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Abstract

In a recent paper, Inoue and Nakada proved a 0-1 law and a strong law of large numbers with error
term for the number of coprime solutions of the one-dimensional Diophantine approximation problem
in the field of formal Laurent series over a finite base field. In this note, we generalize their results to
higher dimensions.

1 Introduction
Let Fq be a finite field with q elements and denote by Fq((T−1)) the field of formal Laurent series. For
f ∈ Fq((T−1)) let |f | = qdeg f be the valuation induced by the generalized degree function. Set

L = {f ∈ Fq((T−1)) : |f | < 1}.

Then, with the restriction of | · | to L, L is a compact topological group. Hence, there exists a (unique)
translation-invariant probability measure which will be denoted by m.

We are interested in the Diophantine approximation problem∣∣∣∣f − P

Q

∣∣∣∣ < 1
qn+ln

, degQ = n, Q monic, (P,Q) = 1, (1)

where f ∈ L, P,Q ∈ Fq[T ] with Q 6= 0, and ln is a sequence of non-negative integers (subsequently,
we will use (·, ·) to denote the gcd, whereas 〈·, ·〉 will be used for pairs).

Concerning the number of solutions of (1), Inoue and Nakada [5] proved the following 0-1 law: the
number of solutions is either finite or infinite for almost all f ∈ L, the latter holding if and only if

∞∑
n=0

qn−ln =∞.

Moreover, the method of proof in [5] also gives a quantitative result under one additional assump-
tion on ln: if ln ≥ n, then the number of solutions of (1) with degQ ≤ N is given by(

1− q−1
)

Ψ(N) +O
(

Ψ(N)1/2 (log Ψ(N))3/2+ε
)
,

where ε > 0 is an arbitrary small constant and Ψ(N) :=
∑

n≤N q
n−ln .
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The purpose of this note is to prove generalizations of the above two results to multidimensional
Diophantine approximation. Therefore, consider∣∣∣∣fj − Pj

Q

∣∣∣∣ < 1

qn+l
(j)
n

, degQ = n, Q monic, (Pj , Q) = 1, j = 1, . . . , d, (2)

where (f1, . . . , fd) ∈ L× · · · × L, Pj , j = 1, . . . , d,Q ∈ Fq[T ] with Q 6= 0, and l(j)n , j = 1, . . . , d are
sequences of non-negative integers. Moreover, set ln :=

∑d
j=1 l

(j)
n .

Then, the first result above has the following extension to the multidimensional setting.

Theorem 1. The number of solutions of (2) is either finite or infinite for almost all (f1, . . . , fd) ∈
L× · · · × L, the latter holding if and only if

∞∑
n=0

qn−ln =∞. (3)

Moreover, also the second result admits an extension to higher dimensions.

Theorem 2. Assume that ln ≥ n. Then, for almost all (f1, . . . , fd), the number of solutions of (2) with
degQ ≤ N is given by

c0Ψ(N) +O
(

Ψ(N)1/2+ε
)
,

where ε > 0 is an arbitrary small constant, Ψ(N) :=
∑

n≤N q
n−ln , and

c0 :=
∑

Q1 monic

· · ·
∑

Qd monic

µ(Q1)
|Q1|

· · · µ(Qd)
|Qd|

1
|lcm(Q1, . . . , Qd)|

> 0.

Here, µ(·) denotes the Moebius µ function on Fq[T ].

Remark 1. The constant c0 will already appear in the proof of Theorem 1. In particular, we will show
the claim about the positivity already in the next section (see the proof of Lemma 1 below).

Remark 2. Observe that the error term in the above result for d = 1 is weaker than the corresponding
one in the result of Inoue and Nakada. The reason for this is that our method is completely different
from the approach used by the latter two authors (it is not obvious how to generalize their approach to
higher dimensions).

Notation. We will use [D1, . . . , Dd] to denote the lcm of the polynomials D1, . . . , Dd. All sums will
be over monic polynomials. Logarithms in this paper just take on values ≥ 1, i.e. loga x should
be interpreted as max{loga x, 1}. We will use both Landau’s notation f(x) = O(g(x)) as well as
Vinogradov’s notation f(x) � g(x). Finally, ε will denote an arbitrary small positive number whose
value might change from one appearance to the next.

2 Proof of Theorem 1
First, note that the necessity of (3) for the number of solutions of (2) being infinite follows from a
standard application of the Borel-Cantelli lemma. Hence, we only have to focus on the sufficiency part.
For this purpose, we use a slight extension of the d-dimensional Duffin-Schaeffer theorem for formal
Laurent series due to Inoue [4].
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Theorem 3 (Inoue). Consider∣∣∣∣fj − Pj
Q

∣∣∣∣ < 1

qn+l
(j)
Q

, degQ = n, Q monic, (Pj , Q) = 1, j = 1, . . . , d, (4)

where (f1, . . . , fd) ∈ L×· · ·×L, Pj , j = 1, . . . , d,Q withQ 6= 0, and l(j)Q , j = 1, . . . , d are sequences
of non-negative integers. Assume that ∑

Q

q−l
(1)
Q −···−l

(j)
Q =∞

and that for infinitely many N∑
degQ≤N

q−l
(1)
Q −···−l

(j)
Q < C

∑
degQ≤N

q−l
(1)
Q −···−l

(j)
Q ϕ(Q)d/|Q|d,

where C is some positive constant. Then, (4) has infinitely many solutions for almost all (f1, . . . , fd) ∈
L× · · · × L.

Remark 3. Note that the result in [4] is just stated for the special case l(1)
Q = . . . = l

(d)
Q . An inspection

of the proof, however, shows that the result continues to hold for different approximation functions in
every coordinate.

Before we can apply this result, we need a technical lemma.

Lemma 1. We have, ∑
degQ=n

ϕ(Q)d = c0q
n(d+1) +O

(
qn(d+ε)

)
,

where c0 is as in Theorem 2 and ϕ(·) is Euler’s totient function.

Proof. Note that

∑
degQ=n

ϕ(Q)d = qnd
∑

degQ=n

∑
D|Q

µ(D)
|D|

d

= qnd
∑

degQ=n

∑
D1|Q

· · ·
∑
Dd|Q

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

= qnd
∑

degD1≤n
· · ·

∑
degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

∑
[D1,...,Dd]|Q,degQ=n

1.

The latter sum becomes∑
[D1,...,Dd]|Q,degQ=n

1 =

{
qn/|[D1, . . . , Dd]|, if deg[D1, . . . , Dd] ≤ n;
0, otherwise.

Consequently,∑
degQ=n

ϕ(Q)d = qn(d+1)
∑

degD1≤n
· · ·

∑
degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

+O

qnd
 ∑

degD≤n

1
|D|

d


= qn(d+1)
∑

degD1≤n
· · ·

∑
degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

+O
(
ndqnd

)
. (5)
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Next, observe that∣∣∣ ∑
degD1≤n

· · ·
∑

degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

− c0

∣∣∣
≤

∑
degD>n

∑
[D1,...,Dd]=D

1
|D1 · · ·Dd| · |D|

≤
∑

degD>n

ω(D)d

|D|2
,

where ω(D) denotes the number of monic divisors of D. Since ω(D) = O(|D|ε) for arbitrary small
ε > 0 (this is proved as for integers; see page 296 in [1]), we obtain∑

degD>n

ω(D)d

|D|2
�

∞∑
l=n+1

ql(εd−1) � qn(εd−1).

So, we have ∑
degD1≤n

· · ·
∑

degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

= c0 +O
(
qn(−1+ε)

)
.

Plugging this into (5) yields the claimed expansion.
What is left to show is that c0 > 0. Therefore, observe that∑

degQ=n

ϕ(Q)d ≥
∑

deg I=n

ϕ(I)d = (qn − 1)d
∑

deg I=n

1� (qn − 1)dqn/n,

where the second and third sum runs over all irreducible polynomials and the last bound is well-known.
Hence, c0 > 0 as claimed.
Remark 4. For d = 1, note that

c0 =
∑
Q

µ(Q)
|Q|2

=
∏
I

(
1− 1
|I|2

)
=

∑
Q

1
|Q|2

−1

= 1− 1
q
.

In this situation even more is known, namely,∑
degQ=n

ϕ(Q) =
(

1− 1
q

)
q2n.

For a proof of the latter claim e.g. see [5].
Now, we can proof our first main result.

Proof of Theorem 1. As already mentioned before, we only have to show that (3) is sufficient for the
number of solutions of (2) being infinity. For this purpose, we just have to check the two conditions in
Inoue’s result. First, note that since l(1)

Q + · · ·+ l
(d)
Q = ldegQ, we have∑

degQ≤N
q−ldeg Q =

∑
n≤N

qn−ln

and∑
degQ≤N

q−ldeg Qϕ(Q)d/|Q|d =
∑
n≤N

q−nd−ln
∑

degQ=n

ϕ(Q)d = c0

∑
n≤N

qn−ln +O

∑
n≤N

qεn−ln

 .

Moreover, by Cauchy’s inequality

∑
n≤N

qεn−ln �

∑
n≤N

qn−ln

1/2

.

Hence, both conditions are satisfied and our result follows from Inoue’s result.
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3 Proof of Theorem 2
We start with a technical lemma.

Lemma 2. We have, ∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|

� qnε.

Proof. First note that∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|

≤
∑

deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|1−ε

≤
∑

deg(D1),...,deg(Dd)≤n

|([D1, . . . , Dd−1], Dd)|1−ε

|[D1, . . . , Dd−1]|1−ε · |Dd|1−ε
.

Next we change the order of summation and obtain∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|1−ε

≤
∑

degD≤n

∑
D|[D1,...,Dd−1],degDi≤n

1
|[D1, . . . , Dd−1]|1−ε

∑
D|Dd,degDd≤n

(
|D|
|Dd|

)1−ε

≤
∑

degD≤n

∑
D|[D1,...,Dd−1],degDi≤n

1
|[D1, . . . , Dd−1]|1−ε

∑
degQ≤n

1
|Q|1−ε

� qnε
∑

deg(D1),...,deg(Dd−1)≤n

1
|[D1, . . . , Dd−1]|1−ε

∑
D|[D1,...,Dd−1]

1

= qnε
∑

deg(D1),...,deg(Dd−1)≤n

ω([D1, . . . , Dd−1])
|[D1, . . . , Dd−1]|1−ε

.

Now, as before, we use the estimate ω(D) = O(|D|ε) for all sufficiently small ε. Hence,∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|1−ε

� qnε
∑

deg(D1),...,deg(Dd−1)≤n

1
|[D1, . . . , Dd]|1−2ε

.

Iterating this result proves the claim.
Now, we turn to the proof of Theorem 2. For this purpose, we extend an approach due to Harman

(see proof of Theorem 4.4 starting on page 109 in [3]) to higher dimensions.
We first need some notation. Let Γ1(N) = blogq Ψ(N)2c and Γ2(N) = blogq Ψ(N)4c. Moreover,

consider the following approximation problem∣∣∣∣fj − Pj
Q

∣∣∣∣ < 1

qn+l
(j)
n

, degQ = n, Q monic, Dj |(Pj , Q), deg(Pj , Q) ≤ Γ2(N), j = 1, . . . , d, (6)

whereD1, . . . , Dd are fixed monic polynomials. For fixed (f1, . . . , fd) andQ denote by s(Q;D1, . . . , Dd)
the number of solutions of (6).

We gather some properties of s(Q;D1, . . . , Dd) needed below.

Lemma 3. We have,

E

 ∑
M1<n≤M2

∑
degQ=n,[D1,...,Dd]|Q

s(Q;D1, . . . , Dd)

� 1
|D1 · · ·Dd| · |[D1, . . . , Dd]|

∑
M1<n≤M2

qn−ln
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and

E

( ∑
M1<n≤M2

∑
degQ=n, [D1,...,Dd]|Q

(
s(Q;D1, . . . , Dd)−

1
|D1 · · ·Dd|

· 1
qln

))2

� Γ2(N)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

∑
M1<n≤M2

qn−ln

for all M1 ≤M2.

Proof. Both properties are easy extensions of the corresponding properties from the case d = 1 (see
Proposition 3 and Proposition 4 in [2]). For the reader’s convenience, we recall the proof of the first
property.

Therefore, observe that s(Q;D1, . . . , Dd) ≤ s∗(Q;D1, . . . , Dd) where the latter denotes the num-
ber of solutions of (6) with the upper bound on the gcd removed. Of course, s∗(Q;D1, . . . , Dd) = 0 if
[D1, . . . , Dd] - Q.

Now, for [D1, . . . , Dd]|Q, note that s∗(Q;D1, . . . , Dd) = 1A (1A denotes an indicator random
variable) with

A =
⋃

Pj |Dj ,degPj<n,1≤j≤d

B
(
P1/Q; q−n−l

(1)
n

)
× · · · ×B

(
Pd/Q; q−n−l

(d)
n

)
,

where B(f ; q−n) denotes the open ball with center f and radius q−n and the above union is disjoint.
Since

(m× · · · ×m)
(
B
(
P1/Q; q−n−l

(1)
n

)
× · · · ×B

(
Pd/Q; q−n−l

(d)
n

))
= q−dn−ln

and consequently

m(A) =
1

|D1 · · ·Dd|
q−ln ,

the result follows from elementary properties of the mean.
Next, we prove the following proposition for the number of solutions of (6).

Proposition 1. For almost all (f1, . . . , fd), the number of solutions of (6) with degQ ≤ N is given by

1
|D1 · · ·Dd| · |[D1, . . . , Dd]|

Ψ(N) + E(N ;D1, . . . , Dd),

where the second term satisfies∑
deg(D1),...,deg(Dd)≤Γ1(N)

E(N ;D1, . . . , Dd) = O
(

Ψ(N)1/2+ε
)

with ε > 0 an arbitrary small constant.

Proof. First note that it suffices to prove our claim for the case where Ψ(N) → ∞ as N → ∞ (other-
wise, the result is an easy consequence of the Borel-Cantelli lemma). Next, denote by Nk the largest
integer with Ψ(Nk) < k. It is easy to see that we only have to prove the result for the subsequence Nk.

We are going to need some notation. First, put

k =
l∑

j=0

aj2j , al 6= 0, aj ∈ {0, 1} ∀j.
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Define the following set

S(k) =

(i,m) : ai = 1, m =
l∑

j=i+1

aj2j−i

 .

Moreover, denote by

ut = ut(i,m) = max
{
n ∈ N : Ψ(n) < (m+ t)2i

}
,

where t ∈ {0, 1}. Finally, with the notation of Lemma 3, we put

E(i,m;D1, . . . , Dd) =
∑

u0<n≤u1

∑
degQ=n, [D1,...,Dd]|Q

(
s(Q;D1, . . . , Dd)−

1
|D1 · · ·Dd|

· 1
qln

)
.

Then, we obviously have

E(Nk;D1, . . . , Dd) =
∑

(i,m)∈S(k)

E(i,m;D1, . . . , Dd).

Now, set

E(l) :=
∑

deg(D1),...,deg(Dd)≤Γ1(N
2l+1 )

|D1 · · ·Dd|
∑

0≤i≤l, m<2l−i+1

E(i,m;D1, . . . , Dd)2.

Then, with the estimate from Lemma 3

EE(i,m;D1, . . . , Dd)2 � Γ2(N2l+1)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

∑
u0<n≤u1

qn−ln ,

we obtain
E(l)� 2ll2

∑
deg(D1),...,deg(Dd)≤Γ1(N

2l+1 )

1
|[D1, . . . , Dd]|

� 2l(1+ε̄),

where the last step follows from Lemma 2 and ε̄ will be chosen below. This in turn implies that

P
(
E(l) ≥ 2l(1+ε)

)
� 1

2l(ε−ε̄)
,

where we choose ε̄ < ε. Hence, the Borel-Cantelli lemma yields that

E(l) < 2l(1+ε), a.s.

for l large enough.
Finally consider∑
deg(D1),...,deg(Dd)≤Γ1(Nk)

E(Nk;D1, . . . , Dd)

≤

 ∑
deg(D1),...,deg(Dd)≤Γ1(Nk)

1
|D1 · · ·Dd|

∑
(i,m)∈S(k)

1

1/2

· (E(r))1/2

� 2l(1/2+ε)ld+1 � 2l(1/2+ε).

From this the assertion follows.
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Now, we can prove our second main result.

Proof of Theorem 2. As in the proof of the proposition, we can assume w.l.o.g. that Ψ(N) → ∞ as
N →∞. Then, we again choose Nk as the largest integer with Ψ(Nk) < k. As before, it is easy to see
that it is suffices to prove our claim for the sequence Nk.

Next, we introduce the notation S(Nk;D1, . . . , Dd) for the number of solutions of (6) with degQ ≤
Nk (here, (f1, . . . , fd) is fixed). Then, by an inclusion-exclusion argument, the number of solutions of
(2) with degQ ≤ Nk is given by∑

deg(D1),...,deg(Dd)≤Γ2(Nk)

µ(D1) · · ·µ(Dd)S(Nk;D1, . . . , Dd),

where µ(·) denotes the Moebius function. We split the sum into two parts A and B according to
whether there is an Di with degDi > Γ1(Nk) or not, respectively.

First, we will consider A. Note that

E|A| ≤
∑

deg(D1),...,deg(Dd)≤Γ2(Nk)
degDi>Γ1(Nk) for some i

ES(Nk;D1, . . . , Dd)

� Ψ(Nk)
∑

deg(D1),...,deg(Dd)≤Γ2(Nk)
degDi>Γ1(Nk) for some i

1
|D1 · · ·Dd|

· 1
|[D1, . . . , Dd]|

� Ψ(Nk)

 ∑
degD1>Γ1(Nk)

1
|D1|2

 ·
 ∑

degD2≤Γ2(Nk)

1
|D2|

 · · ·
 ∑

degDd≤Γ2(Nk)

1
|Dd|


� (log Ψ(Nk))d−1

Ψ(Nk)
,

where we have used Lemma 3. Consequently,

P (|A| > (log Ψ(Nk))d+1)� 1
Ψ(Nk)(log Ψ(Nk))2

� 1
k(log k)2

.

Hence, the Borel-Cantelli lemma implies that for almost all (f1, . . . , fd),

A = O((log Ψ(Nk))d+1).

So, in view of our claimed result, the main contribution will come from B. Here, we can use the
above proposition and obtain

B = Ψ(Nk)
∑

deg(D1),...,deg(Dd)≤Γ1(Nk)

µ(D1) · · ·µ(Dd)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

+O
(

Ψ(Nk)1/2+ε
)
.

Now, as in the proof of Lemma 1∑
deg(D1),...,deg(Dd)≤Γ1(Nk)

µ(D1) · · ·µ(Dd)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

= c0 + Ψ(Nk)ε−2.

Combining all the estimates proves the claimed result.
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