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Abstract
In the early 2000s, several phase change results from distributional convergence to dis-

tributional non-convergence have been obtained for shape parameters of random discrete
structures. Recently, for those random structures which admit a natural martingale pro-
cess, these results have been considerably improved by obtaining refined asymptotics for
the limit behavior. In this work, we propose a new approach which is also applicable to
random discrete structures which do not admit a natural martingale process. As an exam-
ple, we obtain refined asymptotics for the number of leaves in random point quadtrees.
More applications, for example to shape parameters in generalized m-ary search trees and
random gridtrees, will be discussed in the journal version of this extended abstract.

1 Introduction and Result
In this extended abstract, we investigate shape parameters of random discrete structures whose
distributional behavior is known to undergo a phase change as a structural characteristic of the
structure varies. Several such phase change phenomena, in particular with a change from dis-
tributional convergence to distributional non-convergence, have been found in the early 2000s.
We start by recalling a particular nice and surprising result in this direction which was obtained
by Janson in [11]: the phase change of the number of nodes with depth in a fixed congruent
class in random recursive trees.

First, we recall the definition of random recursive trees. Starting from a root, nodes are
added consecutively where the n-th node is attached uniformly at random as left-most child to
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one of the existing nodes. In such a tree with n nodes, let Mn denote the number of nodes with
depth (distance from the root) divisible by m where m ≥ 2 is fixed. Set

ωn =

{
n, if 6 - m;

n log n, if 6 | m.

Then, in [11], the following result was proved: if 2 ≤ m ≤ 6, we have

Mn − n/m√
ωn

d−→ N(0, σ2
m), (1)

where σm > 0; for all other m, we have that Mn with the standard normalization, i.e., (Mn −
n/m)/

√
Var(Mn), does not converge to a fixed limit law.

A similar result holds if the depths of nodes are required to fall into another residue class.
Moreover, the same phase change phenomenon is present in random binary search trees, too;
see [11]. Also, several other shape parameters in diverse families of random trees have been
proved to exhibit a similar phase change behavior from distributional convergence to distribu-
tional non-convergence, e.g., the size of m-ary search trees proved by Chern and Hwang [3]
(see also Mahmoud and Pittel [14] and Lew and Mahmoud [13] for preliminary results) and
the number of leaves in random point quadtrees proved by Chern et al. [1]; see Table 1 for a
summary of these results and [1, 3] for many more examples.

structure parameter non-convergence refined asymptotics

recursive trees
nodes with depths
divisible by m m ≥ 7 [16, 17]

m-ary search trees size m ≥ 27 [15]
d-dimensional
quadtrees

number of leaves d ≥ 9 this paper

Table 1: A summary of shape parameters and discrete structures for which the distributional
behavior changes from normal to non-convergence.

After the above results have been published, subsequent research has focused on clarifying
the stochastic behavior in the non-convergence regime; e.g. see [1], Chern et al. [2], Chauvin
and Pouyanne [4], Fill and Kapur [6], and [11]. This line of research has recently culminated in
the realization that subtracting a sufficiently large number of suitable random variables leads to
a central limit theorem. To give some more details, consider again the above random variable
Mn. Set r = b(m− 1)/6c and

ζk := cos

(
2πk

m

)
and ηk := sin

(
2πk

m

)
.

Following a technique developed by Neininger [18] in a refined analysis of the complexity
of the randomised Quicksort algorithms, it was proved by the second author of this extended
abstract and Neininger [16, 17] that there exist complex random variables Ξ1, . . . ,Ξr such that

1
√
ωn

(
Mn −

n

m
− 2

r∑
k=1

<
(
Ξkn

iηk
)
nζk

)
d−→ N(0, σ2

m)
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with σm > 0. Note that this result yields (1) as a special case.
The proof of the above result made use of a natural martingale process related to random

recursive trees. Moreover, another proof method (also using the martingale process) was pro-
posed by the second author in [15], where the above result was extended to generalized Pólya
urns; see Janson [10] for background. The latter result contains both the above result and a
similar result for m-ary search trees; see Table 1.

The purpose of this work is to propose yet another approach which does not make use of
the martingale process (the possibility of such an approach was already announced in [17]).
The advantage of such a method is that it can be applied to random discrete structures which
do not admit such a process. This is for instance the case for random point quadtrees which
we use in this work as guiding example. Other applications of our approach in the context of,
e.g., generalized m-ary search trees and gridtrees (where there are again no natural martingale
processes) will be discussed in the journal version of this extended abstract.

We first recall the definition of random point quadtrees (which for brevity will be called ran-
dom quadtrees in the sequel). Fix a dimension d and consider an infinite sequence of stochasti-
cally independent points chosen uniformly at random from the d-dimensional unit cube. Then,
the first point is stored in the root which has 2d subtrees that correspond to the 2d quadrants
into which the d-dimensional unit cube is split by the first point. These subtrees contain the
points which fall into these quadrants respectively. Moreover, subtrees are built recursively via
the same process. The resulting tree after n steps is called random quadtree of size n.

In such a tree of size n, let Ln denote the number of leaves. Then, in [1], the following
phase change result was proved: if 1 ≤ d ≤ 8, then

Ln − κdn√
n

d−→ N(0, σ2
d),

where σd > 0 and

κd = 1− 2

d
ξ′(1), (2)

where ξ(s) is given in (4); for all other d, we have that Ln with the standard normalization does
not converge to a fixed limit law. (For d = 1, the result goes back to Devroye [5].)

The main result of this extended abstract is the following extension of this result which
gives an asymptotic expansion of the limit behavior in the style of [15, 16, 17].

Theorem 1.1. Let d ≥ 1. Then, there exist complex random variables Z1, . . . ,Zp such that

1√
n

(
Ln − κdn− 2

p∑
k=1

<(Zkniβk)nαk

)
d−→ N(0, σ2

d), (3)

where σd > 0. Here,

αk := 2 cos

(
2πk

d

)
− 1 and βk := 2 sin

(
2πk

d

)
and p is the largest number in {0, . . . , bd/2c} with αk > 1/2; see Table 2.

We conclude the introduction with a discussion of the proof of Theorem 1.1 and an outline
of the manuscript. Following [18, 16], the proof relies on the following three steps:
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d 1, . . . , 8 9, . . . , 17 18, . . . , 26 27, . . . , 34
p 0 1 2 3

Table 2: Value of p in (3) for small values of d.

(i) the construction of the limiting random variables Z1, . . . ,Zp,

(ii) an expansion of the variance of the residual Ln − κdn− 2
∑p

k=1<(Zkniβk)nαk , and

(iii) general techniques to deduce the asymptotic normality (3) from (ii) from a distributional
recurrence for the sequence of residuals.

In the literature, step (iii) in the present context has been carried out relying on two different
techniques which both apply with straightforward modifications in our setting: the contraction
method [18, 16] and the method of moments [9]. As this part does not involve significantly
new arguments, we refrain from discussing the details in this extended abstract and refer the
reader to the journal version of this work (to come).

The remainder of the manuscript is organized as follows. In Section 2, we give an explicit
construction of the quadtree sequence and state known asymptotic expansions for the mean
number of leaves. Section 3 is dedicated to step (i) and uses contraction arguments; the proofs
are found in Appendix A.

The most technical part of the work, step (ii), crucially relies on a recursive distributional
decomposition of the residual sequence and asymptotic transfer theorems developed by Chern,
Fuchs and Hwang [1] for general parameters in quadtrees. This part, worked out in Section 4, is
based on conceptually novel ideas since second moments cannot be computed by direct means
exploiting a martingale structure. Proofs of technical lemmas required here are collected in the
Appendix B.

Acknowledgement
We would like to thank Ralph Neininger for pointing out the problem to us.

2 Preliminaries
Let us start with an explicit construction of the quadtrees. To this end, let Y (i), i ≥ 1 be a se-
quence of independent random variables following the uniform distribution on [0, 1]d. We de-
fine a sequence of trees T0, T1, . . . where Ti stores the values Y (1), . . . , Y (i) as follows: initially,
we start with an empty tree T0 consisting of a placeholder associated with the unit cube. Y (1)

replaces the placeholder thereby creating a tree T1 consisting of a root node to which we asso-
ciate 2d placeholders which are assigned the 2d rectangular regions in which the components of
Y (1) partition the unit cube. (In computer science, these placeholders are often called external
nodes.) Inductively, having constructed the tree Tn storing Y (1), . . . , Y (n) with 1 + (2d − 1)n
placeholders corresponding to 1 + (2d − 1)n regions partitioning the unit cube, we obtain the
tree Tn+1 by storing Y (n+1) in the placeholder associated with the rectangle containing Y (n+1).

We let Ln denote the number of leaves in the random quadtree Tn. Set µn := E[Ln]. To
describe the asymptotic behavior of µn, it is necessary to introduce some terminology from [7]:
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first, for s ∈ C \ {0}, let [s] := 1 − 2d

sd
. Then, for n ∈ N, n ≥ 3, we define the d-analogue of

the factorial as

[n]! := [3] · [4] · · · [n] and [2]! := 1.

LetA := {2ωk−j : k ∈ {0, . . . , d−1}, j ∈ N}. The definition of [n]! extends holomorphically
to complex numbers s ∈ C \ A through

[s]! :=
∞∏
j=1

[j + 2]

[j + s]
, and [∞]! := [3] · [4] · [5] · · · .

Flajolet et al. [7], showed that, for all n ≥ 2,

µn =
n∑
k=0

(
n

k

)
(−1)kµ∗k with µ∗k =


0, k = 0

−1, k = 1

−
∑k

j=2
[k]!
[j]!
, k ≥ 2.

From here, standard techniques relying on Nörlund-Rice integrals for meromorphic functions
arising in the analysis of finite differences such as, e.g. [8, Theorem 2], allow to derive asymp-
totic expansions of µn (as n → ∞) of arbitrary precision. In particular, following the notation
in [7], with

ξ(s) :=
s− 1

[∞]!
+
∞∑
j=2

(
1

[j]!
− 1

[s+ j − 1]!

)
, (4)

one finds

µn = κdn− 2
∑

1≤k≤bd/2c,αk>0

<
(
γkn

iβk
)
nαk +O(1), (5)

where κd is given in (2) and, with λk = αk + iβk for k = 1, . . . , bd/2c with αk > 0,

γk = −λk + 1

d
Γ(−λk)ξ(λk)[λk + 1]!.

Here, Γ(·) denotes the Gamma function. The details of the argument show that γk 6= 0 for all
k ≥ 1, αk > 0, so no term in the asymptotic expansion (5) vanishes. For later purposes, note
that αk 6= 1/2 for all k = 1, . . . , d− 1, since the converse would imply the existence of a k-th
root of unity with real part 3/4. But any rational real part of a root of unity takes values in
the set {0,−1/2, 1/2, 1,−1} since, with ω := α1 + iβ1, the value 2<(ωk) = ωk + ωd−k is an
algebraic integer for any 1 ≤ k ≤ d.

3 A family of limiting random variables
As opposed to the applications discussed in [18, 16, 17], there is no natural martingale process
associated with the sequence Ln, n ≥ 1. Therefore, it is necessary to construct the limiting
random variables Z1, . . . ,Zp in Theorem 1.1 in an ad-hoc way guided by the recursive distri-
butional decomposition of Ln. In this section, we give the details of this construction.
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Let T be the complete infinite 2d-ary tree represented in standard Ulam-Harris notation by

T =
⋃
i≥0

{0, . . . , 2d − 1}i.

Through the canonical embedding of the sequence T0, T1, . . . of increasing trees into T, to any
v ∈ T, we shall associate a random integer `(v) ≥ 1 such that Y (`(v)) is stored at node v.
(Clearly, as the fill-up level of Tn grows to infinity, `(v) exists for all nodes v ∈ T.) For
` ≥ 1, let I` be the rectangle corresponding to the placeholder in T`−1 which contains Y (`).
Define Ỹ(`) as the vector of components of Y (`) relative to the boundaries of I`. Formally, with
I` = [i∧1 , i

∨
1 ]× · · · × [i∧d , i

∨
d ], we set

Ỹ(`)
k =

Y
(`)
k − i∧k
i∨k − i∧k

, k = 1, . . . , d.

Finally, for v ∈ T, let

U (v) := Ỹ(`(v)).

By construction, {U (v) : v ∈ T} is a family of independent random variables with the uniform
distribution on [0, 1]d. While the placeholders associated with the nodes in the tree Tn give
rise to a partition of the unit cube, the construction of the limiting random variables relies on
different decompositions of the unit cube traversing T level-wise. To this end, to every v ∈ T
and 0 ≤ j ≤ 2d − 1, writing j =

∑d
`=1 ε`2

`−1 with ε1, . . . , εd ∈ {0, 1}, we associate the
random variables ∆

(v)
j := V

(v)
1 · · ·V (v)

d , where

V
(v)
` :=

{
U

(v)
` , if ε` = 0

1− U (v)
` , if ε` = 1.

Note that
∑2d−1

j=0 ∆
(v)
j = 1. Subsequently, write ∆(v) = (∆

(v)
0 , . . . ,∆

(v)

2d−1).

Let k ∈ {1, . . . , d − 1} with αk > 1/2 and define a family of random variables {Z(v)
n,k :

n ≥ 0, v ∈ T} as follows: first, set Z(v)
0,k = γk for all v ∈ T. Then, for n ≥ 1 and v ∈ T, we

recursively define

Z(v)
n,k :=

2d−1∑
j=0

(
∆

(v)
j

)λk
· Z(vj)

n−1,k.

Note that, for all n ≥ 0, we have Z(v)
n,d−k = Z(v)

n,k. Let Π∅ := 1, and, recursively, for v ∈ T and
j = 0, . . . , 2d − 1,

Πvj = ∆
(v)
j Πv.

Then, we have the following forward expression for Z(∅)
n,k :

Z(∅)
n,k = γk

∑
|v|=n

Πλk
v .

Analogous expansions can be stated for Z(v)
n,k, v ∈ T. Let F−1 be the trivial σ-field, and, for

n ≥ 0, set Fn = σ
(
U (v) : v ∈ T, |v| ≤ n

)
. It follows immediately from the previous display

that Z(∅)
n,k, n ≥ 0 is a martingale with respect to the filtration Fn, n ≥ −1.

This martingale has the following important property.
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Proposition 3.1. For all v ∈ T there exists a random variable Z(v)
k such that, almost surely

and with respect to all moments,

Z(v)
n,k → Z

(v)
k . (6)

We have

(i) the random variables Z(v)
k , v ∈ T are identically distributed,

(ii) Z(v0)
k , . . . ,Z(v(2d−1))

k ,∆(v) are stochastically independent and

Z(v)
k =

2d−1∑
j=0

(
∆

(v)
j

)λk
· Z(vj)

k ,

(iii) the law of Z(∅)
k is the unique distribution satisfying E[Z(∅)

k ] = γk,E[|Z(∅)
k |2] <∞ and

Z(∅)
k

d
=

2d−1∑
j=0

(
∆

(∅)
j

)λk
· Z∗,(j)k , (7)

where Z∗,(0)k , . . . ,Z∗,(2
d−1)

k are independent copies of Z∗,(∅)k , independent of ∆(∅).

In the remainder of the manuscript, we agree to drop the upper index ∅ when referring to
the quantities Z(∅)

k , k = 1, . . . , p and ∆
(∅)
j , j = 0, . . . , 2d − 1 and U (∅)

j , j = 1, . . . , d.
Below, we will need the following property of the Zk’s which follows from Leckey [12].

Proposition 3.2. Let 1 ≤ k ≤ p. The vector (<(Zk),=(Zk)) has a Schwartz density f on
R2, that is, f is infinitely differentiable, where f and all its derivatives decay faster to zero at
infinity than any polynomial.

4 The variance of the residual
In the final chapter of the manuscript, we discuss the techniques to prove step (ii) outlined in
the introduction. Let

L∗n := Ln − κdn− 2

p∑
k=1

<
(
Zkniβk

)
nαk + δn,

where δn is deterministic such that E[L∗n] = 0. (Exact scaling simplifies arguments in the
following.) By (5), we have δn = O

(
nmax(αp+1,0)

)
. (One actually has αp+1 > 0 for all d > 11.)

For j = 0, . . . , 2d − 1, let Nj be the size of the j-th subtree of the root and L(j)
n be the number

of leaves it contains. Given ∆0, . . . ,∆2d−1, the vector (N0, . . . , N2d−1) has the multinomial
distribution with parameter (n− 1; ∆0, . . . ,∆2d−1). We now set up a distributional recurrence
for L∗n. As Zk =

∑2d−1
j=0 ∆λk

j Z
(j)
k it follows that

L∗n =
2d−1∑
j=0

(
L(j)
n − κdNj + δNj

− 2

p∑
k=1

<
(
Z(j)
k N iβk

j

)
Nαk
j

)
+ rn +Dn

=:
2d−1∑
j=0

L(j)
n + rn +Dn, (8)
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where

rn := δn −
2d−1∑
j=0

δNj
− κd, and Dn := 2

2d−1∑
j=0

p∑
k=1

<
(
Z(j)
k

(
Nλk
j − (∆jn)λk

))
.

By the construction of the quadtree,
(
L(0)
n , . . . ,L(2d−1)

n

)
d
=
(
L̄
(0)∗
N0

, . . . , L̄
(2d−1)∗
N

2d−1

)
, where(

L̄
(0)∗
k

)
k≥0

, . . . ,
(
L̄
(2d−1)∗
k

)
k≥0

are independent copies of the process (L∗k)k≥0. Note that

(N0, . . . , N2d−1) and {U (v) : v ∈ T \ {∅}} are independent. Note however, that Dn and(
L(0)
n , . . . ,L(2d−1)

n

)
are not stochastically independent, not even given (∆, N0, . . . , N2d−1),

since both quantities involve Z(j)
k , j = 0, . . . , 2d − 1, k = 1, . . . , p.

4.1 An asymptotic expansion for the variance of L∗n
The remainder of this extended abstract is devoted to the proof of the following proposition.

Proposition 4.1. There exists 0 < σd <∞ such that, as n→∞,

Var(L∗n) = σdn+ o(n).

Of course, as δn = o(
√
n), the same asymptotic expansion applies to the variance of the

residual sequence L∗n − δn. To prove the proposition, note that, from (8), straightforward cal-
culations reveal that, with a(n) := E

[
(L∗n)2

]
, we have

a(n) = 2dE[a(N0)] + E
[
r2n
]

+ E
[
D2
n

]
+ 2E [Dnrn] + 2E

[
Dn

2d−1∑
j=0

L(j)
n

]
=: 2dE[a(N0)] + b(n). (9)

This is the quadtree recurrence (see the lemma below). Our aim is to apply the asymptotic
transfer theorems for it developed by Chern, Fuchs and Hwang [1]. To this end, we need
to understand the asymptotic behavior of the additive sequence b(n) in the last display. In
particular, we would like to use the following result from [1].

Theorem 4.2 ([1], Theorem 2(i)). Consider the quadtree recurrence

an = bn + 2d
∑

0≤j<n

πn,jaj, (n ≥ 1),

where a0 = 0 and

πn,j = P (N0 = j) =

(
n− 1

j

)∫ 1

0

uj(1− u)n−1−j
(− log u)d−1

(d− 1)!
du.

If bn = o(n) and the series
∑

n≥1 bn/n
2 converges, then an = κn+ o(n) for some κ ∈ R.

For infinite sum representations of the limiting constant κ, we refer to [1]. The theorem
does not exclude the case that κ = 0, which explains the necessity of the following lemma,
whose proof is deferred to the Appendix B.
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Lemma 4.3. In the set-up of the previous theorem, assume that

(a) (i) bn is non-negative for all n, and (ii) bn is positive for at least one n, or

(b) (i) an is non-negative for all n, and (ii) bn is positive for all n large enough.

Then, an = Ω(n).

We also need the following two lemmas, where the first is a straightforward implication
of the multivariate central limit theorem for (N0, . . . , N2d−1), while the technical proof of the
second lemma is given in the Appendix B.

Lemma 4.4 (Multivariate central limit theorem). Let z ∈ C with 1/2 ≤ <(z) < 1. In distribu-
tion, in C2d , (

N z
0 − (∆0n)z

nz−1/2
, . . . ,

N z
2d−1 − (∆2d−1n)z

nz−1/2

)
→ X,

where Xi = z · ∆z−1
i Yi with Y = Σ1/2 · N , where N = (N0, . . . ,N2d−1) has the standard

multivariate normal distribution, (∆0, . . . ,∆2d−1) and N are stochastically independent, and
the covariance matrix Σ satisfies

Σi,j =

{
∆i(1−∆i) if i = j,

−∆i∆j if i 6= j.

Lemma 4.5. We have the following asymptotic expansions:

(i) for any z ∈ C with 0 < <(z) < 1 and ε > 0, we have, as n→∞,

E[N z
0 ] = E [∆z

0]n
z +

z(z − 1)

2
E
[
(1−∆0) ∆z−1

0

]
nz−1 +O(nε−1).

(ii) For any z ∈ C with 1/2 < <(z) < 1 and fixed p ∈ N \ {0}, we have

‖N z
0 − (∆0n)z‖p = |z|

∥∥∥∆
<(z)/2
0

√
1−∆0

∥∥∥
p
‖N0‖p n

<(z)−1/2 + o(n<(z)−1/2).

(iii) For any z ∈ C with 0 < <(z) < 1/2 and fixed p ∈ N \ {0}, we have

‖N z
0 − (∆0n)z‖p = O(1).

The first step to show Proposition 4.1 is to verify that the contribution of the mixed term in
b(n) is asymptotically negligible.

Lemma 4.6. As n→∞, we have E
[
Dn

∑2d−1
j=0 L(j)

n

]
= O(nα1−1/2).

Proof. First of all, note that E [r2n] = O(n2max(αp+1,0)) since δn = O
(
nmax(αp+1,0)

)
andNj ≤ n

for all j = 0, . . . , 2d − 1. As Z(j)
k and (Nj,∆j) are stochastically independent, it follows from

part (ii) of the previous lemma that

E
[ ∣∣∣Z(j)

k

(
Nλk
j − (∆jn)λk

)∣∣∣2 ] = E
[
|Zk|2

]
E
[ ∣∣∣Nλk

0 − (∆0n)λk
∣∣∣2 ] = O(n2αk−1).
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A standard application of the Cauchy-Schwarz inequality shows that E [D2
n] = O(n2α1−1).

Next, by independence of quantities defined in subtrees, we obtain

E
[
Dn

2d−1∑
j=0

L(j)
n

]
= 2

2d−1∑
j=0

E
[
L(j)
n

p∑
k=1

<
(
Z(j)
k

(
Nλk
j − (∆jn)λk

)) ]
. (10)

Conditionally on {N0 = n0, . . . , N2d−1 = n2d−1} where n0 + · · ·+ n2d−1 = n− 1, we have

(i) the random variables (∆0, . . . ,∆2d−1), (Z
(j)
1 , . . . ,Z(j)

p ,L(j)
n ) are stochastically indepen-

dent, and

(ii) (Z(j)
1 , . . . ,Z(j)

p ,L(j)
n ) is distributed like (Z1, . . . ,Zp, L∗nj

).

To estimate (10), consider the terms

E
[
L(j)
n <(Z(j)

k (Nλk
j − (∆jn)λk))

]
=

n−1∑
`=0

P (Nj = `)E [L∗`<(Zk)]E
[
<
(
`λk − (∆jn)λk

)]
−

n−1∑
`=0

P (Nj = `)E [L∗`=(Zk)]E
[
=
(
`λk − (∆jn)λk

)]
.

By the trivial bound E[(L∗n)2] = O(n2), it follows from the Cauchy-Schwarz inequality that
there exists a constant C > 0 such that

max {E [L∗n<(Zk)] ,E [L∗n=(Zk)]} ≤ Cn.

Therefore, ∣∣∣E [L(j)
n <(Z(j)

k (Nλk
j − (∆jn)λk))

]∣∣∣ ≤ 2Cn
∣∣∣E [Nλk

j − (∆jn)λk
]∣∣∣ . (11)

From part (i) of the previous lemma, it follows that the right hand side of (11) grows at most of
the order nαk . Overall, this shows that

E
[
Dn

2d−1∑
j=0

L(j)
n

]
= O(nα1).

Combining the bounds on E [r2n] ,E [D2
n] and the last display, Theorem 4.2 yields Var(L∗n) =

O(n). Repeating the last steps using this improved bound concludes the proof.

The previous proposition suggests that the order of magnitude of the additive term in (9)
is max{n2max(αp+1,0), n2α1−1}. For most values of d, we have 2α1 − 1 > 2αp+1. Indeed, for
9 ≤ d ≤ 10, 000, there exist only 31 values ranging from d = 15 to d = 8598 for which the
converse is true. It is important to note that, for all d ≥ 9, we have 2α1 − 1 6= 2αp+1 since
the contrary would imply that ω + ωd−1 − ωp+1 − ωd−p−1 = 1/2 which is impossible since
the left hand side is an algebraic integer. In particular, in light of Theorem 4.2 and Lemma 4.3,
the following two propositions verifying that b(n)→∞ are the missing pieces to conclude the
proof of Proposition 4.1.

10



Proposition 4.7. Let αp+1 > 0, that is, d > 11 and

W :=
2d−1∑
i=0

∆
λp+1

i =
d∏
i=1

(
U
λp+1

i + (1− Ui)λp+1

)
.

For x ∈ R, let

Φ(x) := 2<
(
γ2p+1E

[
(1−W )2

]
e2iβp+1x

)
+ 2|γp+1|2E

[
|1−W |2

]
.

Φ is a smooth periodic function with period π/βp+1, amplitude 2|γp+1|2|E [(1−W )2] | and

min
x∈R

Φ(x) = 2|γp+1|2
[
E
[
|1−W |2

]
−
∣∣E [(1−W )2

]∣∣] > 0.

As n→∞,
E
[
r2n
]

= Φ(log n)n2αp+1 +O(nαp+1+αp+2).

Proposition 4.8. Let (∆, Y ) be as in Lemma 4.4 and stochastically independent of
Z(0)

1 , . . . ,Z(2d−1)
1 . Set

W =
2d−1∑
j=0

λ1Z(j)
1 ∆λ1−1

j Yj.

For x ∈ R, define

Ψ(x) := 2<
(
E
[
W2
]
e2iβp+1x

)
+ 2E

[
|W|2

]
.

Ψ is a smooth periodic function with period π/βp+1, amplitude 2|E [W2] | and

min
x∈R

Ψ(x) = 2
(
E
[
|W|2

]
−
∣∣E [W2

]∣∣) > 0.

As n→∞, we have
E[D2

n] = Ψ(log n)n2α1−1 + o(n2α1−1).

The proofs of these propositions are very similar and we only present the proof of Proposi-
tion 4.8 which is more involved.

Proof of Proposition 4.8. By definition, Ψ has period π/βp+1. Next, for any z ∈ C, it is easy to
see that the global maximum and minimum of the function x 7→ <(z exp(ix)) are |z| and−|z|.
This implies the remaining claims on the shape of Ψ. minx∈R Ψ(x) > 0 follows from triangle
inequality upon verifying that arg(W) is not almost surely constant. This, in turn follows from
that fact that, for any given (affine) line L ⊆ C, we have P (Z1 ∈ L) = 0. This is an immediate
corollary of the fact that (<(Z1),=(Z1)) admits a density on R2 (see Proposition 3.2). For
the asymptotic expansion of Dn, note that, following the steps involving the Cauchy-Schwarz
inequality and the bounds stated in the proof of Proposition 4.6, it is straightforward to verify
that

E
[
D2
n

]
= 4E

2d−1∑
j=0

<
(
Z(j)

1

(
Nλ1
j − (n∆j)

λ1
))2+O(nα1+α2−1).

By the multivariate central limit theorem stated in Lemma 4.4, the first term is asymptotically
equivalent to Ψ(log n)n2α1−1 which proves the expansion.
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Appendix A
Proof of Proposition 3.1. These arguments are well-known. By construction,

Z(v)
n+1,k −Z

(v)
n,k =

2d−1∑
j=0

(
∆

(v)
j

)λk

·
(
Z(vj)
n,k −Z

(vj)
n−1,k

)
,

and therefore

∆(v)
n := E

[∣∣∣Z(v)
n+1,k −Z

(v)
n,k

∣∣∣2] = E
[∣∣∣Z(v)

n,k −Z
(v)
n−1,k

∣∣∣2] 2d−1∑
j=0

E
[(

∆
(v)
j

)2αk

]
=: q ·∆(v)

n−1.

As 0 < q < 1, it immediately follows that E
[∣∣Z(v)

n,k

∣∣2], n ≥ 1 is a bounded sequence. Since Z(v)
n,k, n ≥ 1

is a martingale, the sequence converges almost surely and in L2 by the L2-convergence theorem for
martingales. This shows (6).

(i) and (ii) follow from the construction.
(iii) follows from a standard contraction argument for probability measures on C with mean γk and

finite second moment. Convergence of p-th moments is proved inductively using p = 2 as base case;
details will be given in the journal version of this paper.

Proof of Proposition 3.2. Leckey [12] recently established a set of conditions under which solutions of
fixed-point equations such as (7) admit Schwartz densities. More precisely, since we have already seen
that Zk has finite moments of all orders, applying [12, Theorem 4.2] in conjunction with Remark 4.9
only requires to verify conditions (A1) - (A5) from Definition 4.1. The only condition which is not
trivially satisfied is (A4): the support of Zk ought to be in general position, that is, contain three points
z1, z2, z3 which do not lie on a line. For all x ∈ [0, 1], the vector (x, 1−x, 0, 0, . . . , 0) lies in the support
of ∆. Therefore, (xλk , (1−x)λk , 0, 0, . . . , 0) lies in the support of ∆λk . Hence, for any z in the support
of Zk, also (xλk + (1 − x)λk)z lies in the support of Zk. As the support of Zk contains a non-zero
element and βk 6= 0, this concludes the proof.

Appendix B
Proof of Lemma 4.3. We start with part (a). Let n0 be the first index such that bn0

> 0. Set

b̃n =

{
0, if 1 ≤ n ≤ n0
bn + 2dπn,n0

bn0
, if n ≥ n0 + 1

and denote by ãn the corresponding sequence. Obviously, an ≥ ãn and thus it suffices to prove the
claim for the sequence ãn. Note that by the above definition

b̃n ≥ c
logd n

n
, (n ≥ n0 + 1)

for some positive c > 0 since

πn,j =
1

d!
· logd n

n

(
1 +O

(
1

log n

))
for fixed j (see Lemma 4 in [7]). We now claim that

ãn ≥ d
(
n+

1

2d − 1

)
, (n ≥ n0 + 1) (12)
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for some d > 0 which will be chosen below. We prove this claim by induction. Clearly, the claim is
true for n = n0 + 1. Next, in order to prove the induction step, plug the above claim into the recurrence
for ãn. This yields

ãn ≥ d2d
∑

0≤j<n
πn,j

(
j +

1

2d − 1

)
− d2d

∑
0≤j<n0+1

πn,j

(
j +

1

2d − 1

)
+ c

logd n

n

≥ d
(
n− 1 +

2d

2d − 1

)
+ (c− dK)

logd n

n

≥ d
(
n+

1

2d − 1

)
,

where in the second estimate we used

2d
∑

0≤j<n
j · πn,j = E

2d−1∑
`=0

N`

 = n− 1

and

2d
∑

0≤j<n0+1

πn,j

(
j +

1

2d − 1

)
≤ K logd n

n

which follows from (12). Moreover, the last estimate follows if d is chosen such that 0 < d ≤ c/K.
This concludes the induction step and thus also the proof.

(b) Assume that bn > 0 for all n ≥ n0. The claim follows from part (a) by setting

b̃n =

{
0, if 1 ≤ n < n0,

bn, if n ≥ n0

and noting that the corresponding sequence ãn satisfies an ≥ ãn.

Proof of Lemma 4.5. Throughout the proof, let α = <(z). Further, here, and subsequently, we write
Bin(n− 1, u) for a random variable with binomial distribution with parameters n− 1 and u.

(i) By construction, ∆0 is distributed as exp(−Γ∗(d)), where Γ∗(d) is a random variable with the
Gamma distribution with density ((d − 1)!)−1td−1 exp(−t) for t > 0. It follows that ∆0 has density
((d− 1)!)−1(− log t)d−1 for t ∈ (0, 1). Hence,∣∣E [N z

01[0,n−1+ε](∆0)
]∣∣ ≤ E

[
Bin(n, n−1+ε)

]α P (∆0 ≤ n−1+ε
)
≤ Cn−1+ε log n.

Next, by part (i) of the (well-known) postponed Lemma 4.9 below, we have

E
[
N z

01[n−1+ε,1](∆0)
]

= E
[
∆z

01[n−1+ε,1](∆0)
]
nz

+
z(z − 1)

2
E
[
(1−∆0) ∆z−1

0 1[n−1+ε,1](∆0)
]
nz−1 +O(nε−1).

Dropping the indicators on the right hand side only adds a negligible error term as∣∣E [∆z
01[0,n−1+ε)(∆0)

]∣∣ ≤ n(−1+ε)<(z)−1+ε log n with a similar computation for the second summand.
(ii) We have

E [|N z
0 − (∆0n)z|p] ≤ 2p((d− 1)!)−1(E [Bin(n− 1, 1/n)αp] + 1)

∫ 1/n

0
(− log u)d−1du

+ ((d− 1)!)−1
∫ 1

1/n
(− log u)d−1E [|(Bin(n− 1, u))z − (un)z|p] du.
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Part (ii) of Lemma 4.9 below shows that the integral in the second summand is bounded by

C

∫ ∞
1/n

(− log u)d−1
(

(un)p(α−1/2) + (un)pαe−Cun
)
du = O(np(α−1/2)).

As ∫ 1/n

0
(− log u)d−1du =

1

n
(log n)d−1(1 +O((log n)−1)),

it follows that
‖N z

0 − (∆0n)z‖p = O
(
nα−1/2

)
.

This shows that the marginals in the mutivariate central limit theorem stated in Lemma 4.4 converge
with respect to all moments. This shows (ii). (iii) follows along similar lines.

Lemma 4.9. Let z ∈ C with 0 < α := <(z) < 1. We have the following asymptotic expansions:

(i) for any ε > 0 sufficiently small, as n→∞, uniformly in n−1+ε ≤ u ≤ 1,

E[Bin(n, u)z] = (nu)z +
z(z − 1)

2
(1− u) (nu)z−1 +O(nε−1).

(ii) For p ∈ N \ {0}, there exists a constant C > 0 such that

E [|Bin(n, u)z − (nu)z|p] ≤ C
(
1(0,1/n)(u) + 1[1/n,1](u)

(
(un)p(α−1/2) + (un)pαe−Cun

))
.

Proof. (i) On [1/2, 3/2], we have

xz = 1 + z(x− 1) +
z(z − 1)

2
(x− 1)2 + γ(x)(x− 1)3,

for some function γ which is bounded on [1/2, 3/2]. LetA = {Bin(n, u)/(nu) ∈ [1/2, 3/2]}. Plugging
x = Bin(n, u)1A/(nu) into the last display and taking the expectation gives

E[Bin(n, u)z1A]

(nu)z
= 1 + zE

[
Bin(n, u)1A

nu
− 1

]
+
z(z − 1)

2
E

[(
Bin(n, u)1A

nu
− 1

)2
]

+O

(
E

[(
Bin(n, u)1A

nu
− 1

)3
])

.

By Chernoff’s inequality, since u ≥ n−1+ε, we have P (A) ≤ C1 exp (−C2n
ε) for some universal

constants C1, C2 > 0. Hence, dropping the indicator 1A in all expectations in the last display adds a
negligible error term.

(ii) For u ≤ 1/n, we can bound E
[
Bin(n, u)αk

]
≤ E

[
Bin(n, 1/n)αk

]
→ E

[
Pαk

]
as n → ∞.

(Here, P denotes a random variable with the Poisson distribution and mean one.) Obviously, (nu)αk ≤
1. This shows one part of the inequality. For the more interesting case u ≥ 1/n, first observe that

E [|Bin(n, u)z − (nu)z|p] ≤ 2k
(
E [|Bin(n, u)α − (nu)α|p] + E

[∣∣∣∣Bin(n, u)α · log
Bin(n, u)

nu

∣∣∣∣p])
=: 2k(f1(u, n) + f2(u, n)).

Set En = {Bin(n, u) > (nu)/2} and define

f1(u, n) = E [|Bin(n, u)α − (nu)α|p 1En
] + E

[
|Bin(n, u)α − (nu)α|p 1Ec

n

]
=: g1(u, n) + h1(u, n),
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and

f1(u, n) = E
[∣∣∣∣Bin(n, u)α · log

Bin(n, u)

nu

∣∣∣∣p 1En

]
+ E

[∣∣∣∣Bin(n, u)α · log
Bin(n, u)

nu

∣∣∣∣p 1Ec
n

]
=: g2(u, n) + h2(u, n),

We now give bounds on g1, g2, h1 and h2. Let %(t) = (1+ t)α. Then, |%′(t)| ≤ α21−α for all t ≥ −1/2.
Thus, by the postponed Lemma 4.10 below,

g1(u, n) = (nu)αpE
[∣∣∣∣%(Bin(n, u)− nu

nu

)
− 1

∣∣∣∣p 1En

]
≤ (α21−α)p(nu)p(α−1)E [|Bin(n, u)− nu|p] ≤ C(un)p(α−1/2)

for some C > 0. Next, we consider g2. Let ψ(t) = tα| log t|. As ψ′ is bounded on [1/2,∞), by, say
C1 > 0, we have

g2(u, n) = (nu)αpE
[
ψ

(
Bin(n, u)− nu

nu

)p
1En

]
≤ C1(nu)p(α−1)E [|Bin(n, u)− nu|p] ≤ C2(un)p(α−1/2).

for some C2 > 0. Next, by the Cauchy-Schwarz inequality and the postponed Lemma 4.10 below,

h1(u, n) ≤ E
[
|Bin(n, u)− nu|2pα

]1/2
P (Ecn)1/2

≤ C1(nu)pα/2e−Cun

for some C > 0. Since ψ in bounded on [0, 1] by, say C > 0, we also have

h2(u, n) ≤ (nu)αpE
[
ψ

(
Bin(n, u)

nu

)p
1Ec

n

]
≤ (nu)αpe−Cun.

This concludes the proof.

Lemma 4.10. For any real r ≥ 1 there exists a constant C > 0 such that, for all n ≥ 1 and u ∈ [0, 1],
we have

E [|Bin(n, u)− nu|r] ≤ C(nu)r/2.

Proof. By Jensen’s inequality, we may restrict ourselves to the case of integer r. Using Bernstein’s
inequality, we obtain

E [|Bin(n, u)− nu|r] = r

∫ ∞
0

yr−1P (|Bin(n, u)− nu| ≥ y) dy

≤ r
∫ ∞
0

yr−1 exp

(
− y2

2nu+ 2y/3

)
dy

≤ r
∫ 6nu

0
yr−1 exp

(
− y2

6np

)
dy + r

∫ ∞
6nu

yr−1e−ydy.

Sustituting x = y/
√

6nu, one finds that the first term is bounded by C(nu)k/2 for all n ≥ 1 and
u ∈ [0, 1]. The second summand is O(exp(−αnp)) for any α < 6.
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