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Abstract

In a recent paper, Kim and Nakada proved an analogue of Kurzweil’s theorem for inhomogeneous
Diophantine approximation of formal Laurent series over finite fields. Their proof used continued
fraction theory and thus cannot be easily extended to simultaneous Diophantine approximation. In this
note, we give another proof which works for simultaneous Diophantine approximation as well.

1 Introduction and Result
We start by fixing some notation which we are going to use throughout this work. First, let Fq denote
the finite field with q elements. Moreover, denote by Fq[T ] the polynomial ring and by

Fq((T−1)) = {f = anT
n + an−1T

n−1 + · · · : ai ∈ Fq, n ∈ Z}

the field of formal Laurent series.
For a formal Laurent series f = anT

n + an−1T
n−1 + · · · , we define its fractional part {f} by

{f} = a−1T
−1 + a−2T

−2 + · · · .

and its valuation by |f | = qdeg f , where deg f is the generalized degree function. It is straightforward
to prove that | · | satisfies the ultra-metric property, i.e., |f−g| ≤ max{|f |, |g} for all f, g ∈ Fq((T−1))
with equality whenever |f | 6= |g|. This property implies that balls, which we denote by

B(f ; q−d) = {g ∈ Fq((T−1)) : |g − f | < q−d},

are either disjoint or contained in each other.
Next, let

L = {f ∈ Fq((T−1)) : |f | < 1}.

Restricting the valuation to this set gives a compact topological group. Hence, there exists a unique,
translation-invariant probability measure (the Haar measure) which we are going to denote by m.

In several recent papers, the following inhomogeneous Diophantine approximation problem was
investigated: for f, g ∈ L consider

|{Qf} − g| < 1
qn+ln

, Q ∈ Fq[T ],degQ = n, (1)
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where ln is a sequence of non-negative integers. One is interested in the number of solutions in Q of
(1). Three situations have been studied: (D) f and g are both random; (S1) g is fixed; f is random;
(S2) f is fixed; g is random. The first case is called the double-metric case and the other two cases are
called single-metric cases.

We are going to recall some previous results concerning the number of solutions of (1). First, in
all three cases, it follows immediately from the Borel-Cantelli lemma that the number of solutions
is finite almost surely whenever

∑
n≥0 q

−ln converges. Moreover, in the double-metric case and the
single-metric case (S1) it was proved by Fuchs [2] and Ma and Su [7] that divergence of the latter series
entails that the number of solutions is infinite almost surely. Interestingly, the same result does not hold
for the single-metric case (S2). More precisely, for some functions f , the number of solutions remains
finite almost surely even for sequences ln for which

∑
n≥0 q

−ln = ∞. This then raises to question
of characterizing those f where the convergence or divergence of

∑
n≥0 q

−ln determines whether the
number of solutions is finite or infinite almost surely.

To this end, we define the following set

W = {f ∈ L : ∀ ln with
∞∑

n=0

q−ln =∞, (1) has infinitely many solutions for almost all g.}

A characterization of this set was given in a recent paper by Kim and Nakada [4], their result being
an analogue of Kurzweil’s theorem from the real case. In order to state the result, we need a notation:
f ∈ L is called badly approximable if there exists a c ∈ N such that for all Q ∈ Fq[T ] with degQ = n,
we have

|{Qf}| ≥ 1
qn+c

.

Then, Kim and Nakada proved the following result.

Theorem 1 (Kim and Nakada). We have,

W = {f ∈ L : f is badly approximable}.

As for the proof of the above result, Kim and Nakada used continued fraction theory. Hence, their
proof is not easily extended to simultaneous Diophantine approximation. It is the purpose of this note
to give another proof which works for simultaneous Diophantine approximation as well. Our new
approach combines ideas of Kurzweil’s original proof [6] and Kim and Nakada’s approach from [4].

In order to state our result, we need further notation. Therefore, fix non-negative integers r and
s. Then, we denote by Fq[T ]r the r-th fold Cartesian product of Fq[T ] and by Fq((T−1))r the r-th
dimensional vector space over Fq((T−1)). Throughout this work, vectors will always be row vectors
and will be denoted by bold, lower-case letters.

Let f = (f1, . . . , fr) ∈ Fq((T−1))r be a vector. Then, we define its fractional part by

{f} = ({f1}, . . . , {fr})

and its valuation ‖f‖ = qdeg f = max1≤i≤r |fi|, where deg f = max1≤i≤r deg fi. Note that ‖ · ‖ again
satisfies the ultra-metric property and balls

B(f ; q−d) = {g ∈ Fq((T−1))r : ‖g − f‖ < q−d}

are again either disjoint or contained in each other.
Finally, we let Lr denote the r-th fold Cartesian product of L which we equip with the product

measure of L (also denoted by m). Note that due to Tychonov’s theorem, Lr is again a compact
topological group and hence the product measure is the unique Haar measure.
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Now, we consider the following extension of (1): for A ∈ Lr×s and g ∈ Ls consider

‖{qA} − g‖ < 1
qb

nr
s
c+ln

, q ∈ Fq[T ]r, deg q = n, (2)

where ln is a sequences of non-negative integers. Again, one has three cases: (D) A and g are both
random; (S1) g is fixed and A is random; (S2) A is fixed and g is random.

In this note, we are interested in case (S2). We mention in passing that similar results as in the
one-dimensional case have been proved for the double-metric case and the single-metric case (S1) by
Kristensen in [5]. So, the only case which has not been studied yet is (S2). In this case, we again have
from the Borel-Cantelli lemma that if

∑
n≥0 q

−lns is convergent, then the number of solutions of (2) is
finite almost surely. As for the other direction, we again define the set

Wr,s = {A ∈ Lr×s : ∀ ln with
∞∑

n=0

q−lns =∞, (2) has infinitely many solutions for almost all g.}

We need the following notation: A ∈ Lr×s is called badly approximable if there exists a c ∈ N such
that for all q ∈ Fq[T ]r with deg q = n, we have

‖{qA}‖ ≥ 1
qb

nr
s
c+c

. (3)

Then, our main result is the following extension of Theorem 1.

Theorem 2. We have,

Wr,s = {A ∈ Lr×s : A is badly approximable}.

The structure of the paper is as follows: in the next section, we will collect a couple of results which
are needed in the proof of Theorem 2. The proof of Theorem 2 is then presented in Section 3.

2 Some Preliminaries
Throughout this section, let A ∈ Lr×s with

A =


f1,1 f1,2 · · · f1,s

f2,1 f2,2 · · · f2,s
...

...
. . .

...
fr,1 fr,2 · · · fr,s

 .

We first recall the higher-dimensional version of Dirichlet’s theorem.

Theorem 3. The following diophantine inequality

‖{qA}‖ < 1
qb

nr
s
c ,q ∈ Fq[T ]r, deg q = n

has infinitely many solutions.

Proof. This is proved as in the real case.
Next, we need the the following result.

Lemma 1. If Auᵀ ∈ Fq[T ]r for some u ∈ Fq[T ]s with u 6= 0, then A is not badly approximable.
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Proof. Let u = (U1, . . . , Us) with Uj ∈ Fq[T ] and assume w.l.o.g. that Us 6= 0. From the assumption,
we obtain that

Auᵀ = (V1, . . . , Vr)ᵀ

with Vi =
∑s

j=1 fi,jUj ∈ Fq[T ].
Next, denote by A′ the matrix A with the last column removed. Then, by Dirichlet’s theorem,

‖{qA′}‖ < q−b
nr

s−1
c,q ∈ Fq[T ]r,deg q = n

has infinitely many solutions. The latter is equivalent to

|Q1f1,1 +Q2f2,1 + · · ·+Qrfr,1 − P1| < q−b
nr

s−1
c,

|Q1f1,2 +Q2f2,2 + · · ·+Qrfr,2 − P2| < q−b
nr

s−1
c,

...

|Q1f1,s−1 +Q2f2,s−1 + · · ·+Qrfr,s−1 − Ps−1| < q−b
nr

s−1
c

has infinitely many solutions in Q1, . . . , Qr, P1, . . . , Ps−1 with max1≤i≤r degQi = n. Multiplying by
Us and setting Q′i = UsQi, 1 ≤ i ≤ r and P ′j = UsPj , 1 ≤ j ≤ s− 1 implies that

|Q′1f1,1 +Q′2f2,1 + · · ·+Q′rfr,1 − P ′1| < q−b
n′r
s−1
c−c1 ,

|Q′1f1,2 +Q′2f2,2 + · · ·+Q′rfr,2 − P ′2| < q−b
n′r
s−1
c−c1 ,

... (4)

|Q′1f1,s−1 +Q′2f2,s−1 + · · ·+Q′rfr,s−1 − P ′s−1| < q−b
n′r
s−1
c−c1

has infinitely many solutions, where max1≤i≤r degQ′i = n′ and c1 is a suitable constant.
Now, fix a solution of the latter system and observe that

UsQ
′
1f1,s + UsQ

′
2f2,s + · · ·+ UsQ

′
rfr,s

=
r∑

i=1

(Vi − U1fi,1 − · · · − Us−1fi,s−1)Q′i

=
r∑

i=1

ViQ
′
i −

s−1∑
j=1

Uj(Q′1f1,j + · · ·+Q′rfr,j − P ′j)−
s−1∑
j=1

UjP
′
j .

Rearranging yields

Us

r∑
i=1

Q′ifi,s +
s−1∑
j=1

UjP
′
j −

r∑
i=1

ViQ
′
i = −

s−1∑
j=1

Uj(Q′1f1,j + · · ·+Q′rfr,j − P ′j)

Hence,∣∣∣∣∣Us

r∑
i=1

Q′ifi,s +
s−1∑
j=1

UjP
′
j −

r∑
i=1

ViQ
′
i

∣∣∣∣∣ ≤ max
1≤j≤s−1

|Uj ||Q′1f1,j + · · ·+Q′rfr,j − P ′j | < q−b
n′r
s−1
c−c2 ,

where the last line follows from (4) and c2 is a suitable constant. Dividing both sides by |Us| gives∣∣∣∣∣
r∑

i=1

Q′ifi,s +

∑s−1
j=1 UjP

′
j −

∑r
i=1 ViQ

′
i

Us

∣∣∣∣∣ < q−b
n′r
s−1
c−c3 ,
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where c3 is a suitable constant. Note that Us|Q′i, 1 ≤ i ≤ r and Us|P ′j , 1 ≤ j ≤ s− 1 and hence

T =

∑s−1
j=1 UjP

′
j −

∑r
i=1 ViQ

′
i

Us

is a polynomial. Overall, we have proved that

|Q′1f1,s + · · ·+Q′rfr,s + T | < q−b
n′r
s−1
c−c3 .

So, we can add this equation to (4) and the resulting system still has infinitely many solutions. This in
turn yields that if we set q′ = (Q′1, . . . , Q

′
r) and c4 = min{c1, c3}, then

‖{q′A}‖ < q−b
n′r
s−1
c−c4 ,q′ ∈ Fq[T ]r,deg q′ = n (5)

has infinitely many solutions.
The latter, however, implies that A is not badly approximable because otherwise (3) would hold

which clearly contradicts (5). Hence, the proof is finished.

Remark 1. In the real case, a matrix A is badly approximable if and only if Aᵀ is badly approximable
(see Theorem VIII in [1]). If the same is true for formal Laurent series as well (which we expect), then
Lemma 1 would follow from this as a simple consequence.

For the final two results of this section, assume that A is badly approximable, i.e., (3) holds.

Lemma 2. The set {{qA} : q ∈ Fq[T ]r} is dense in Ls.

Proof. Fix n ∈ N and g = (g1, . . . , gs) ∈ Ls with

gj = g
(j)
1 T−1 + g

(j)
2 T−2 + · · · .

We have to show that there exists a q ∈ Fq[T ]r with

‖{qA} − g‖ < q−n (6)

In order to do so, we reformulate (6) as a solvability problem for a system of linear equations. There-
fore, let q = (Q1, . . . , Qr) with

Qi = a
(i)
0 + a

(i)
1 T + · · ·+ a

(i)
N TN

and for 1 ≤ i ≤ r and 1 ≤ j ≤ s

fi,j = f
(i,j)
1 T−1 + f

(i,j)
2 T−2 + · · · .

Moreover,

ui =


a

(i)
0

a
(i)
1
...
a

(i)
N


ᵀ

, Ai,j =


f

(i,j)
1 f

(i,j)
2 · · · f

(i,j)
n

f
(i,j)
2 f

(i,j)
3 · · · f

(i,j)
n+1

...
...

. . .
...

f
(i,j)
N+1 f

(i,j)
N+2 · · · f

(i,j)
N+n

 , vj =


g
(j)
1

g
(j)
2
...

g
(i,j)
n


ᵀ

for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Finally, set

u =


u1

u2
...

ur


ᵀ

, A′ =


A1,1 A1,2 · · · A1,s

A2,1 A2,2 · · · A2,s
...

...
. . .

...
Ar,1 Ar,2 · · · Ar,s

 , v =


v1

v2
...
vs


ᵀ

.
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Then, (6) has a solution if and only if the system of linear equations uA′ = v has a solution u.
In order to show that the latter system is solvable, it suffices to show that rank(A′) = ns for N

large enough. Assume that this is wrong. Then, there exist α1, . . . , αns not all 0 with

α1

(
f

(1,1)
1 , . . . , f

(1,1)
N+1, f

(2,1)
1 , . . . , f

(2,1)
N+1, . . . , f

(r,1)
1 , . . . , f

(r,1)
N+1

)
+ · · ·+ αns

(
f (1,s)

n , . . . , f
(1,s)
N+n, f

(2,s)
n , . . . , f

(2,s)
N+n, . . . , f

(r,s)
n , . . . , f

(r,s)
N+n

)
= 0. (7)

If we now set u = (U1, . . . , Us) with

U1 = α1 + α2T + · · ·+ αnT
n−1,

U2 = αn+1 + αn+2T + · · ·+ α2nT
n−1,

...

Us = αn(s−1)+1 + αn(s−1)+2T + · · ·+ αnsT
n−1,

then (7) can be reformulated as

|{fi,1U1 + · · ·+ fi,sUs}| < q−N−1

for 1 ≤ i ≤ r. This in turn gives that
‖Auᵀ‖ < q−N−1. (8)

Now, since A is badly approximable, Lemma 1 implies that ‖Auᵀ‖ > 0. Consequently, since there are
only finitely many possible choices of u (since n is fixed), (8) becomes wrong if N is large enough.
This gives a contradiction and hence our result is proved.

Lemma 3. Let E ⊆ Ls and assume that E is invariant under the action ·+ {qA} for all q ∈ Fq[T ]r.
Then, m(E) = 0 or m(E) = 1.

Proof. First, recall from the introduction that Ls is a compact topological group and m is its Haar
measure.

Now, assume that m(E) > 0. We have to show that m(E) = 1. In order to do so, we use
Lebesgues’s density theorem for compact topological groups (see Remark 5 on page 268 in [3]): for all
ε > 0, there exists a d ∈ Z with∫ ∣∣∣∣∣χE(g)−

m
(
E ∩B

(
g; q−d

))
m (B (g; q−d))

∣∣∣∣∣dm < εm(E),

where χE denotes the indicator function of E. The latter implies that∫
E

(
1−

m
(
E ∩B

(
g; q−d

))
m (B (g; q−d))

)
dm < εm(E).

Hence, there exists a g ∈ Ls with

1−
m
(
E ∩B

(
g; q−d

))
m (B (g; q−d))

< ε

and consequently,
m
(
E ∩B

(
g; q−d

))
> (1− ε)m

(
B
(
g; q−d

))
.

Since E is invariant under the action ·+ {qA} and m is translation-invariant, we obtain

m
(
E ∩

(
B
(
g; q−d

)
+ {qA}

))
> (1− ε)m

(
B
(
g; q−d

)
+ {qA}

)
for all q ∈ Fq[T ]r. This together with Lemma 2 clearly implies that m(E) > 1− ε and since this holds
for all ε > 0, we have m(E) = 1 as desired.
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3 Proof of the Main Result
In this section, we will prove Theorem 2. We will start with the case where A is badly approximable.
For the next two results again assume that A satisfies (3).

Lemma 4. Let g ∈ Ls and d > 0. Then, the number of q ∈ Fq[T ]r with deg q ≤ N such that
{qA} ∈ B(g; q−d) is at most max{qNr+cs−ds, 1}.

Proof. First, fix q,q′ ∈ Fq[T ]r with deg q,deg q′ ≤ N . Then, since A is badly approximable, we have

‖{qA} − {q′A}‖ = ‖{(q− q′)A}‖ ≥ q−b
deg(q−q′)r

s
c−c ≥ q−b

Nr
s
c−c.

This means that the distance between any two points {qA} and {q′A} is at least q−b
Nr
s
c−c.

Now, we consider two cases.

Case 1. If q−b
Nr
s
c−c ≥ q−d, then there is at most one point in B(g; q−d).

Case 2. If q−b
Nr
s
c−c < q−d, then the number of points in B(g; q−d) is at most(

q−d
)s(

q−b
Nr
s
c−c
)s ≤ qNr+cs−ds.

Hence, our claimed result is proved.

Lemma 5. Let ln be a sequence with
∑

n≥0 q
−lns =∞. Then, for all k ≥ 0

m

 ∞⋃
n=k

⋃
deg q=n

B
(
{qA}; q−b

nr
s
c−ln

) >
1

qcs+1
.

Proof. We first exclude the case q = 2 and r = 1.
Let l′n = max{ln, c+ 1}. Then,

∑
n≥0 q

−l′ns =∞. We will use proof by contradiction. Therefore,
assume that the claim is wrong. Hence, there exists a k0 ≥ 0 such that for all N ≥ k0, we have

m

 N⋃
n=k0

⋃
deg q=n

B
(
{qA}; q−b

nr
s
c−l′n

) ≤ q−cs−1. (9)

Next, define the following set

LN =

{
deg q = N : {qA} ∈

N⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)

\
N−1⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)}
.

Our first goal is to estimate the cardinality of LN . Therefore, set

N−1⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)
=
⋃
i

B
(
{q′iA}; q−di

)
,

where the B({q′iA}; q−di) are disjoint for all i. Then, from (9),

q−cs−1 ≥ m

N−1⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

) = m

(⋃
i

B
(
{q′iA}; q−di

))
=
∑

i

q−dis.
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Using Lemma (4) implies that the number of q with deg q ≤ N such that {qA} ∈
⋃

iB({q′iA}; q−di)
is at most ∑

i

max
{
qNr+cs−dis, 1

}
= max

{
qNr+cs

∑
i

q−dis, qNr

}
= qNr.

Hence, the number of elements in LN is at least

q(N+1)r − qNr − qNr = qNr(qr − 2) = dqNr,

where d > 0 is a constant.
Next, we claim that⋃

q∈LN

B
(
{qA}; q−b

Nr
s
c−l′N

)

⊆
N⋃

n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)
\

N−1⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)
. (10)

In order to show this, fix a q ∈ LN and assume that there exists a q′ with deg q′ = n < N such that

B
(
{qA}; q−b

Nr
s
c−l′N

)
∩B

(
{q′A}; q−b

nr
s
c−l′n

)
6= ∅.

Since we know that {qA} 6∈ B({q′A}; q−b
nr
s
c−l′n), we obtain that

B
(
{q′A}; q−b

nr
s
c−l′n

)
⊆ B

(
{qA}; q−b

Nr
s
c−l′N

)
and hence {q′A} ∈ B({qA}; q−b

Nr
s
c−l′N ). The number of q with deg q ≤ N and {qA} belonging to

the latter set is, however, at most

max
{
qNr+cs−(bNr

s
c+l′N)s, 1

}
≤ max

{
q(c+1)s−l′Ns, 1

}
= 1.

This gives a contradiction and hence (10) is established.
Finally, we claim that the balls appearing on the left-hand side of (10) are pairwise disjoint. There-

fore, consider q1,q2 ∈ LN with

B
(
{q1A}; q−b

Nr
s
c−l′N

)
∩B

(
{q2A}; q−b

Nr
s
c−l′N

)
6= ∅.

Thus, these two balls are equal and hence

‖{q1A} − {q2A}‖ = ‖{(q1 − q2)A}‖ < q−b
Nr
s
c−l′N .

Now, as above, the ball B(0; q−b
Nr
s
c−l′N ) contains at most one point {qA} with deg q ≤ N . Conse-

quently, q1 = q2 and our claim is proved.
Now, from (10) and the latter claim, we obtain

m

(
N⋃

n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

))

≥ m

N−1⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)+m

 ⋃
q∈LN

B
(
{qA}; q−b

Nr
s
c−l′N

)
≥ m

N−1⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)+ dqNr
(
q−b

Nr
s
c−l′N

)s

≥ m

N−1⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)+ dq−l′Ns.
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Iterating yields

m

(
N⋃

n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

))
≥ d

N∑
n=k0

q−l′ns.

Since
∑

n≥0 q
−l′ns =∞ this gives a contradiction when N is large enough.

Now, what is left is to consider the case q = 2 and r = 1. Here, we note that since
∑

n≥0 q
−l′ns =

∞, we have either
∑

n≥0 q
−l′2ns = ∞ or

∑
n≥0 q

−l′2n+1s = ∞. W.l.o.g. assume that the first case
holds. Then, the same proof as above can be used with the only difference that instead of LN , we
consider

L2N =

{
deg q = 2N : {qA} ∈

2N⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)

\
2N−2⋃
n=k0

⋃
deg q′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)}
.

Details are straightforward and we leave them to the reader.
Now, we can prove one half of Theorem 2.

Proposition 1. Let A ∈ Lr×s be badly approximable. Then, for all sequences ln with
∑

n≥0 q
−lns =

∞, we have that (2) has infinitely many solutions for almost all g ∈ Ls.

Proof. Consider

E =
∞⋂

k=0

∞⋃
n=k

⋃
deg q=n

B
(
{qA}; q−b

nr
s
c−ln

)
.

Then, we have for all g ∈ Ls that g ∈ E if and only if (2) has infinitely many solutions. Moreover,
Lemma 5 implies that m(E) > 0. Since E is invariant under the action · + {qA} for all q ∈ Fq[T ]r,
the latter and Lemma 3 yields m(E) = 1 which is the desired result.

In order to conclude the proof of Theorem 2 what is left is to consider the case whereA is not badly
approximable.

Proposition 2. Let A ∈ Lr×s be not badly approximable. Then, there exists a sequence ln with∑
n≥0 q

−lns =∞ but (2) has only finitely many solutions for almost all g ∈ Ls.

Proof. First, sinceA is not badly approximable, there exists a sequence qi = (Q(i)
1 , . . . , Q

(i)
r ) ∈ Fq[T ]r

with deg qi = ni and ni increasing such that

‖{qiA}‖ < q−b
(ni+i)r

s
c−i.

Now, define t0 = 0 and ti = ni + i for all i. Moreover, for n with ti−1 ≤ n < ti set

ln =
⌊

(ti − n)r
s

⌋
.

Note that ln is a sequence with∑
n≥0

q−lns ≥
∞∑
i=1

q−lti−1s ≥
∞∑
i=1

q−b
r
s
cs ≥

∞∑
i=1

q−r =∞.

Next, assume w.l.o.g. that qni = ‖qi‖ = |Q(i)
1 |. We claim that⋃

ti−1≤n<ti

⋃
deg q=n

B
(
{qA}; q−b

nr
s
c−ln

)
⊆
⋃
B
(
{q′A}; q−b

tir

s
c+2
)
,

9



where the second union runs over all q′ = (Q′1, . . . , Q
′
r) with

|Q′1| ≤ qni−1, |Q′2| ≤ qti−1, . . . , |Q′r| ≤ qti−1.

In order to show this, fix q = (Q1, . . . , Qr) with ti−1 ≤ deg q = n < ti. Using division with
remainder gives a P ∈ Fq[T ] with |Q1 + PQ

(i)
1 | ≤ qni−1. Note that |P | ≤ qti−1−ni . Now set

q′ = (Q1 + PQ
(i)
1 , . . . , Qr + PQ(i)

r ).

Then,
‖{qA} − {q′A}‖ ≤ |P |‖{qiA}‖ < qti−1−ni−b

tir

s
c−i = q−b

tir

s
c−1.

Also, note that

q−b
nr
s
c−ln = q−b

nr
s
c−b (ti−n)r

s
c < q−

nr
s
− (ti−n)r

s
+2 ≤ q−b

tir

s
c+2.

Consequently,
B
(
{qA}; q−b

nr
s
c−ln

)
⊆ B

(
{q′A}; q−b

tir

s
c+2
)

which proves the claim.
In order to conclude the proof, observe that the claim implies

m

 ⋃
ti−1≤n<ti

⋃
deg q=n

B
(
{qA}; q−b

nr
s
c−ln

) ≤ q(−b tir

s
c+2)sqni+ti(r−1) < q3s−i.

Hence,
∞∑
i=1

m

 ⋃
ti−1≤n<ti

⋃
deg q=n

B
(
{qA}; q−b

nr
s
c−ln

) ≤ ∞∑
i=1

q3s−i <∞.

The Borel-Cantelli lemma now implies that for almost all g ∈ Ls

g ∈
⋃

ti−1≤n<ti

⋃
deg q=n

B
(
{qA}; q−b

nr
s
c−ln

)
for only finitely many n which proves the desired result.
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