U+1)n o(n ne),

which proves(i) since Kz = K'/P}(2).

Case(ii). Now, similarly as above, we have

[2"1a[g + 2dB](z) = K'n + o(n® + nf),
[2"]1y,[g + 2dB](z) = Kj’-n)‘fl + o(n® + nf),



where . .
K= O] /0 (1—2)Y " (g(z) +2'B(z)) dz (1 =1,2).

Substituting these estimates intl) gives

K LK
n n
(2—=X1)(2—N2) (A1 —2)(A1 — A2)
K
A2 —2)( A2 — Ap)

[2"] (I, 0 Iy, 0 I) [g + 2°B](2) =

+ ( 71 4 o(n® 4 nf).

Applying successivelyZ8) to the remaining operatols, for j = 3,...d — 1, we obtain 7), where

2d

B = mooroy)

d BN ARV (=1,2), (48)

k>0

whereVj,()\;) satisfies the recurrence

with V. ();) = 0if £ < 0andV,()\;) = 1.
The same proof for proving Lemn&aalso implies thai/,()\;) satisfies the DE

D, (2(1 — 2)D,)" " (2MV(2)) — 22V (z) = 0,

and it follows thatV/,(\;) = O (k™' (log k)?~2). This justifies the absolute convergence of the se#8 (
I

In a similar way, we also have the following simpler transfer

Corollary 1. Assume tha(v) < 1 andv # a +i3. If B, = O(n®"), thenA, = Kgn + O(n*®) +
n® +nf); if B, = o(n®®), thenA,, = Kgn + o(n®®)) + O(n* 4 n?).

3 Limit laws of X ,,: from normal to periodic

We prove first Theoren in this section. Although the first part of Theoreims implied by Theoren#
below, we give the main steps of the proof by the moment-tesirapproach for more logical reasons: first
the mean and variance are needed by both proofs (althoulgldliffgrent degrees of precision); second, the
main hard part of the proof of Theorefirconsists in refining the estimates of some recursive funats
of moments. We then sketch extensions of the same typesibféisults to other toll functions.

The proofs here rely strongly on the different types of asigtiptransfer we developed in Secti@n

3.1 Limit theorems for the number of leaves

Expected number of leaves. By (5), we see that the mean number of leaves in a random quadtree of
nodes satisfies the recurren@@\ith B,, = d,,; and A, = 0. ThenB(z) = z andB*(s) = s (s + 1)
Applying (47), we obtain

E(X,) = pran + c.nTP 4 c_n®% 4 o(n® + n%), (49)
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for d > 1, wherec, = K(\;) andc_ = K()\,) with B*(s) = s7'(s + 1)L, In particular,
2 Vi
fa = d; (k+2)(k+3)

This proves 8) with G (z) = c e’ + c_e~"*; see Figure2 for a plot of the fluctuations of the error
terms. We now show that

fa = 2;1 kd%k]! (U‘“_l) 2 W(’ﬁ“—%)—w(k))—?), (50)

k>2 1<j<d

for d > 2, which gives an alternative expression . (
To prove 60), we apply the integral representatici), where

- Dk +2)0(1 — s)
T(s) = g (k+2)(k+3)T(k+2—s)

1

= 5%/ (—s) + 5 — 3 (R(s) < 1).

Now T has double poles at all positive integers. Summing overeaidues of the double poles of the
integrand in 40), we obtain §0) by absolute convergence (sintés) = O(|s|~!) as|s| — oo ands is at
leasts away from all positive integers). Note that

(k=1) > Wk+1=X)—v(k)—2=d—1+0(k™");

1<j<d

thus the general terms i6Q) decrease at the ra€e(k~%).

—0.1+4

—0.15 -

Figure 2:Periodic fluctuations of~*(E(X,,) — ugn) forn =4,...,1000 andd = 6, ..., 10.
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Recurrence of higher moments. For higher moments, we start from the by now standard trichdfing
the mean; thus we consider the moment generating function

7
My(y) = E (eXp (Xn — Hal = o5 = 1) y) :

which satisfies, byH), the recurrence

Mn(y) = Z ﬂ-nvaj (y) T szd (y> (TL > 2)7

j1+"'+j2d:n_1

with the initial conditionsM(y) = e #a¥/2"~1) and M, (y) = e(1~2"#a/@"~D)v_ Note that the additional
factor /(2% — 1) subtracted has the effect of keeping the recurrence simpler
DefineM,, ;, := Mﬁk)(o) =E (X, — pan — pa/ (24 — 1))¥). Thenl,, ,, satisfies the recurrence

Mg = Qnye + 2 Z T, Mj 1 (n>2),
0<j<n
with the initial conditionsM , = (—1)*u% /(2% — 1)* and M, = (1 — 29,/ (27 — 1))*, where
k
ok = Z (il, - ,iQd) Mg Mj2d»i2d (n=2).

it jpa=n—1

i1+~~~+’i2d=k‘
T 5eees i2d<k
Note that by 8)
[ O(n*+n), if 1 <d<S8;
M = { G1(Blogn)n® + o(n®), ifd>9. (51)

Variance. We now prove the asymptotic estimat.(First we have, by symmetry,

Qn,g = 2d+1 Z 7Tn,ij1,1 (Mjg,l + -+ szd,l) .

Jitetjpa=n—1

If 1 < d <8, then the estimatés() implies thatQ,, » = O(n'~*). Thus a straightforward application

of (12) yields
2
M, =E ((Xn — pgn — Qdﬂj 1) ) ~ o2n,

which, byV(X,) = M, , — M}, and 61), implies @). Hereo? is given by

2 Vim! Q2
2 _ 4 : 52
% dk;O(k+2)---(k+m+2)’ (52)

with Qo2 andQ; » properly defined. We will consider numeric evaluationgdfater.
If d > 9, then, by B1),

Qua=21 3wy (et + K ()it

Jitetiga=n—1

< D7 (a4 KO ) + o).

2< <24
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By the strong law of large numbers, we have

_2d+1/ Z c q a+iﬂqe(x)a+iﬁn2a+2w

[0,1)¢ 2<4<2d
+ cyc ((h (X)a+i’6Qg (X)a—iﬁ + O (X)a_iBQg (X)a—HB) n2
+q (x)a*wqg(x)“’wnm’%ﬂ) dx + o(n**),

where they,(x)’s are defined in). The integrals can be simplified as follows.

() = / a3 akx

&0 far PR
O DR

for R(u),R(v) > —1. Thus

Qn722_d_1 = cin(a + i, o +if)n* TP 4 2c_cin(a+ B, o — if)n?
+ A nla —if,a —if)n?*" 20 4 o(n*).

Transferring this approximation term by term usidg)(gives
M, 5 = Go(Blogn)n** + o(n®),
where

~ , L Qa+2i3+ 1) 4,
Ga(u) = 2" n(a + i, a +ip) f(’o(Qa o +)1) o218

2 1)4

+2"c_cin(a+if,a 5)%
d+1.2 (200 — 203 + 1) —2iBu
+ 2" e n(a —iB, a —if3) (a—22[3+1)6 i

This proves 4) with Gy (z) = Gy(z) — Gy ()2

Asymptotic normality for 1 < d < 8. The same arguments used above for the variance also apply for
M, . for k > 3. By induction, we obtain

2k)!
Man‘ ~ (kk')' gk Qk;

M, o611 = O(hkfw),

for k£ > 1; details are omitted here for conciseness; 8¢&f a similar proof. This proves the first part of
Theoreml.
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Periodic fluctuations for d > 9. In this case, the same calculations YotX,,) can be extended to show
that

k
E ((Xn — pan — 2d'uj 1> > ~ G(Blogn)n™ (k > 2); (54)

where theG,,’s are bounded periodic functions. Then the proof that tiger® fixed limit law for(X,, —
E(X,))/\/V(X,) follows the same arguments used 8h [
Instead of giving the messy details of the proof fo4)( we sketch the proof for

1X0 = pan = 2R PX)||, = o(n®)  (p > 2), (55)

where| Z|| = (E|X|P)/? denotes the usudl, norm. HereX is a random variable witft(X) = c, (see
(49)) and defined by
_0]

{

x Z U)?—HﬂX(l) 4ot <U>gz;|—iﬁX(2d)7

where theX (s are independent copies &f and the(U);'s are the volumes of th&? quadrants split by a
random point in0, 1]¢. Part(i7) of Theoreml also follows from 65).

It suffices to provey = 2, the remaining cases following by induction. The argumesed here are
modified from those in]5] for randomme-ary search trees.

Define

§n 1= HXn — fgn — 2 Z R (J]‘?‘+i5X(j)>

1<j<2d

=2 30 R(OXD) <2 3 R (net )X O)

1<j<2d 1<j<2d

2

2.

We prove that,,, n, = o(n®), which will then imply 65) for p = 2.
First by the decomposition

En < 11X = panlo + 22| ;X D2,

we deduce thag, = O(n®). Then by the recurrencé), we have the inequality

€< Y E(&, +ny)" +on®).

1<j<2d

This, together with the estimate

M < 2420 X0 = o(n%),

2

a+if ‘
J(2) - @i

gives

& <2t Y w6+ o(n™)
0<j<n
2a)

Y

=o(n

by theo-version of @6).
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| pa & |
0.47841 76043 57434 47533 79639 99504 60454 12547 97628
0.56850 70194 06572 68270 35257 03246 03680 11920 50021
0.63168 48783 52998 69050 68769 97892 90145 67365 77851
0.67906 23676 94926 62299 74554 08602 48628 92348 92646
0.71615 83294 69847 70674 65510 61878 16738 93088 58805
0.7460946112 09331 64803 70711 94105 57503 99390 36451
0.77079 60778 85838 99509 15248 99261 83895 90393 54520
0.79152 59978 40106 48407 81034 62942 59540 22737 03660
0.80915 45900 27608 17078 62137 34456 57737 58997 15908

QO 00| || O = | W| N|| X

—
e}

Table 2: Approximate numeric values @f ford =2, ..., 10.

3.2 Numerics ofy, and o2

We consider means of computing numerically the constanendo?.

Numerical values ofy. To compute the constantg to high precision, one can use eith) ¢r (50)
by the standard procedure: compute the first few terms gxant estimate the remaining terms by their
asymptotic behaviors.

An alternative procedure is described in the last sectionnsitler f(z) = f(z) — > acien A7
(A; = By andB,, = 0 for n > 2) for a suitably large numbe¥, say50. Exact values of4,, can be easily
computed by the exact expressidy Wwhenn is small. Observe that

J(z09)* ! chzj = Z 2

jzN Jj=N-1

Thus the right-hand side of the DE

(19(219)‘1_1 — Qd) f=24z— (19(219)61_1 — 2d) Z A

2<j<N

contains only monomials’ with N < j < N + d. Then the newB*(s) is of orders=" for large s,
implying a better convergence rate for the serie§ GinceV) remains the same and can be computed
recursively. Then we need only compute the first few termis@r example) of the seried §) to give the
required degree of precision. In this way, we obtain Tab# Such a procedure is also useful for other
constants such as;.

Expressions foro2. We first derive more explicit expressions fbf, » in (52) before computing?.
We start from the bivariate generating functiétiz, y) := 3 . E(e*¥)z"/n!, which satisfies, by
(5), the equation

9 P =14 | P Flastz) de

82 [0,1]¢

In particular,F'(z,0) = e*.
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Then the Poisson generating function

~ . Zn . o i Zn
Flzy) = e My(y)= = ey B(eXnmmampal @=Din) =
n>0 n: n>0 n.
satisfies the equation

F _
(z,y)+az

[0,1]

Let F(z,y) = > i0 F;(2)y?/j!. Then

Fl(2)+ Fi(2) =e " + Qd/ Fi(zy - 242) dx,
[0,1]¢
with the initial conditionF} (0) = —p4/(2? — 1). The coefficients., := n![z"]F}(z) satisfy

2d
Unt1 + Uy = (—=1)" + a

(n+1
which, after iterating, can be solved to be
w= Y I (1-5) = com Yk
Z ik
2<k<n k<t<n

forn > 2, withug = —pg/(2% — 1) anduy = 1 — puq4.
For F5(z), we have the same type of equation

Fi(2) + Fy(2) = Go(2) + zd/ ) Fy(my -+ 2q2) dx,
[0,1]

with the initial conditionF,(0) = p2/(2% — 1)2, where

~ 2d+1[ud . p B N
g2(z) = (1— 51 )¢ +2 Fi(zy---242) Z Fi(qe(x)z) dx.
- d
[071] QSZSQd
Observe that
~ - n . .
w2t [ Ress) Y Rz dc=20 3 ( .)ujunjno,n ),
[0,1]4 2<p<2d 0<j<n J
wherern(j,n — j) is defined in $3).
By (56), we then have for. > 0
d+1
ni,ni~ Hd n n : :
= D) = 1= 5 2 Y (Mgt ),
0<j<n
It follows that ) v
2" By(z) = (1) )t Y (n>2),

O B(zry) = e *(e? — 1)e2hav/C=D) 4 / Flqi(x)z,y) - - F(gaa(x)2, ) dx.

(56)



o4~ ‘
0.06145 73978 66984 07284 36701 54743 66750 63784
0.06802 65800 83909 72781 61723 15284 91262 75906
0.07090 19719 94546 02309 70950 30497 53882 55032
0.07261 12472 86535 68765 26637 38060 39503 98071
0.07449 2125393111 0067461761 51696 97039 29930
0.07731 76983 93655 7183091768 87307 89088 95507
0.08123 98836 52827 96294 47650 19430 64044 32562

QO | O U b= | W N|| &

Table 3: Approximate numeric values®f for d = 2, ..., 8. Note thato? = 2/45 ~ 0.04444 . . ..
with F5(0) = p2/(2% — 1) and F5(0) = 1 — 2% g /(24 — 1) + (24 + 1)p3/(2¢ — 1), and consequently

1 2
My, =E (Xn — Hd (n—|— ﬁ))

2 d+1 d
= 11— — —1)" k]! :
(2d_1)2+< 2d_1+2d_1'ud>n Z (k;)( )" %] Z[j+1]!

2<k<n 1<j<k

This provides a less dimension dependent expression fopeting ), » for small values of: needed for
computing the approximate valuesafin Table3.2
Note that forl < d < 8, M,,; = O(n**?) and

1 2
V(Xn>:Mn,2_Ms71:]E<Xn_,ud (n+2d_1>> —ngl;

Thus to compute the limiting constas} of V(X,,)/n, it suffices to computé/,, ».
By the same procedure for computing, we obtain Table.2.
Note that

Qnz = [2""e*Ga(2) = ) (n . 1) (—1)v;  (n>1).

0<j<n J

For consistency, we can defifil » := p2/(2—1)% ThenQ1 2 = vo = 1-2% 1,/ (27—1)4+29p2/(27—1)
and forn > 2

Qna=2" ) (”;1) > (Zf‘)ujum-m@,m—j).

0<m<n 0<j<m

3.3 Phase change of other cost measures

Consider the random variables defined recursively by
a2y 4+ v+, (n>1), (57)

with Y, given, where théY,\")'s are independent copies bf and7, is a known random variable (often
called “toll function”).
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3.3.1 Phase change of general toll functions

Our method of proof extends easily to cover a wide class ofaakctions. We formulate a simple result
for deterministic toll functions as follows.

Theorem 3. If T, = O(n'/?(logn)~*/2~¢) and T, is not identically1 for all n > 1, then

Yn_ufjng
_ N(0,1
aln/n = N0, 1),

for 1 < d < 8, wherey, and ¢/, are constants; ifl > 9, then the sequence of random variab(&s —
E(Y,))/v/V(Y,) does not converge to a fixed limit law.

The proof follows from that for Theorerhand is omitted. Both constant§ ando’, can be computed
by the same procedure as foy ando,.
By the recurrence

Vo) = Y Ty (B(Y) + - +E(Y,) —E(Y,) + T)" +20 Y m,,V(Y;),

0<j<n 0<j<n

we see that the variance is identically zerdIiff= 1 for n > 1. In this casey,, = n (the total number of
nodes in the tree). This also implies, when applyihg) (the identity

2 Vi B
; % RSN 1 (d>1). (58)

The same method of proof we used for proving Theofleatso applies to cover the case wHEN~
v/n, which still leads to asymptotic normality fof, when1 < d < 8 with linear mean but with variance
of ordern log n. The same non-existence of fixed limit law also holds in théewvrangé€l;,, = o(n*) when
d > 9. More cases can be clarified as if}.[ Since the number of concrete examples (directly related t
cost measures of algorithms or quadtrees) is limited, we fstan considering other general limit results.

3.3.2 Concrete examples and extensions

We briefly discuss instead a few instance§ pktudied before in the literature.

Paging. The page usage of random quadtrees was studied@nand [19]; it can be regarded as a
generalization of the number of leaves and satisB&sWith 7,, = 1 whenn > b, and7,, = 0 otherwise,
whereb > 0 is a predetermined structural constant. We can also Yigas enumerating the number of
nodesr with subtree sizes rooted atlarger tharb.

By Theorem3, the page usage in random quadtrees undergoes the same typase change (of limit
laws) as the number of leaveBhe mean constant is given by

o2 (b+1)!Vi
Nd(b)_3;“{;_}_1)(]{—{—2)-”(]{34'87‘{'2).
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If d =2, then (see3H))

Do (k+1)!
#a(b) = 12(b + 1)! %; (k+3)(k +4)(k+b+2)!

=12(b+1) /01(1 — )Py ((1 —z)log(l —x) + o — “%2 — %3) dx

=602+ 9b+ 1 —b(b+1)*r2 +6b(b+1)* Y 72,

1<5<b

which coincides with the expression first derived 26|
Ford > 3, expressions for/, are less explicit. We first simplif{' (s) (see €0)) as follows.

) bryl THEDr-s)
T(S)—Z(k_,_z)...(k—l—b—i-Q). [(k+2—s)

k>0

=00 Y ()1

0<e<b

where

Qu(s) = /1—;5 Zk+a (R(s) < T:a=0,1,...),

(whena = 0, the term corresponding fo= 0 is dropped). Obviousl)(s) = (s — 1)~2, and
1 !/
Qls) =Y ——=v(1-s) (R(s) <1).
= (s — k)

By an integration by parts, we have the recurrence
s 1
Qa+1(s):EQa(s+1)—l———— (a>1).

By induction
S+a—

a—1

2(s) = (

where poly(a; s) is a polynomial of degree — 2 such that2,(s) is of growth ordets|~! at infinity (with
|s — k| > €). More precisely, since

Y(1—s)= > (~1)/"Bys (|s| — oo, |arg(—s)| < 7w — ),

Jj=0

where theB,’s denote Bernoulli numbers (se®4 p. 47, Eq. (7)])

poly, (a;s) = Y s'7' ) ’”_1 Ol iy, (@22,

1<j<a j<t<a

2)¢’(1—s)+p0|y1(a;s) (a=1,2,...),

where thes(a — 1, j)'s denote Stirling numbers of the first kind. From this expres, we deduce the
representation

T(s) = s(s = 1)+ (s = b)Y (1 — 5) + poly,(b; 5),
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where poly(b; s) is a polynomial of degreé such thatY(s) is of growth order|s|~! at infinity (with
|s — k| > ¢).
Then the integrand in the integral@ has simple poles at = 1,2,...,b and double poles at =

b+ 1,b+2,.... Summing over all residues of the poles yields
, 2d+1 -1 k
pa(b) = 4 b ( d) |
1<k<b () (k + 1)k [k + 1!

20+l 1 (=1)*(b+ 1)(,}))
d = (k+1)%[k +1]!

>b

}:ka+2—&)—w%+1D—w%+1%HMk—®>-

1<j<d

Note that the last series diverges tor> d. Numerically, the procedure we used for computingis

preferable.
Whenb > d, we can use the recurrence
) =274 > " Rajy(b+5—1)  (b>1), (59)
0<j<d
so that once the valudg.,(0), ..., u,(d — 1)} are known, all values qf/,(b) for higher values ob can be

computed successively. Hefg ; is defined recursively aB,, := 1 and
Ryj=(b+j+1)Ra1; —(b+j—1)Ra-1, (0<j<d), (60)

with R;;, = 0 whenj < 0 orj > d. The recurrence5Q) is proved using the DE3(?) and successive
integration by parts as follows.

i) =3 [ (=2 V@)

_ 2d /0 u ;f) (z(1 — 2)D)? 2%V (z) da
ol—d rl
- (1 — 2)’Ry(2)V (z) d,

whereR,(z) = Ry(b; x) is defined by

Ry(z) == ﬁ (=Dz(1 — z))* < ;zx)
= D Rl —ay,

with R, ; satisfying (by induction) the recurrencgdj. Thus g9) follows. Note that wherh = 0

2 gl-d rl

wy(0) = 3/0 (1 —2)V(z)dr = i/ V(z)dz =1,

which can be proved directly byt(); see alsog8).

34



Node sorts. If T, is equal to the probability that the root hasonempty subtrees, whepe< b < 27,
thenY,, represents the number of nodes in random quadtrees haantygxnonempty subtrees. The same
type of phase change phenomenon holds since the toll funigibounded; see8f, 35 for expressions
for the probability the root havingsubtrees.

In general, if7,, = 0,5, whereb > 0, then the limitsy, = p,(b) of E(Y,,)/n are calleduniversal
constantsn [36] since for general toll functions, with linear mean the linearity constant can be expressed
in terms of theu),(b)'s as) ", Ty, (b). Expressions for),(b) can be derived similar to the previous case.
We have

B (k + DT(1 — s)

T(s) = Ty(s) = = (k+2)---(k+b+2)['(k+2—5)
=— (2 (=1 (0 + 1)Qp12(s)
0<¢<b
- (_1)b+1 s2(s—1)---(s—b+ 1)¢/<1 — 5) + poly, (b; s),

b!

where poly(b; s) is a polynomial of degreé such thatY(s) is of growth order|s|~! at infinity (with
|s — k| > ¢). Also 1/,(b) satisfies the recurrence

py®) =27 > " Ryjuy(b+j—1)  (b>1),

0<j<d

with R, ; satisfyingR,; = (b + j)Ra—1,; — (b+j — 1)Rq_1-1 for 0 < j < d. Note that in this case
Ry = b andRy; = (—1)*" (P,y(—b) — P;(~b)) for 1 < j < d.

Total path length. In this case7,, = n—1. Although Theoren3 does not apply, our method of moments
does, and we obtain convergence of all momentdpf-E(Y;,))/n to some non-normal limit law for each
d > 1; see B0], and [3Q] for similar details. In particular, the mean satisfies (&)

2 2 2
E(Y,,) ~ 8nlogn— <2+ 7 — 2y — pi Z P(2 — )\j)> n,
1<j<d

and the variance is asymptotic f6,n2, where

2
3¢ 2
o= grgt Jo |1 Fa 2 alogabo | dx

1<j<2d

To evaluate the integral, let

ﬁ(u’v):/[oud ¢ (x)" Z qe(x)" dx.

1<e<2d

Thendj(u,v) = n(u,v) + 1/(u+ v + 1), wheren is defined in 3), so that

1 I(u+ DI(v+1)\*
u+v+1 I'(u+v+2) '

i) =
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It follows that

34 4 0 4 0
K4_3d—2d(1+E'%U(O7U>U—l+_2a8 TI( )
2

3 2127
~3d - 2d 9d '

u—lm—l)

see also40Q].
Unlike the number of leaves and other small cost measurees th no change of limit law for total
path length since the order of the variance is not alterneshéoeasingi.

Expected profiles (or depth). Denote byZ, ; the number of nodes at distankeo the root; theZ,, ;'s
are informative shape characteristics often referred tthagrofiles of the trees. Thelepth D, is the
distance of a randomly chosen node (atlodes being equally likely) to the root. Then the probapilitat
the depth isk equalsE(Z, ;)/n. Consider the level polynomials, (y) := >, E(Z,x)y*. ThenL,(y)
satisfies the recurrence

Lo(y) =1+42% Y mLily)  (n>1),

0<j<n

with Lo(y) = 0; see [L9]. The same analysis for the small toll functions part of Tie@o2 (and the error
analysis in Sectio.5) appliesmutatis mutandiand yields

Ln(y) = Klgh"* 40 (w000 ) (61)
where theD-term holds uniformly fory lying in some complex neighborhood of unity, and

9dy1/d Z H3§zgk(1 —2y1/0)
d s kO  acoai (L = 2%/69)

Thus the asymptotic normality (with optimal Berry-Esseenrnt) of the depthD,, follows from (61) and
the so-called quasi-power approximation theorems; 2&eJec. 1X.5] or R7]. Note that

K(y) = (k—=1) > (w(k+1=X\y") = (k) — 1) :

1<5<d

2d+1 1 1
K1) = d 4 kIk]! (1;d (W(k+1—=X)—v(k) - m) =1 (d>2);

compare $8).
A considerable simplification of the expression f0fy) can be obtained by applying the finite differ-
ence integral representation for the closed-form expoagsee 19))

L=n--0 % (e 00 (1-50) @20,

2<k<n 3<j<k

giving

ds.

1, -
1 5+ico T(n+1 S—|— 1— )\Zyl/d
Luly) = e I :

2w I'(n+1-ys) (2 — A\yl/d)

5 7200

0<e<d
Then, by moving the line of integration to the left and sumgrtine simple poles encountered, we obtain

Ln(y) = 1— 2dy + K (y)n* i (1 +0 (n’e + n*m(yl/d(l—e%/d)))) 7
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uniformly for |y| > 2=¢ + ¢, where

1 I'(2y(1 — emi/d
11 (2y( )

K(y?) = ——
(y ) F(2y)d(2y _ 1) \Siea 1”(2 _ 2y€2£m/d)

This explicit expression and the quasi-power theorem2h §lso give more precise estimates for the
mean and variance of the depth

E(D,) = glogn + [t] log K(e") + o(1),

V(D,) = % log 1 + 2[£2] log K(e!) + o(1),
where
[t]logK(e!) = Ky — 1= —2 — % +27+§ PORUCEDPY]
1<j<d
20 logK(e!) = 214 7) - 2+ 2 2 S GR-A) F2 AR ).
1<5<

Note thatn[E(D,,) equals the expected total path lengthAarwhenB,, = n — 1.

4 Second phase change: convergence rates and local limit theans
for X,

We consider the convergence rate and local limit theorenXfgrwhich undergo another phase change.
Local limit theorems are more informative and precise theymgptotic normality. We use characteristic
functions and standard Fourier analysis (s€8)[ the main estimate needed being based on the refined
method of moments introduced iRg] and the refined asymptotic transfers developed in Seétian

Local limit theorems. To state our result, let

[ 13, ifl1<d<T;
Tl V2-1, ifd=8.

Theorem 4. Uniformly forz = o(n'/?2~%),

—x2/2

P (Xn = {Xn + m\/WJ) = \/;Tm (140 ((1+ |z )n—30/2-3)) |

The error terms in both cases are, up to the implied constaptsnal. Numerically3(1/2 — a) ~
0.2573 whend = 8. This local limit theorem (in the range of moderate deviasjpalso implies the
following convergence rate

X, —E(X,) [ O(n7Y?), if1<d<T;
’ (W ) m) )| { O(n=32) if d =3,

where®(z) = (2r)~ /2 [*_ e ¥'/2dt.

sup (62)

z€R
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Moment generating function of X,, normalized by that of a normal distribution with the same mean
and variance. LetII,(y) := E(eX) andg, (y) := e EXny=V(Xn)v*/2[] (). From the recurrencéy,
we have

on) = Y Tagbn () G, ()t (0> 1),

Jietiga=n—1

with ¢o(y) = 1, where
Anv.j = 5n71 + E(le) +oot E(Xde) - E<Xn)7

L W) VX - V(X))

Vi = 5

Note thaty, (y) is in general not a moment generating function.

Recurrences. Defineg,, ;. := ,(f)(()). Then by the recurrence ¢f,(y), we have

¢n,k = 77Z}n,k: + 2d Z 7Tn,j¢j,k (TL > 1)7

0<ji<n

whereg, , = 0 and

]{7' j : Aio 7"2‘1+1
w'ﬂ,k - Z /[/ ' .. '7: d'Z d ' ﬂ-n)jgbjlail U ¢j2d7i2d n,jvn,j :
iotinboiyat2iga =k 020 2L G g =n1
0<i1,emmyina <k

A uniform upper bound for ¢, ;. Recallthatt = 1/3 whenl < d <7, anda = v/2 — 1 whend = 8.
We will prove, by an inductive argument, that
|bni| < KLAFRR™ (k0 > 0), (63)

whereA is a suitable constant that will be specified later. Note (638X holds fork = 0, 1, 2.

An upper bound for A,,;. By the estimate49), we have

O (nl/gfs) , F1<d<T;
O (n%) =

Bang = 0 (n>1), ifd=s, (64)

uniformly for all tuples(ji, . . ., j4).

An upper bound for V,,;. We need to refine the asymptotic estimafe Gince the variance satisfies the
recurrence

V(Xa) = Y w2t Y m V(X))

Jittja=n—1 0<j<n
and the first sum on the right-hand side is bounded above by
@) (n2/3*25) , 1 <d<T;
Z T A2 =
M 0 (i), ifd=s,

jitpa=n—1
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we obtain, by applying Corollaryy,
) O (n2/3_28) , f1<d<T;

This implies that
On*32), if1<d<T,
Vi = 0 () ifd =, (63)

An estimate for ¢,, 5. From (64) and ©5), it follows that

O (n'79), if 1 <d<T,
Pa = 0 (ne ) itd =8

Thus @3) holds fork = 3 by applying (2) when1 < d < 7 and (L5) whend = 8.

Induction.  For higher values of, we use the estimates (b§4) and ©5))
|An,J| S K{)nd’ |Vn,j| S Kanaa (66)

uniformly for all tuples(ji, . . ., jo4)-
Assume that@3) holds¢,, ; for : < k. Then by 66) and induction

i o Kot )"
‘wn,k‘ S/{Z!nka Z A11+---+22d576' Z Tnj ‘7_1

Toligar ! . - n
o Higa+2iya =k 0724 bt jpa=n—1

a de lyd O
n
0<i1,.iga <k

< kinfoefotie N " ALS(0), (67)

0<e<k

where

s= Y Y my (»%> o (ﬂﬂ

i1t Figa =0 j1+FJja=n—1

An estimate for S(¢). We now show thaf(¢) — 0 as{ — .
Lemma5. For ¢ > 0

S() <clla+1)"%  (d>1), (68)
wherec > 0 is independent of andn.

Proof. First, by the strong law of large numbers

S() < c/[m]d Z H gn(x) " dx

14 Fiya =0 1<h<24

1
:CQd ZZ/ %dx.
] [0,1/2)4 1 1 — qn(x)%2

1<h<2d
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Observe that the smallest term among 4hex)’s is qqa(x) = (1 — 1) -+ (1 — z4) whenx € [0,1/2]%.
Thus the dominant term for largecomes fromy,«(x), and it follows that

1 - 1
— Ox ~ / oa(x)" dx
/01/2] 1<h<2d 1— gu(x)3z [0,1/2) ? 131;:{% 1 — qn(x)/qaa(x)
N/ (1—a)® (1 — ) dx
[0,1/2]4
~ (la+1)1

This proves §8). 1

Proof of (63). Substituting the estimat&®) into (67), we obtain

c k, ka
|¢nk| < mk!fl no.

Then, by the asymptotic transfet),

c k ka
|¢nk| < WHA n-,

wherec is independent of, andk. Thusc'/(ka + 1)? < 1 for large enougtk, sayk > k,. Hence, 63)
follows by suitably tuningA for k& < kq; see [L] for similar details.

An estimate for the characteristic function for smally. Denote byy, (y) = I1,,(iy/+/V(X,)). Then,
by (63) and the Taylor series expansion,

9
Son(y) —e v/

_ (W 3(1/2- a)e—zﬂ/?) (69)

for |y| < egn'/?>~%, wheres, > 0 is sufficiently smalll.

A uniform estimate for 11, (iy) for |y| <e. From ©9), we deduce that
M (iy)] < e = (n > 3), (70)

for |y| < eon™ %, wherezs, is a suitably chosen small constant.

We now prove that the estimatéq) indeed holds foty| < e, €2 > 0 being a small constant. To that
purpose, choose, large enough and set := on, “. Then, {0) holds for3 < n < ny and|y| < &,. For
n > ng, by (5) and induction,

MGiy) < Y magllL, (i) - [T, (iy)]
jittga=n—1
< 6761(n+1)y2751(2d72)y2

6761(n+1)y2

IN

This concludes the induction proof.
Reformulating the estimat&() yields the following global estimate faf,, (y)

)| =0 (=) (n23), (72)

uniformly for |y| < eyn'/2.
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Berry-Esseen bounds and local limit theorems. The convergence rate83) now follows by ©9), (71)
and the Berry-Esseen smoothing inequality
Ry,
=0 | R'+ / dt |,
whereR,, := en’1/2-%); see p2].

V(Xn)
For local limit theorems, we first observe that the spaXgfis 1 by induction, so that10) can be
extended tdy| < 7 (again by induction). Then Theorefollows by applying the Fourier inversion
formula

Pn (y) — eV /2
Y

sup
xX

1 4 .
P(X, = k) / T, (iy) dy,

:% o

wherek = LE(Xn) + x\/V(Xn)J : see Figure.

0.0035 -+ 4
0.25
0.003
0.0025
0.002
0.0015

0.001

0.0005

24

o

Figure 3: Left: A Sedgewick plot of the absolute difference betw@xX, = k) and
e~ (b=EXn)*/QV(X0) /| o7V (X,) for n = 20,22,...,64 and |0.35n] < k < [0.7n] (normalized in
the unit interval) wherl = 2. Right: the histogram dP(X,, = k) ford = 3,n = 30 andk = 12,...,23,
together with the corresponding normal curve (having theesaman and variance).

Extensions to general cost measures.The same method of proof applies to other cost measures in
random quadtrees. In particular, Assume thatn (57) is deterministic and satisfids, = O(n”), where
p<1/2.1f 1 <d <7, then we have the following Berry-Esseen boundsyfor

O(n=1/?), if p<1/3;
P (—Xn ;}E(Xn) < x) — ®(x) { f

sup
x

O(n=2logn), if p=1/3;
(Xn) O(n=30/2=0)) " if 1/3 < p < 1/2.
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Whend = §, then

p(LE(X") <x> — &(x)
\Y%

sup (X )
O(n=33/2-v2)) if p<v2-—1;
=1 OG22 (logn)?), if p=v2—1;
O(n=3(1/2=r)), ifvV2-1<p<1/2.

The corresponding local limit theorems can be derived whgassumes only integer values.

5 Randomd-dimensional grid-trees

We consider briefly the phase changes in random grid-trabgsieection, the required asymptotic transfers
being also given.

Grid trees. Devroye [L2] extended the-dimensional point quadtrees andary search trees as follows.
Instead of choosing the first point as the root, one choosgghe firstm — 1 points (n > 2) and places
them at the root. These — 1 points then split the space inta? smaller regions (called grids) when no
pair of points is collinear. Each node in the correspondindrtyee has at most? subtrees. Whem = 2,
grid-trees are quadtrees; whénr= 1, grid-trees reduce to the usualary search trees; se@f].

Random grid-trees. Fix m > 2 andd > 1 throughout this section. Assume that the input is a sequence
of n random points uniformly and independently chosen fiom|?. Construct the grid-tree from this
sequence. The resulting tree is calleciadom grid-tree

Phase changes of the number of leavesFor simplicity of presentation, we consider the number of
leaves in random grid-trees, denoted.By.

m 2 3 4 5,....819,...,26
dl[1,...8]1,..,4]1,....3] 1,2 1

Table 4: The se& of all pairs of (m, d) for which X,, is asymptotically normally distributed. The two
boundary case®, 26) (m-ary search trees) arid, 8) (quadtrees) are both underlined.

Theorem 5. If (m, d) € S, whereS is given in Tablet, then

X, — E(X,) A

Vo) N(0,1);

if m >2/d>1and(m,d) ¢ S, then the sequence of random variablés, — E(X,))//V(X,) does
not converge to a fixed limit law.

More refined results (and more phase changes) can be deswedhe case of quadtrees.
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Recurrence of X,,. The recurrence ok, now has the form

X, Z 3 X946, (n=1),

1<j<md

with X, = 0, whereX,,, XV, ..., X" (J,,..., J,4) are independent antf,, Z X1 < j < md.
Moreover, the splitting probabilities can be expressed as

Tnj = ]P)(Jl :jl,...7de :jmd)

— 1 .
= (TL m ) / H qh(Xl,...7Xm_1)jth1...de_1
([0,1]4)m=t

jlv"'7.jmd

forall j; +--- 4+ j,,a =n —m+ 1, where
an(X1, .- Xpe1) = H Z Liny (i) <37E2)+1) - l’%) ,
1<i<d 0<b<m

with z(, denoting the/-th order statistic ok, ..., z,,—1 (z(o) := 0, 2, := 1).

Recurrence of moments. All moments satisfy recurrences of the form
Ay =B, +m* Y m A, (n=m-1), (72)
0<j<n—m+1

wherer,, ; denotes the probability that a specified subtree (say ttdirthe root hag nodes.
We now show thatr,, ; can be expressed in the form

(”—1—j§—1) (ji_ji—l—;m—2)
Mg = ) 2= ] s (73)
" J<i1 < <jg—1<n—m+1 (mril) 1<i<d (]Z;Tl 1)

To that purpose, we first split, ; as follows.
Tng = Z Wit yeesia—1>
j<in <ip<<ig g <n—m+1

wherew;,.;, ., , denotes the probability that tmerandom points are distributed in tHedimensional unit
cube in the following way: the first: — 1 points, denoted by, ..., x,,_1, split [0, 1]¢ into m? grids and
the remaining points are placed in these grids such thas gfithe form

1) () (i+1) .
[O,:c(l)] X oo X [O,:c(l)] X [l’(l) ,1} (1=0,---,d),

containn —m —ig_1 + 1,991 — iq_o,...,11 — j,j random points, respectively.
By definition, we have

Wjsinriia—s / ( (i) )Zd ( () )idiﬂ_idi
n—m - 'y -z dX1 . de,1
( ) o L1 =0} @

. . . . m—1 A
20581 —105--y8d —td—1 1<i<d

= T1 ) ()T el e
[0,1]77171

1<r<d
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wherei, := j andiy; := n — m + 1. It remains to evaluate integrals of the form

/[0 1jm—1 l’?l) (1 — LE(I))T dxl .. dxm—l,

wherep, 7 > 0. By dividing the domain of integration inton—1)! sets of the forn{ (z1, ..., xp—1)|zo1) <
-+ < To(m-1)}, Whereo runs through all permutations of — 1 elements

/[01]m1 $€1) (1 — x(l))T dxl N dxm—l = (m — 1)!/ x,i (1 o -1'1)T dx1 N .dl’m,l

0<z1 <<z —1<1
1
=(m-—1 2° (1 — )™ 2 dg,
( ) 7
0

T+ DT tm—1)
== )G )

by symmetry. Substituting this expression intd) gives the desired resulfd). 1

)

The DE. Let A(z) = ) -0 A4n2", B(2) = > -1 Bx2", andf = A — B. Then the recurrenc&’p)
translates into the DE - -

(1—z)"™'D" ! (2™ (1 = z)m_le_l)d_l f(z) =mlYA(2),

or, in terms of thej-operator,
- —\d-1
g1 (zm—lﬁm—l) F(2) = ml2A(2), (75)
wherey™ 1 = 9(d +1)--- (9 +m — 2).

The normal form. We then rewrite the DE in the form
P f(z) = Y. (1=2P0)f(z) + m\B(2),
1<j<(m—1)(d—1)
where theP;’s are polynomials of degreén. In particular,
Py(9) = (ﬂm)d —mld = H <19m — m!e2jm/d> )
1<j<d

The unique case when the above DE reduces to a pure Cauchytfpdésd = 1. Also the “lineariza-
tion” achieved by the Euler transform does not seem to wanrkctly form > 3. This says that it is not
obvious how to derive an explicit expression such38 (vhenm > 3.

Zeros of Py(z). Our method of proof for deriving the asymptotic transfersnigstly operational and
requires only limited properties of the zeros of the indiplynomial P,(x). The proofs of the following
properties are straightforward and thus omitted.

e The zero with the largest real partis= 2. All other zeros have real parts strictly less ttzan

e All zeros of Py(x) are simple (we need only this property for= 2 and the second largest zeros in
real part).

Other properties similar to those for the case 1 (m-ary search trees) can be derived as3n [Ch. 3].
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Asymptotic transfers. We state the main asymptotic transfers needed for provimgpiemb.
Let H,, :== >, _;,, 1/j denotes the harmonic numbers. Define

Kp = Z Vi, B*(k + 2), (76)
k>0

when the series converges, whéfas defined recursively by, = 0 whenk < 0, V5 = 1, and

Py(k+2)
Vi = E — Vi kE>1
g Po(k+2) (k2 1),
1<0< (m—1)(d—1)

andB*(s) := fol B(z)(1 — z)*~! dz when the integral converges.
Theorem 6. Let A,, be defined by the recurrencé?) with A, and{B,,},>1 given. Then

(z) (Small toll functions)

A, ~ Kgn iff B, =o(n) and ‘Z B,n"?

where the constank’ is given in {6);

(77) (Linear toll functions) Assume th&, = cn + u,, wherec € C andu,, is a sequence of complex
numbers. Then

Anwmnlogn%—lﬁn iff un:o(n)and‘zn:unn_2’<oo.

Here K, := ¢K, + K, with K, defined by replacing the sequenBg by u,, in (76) and K, given
explicitly by

1 Vi d HY 1
Ky = —— —2— —(Hp— 1)+
2T A(H, — 1) (;k(/{+1)+7 yHn =+ 50 —75 )

where 7 Z1<J<m 1/42

(7i1) (Large toll functions) Assume th&f(v) > 1 andc € C. Then

B, ~cn® iff A, ~ ((Uﬂm—
" " ((v41)m=1)d —mld

In particular, ifd = 1, thenV}, = 4,0 and

B*(2) 1 B,
Kp = — .
P H,—1 Hm—1;(k+1)(k+2)’

see B].
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Growth order of V} for grid-trees. The sequence), satisfies the DE

((]Dzz +m—2)-(D,z+ 1)D,z(1 — Z)m_1)d—1

X Dz 4+m—2)-- (D,z + 1)D, (2*V(2)) — m!?2V(2) = 0,
implying that the solution of the forif'(z) = (1 — z)~*¢(1 — z) has the indicial equation
s s+ 1) (s+m—2)=0.
Thus we deduce that
Vi = O (k™' (log k)°)

for somec > d — 2. This implies that the series ifi§) is convergent for both cases of small and linear toll
functions.

Refining the asymptotic transfer for small toll functions. To derive the second-order term f&(.X,,)
andV(X,), we also need the following types of transfer.

Let « + 1 denote the real part of the second largest zera®&,0f) (all zeros arranged in decreasing
order according to their real parts), add> 0 denote the absolute value of the imaginary part of either
zero.

Proposition 2. Assume thatl,, satisfies 72).

(¢) If B, ~ cn’, wherec € Canda < R(v) < 1, then

(Gl
(v +1)m=T)d — mld

A, = Kpn + n' + o(n’ + nf),

whereK is defined in 76).
(73) If B, = o(n®), then
A, = Kgn + KA\)nT + K(\)n®"% + o(n® 4 nf),

where theK ()\;)’s are constants whose expressions are similarly defined &8)n If the B,’s are

all real, thenK (\;) = K(X2).

These types of transfer and the inductive arguments useglmitrees can be applied to prove local
limit theorems forX,, with optimal convergence rates. Limit theorems for manyeothape parameters
can also be derived. We mention only the application to foa#h length.

Total path length. Neininger and Rschendorf40] derived a general limit law for the total path length
in random split trees of Devroye (seE?]), which cover in particular grid-trees. Their result isskd on
the assumption that the expected total path length satasigaptoticallycn logn + ¢'n. Our asymptotic
transfer for linear toll functions shows that this is theecéw grid-trees. This proves the limit law for the
total path length in random grid-trees. Note that the liraw lcan also be derived directly by method of
moments and our asymptotic transfer for large toll function
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6 Conclusions

We extended in this paper the asymptotic theory for CaucHgrlRES developed in7] to essentially DEs
with polynomial coefficients (often referred to hslonomic DEyandz = 0 not an irregular singularity.
Not only the results are very general, but also the methodafpequires almost no knowledge on DEs.
Indeed, since all our manipulations are based on linearatpes; only properties of the first-order DEs
are used, which can be further avoided by completely opeyain recurrences of quicksort type (see
[30])). The main feature of such an approach is that all diffeatiperators are regarded as coefficient-
transformers, so that no analytic properties are needdatiédunctions involved.

We applied the general asymptotic transfers developedisnpper to clarify the phase changes of
limit laws in quadtrees and more general grid-trees. Furdpplications to distributional properties of
profiles of random search trees will be given elsewhere.

For more methodological interest, we conclude this papembwptioning an alternative approach to
proving general asymptotic transfers &y (under suitable growth information dsy,) based solely on the
theory of differential equations. Such an approach wadnedpy the series of papers by Flajolet and his
coauthors (se€lf/, 20, 22, 26]). We start from the method of Frobenius and seeks solutibtise form
(1—2)"¢(1 — z) for the homogeneous D (z19)?1 — 2%) f(2) = 0, whereg(z) is analytic at: = 0. A
detailed information on the zeros &%(x) is needed,; in particular, we can show that wiidgs a multiple
of 6 there are two pairs of non-real zeros differing by integersh(at case, logarithmic terms need to be
introduced). Then we use the method of variation of parareésee B2]) for the non-homogeneous DE;
a long and laborious calculation of the Wronskians then léatise form

2{: &(2)(1—2) A

0<j<d

+203 ()1 - 2) %‘/Ozu VB S Gl (1og ) at, 77)

0<j<d 0<r<rg

wherer, < (d — 1)* and¢;, n;, ¢, are functions analytic in the unit circle satisfying, |[2"]x(z)| <
oo, wherex € {¢;,n;,¢;,}. Similar expressions can be derived fof,_;_,(1 — 2)’P;(9)f. Then the
sufficiency proofs of the transfers3), (13), (15) are reduced to deriving asymptotic transfers for integral
of the form

- | W B (log 2)

Such a general approach, although quickly gives the gefaral of the solution, does not seem easily
amended for getting expressions for the leading constamtsl@r to most asymptotic problems on DEs
and linear differential systems); also for more general Bl as 15), the precise characterizetion of the
zero locations (of their differences) requires more dédi@alysis.
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