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Abstract

The Yule branching process is a classical model for the random generation of gene tree topologies in
population genetics. It generates binary ranked trees—also called histories—with a finite number n of leaves.
We study the lengths `1 > `2 > ... > `k > ... of the external branches of a Yule generated random history of
size n, where the length of an external branch is defined as the rank of its parent node. When n → ∞, we
show that the random variable `k, once rescaled as n−`k√

n/2
, follows a χ-distribution with 2k degrees of freedom,

with mean E(`k) ∼ n and variance V(`k) ∼ n
(
k − πk2

16k

(
2k
k

)2)
. Our results contribute to the study of the

combinatorial features of Yule generated gene trees, in which external branches are associated with singleton
mutations affecting individual gene copies.
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1 Introduction

Tree models of speciation are crucial in biological studies for testing hypotheses about evolution. From the
spectrum of mutations observed across a set of genes, statistical methods [10] enable the inference of a tree
representing the ancestry relationships among the sampled genetic sequences. The comparison of the inferred
tree with model predictions can assist in the analysis of the biological forces that have driven the evolution of
the considered genes.

The reconstruction of the gene tree from genome data can be subject to several types of errors. Measuring
branches in proper units of time, one problem is estimating the exact edge lengths of the tree from the poly-
morphism observed along the considered chromosomes. For example, assuming that molecular differences have
accumulated at a constant rate, the human-chimpanzee divergence is estimated to date back to 4.3 millions years
ago, while—at the moment—the oldest fossil with human-like features is 100.000 years older (pag. 31 of [19]).
A less informative but more robust inference approach can proceed by restricting the tree search space to infer
only the “topology”—i.e., the branching pattern and the relative temporal order of the speciation (splitting)
events—of the gene tree, which will be then compared with tree topologies considered under a proper neutral
model.

The Yule distribution [14, 25] is a fundamental probability model of tree topologies, also called “histories”,
used in evolutionary analyses. Histories are full binary rooted trees, with a ranking of internal nodes that divides
the tree in different layers (Fig. 1A). The probabilistic features of Yule distributed histories have been subject
of numerous investigations (see, e.g., [2, 18, 20, 21, 22]), with a particular interest on combinatorial properties
that affect the frequency spectrum of mutations in population genetic tree models. Our focus is on the length
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distribution of tree branches. Branch length can be seen as a discrete parameter—when only the number of tree
layers spanned by a branch is considered—or as a time related quantity—when each tree layer is in turn considered
with a length given by a continuous random variable. In the latter case, histories are called “coalescent” trees.
While branch length of coalescent trees has been widely studied (see, e.g., [1, 5, 6, 7, 11, 12, 16]), the discrete
length of the edges of a random history has received less attention.

In this paper, extending previous results [9], we investigate the distribution of the different lengths of the
external branches—i.e., those branches ending with a leaf—of random histories of given size selected under the
Yule model. External branch length is an important parameter to study as it relates to singleton mutations in the
site frequency spectrum of population genetic trees. Denoting by `k the kth largest length of an external branch in
a Yule distributed random history of n leaves, our main finding is that, for every k ≥ 1, the rescaled variable n−`k√

n/2

follows asymptotically a χ-distribution with 2k degrees of freedom, with convergence of all moments (Theorem 1).
The paper is organized as follows. We introduce terminology and some useful properties of histories in

Section 2, showing in particular that external branch lengths in random histories can also be analyzed in terms
of peaks of random permutations. In Section 3, we refine calculations of [9] finding a closed formula for the
probability of the length, `1, of the longest external branch in a random history of given size n and a recurrence
for computing the probability of the kth largest length, `k, of an external branch. For increasing n, the asymptotic
distribution of the variables `1, `2, ..., `k, ... is finally examined in Section 4. Our results on the discrete variables
`k parallel those obtained by Bocharov et al. [3] on the distribution of the time length of the kth longest external
branch of a random tree of depth t generated under the Yule pure-birth process.

2 Yule histories, external branches and non-peaks of permutations

For a given positive integer n, a history [20] of size n is a full binary rooted tree with n leaves and n − 1
ranked internal nodes (Fig. 1A). The rank of each internal node is defined by an integer label in [1, n − 1]
bijectively associated with the node. The labeling decreases along any path from the root toward a leaf of the
tree, determining a temporal ordering of the coalescent events—the merging of two edges—that characterize the
branching structure of the tree. In a history of size n, there are 2n− 1 edges, or branches. A branch connecting
an internal node and a leaf is said to be an external branch. The length of a branch is the difference between the
rank of the nodes it connects. If the branch is external, then its length is simply the rank of its parent node.

In population genetics, histories are tree structures that represent the evolution of individual genes from a
common ancestor. Conditioning on a given history, an infinite sites model [19] produces a set of mutations across
the genes associated with the leaves of the tree. Roughly speaking, mutations occur as random events along
the branches of the history (Fig. 1B), with each branch containing a number of mutations that depends on its
length, and with each mutation affecting only the set of gene copies descended from the branch it belongs to.
In particular, a history with one or more “long” external branches will be associated with a biological scenario
in which one or more gene copies will possess a “large” number of singleton mutations—i.e., mutations affecting
only one individual. A random history of size n selected under a proper null model distribution describes the
evolutionary relationships of n individual genes randomly sampled from a population under neutral evolution,
and the length of the longest external branches in the random history relates to the largest number of singleton
mutations that characterize single individuals in the sample.

In this paper, we focus on distributive properties of external branch length for random histories considered
under a well known model of neutral evolution. More precisely, we will study external branch lengths ordered
by size over random histories of size n selected under the Yule probability model [14, 25], or, equivalently, over
random ordered histories of size n selected uniformly at random. An ordered history of size n is a plane embedding
of a history of size n in which subtrees carry a left-right orientation. In other words, flipping the two subtrees
stemming from a given node of an ordered history yields a different ordered history (unless the flipped subtrees
consist of only one node). The number of ordered histories of size n is thus (n − 1)!, and the Yule distribution
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Figure 1: Histories and gene sequences. (A) A history of size n = 8. The ranking of internal nodes decreases along any

path going from the root to the leaves of the tree. The length of an external branch is the rank of its parent node. The

different lengths of the external branches ordered by size are `1 = 7 > `2 = 4 > `3 = 3 > `4 = 2 > `5 = 1. (B) The history

depicted in A with leaves associated with genes represented as binary sequences with ancestral alleles of type 0 and derived

alleles of type 1. A mutation (white circle) affects only the gene sequences associated with the leaves descending from the

branch where it occurs. In this example, there is a mutation for each layer of the tree: the ith mutation (looking from top

to bottom) changes the allele at the ith locus (position) of the gene.

over the set of histories of size n is induced by the uniform distribution over the set of ordered histories of size
n by summing the probability 1/(n− 1)! of each ordered history with the same underlying (un-ordered) history
[8]. In particular, if c(t) is the number of cherries (i.e., pendant subtrees with exactly two leaves) in a history
t of n leaves, then 2n−1−c(t) is the number of different plane embeddings of t, and therefore 2n−1−c(t)/(n− 1)! is
the Yule probability of the history t [20].

A series of combinatorial results on the lengths of external branches of uniformly distributed ordered histories
(or Yule distributed histories) has been obtained in [9] in relationship with a study [4] of the number of permu-
tations of fixed size with a given set of peak values, where the entry π(i) is a peak value in the permutation
(π(1), ..., π(i), ..., π(n)) when i 6= 1, i 6= n and π(i− 1) < π(i) > π(i + 1). Indeed, there exists a well known [13]
bijection that associates an ordered history t of size n with a permutation πt of the first n− 1 positive integers.
The mapping t → πt can be described recursively by setting πt = (πtL , r(t), πtR), where r(t) is the (label of
the) root of t, and tL, tR are respectively the left and right subtrees stemming from the root of t (if any). In
particular, ordering by size the different lengths `1 > `2 > ... > `k > ... of the external branches of t, the kth
length, `k, is easily seen to correspond to the kth largest non-peak value in the permutation πt. For example, if
t is the ordered history of size n = 8 depicted in Fig. 1, then πt = (2, 6, 4, 5, 3, 1, 7) has the following non-peak
values: 2, 4, 3, 1, 7, which correspond to the different lengths `1 = 7 > `2 = 4 > `3 = 3 > `4 = 2 > `5 = 1 of the
external branches of t. By using the correspondence with non-peak values of permutations, in the next section
we calculate the probability of the variable `k in an ordered history of size n selected uniformly at random.

3 The probability of the kth external branch length

Given an ordered history t of size n, consider the different external branch lengths of t ordered by size as
`1 > `2 > ... > `k > ..., where `k ≤ n− k. As observed above, the value of `k corresponds to the kth largest non-
peak value in the associated permutation πt. In this section, we study the number hn(`1 = s1, `2 = s2, ..., `k = sk)
of ordered histories of size n in which `j = sj for j = 1, ..., k, which determines the probability pn(`1 = s1, `2 =
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s2, ..., `k = sk) = hn(`1 = s1, `2 = s2, ..., `k = sk)/(n− 1)!.
We start our calculations by using the following result of [4] for the number Πn(Q) of permutations of size

n with peak values matching the elements of a given set Q :

Lemma 1 (Lemma 3.3 of [4]) Let n ≥ 3, S ⊆ [3, n], and r = maxS if S 6= ∅, 1 otherwise. For any 0 ≤ j ≤
n− r − 1, we have

Πn(S ∪ [n− j + 1, n]) = 2(j + 1)Πn−1(S ∪ [n− j, n− 1]) + j(j + 1)Πn−2(S ∪ [n− j, n− 2]),

where [a, b] = {x ∈ Z : a ≤ x ≤ b}.

We use the lemma as follows. Fix s1, s2, ..., sk−1, sk such that n ≥ s1 > s2 > ... > sk−1 > sk, and let Z be a
subset of the integers in the interval [3, sk − 1]. Then, by replacing S = Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 −
1] ∪ ... ∪ [s2 + 1, s1 − 1] and j = n− s1 in the formula above, we find

Πn(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ ... ∪ [s2 + 1, s1 − 1] ∪ [s1 + 1, n])

= Πn(S ∪ [n− j + 1, n]) = 2(j + 1)Πn−1(S ∪ [n− j, n− 1]) + j(j + 1)Πn−2(S ∪ [n− j, n− 2])

= 2(n− s1 + 1)Πn−1(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ ... ∪ [s2 + 1, s1 − 1] ∪ [s1, n− 1])

+(n− s1)(n− s1 + 1)Πn−2(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ ... ∪ [s2 + 1, s1 − 1] ∪ [s1, n− 2]).

If we sum both sides of the latter equation over the possible subsets Z of [3, sk − 1], then we obtain∑
Z

Πn(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ ... ∪ [s2 + 1, s1 − 1] ∪ [s1 + 1, n]) (1)

= 2(n− s1 + 1)
∑
Z

Πn−1(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ ... ∪ [s2 + 1, s1 − 1] ∪ [s1, n− 1])

+ (n− s1)(n− s1 + 1)
∑
Z

Πn−2(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ ... ∪ [s2 + 1, s1 − 1] ∪ [s1, n− 2]),

where the first sum counts the permutations of size n in which the first largest non-peak value is `1 = s1, the
second largest non-peak value is `2 = s2, ..., and the kth largest non-peak value is `k = sk. Similarly, the second
and third sums count respectively the permutations of size n − 1 and n − 2 in which `1 = s2, `2 = s3, ..., and
`k−1 = sk. Note that when we set k = 1 and s1 = s, we have S = Z ⊆ [3, s− 1] and the calculation above yields∑
Z

Πn(Z ∪ [s+ 1, n]) = 2(n− s+ 1)
∑
Z

Πn−1(Z ∪ [s, n− 1]) + (n− s)(n− s+ 1)
∑
Z

Πn−2(Z ∪ [s, n− 2]), (2)

where the first sum counts the permutations of size n in which the largest non-peak value is `1 = s, while the
second and third sums count respectively the permutations of size n− 1 and n− 2 in which the largest non-peak
value is strictly smaller than s, that is, `1 < s. By rewriting (1) and (2) in terms of ordered histories, we find

hn+1(`1 = s1, `2 = s2, ..., `k = sk) = 2(n− s1 + 1)hn(`1 = s2, `2 = s3, ..., `k−1 = sk)

+(n− s1)(n− s1 + 1)hn−1(`1 = s2, `2 = s3, ..., `k−1 = sk) (3)

and
hn+1(`1 = s) = 2(n− s+ 1)hn(`1 < s) + (n− s)(n− s+ 1)hn−1(`1 < s), (4)

where hi(`1 < s) ≡
∑

j<s hi(`1 = j).
Because hn+1(`1 = s) = hn+1(`1 < s + 1) − hn+1(`1 < s), Eq. (4) yields the recurrence hn+1(`1 < s + 1) =

hn+1(`1 < s) + 2(n− s+ 1)hn(`1 < s) + (n− s)(n− s+ 1)hn−1(`1 < s), which, by replacing n+ 1 by n and s+ 1
by s, reads as

hn(`1 < s) = hn(`1 < s− 1) + 2(n− s+ 1)hn−1(`1 < s− 1) + (n− s)(n− s+ 1)hn−2(`1 < s− 1), (5)
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where hn(`1 < s) = 0 if s = dn/2e (`1 is at least dn/2e), and hn(`1 < s) = (n− 1)! if s = n (`1 is at most n− 1).
In particular, when dn/2e ≤ s ≤ n ≥ 3, we have

hn(`1 < s) =
(s− 1)! (s− 2)! (2s− n) (2s− n− 1)

(2s− n)!
(6)

as the right-hand side—say r(n, s)—of the latter equation satisfies the same recurrence (5) given for hn(`1 < s).
Indeed, r(n, dn/2e) = 0 and r(n, n) = (n−1)!. Furthermore, assuming dn/2e < s < n, a simple calculation shows
that r(n, s) = r(n, s− 1) + 2(n− s+ 1) r(n− 1, s− 1) + (n− s)(n− s+ 1) r(n− 2, s− 1), where we note that all
the factorials in r(n, s− 1), r(n− 1, s− 1), and r(n− 2, s− 1) are well defined being of the form m! with m ≥ 0.

The next proposition summarizes our enumerative results from a probability point of view.

Proposition 1 Let n ≥ 3. If pn(`1 = s) denotes the probability of `1 = s in an ordered history of size n selected
uniformly at random, then

pn(`1 = s) =
(s− 1)!(s− 2)!(4ns+ s− n2 − n− 3s2)

(2s− n)! (n− 1)!
, (7)

where dn/2e ≤ s ≤ n − 1. Furthermore, the joint probability pn(`1 = s1, `2 = s2, ..., `k = sk) of `1 = s1, `2 = s2,
..., and `k = sk in an ordered history of size n selected uniformly at random satisfies the recurrence

pn(`1 = s1, `2 = s2, ..., `k = sk) =
2(n− s1)
n− 1

pn−1(`1 = s2, `2 = s3, ..., `k−1 = sk) (8)

+
(n− s1)(n− s1 − 1)

(n− 1)(n− 2)
pn−2(`1 = s2, `2 = s3, ..., `k−1 = sk),

with initial condition given by (7).

Proof. Equation (7) follows from (6) as pn(`1 = s) = [hn(`1 < s + 1) − hn(`1 < s)]/(n − 1)!. The recurrence in
(8) is obtained by replacing n+ 1 by n in (3) and dividing both sides of the resulting equation by (n− 1)!.

By summing over the possible values of `1, ..., `k−1 the joint probability pn(`1 = s1, `2 = s2, ..., `k = sk) yields
for k ≥ 2 the probability of `k = sk in random ordered history of n leaves:

pn(`k = sk) =

n−1∑
s1=sk+k−1

s1−1∑
s2=sk+k−2

...

si−1−1∑
si=sk+k−i

...

sk−2−1∑
sk−1=sk+1

pn(`1 = s1, `2 = s2, ..., `k = sk). (9)

For instance, if k = 2, then we obtain

pn(`2 = s2) =

n−1∑
s1=s2+1

pn(`1 = s1, `2 = s2) (10)

=

n−1∑
s1=s2+1

2(n− s1)

n− 1
pn−1(`1 = s2) +

(n− s1)(n− s1 − 1)

(n− 1)(n− 2)
pn−2(`1 = s2)

=
2pn−1(`1 = s2)

n− 1

n−1∑
s1=s2+1

(n− s1) +
pn−2(`1 = s2)

(n− 1)(n− 2)

n−1∑
s1=s2+1

(n− s1)(n− s1 − 1)

=
(s2 − 2)!(s2 − 1)!

3(n− 1)!(2s2 − n+ 2)!

×(n− s2 − 1)(n− s2)
(
2n3 − n2(13s2 + 4) + n(s2(26s2 + 21)− 2)− s2((15s2 + 23)s2 + 2) + 4

)
,
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which can be used when n ≥ 5 and s2 is in the range dn/2e − 1 ≤ s2 ≤ n− 2. Similarly, if k = 3, then we have

pn(`3 = s3) =
n−1∑

s1=s3+2

s1−1∑
s2=s3+1

pn(`1 = s1, `2 = s2, `3 = s3) (11)

=

n−1∑
s1=s3+2

s1−1∑
s2=s3+1

2(n− s1)
n− 1

pn−1(`1 = s2, `2 = s3) +
(n− s1)(n− s1 − 1)

(n− 1)(n− 2)
pn−2(`1 = s2, `2 = s3)

=
4pn−2(`1 = s3)

(n− 1)(n− 2)

n−1∑
s1=s3+2

s1−1∑
s2=s3+1

(n− s1)(n− 1− s2)

+
2pn−3(`1 = s3)

(n− 1)(n− 2)(n− 3)

n−1∑
s1=s3+2

s1−1∑
s2=s3+1

(n− s1)(n− s2 − 2)(2n− 2− s2 − s1)

+
pn−4(`1 = s3)

(n− 1)(n− 2)(n− 3)(n− 4)

n−1∑
s1=s3+2

s1−1∑
s2=s3+1

(n− s1)(n− s1 − 1)(n− 2− s2)(n− s2 − 3),

which can be coupled with (7), when n ≥ 7 and dn/2e − 2 ≤ s3 ≤ n− 3.

4 Asymptotic distribution of the kth external branch length

In this section, we derive distributive properties of the random variable `k—the kth largest external branch
length—considered over ordered histories of size n selected under the uniform distribution. We start by consid-
ering the case k = 1, and then generalize to arbitrary values of k.

By dividing Eq. (6) by the number (n− 1)! of ordered histories of size n, we obtain the probability

pn(`1 < s) =
(s− 1)!(s− 2)!

(2s− n− 2)!(n− 1)!
, dn/2e < s ≤ n,

or alternatively, with u = s− 1,

pn(`1 ≤ u) =
u!(u− 1)!

(2u− n)!(n− 1)!
, dn/2e ≤ u ≤ n− 1. (12)

Our first result is the following local limit theorem.

Lemma 2 When n→∞,

(a) the probability pn(`1 = bn− x
√
n/2c) admits an asymptotic expansion of the form

pn(`1 = bn− x
√
n/2c) =

x√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)

uniformly for 0 ≤ x ≤ x∗ ≡ n1/7.

(b) Furthermore,

pn(`1 ≤ n− x∗
√
n/2) = O

(
e−n

2/7/2
)
,

with x∗ as defined in part (a).
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Proof. For part (a), first assume that x ≤ x∗ is such that u ≡ n− x
√
n/2 is a non-negative integer smaller than

n. Then, Eq. (12) yields

pn(`1 = u) = pn(`1 ≤ u)− pn(`1 ≤ u− 1) =
(u− 1)!(u− 2)!(4nu+ u− n2 − n− 3u2)

(2u− n)(n− 1)!
;

see also Eq. (7). Using Stirling’s formula z! ∼ zze−z
√

2πz(1 + 1
12z + 1

288z2
− 139

51840z3
− · · · ) and some tedious

computation (which is best done with a computer algebra system) gives

pn(`1 = u) =
x√
n/2

e−x
2
2

(
1 +O

(
|x|+ |x|3√

n

))
uniformly as x = O(n1/6). Thus, for the given range of x

O
(
|x|+ |x|3√

n

)
= O(n3/7−1/2) = o(1).

This shows that the claimed expansion (without the last term) holds for this case. Note that the case u = n,
i.e., x = 0, is trivially covered as pn(`1 = n) = 0.

Next, if u is not an integer, then buc = u+O(1) = n− x
√
n/2 +O(1) = n− (x+O(1/

√
n))
√
n/2, and thus

we are in the first case with x replaced by x̃ = x+O(1/
√
n). Hence,

pn(`1 = buc) =
x̃√
n/2

e−x̃
2/2(1 + o(1)) =

x+O(1/
√
n)√

n/2
e−x

2/2+o(1)(1 + o(1))

=
x√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)
,

which establishes the claim also in this case.
For part (b), we are interested in pn(`1 ≤ bn−x∗

√
n/2c). Starting from (12), we use Stirling’s approximation

log(z) = z log(z)− z+ (1/2) log(2πz) + o(1) to expand log(pn(`1 ≤ u)) = log(u!) + log((u− 1)!)− log((2u−n)!)−
log((n− 1)!) as

1

2
(2(n− 2u) log(2u− n)− log(2u− n)− 2n log(n− 1) + log(n− 1) + (2u− 1) log(u− 1) + 2u log(u) + log(u)) + o(1).

Then, we plug in u = bn − x∗
√
n/2c = n − n1/7

√
n/2 − cn, where cn is the fractional part of n − n1/7

√
n/2,

and replace the resulting terms of the form log(n + f(n)) by log(n) + f(n)/n − f(n)2/n2 (where f(n)/n → 0).
Simple algebraic manipulations finally give

log(pn(`1 ≤ bn− x∗
√
n/2c)) = −n

2/7

2
+ o(1),

which shows the claim.
Let us denote by Rayleigh(λ) the Rayleigh distribution with parameter λ and the weak convegence of the

sequence of random variables (Xn) to the variable X by the symbol Xn
d−→ X. From the previous lemma, we

obtain the following proposition that describes the asymptotic distribution of the random variable `1 considered
over ordered histories of size n selected uniformly at random.

Proposition 2 As n→∞,
n− `1√
n/2

d−→ Rayleigh(1)

with convergence of all moments. In particular, the mean and the variance of `1 satisfy respectively

E(`1) ∼ n and V(`1) ∼
(

1− π

4

)
n. (13)
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Proof. Fix an x ≥ 0. In order to prove the limit law, we have to show that, when n → ∞, the probability of

(n − `1)/
√
n/2 ≤ x converges to 1 − e−x2/2, which is the cumulative function of the Rayleigh distribution with

parameter 1. We first write

pn

(
n− `1√
n/2

≤ x

)
= pn(n− x

√
n/2 ≤ `1) = pn(dn− x

√
n/2e ≤ `1) =

n∑
s=dn−x

√
n/2e

pn(`1 = s) (14)

=

x̃∑
t=0

pn(`1 = n− t
√
n/2), (15)

where the latter sum is in steps of size
√

2/n and x̃ = x + O(1/
√
n) is such that n − x̃

√
n/2 = dn − x

√
n/2e.

For n sufficiently large, we can assume x̃ ≤ x ≤ n1/7 and thus use part (a) of the lemma writing (15) as

x̃∑
t=0

t√
n/2

e−t
2/2(1 + o(1)) +O

(
e−t

2/2

n

)
=

x̃∑
t=0

t√
n/2

e−t
2/2(1 + o(1)) +

x̃∑
t=0

O

(
e−t

2/2

n

)
. (16)

Because the 1 +o(1) factor in the second sum of (16) holds uniformly, it can be put in front of the sum obtaining

x̃∑
t=0

t√
n/2

e−t
2/2(1 + o(1)) = (1 + o(1))

x̃∑
t=0

t√
n/2

e−t
2/2 = (1 + o(1))

x∑
t=0

t√
n/2

e−t
2/2 + o(1),

where the upper limit in the last sum is now x. Moreover, the third sum in (16) can be bounded as

x̃∑
t=0

O

(
e−t

2/2

n

)
= O

( ∞∑
t=0

e−t
2/2

n

)
= o(1).

Hence, for n → ∞, the probability pn

(
n−`1√
n/2
≤ x

)
converges to the Riemann sum

∑x
t=0

t√
n/2

e−t
2/2 with step

size dt =
√

2/n, which can be approximated by the integral
∫ x
0 te

−t2/2dt = 1− e−x2/2, as claimed.
By a similar approach, one can also show that all moments converge. Starting from

E

(
n− `1√
n/2

)m
=

n∑
s=0

(
n− s√
n/2

)m
pn(`1 = s),

we replace s by s = n− x
√
n/2 and break the sum into two parts obtaining

√
2n∑

x=0

xmpn(`1 = n− x
√
n/2) =

∑
0≤x<n1/7

xmpn(`1 = n− x
√
n/2) +

∑
n1/7≤x≤

√
2n

xmpn(`1 = n− x
√
n/2) ≡ Σ1 + Σ2,

where all the sums proceed in steps of size
√

2/n. For Σ2, by part (b) of the lemma, we have

Σ2 = O
(
nm/2e−n

2/7/2
)

= o(1).

For Σ1, by part (a) of the lemma, we have

Σ1 = (1 + o(1))
∑

0≤x<n1/7

xm+1√
n/2

e−x
2/2 +O

n−1 ∑
0≤x<n1/7

e−x
2/2

 .
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Here, the Riemann sum in Σ1 can be approximated by the integral
∫ n1/7

0 xm+1e−x
2/2dx, which converges to∫∞

0 xm+1e−x
2/2dx. Overall,

E

(
n− `1√
n/2

)m
n→∞−→

∫ ∞
0

xm+1e−x
2/2dx

which proves the claimed convergence of moments. Finally, (13) follows from this convergence by straightforward
computation.

Note that when the limit distribution is uniquely determined by its moment sequence (which is the case for
the Rayleigh distribution), convergence of all moments implies weak convergence. Although the second part of
the proof of the latter proposition suffices to show that also the first claim holds true, we decided to provide the
calculations for the convergence in distribution with the aim of improving the readability of the remaining part
of the proof.

In the following, our goal is to show that, for an arbitrary fixed value of k ≥ 1, the random variable `k follows
asymptotically a χ distribution with 2k degrees of freedom. Indeed, note that the Rayleigh distribution found
for the case k = 1 is a χ distribution with 2 parameters.

The next lemma describes the solution to the recurrence (8) for the joint probability pn(`1 = s1, `2 =
s2, ..., `k = sk) and a formula for the probability pn(`k = sk) given in (9) in terms of the probability of `1 = sk
in trees of size smaller than or equal to n.

Lemma 3 By setting µn(x) ≡ 2x
n−1 and νn(x) ≡ x(x−1)

(n−1)(n−2) , we have

pn(`1 = s1, `2 = s2, ..., `k = sk) =
∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−` (n− nω,` − `− s`+1)

)
pn−nω,k−1−k+1(`1 = sk), (17)

where the sum runs over all words ω = ω[0] · · ·ω[k−2] of length k − 1 with letters from the alphabet {µ, ν}, and
nω,` is the number of ν in the first ` letters of ω (with nω,0 = 0). With the same notation, we also have

pn(`k = sk) =

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk), (18)

where s∗k ≡ n− k + 1− sk.

Proof. For a fixed n and k, set p′i(j) ≡ pn−i(`1 = sj , ..., `k−j+1 = sk), µ
′
i(j) ≡

2(n−i−sj)
n−i−1 , and ν ′i(j) ≡

(n−i−sj)(n−i−1−sj)
(n−i−1)(n−i−2) . The recurrence (8) finds p′0(1) = pn(`1 = s1, `2 = s2, ..., `k = sk) by iteratively comput-

ing
p′i(j) = µ′i(j) p

′
i+1(j + 1) + ν ′i(j) p

′
i+2(j + 1). (19)

The procedure ends after k − 1 steps, that is, when we obtain terms of the form pn−x(`1 = sk) = p′x(k), for a
certain value of x. For k = 4, the diagram in Fig. 2 depicts the three iterations needed for evaluating p′0(1).
The latter quantity is calculated as the sum of the probabilities at the bottom of the diagram, each multiplied
by the sum of the words of length k− 1 over the alphabet {µ′, ν ′} that encode the different paths connecting the
corresponding leaf node to the root of the diagram. More precisely, for arbitrary values of n and k, we have

p′0(1) =
∑
ω

(
k−2∏
`=0

ω
[`]
nω,`+`

(`+ 1)

)
p′nω,k−1+k−1(k),

where the sum runs over all words ω = ω[0] · · ·ω[k−2] of length k − 1 with letters from the alphabet {µ′, ν ′}, and
nω,` is the number of ν ′ in the first ` letters of ω (with nω,0 = 0). By replacing indices, the latter formula is
equivalent to that claimed in (17).

9



μ'0(1) ν'0(1)

μ'1(2) ν'1(2) μ'2(2) ν'2(2)

μ'2(3) ν'2(3) μ'3(3) ν'3(3) μ'4(3) ν'4(3)

p'0(1)

p'1(2) p'2(2)

p'2(3) p'3(3) p'4(3)

p'3(4) p'4(4) p'5(4) p'6(4)

Figure 2: Schematic diagram of the first three iterative steps of the procedure (19) for calculating p′0(1) = pn(`1 = s1, `2 =

s2, ..., `k = sk).

Finally, plugging (17) into (9) yields

pn(`k = sk) =
n−1∑

s1=sk+k−1

s1−1∑
s2=sk+k−2

· · ·
sk−2−1∑

sk−1=sk+1

∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−` (n− nω,` − `− s`+1)

)
× pn−nω,k−1−k+1(`1 = sk).

By setting s∗` = n− `+ 1− s` for ` = 1, ..., k, the right-hand side can be written as

s∗k∑
s∗1=1

s∗k∑
s∗2=s

∗
1

· · ·
s∗k∑

s∗k−1=s
∗
k−2

∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s

∗
`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk),

which gives (18).
With the same notation used above, we now provide two more useful lemmas.

Lemma 4 For sk = bn− x
√
n/2c, we have

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

µn−`(s`+1) =
x2k−2

2k−1(k − 1)!
+O

(
1 + x2k−3√

n

)

uniformly for 0 ≤ x ≤
√

2n.

Proof. Note that

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

µn−`(s`+1) =
2k−1

∑s∗k
s1=1 s1

∑s∗k
s2=s1

s2 · · ·
∑s∗k

sk−1=sk−2
sk−1

(n− 1) · · · (n− k + 1)
=

2k−1r(s∗k)

nk−1
+O

(
r(s∗k)

nk

)
,

10



where r(z) is the polynomial r(z) ≡
∑z

s1=1 s1
∑z

s2=s1
s2 · · ·

∑z
sk−1=sk−2

sk−1. In order to determine the asymptotic

behavior of r(z), we rely on Faulhaber’s formula:

N∑
m=1

mt =
1

t+ 1

t∑
k=0

(
t+ 1

k

)
Bk(N + 1)t+1−k N→∞∼ N t+1

t+ 1

N→∞∼
∫ N

1
xtdx, (20)

where Bk denotes the k-th Bernoulli number. In particular, we use the fact that, for a given polynomial

p(u) = αku
k + ...+ α1u+ α0, the polynomial

∑b
u=a p(u) =

∑b
u=1 p(u)−

∑a−1
u=1 p(u) has its term αkb

k+1

k+1 with the

highest power in b and its term −αka
k+1

k+1 with the highest power in a matching those that appear in the integral∫ b
a p(z)dz. As a consequence, if we substitute each sum in r(z) by an integral sign, we then find a polynomial∫ z
1 s1ds1

∫ z
s1
s2ds2 · · ·

∫ z
sk−2

sk−1 dsk−1 with the same leading term of r(z). Furthermore, by a simple induction on

k one can show that
∫ z
zk+1

zkdzk · · ·
∫ z
z3
z2dz2

∫ z
z2
z1dz1 = 1

2k

∑k
i=0

(−1)iz2k−2iz2ik+1

i!(k−i)! , and therefore the leading term

of r(z) is that of 1
2k−1

∑k−1
i=0

(−1)iz2k−2−2i

i!(k−1−i)! , that is, x2k−2

2k−1(k−1)! . Hence,

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

µn−`(s`+1) =
(s∗k)

2k−2

nk−1(k − 1)!
+O

(
(s∗k)

2k−3

nk−1
+
r(s∗k)

nk

)

By plugging s∗k = x
√
n/2+O(1) into the latter asymptotic formula and performing a straightforward expansion,

we obtain the claimed result.
The next result shows that Lemma 4 gives the main term of the multiple sum in (18).

Lemma 5 For sk = bn− x
√
n/2c, we have

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`) = O

(
1 + x2k−1√

n

)

uniformly for 0 ≤ x ≤
√

2n and for all words ω = ω[0] · · ·ω[k−2] of length k − 1 with letters from the alphabet
{µ, ν} different from the word whose letters are all equal to µ.

Proof. Assume that ω has m ≥ 1 letters equal to ν. Then, since νn(x) is a quadratic polynomial, by again using
Faulhaber’s formula (20), we obtain that

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`) =

r(s∗k)

q(n)
,

where r(z) is a polynomial of degree m+ 2k − 2 and q(z) is a polynomial of degree m+ k − 1. Thus, by setting
s∗k = x

√
n/2 +O(1), we obtain that

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`) =

r(s∗k)

q(n)
= O

(
1 + xm+2k−2

nm/2

)
.

From this the result follows by observing that x ≤
√

2n.

From the last three lemmas, we can now deduce the following generalization of Lemma 2.

Corollary 1 When n→∞,

11



(a) the probability pn(`k = bn− x
√
n/2c) admits an asymptotic expansion of the form

pn(`k = bn− x
√
n/2c) =

x2k−1

2k−1(k − 1)!
√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)

uniformly for 0 ≤ x ≤ x∗ ≡ n1/7.

(b) Furthermore,

pn(`k ≤ n− x∗
√
n/2) = O

(
nk−1e−n

2/7/2
)

with x∗ as defined in part (a).

Proof. First, note that for any given word ω of length k − 1 over the alphabet {µ, ν} (in the sense of Lemma 3),
we have

pn−nω−k+1(`1 = bn− x
√
n/2c) = pn−nω−k+1(`1 = bn− nω − k + 1− x̃

√
(n− nω − k + 1)/2c),

where x̃ = x+O(1/
√
n). As a consequence, by applying part (a) of Lemma 1 with x replaced by x̃ and n replaced

by n− nω − k + 1, it follows that part (a) of Lemma 2 also holds when pn is replaced by pn−nω−k+1. Moreover,
also part (b) of Lemma 2 holds true when pn is replaced by pn−nω−k+1. Indeed, from (12), we find

pn−nω−k+1(`1 ≤ n∗) =
n∗!(n∗ − 1)!

(2n∗ − n+ nω + k − 1)!(n− nω − k)!

=
(n− 1) · · · (n− nω − k + 1)

(2n∗ − n+ nω + k − 1) · · · (2n∗ − n+ 1)
· n∗!(n∗ − 1)!

(2n∗ − n)!(n− 1)!
= O(pn(`1 ≤ n∗)),

where nω ≡ nω,k−1 and n∗ ≡ bn− x∗
√
n/2c.

In order to prove part (a) of the corollary, assume 0 ≤ x ≤ x∗ and set sk = bn−x
√
n/2c. From (18), we find

pn(`k = sk) =

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

µn−`(s`+1)pn−k+1(`1 = sk) +
∑

ω 6=µµ···µ

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk)

 .
Then, the expansion of Lemma 1 for the factors pn−nω,k−1−k+1(`1 = sk) coupled with Lemmas 4 and 5 yield

pn(`k = sk) =[
x√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)] s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

µn−`(s`+1) +
∑

ω 6=µµ···µ

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
=

[
x√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)][
x2k−2

2k−1(k − 1)!
+O

(
1 + x2k−3√

n

)
+O

(
1 + x2k−1√

n

)]

=
x2k−1

2k−1(k − 1)!
√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)
,

as claimed in (a).
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For part (b) we can write pn(`k ≤ n − x∗
√
n/2) =

∑
x pn(`k = bn − x

√
n/2c) =

∑
x pn(`k = sk), where the

sum proceeds in steps of
√

2/n over the range x∗ ≤ x ≤
√

2n and we set sk = bn − x
√
n/2c. Hence, by using

(18) together with Lemmas 4 and 5, we obtain

pn(`k ≤ n− x∗
√
n/2) =

∑
x

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk)

=
∑
ω

∑
x

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk)

=
∑
x

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

µn−`(s`+1)

)
pn−k+1(`1 = sk)

+
∑

ω 6=µµ···µ

∑
x

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk)

=
∑
x

pn−k+1(`1 = sk)

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

µn−`(s`+1)

)

+
∑

ω 6=µµ···µ

∑
x

pn−nω,k−1−k+1(`1 = sk)

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)

=
∑
x

pn−k+1(`1 = sk)

[
x2k−2

2k−1(k − 1)!
+O

(
1 + x2k−3√

n

)]
+

∑
ω 6=µµ···µ

∑
x

pn−nω,k−1−k+1(`1 = sk)

[
O
(

1 + x2k−1√
n

)]
.

Finally, since x ≤
√

2n, we have

pn(`k ≤ n− x∗
√
n/2) = O

(
nk−1

)∑
x

pn−k+1(`1 = sk) +O
(
nk−1

) ∑
ω 6=µµ···µ

∑
x

pn−nω,k−1−k+1(`1 = sk)

= O
(
nk−1

)
pn−k+1(`1 ≤ n∗) +O

(
nk−1

) ∑
ω 6=µµ···µ

pn−nω,k−1−k+1(`1 ≤ n∗)

= O
(
nk−1

)
O
(
e−n

2/7/2
)

= O
(
nk−1e−n

2/7/2
)
.

The next theorem, which extends Proposition 2, is our main result.

Theorem 1 For a fixed k ≥ 1, let `k be the kth largest external branch length in a random ordered history of
size n selected uniformly at random and denote by χ(2k) the χ-distribution with 2k degrees of freedom. Then, as
n→∞,

n− `k√
n/2

d−→ χ(2k),

with convergence of all moments. In particular, the mean and the variance of `k satisfy respectively

E(`k) ∼ n and Var(`k) ∼

(
k − πk2

16k

(
2k

k

)2
)
n. (21)

Proof. Following the proof of Proposition 2, we show that all moments converge, which implies convergence in
distribution. Starting from

E

(
n− `k√
n/2

)m
=

n∑
s=0

(
n− s√
n/2

)m
pn(`k = s),

13



we replace s by s = n− x
√
n/2 and break the sum into two parts obtaining

√
2n∑

x=0

xmpn(`k = n− x
√
n/2) =

∑
0≤x<n1/7

xmpn(`k = n− x
√
n/2) +

∑
n1/7≤x≤

√
2n

xmpn(`k = n− x
√
n/2) ≡ Σ1 + Σ2,

where all the sums proceed in steps of size
√

2/n. For Σ2, by part (b) of the latter corollary, we have

Σ2 = O
(
nm/2+k−1e−n

2/7/2
)

= o(1).

For Σ1, by part (a) of Corollary 1, we have

Σ1 =
1 + o(1)

2k−1(k − 1)!
·
∑

0≤x<n1/7

xm+2k−1√
n/2

e−x
2/2 +O

n−1 ∑
0≤x<n1/7

e−x
2/2

 .

Hence, the Riemann sum in Σ1 can be approximated by the integral
∫ n1/7

0 xm+2k−1e−x
2/2dx, which converges to∫∞

0 xm+2k−1e−x
2/2dx. Overall,

E

(
n− `k√
n/2

)m
n→∞−→ 1

2k−1(k − 1)!

∫ ∞
0

xm+2k−1e−x
2/2dx =

1

2k−1(k − 1)!
· 2m/2+k−1 Γ

(
m+ 2k

2

)
= 2m/2

Γ
(
m
2 + k

)
Γ(k)

which proves the claimed convergence of moments. Finally, (21) follows from this convergence by straightforward
computation. For instance, setting m = 1 we obtain

n− E(`k)√
n/2

n→∞−→
√

2πk
(
2k
k

)
4k

, (22)

and similarly for the variance.

5 Conclusions

For random histories of fixed size n selected under the Yule probability model, or, equivalently, for ordered
histories of size n selected uniformly at random, we have studied the variable `k defined as the kth largest length
of an external branch. Measuring the length of an external branch as the rank of its parent node, Theorem 1
shows that the rescaled variable Lk ≡ n−`k√

n/2
follows asymptotically a χ-distribution with 2k degrees of freedom

(Fig. 3), with convergence of all moments. The mean of `k is shown to be asymptotically equivalent to n,

independently of k. More precisely, by plugging the approximation
(
2k
k

)
≈ 4k√

πk
into (22), we find that E(`k)

behaves like n−
√
k n for increasing n. The variance of `k is asymptotically equivalent to

(
k − πk2

16k

(
2k
k

)2)
n.

Our approach has used a well known correspondence between trees and permutations, in which the kth largest
length of an external branch of an ordered history of size n is the kth largest non-peak value in the associated
permutation of size n − 1 (Section 2). Thus, Proposition 1 and Theorem 1 also contribute to the study of the
probabilistic properties of the value-peaks of permutations investigated in [4].

In this paper we focused only on the discrete length of the external branches of random trees. Nevertheless,
our results can also find applications in the analysis of the time length of the external branches of trees generated
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Figure 3: Probability that for n = 1000 the rescaled variable Lk ≡ n−`k√
n/2

is less than or equal to x ∈ [0, 5] (in steps of 0.2),

when k = 1 (dots), k = 2 (squares), and k = 3 (triangles). Values are calculated from Eqs. (7), (10), and (11). Solid lines

give the cumulative function for the χ-distribution with 2k degrees of freedom, with k = 1, 2, 3 from left to right.

under the “coalescent” [15, 17, 24] and “Yule” [14, 25] processes. A coalescent tree of size n is a pair consisting
of a random Yule history t of n leaves and a sequence (τ2, . . . , τn) of independent exponentially distributed
random variables assigning a time length to the different layers of t (Fig. 1). The variable τi gives the time
length of the layer in which exactly i branches of t coexist, and its mean is E(τi) = 1/λi, with λi =

(
i
2

)
.

Hence, the expected value of the time length of an external branch of t of discrete length s can be calculated as∑n
i=n+1−s E(τi) = 2

n−s −
2
n . By using our finding that E(`k) ≈ n−

√
k n, we thus see that, in a random coalescent

tree of large size n, the mean of the kth time length of an external branch will behave roughly like 2√
k n
. In

a Yule generated tree with speciation rate λ and time depth t, the variable τi is exponentially distributed with
mean 1/(λ · i) and the expected number of leaves in the tree is n = eλ t. Under this setting, Bocharov et al. [3]
study the time length Lt of the longest external branch showing (among other things) that Lt/t converges to
1/2 in mean and probability when t→∞. This is in agreement with our observation that the discrete length `1
is on average close to n −

√
n. Indeed, if an external branch spans n −

√
n layers of the tree, then the mean of

its time length can be calculated as above by summing the expectations of the variables τn, τn−1, ..., τn+1−n+
√
n,

which gives Lt ≈ 1
λ( 1

n + 1
n−1 + ...+ 1√

n+1
) ≈ 1

λ(log n− log
√
n) = 1

λ log
√
n ≈ 1

λ log
√
eλt = t

2 .

In Section 6 of [9], the number of mutations seen in a single individual of different human and zebrafish
populations is analyzed within the neutral scenario of coalescent trees by means of Yule histories. Singleton
mutations—i.e. mutations affecting single individuals—can be modeled as random events occurring along the
external branches of the tree. Doubleton mutations—which affect pairs of individuals—take place along those
branches of the tree from which exactly two leaves descend. It would be of interest to broaden the calculations
of this article to investigate the length of the longest tree edge connecting the root node of a cherry subtree to
its parent node.

It would also be nice to extend the results of [23] on the time length of a random branch and a random
external branch in a tree generated under the Yule process to the discrete setting of Yule histories.
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