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On Kurzweil’s 0-1 law
in inhomogeneous Diophantine approximation

by

Michael Fuchs (Hsinchu) and Dong Han Kim (Seoul)

1. Introduction and results. This paper is concerned with metric
inhomogeneous Diophantine approximation. More precisely, we consider the
inhomogeneous Diophantine approximation problem

(1.1) ‖nθ − s‖ < ψ(n)

whose number of solutions in n ∈ N is sought. Here and throughout this
paper, θ, s ∈ R, ‖ · ‖ denotes the distance to the nearest integer and ψ(n) is
a (fixed) positive, non-increasing sequence which is called an approximation
sequence. In addition, we will sometimes assume that ψ(n) is a Khintchine
sequence, which means that nψ(n) is non-increasing.

There are two different ways of looking at (1.1): (i) s is fixed and one is
interested in the number of solutions for almost all θ (with respect to the
Lebesgue measure), or (ii) θ is fixed and one is interested in the number of
solutions for almost all s. Alternatively, one can also consider the number of
solutions for almost all (θ, s) (with respect to the two-dimensional Lebesgue
measure). However, we will not consider this “double-metric” situation in
this paper.

First, we recall what is known for case (i). Here, it was proved by Khin-
tchine [8] for Khintchine sequences and s = 0 (homogeneous Diophantine
approximation) that (1.1) has either finitely many solutions in n ∈ N for
almost all θ or infinitely many solutions in n ∈ N for almost all θ with the
latter happening if and only if∑

n≥1
ψ(n) =∞.
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This result was extended to general s (inhomogeneous Diophantine approx-
imation) by Szüsz [19]. Another extension was given by Schmidt [17] whose
(very general) result in particular implies that the previous results of Khin-
tchine and Szüsz hold for all non-increasing approximation sequences. This
line of research was then extended in many different directions; see the
monograph [6].

Case (ii) was considerably less studied. Here, in his pioneering work,
Kurzweil [14] showed that also a 0-1 law holds.

Theorem 1.1 (Kurzweil’s 0-1 law [14]). Let ψ(n) be a positive, non-
increasing sequence and θ be an irrational number. Then

(1.2) ‖nθ − s‖ < ψ(n) for infinitely many n ∈ N

either for almost all s or for almost no s.

It is an immediate consequence of the lemma of Borel–Cantelli that∑
n≥1 ψ(n) = ∞ is a necessary condition for (1.2). Thus, it is natural to

ask when this is also sufficient. The answer to this question was also given
by Kurzweil in [14] where he showed that the above condition is necessary
and sufficient exactly for the set of badly approximable θ (Kurzweil’s the-
orem). It seems that his paper was forgotten for a long time. However, in
recent years, there was a revival of interest in his study with many follow-up
papers; see for instance [4], [10], [20].

The main goal of this paper is to give a necessary and sufficient condition
for (1.2) to hold for all θ (not only badly approximable θ). For Khintchine
sequences such a result was already proved in [10] with a condition which
cannot be used in the general case. In the present paper, we will find a new
condition which does work for all positive, non-increasing sequences ψ(n).
More precisely, our main result reads as follows.

Theorem 1.2. Let ψ(n) be a positive, non-increasing sequence and θ be
an irrational number with principal convergents pk/qk. Then, for almost all
s ∈ R,

‖nθ − s‖ < ψ(n) for infinitely many n ∈ N

if and only if

(1.3)

∞∑
k=0

(qk+1−1∑
n=qk

min(ψ(n), ‖qkθ‖)
)

=∞.

This result contains several previous results as special cases: the above-
mentioned theorem of Kurzweil as well as its extensions given in his paper
[14] and by Tseng [20]. Below we recall these results and show that our
result implies them.
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Analogues of all the above results were also obtained in the field of formal
Laurent series over a finite base field; see [3], [11], [12], [13], [16]. Indeed,
an analogue of our Theorem 1.2 also holds in this situation, again implying
many previous results. This will be shown below as well.

We conclude the introduction by giving a short sketch of the paper. In
the next section, we will prove our main result. In Section 3, we will show
that our result implies the previous ones of Tseng and Kurzweil (which will
also be recalled in this section). In Section 4, we will consider Khintchine
sequences ψ(n) and show that in this case (1.3) is equivalent to the condition
from the main result of [10]. In Section 5, we will discuss an analogue of
our result in the field of formal Laurent series over a finite field (whose
definition will be recalled in this section), and show relations of this analogue
to previous results. Finally, we will give a conclusion in Section 6.

2. Proof of the main theorem. We first fix some notation. Let
X = R/Z. Let B(x, r) be the open ball in X centered at x with radius r.
We denote by µ the Lebesgue measure on the unit circle X. Let ψ(n) be
a positive, non-increasing sequence and θ be an irrational with principal
convergents pk/qk.

2.1. Proof of the convergence part. This part of Theorem 1.2 is a
consequence of the following lemma.

Lemma 2.1. If

∞∑
k=0

(qk+1−1∑
n=qk

min(ψ(n), ‖qkθ‖)
)
<∞,

then, for almost all s ∈ R,

‖nθ − s‖ < ψ(n) for finitely many n ∈ N.

Proof. In the proof (and also below), we will use the following well-known
facts about the sequence qk:

1/2 ≤ qk+1‖qkθ‖ ≤ 1 and qk+1 ≥ 2qk−1.

We will consider two cases.

In the first case, we assume that ψ(qk+1 − 1) ≥ ‖qkθ‖ for infinitely
many k. Then, for such k, we have

ψ(n) ≥ ψ(qk+1 − 1) ≥ ‖qkθ‖

for all qk−1 ≤ n < qk+1. Hence,
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qk−1∑
n=qk−1

min(ψ(n), ‖qk−1θ‖) +

qk+1−1∑
n=qk

min(ψ(n), ‖qkθ‖)

≥ (qk+1 − qk−1)‖qkθ‖ ≥
qk+1

2
‖qkθ‖ ≥ 1/4.

Since this happens infinitely often, the convergence assumption is violated
and thus this case will not happen.

Therefore, we may assume that ψ(qk − 1) < ‖qk−1θ‖ for all k large
enough. In order to prove our claim in this case, set

Ek+1 =
⋃

qk≤n<qk+1

B(nθ, ψ(n)).

Then ⋂
N≥1

⋃
n≥N

B(nθ, ψ(n)) =
⋂
K≥1

⋃
k≥K

Ek.

Since ‖nθ − (n − qk)θ‖ = ‖qkθ‖ and ψ(n) is non-increasing, we observe for
each qk ≤ n < qk+1 that

µ
(
B(nθ, ψ(n)) \B((n− qk)θ, ψ(n− qk))

)
≤ ‖qkθ‖.

For each qk ≤ n < qk+1 we also have

µ
(
B(nθ, ψ(n)) \B((n− qk)θ, ψ(n− qk))

)
≤ µ(B(nθ, ψ(n))) = 2ψ(n).

Thus,

µ(Ek+1) ≤
2qk−1∑
n=qk

µ(B(nθ, ψ(n)))

+

qk+1−1∑
n=2qk

µ
(
B(nθ, ψ(n)) \B((n− qk)θ, ψ(n− qk))

)
≤ 2qkψ(qk) +

qk+1−1∑
n=2qk

min(2ψ(n), ‖qkθ‖).

Now, from ψ(qk − 1) < ‖qk−1θ‖,
qkψ(qk) ≤ 2(qk − qk−2)ψ(qk − 1) = 2(qk − qk−2) min(ψ(qk − 1), ‖qk−1θ‖)

≤ 2
(qk−1−1∑
n=qk−2

min(ψ(n), ‖qk−2θ‖) +

qk−1∑
n=qk−1

min(ψ(n), ‖qk−1θ‖)
)
.

Since this holds for all large k, we have∑
k

µ(Ek+1) <∞.

Hence, the first Borel–Cantelli lemma completes the proof.
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2.2. Proof of the divergence part. Now, we prove the second half
of Theorem 1.2. First, for each n ∈ N denote by h(n) the non-increasing
sequence

h(n) := min(ψ(n), ‖qkθ‖), qk ≤ n < qk+1.

Let, for 0 ≤ i < ak+1,

Gk,i :=
⋃

qk+1−(i+1)qk<n≤qk+1−iqk

B

(
nθ,

h(qk+1 − iqk)
2

)
, Gk :=

ak+1−1⋃
i=0

Gk,i.

The balls in Gk are disjoint since any two points in {nθ : 1 ≤ n ≤ qk+1} are
separated by at least ‖qkθ‖.

Lemma 2.2. If
∞∑
k=0

µ(Gk) =∞,

then

µ
( ⋂
K≥1

⋃
k≥K

Gk

)
= 1.

Proof. We estimate µ(G`∩Gk), ` < k, by the Denjoy–Koksma inequality
(see, e.g., [7]). Let T be an irrational rotation by θ and f be a real-valued
function of bounded variation on the unit interval. Then, for any x, we have

(2.1)
∣∣∣qk−1∑
n=0

f(Tnx)− qk
�
f dµ

∣∣∣ ≤ var(f).

For a given interval I, by the Denjoy–Koksma inequality (2.1), we have

#{0 ≤ n < qk : nθ ∈ I} =

qk−1∑
n=0

1I(T
nx) ≤ qkµ(I) + 2.

Since Gk,i consists of the disjoint balls centered at qk orbital points with
radius r := h(qk+1 − iqk)/2, for each i we have

µ(Gk,i ∩ I) ≤ #{0 ≤ n < qk : nθ ∈ I} · 2r + 2r

≤ (qkµ(I) + 3) · 2r = µ(Gk,i)µ(I) +
3

qk
µ(Gk,i).

Note that G` consists of at most q`+1 intervals.

Therefore, for k > ` we have

µ(Gk,i ∩G`) ≤ µ(Gk,i)µ(G`) +
3q`+1

qk
µ(Gk,i).
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Since Gk =
⋃
Gk,i is a disjoint union, we have

µ(Gk ∩G`) ≤ µ(Gk)µ(G`) +
3q`+1

qk
µ(Gk)

≤ µ(Gk)µ(G`) + 3

(
1

2

)b(k−`−1)/2c
µ(Gk)

≤ µ(Gk)µ(G`) +
6

2(k−`)/2
µ(Gk).

We need a version of the Borel–Cantelli lemma (e.g. [6, 18]) to go further:

Lemma 2.3. Let (Ω,µ) be a measure space, let fk(ω) (k = 1, 2, . . . ) be a
sequence of non-negative µ-measurable functions, and let ϕk be a sequence
of real numbers such that 0 ≤ ϕk ≤ 1 (k = 1, 2, . . . ). Suppose that

�

Ω

( ∑
m<k≤n

fk(ω)−
∑

m<k≤n
ϕk

)2
dµ ≤ C

∑
m<k≤n

ϕk

for arbitrary integers m < n. Then∑
1≤k≤n

fk(ω) = Φ(n) +O(Φ1/2(n) ln3/2+ε Φ(n))

for almost all ω ∈ Ω, where ε > 0 is arbitrary and Φ(n) =
∑

1≤k≤n ϕk.

Let ϕk = µ(Gk) and fk(ω) = 1Gk(ω) in Lemma 2.3. Then, for any m < n,
we have

�( ∑
m<k≤n

fk(ω)−
∑

m<k≤n
ϕk

)2
dµ

≤ 2
∑

m<`<k≤n

(
µ(Gk ∩G`)− µ(Gk)µ(G`)

)
+

∑
m<k≤n

µ(Gk)

≤ 2
∑

m<k≤n

∑
m<`<k

6

2(k−`)/2
µ(Gk) +

∑
m<k≤n

µ(Gk)

≤
(

12√
2− 1

+ 1

) ∑
m<k≤n

µ(Gk).

Therefore, by Lemma 2.3, if ∑
k

µ(Gk) =∞,

then, for almost every ω,
∞∑
k=1

1Gk(ω) =∞,

i.e., ω ∈ Gk for infinitely many k’s.
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Lemma 2.4. If
∑∞

n=1 h(n) =∞, then

∞∑
k=0

µ(Gk) =∞.

Proof. For k ≥ 0 we have

qk+1−1∑
n=qk

h(n) =

qk+qk−1−1∑
n=qk

h(n) +

ak+1−1∑
i=1

((i+1)qk+qk−1−1∑
n=iqk+qk−1

h(n)
)

≤ qk−1h(qk) +

ak+1−1∑
i=1

qkh(iqk + qk−1)

= qk−1h(qk) +

ak+1∑
i=1

qkh(iqk + qk−1)− qkh(qk+1)

= qk−1h(qk) + µ(Gk)− qkh(qk+1),

where q−1 = 0; therefore

K∑
k=0

qk+1−1∑
n=qk

h(n) + qKh(qK+1) ≤
K∑
k=0

µ(Gk).

From this the claim follows.

Since

Gk =

ak+1−1⋃
i=0

( ⋃
qk+1−(i+1)qk<n≤qk+1−iqk

B

(
nθ,

f(qk+1 − iqk)
2

))
⊆

⋃
qk−1<n≤qk+1

B(nθ, ψ(n)),

we have ⋂
K≥0

⋃
k≥K

Gk ⊆
⋂
N≥1

⋃
n≥N

B(nθ, ψ(n)).

Therefore,
∑∞

n=1 f(n) =∞ implies that

µ
( ⋂
N≥1

⋃
n≥N

B(nθ, ψ(n))
)

= 1.

This concludes the proof of the divergence part.

3. The theorems of Tseng and Kurzweil. In this section, we will
give several consequences of Theorem 1.2. More precisely, we will show that
our result contains three previous theorems. One of them is Kurzweil’s the-
orem mentioned in the introduction. The other two are generalizations of
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Kurzweil’s result: the first is due to Tseng [20] and the second is due to
Kurzweil himself [14]. We start by introducing these two results.

First, we explain Tseng’s theorem. We need the following notation:

Ω(τ) := {θ ∈ R : there exists c > 0 with ‖nθ‖ ≥ c/nτ for all n ≥ 1}.
Note that this definition slightly differs from [20], where τ was replaced by
τ − 1. Also, note that τ = 1 is by definition the set of badly approximable
numbers. Moreover, we let

Θ(τ) :=
{
θ ∈ R : (1.2) holds for all ψ(n) with

∑
n≥1

ψ(n)τ =∞
}
.

Now, we can state Tseng’s theorem.

Theorem 3.1 (Tseng [20]). For τ ≥ 1, we have

Ω(τ) = Θ(τ).

Note that for τ = 1 this is Kurzweil’s theorem. In [14], Kurzweil him-
self gave a generalization of his theorem. To state it, again we need some
notation. First, consider a sequence ϕ(n) with

nϕ(n) non-increasing,(3.1)

0 < n2ϕ(n) ≤ 1 for n ≥ 1.(3.2)

For such a sequence, we define

Ω(ϕ) := {θ ∈ R : there exists c > 0 with ‖nθ‖ ≥ nϕ(cn) for all n ≥ 1}.
Moreover, we consider positive, non-increasing sequences ψ(n) such that
there exists an increasing sequence ti and a non-decreasing function δ(n) ≥ 1
which tends to infinity as n tends to infinity with

(3.3) ti+1 ≥
1

tiϕ(tiδ(ti))

and

(3.4)
∑
i≥1

tiψ

(⌊
1

tiϕ(tiδ(ti))

⌋)
=∞.

For such sequences, we define

Ξ(ϕ) := {θ ∈ R : (1.2) holds for all ψ(n) with the above properties}.
Kurzweil’s result in [14] reads as follows.

Theorem 3.2 (Kurzweil [14]). We have

Ω(ϕ) = Ξ(ϕ).

Note that Ω(1/nτ+1) = Ω(τ). However, it was shown in [20] that the sets

of ψ(n) involved in the definition of Θ(τ) and Ξ(1/nτ+1) are different except
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in the case τ = 1, making Tseng’s theorem more than just a mere special
case of Kurzweil’s Theorem 3.2.

Both of the above result are consequences of Theorem 1.2, as will be
shown next.

3.1. θ ∈ Ω(∗). Here, we show that if θ ∈ Ω(τ) or Ω(ϕ), then θ ∈ Θ(τ) or
Ξ(ϕ), respectively.

We first consider Tseng’s theorem, and as a warm-up we deal with the
case τ = 1 (Kurzweil’s theorem).

Lemma 3.3. We have

Ω(1) ⊆ Θ(1).

Proof. First recall that θ ∈ Ω(1) means that there exists a c > 0 such
that ‖nθ‖ ≥ c/n for all n ≥ 1. Thus, for qk ≤ n < qk+1,

‖qkθ‖ ≥ c/qk ≥ c/n.

This implies (1.3) provided that∑
n≥1

min(ψ(n), c/n) =∞.

By Cauchy’s condensation principle, the latter is equivalent to showing that∑
n≥0

min(2nψ(2n), c) =∞.

This in turn follows from
∑

n≥0 2nψ(2n) = ∞, which again by Cauchy’s
condensation principle is equivalent to the assumption.

We now generalize this to general τ .

Lemma 3.4. For τ ≥ 1, we have

Ω(τ) ⊆ Θ(τ).

Proof. First, note that with the same argument as in the proof of Lemma
2.1, the claim holds when ψ(qk+1 − 1) ≥ ‖qkθ‖ for infinitely many k. Thus,
in what follows, we may assume that ψ(qk−1) < ‖qk−1θ‖ for all k ≥ k0 ≥ 1.
Fix qk ≤ n < qk+1. Then

ψ(n)τ ≤ ψ(qk − 1)τ < ‖qk−1θ‖τ ≤ 1/qτk ≤ ‖qkθ‖/c,

where c > 0 is such that ‖nθ‖ ≥ c/nτ for all n ≥ 1. Hence,

qk+1−1∑
n=qk

min(ψ(n), ‖qkθ‖) ≥ min(c, 1) ·
qk+1−1∑
n=qk

ψ(n)τ .
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Summing over k ≥ k0 gives

∑
k≥k0

qk+1−1∑
n=qk

min(ψ(n), ‖qkθ‖) ≥ min(c, 1) ·
∑
n≥qk0

ψ(n)τ =∞,

which proves the claim also in this case.

We next show that Theorem 1.2 implies one direction of Theorem 3.2.

Lemma 3.5. We have

Ω(ϕ) ⊆ Ξ(ϕ).

Proof. First note that, as above, we can assume ψ(qk− 1) < ‖qk−1θ‖ for
all k large enough.

Now, consider ti−1 ≤ n < ti. Observe that by (3.2) and the assumption
on δ(n), we have

(3.5)
1

tiϕ(tiδ(ti))
≥ tiδ2(ti) ≥ ti.

Thus,

(3.6) ψ(n) ≥ ψ
(⌊

1

tiϕ(tiδ(ti))

⌋)
.

Next, define is such that

qis−1 < ti ≤ qis .

Note that from the assumptions on ϕ(n) and the properties of principal
convergents stated at the beginning of the proof of Lemma 2.1, we have

qis−1ϕ(cqis−1) ≤ ‖qis−1θ‖ ≤ 1/qis .

From this and (3.1), we obtain

qis ≤
1

qis−1ϕ(cqis−1)
≤ c

tiδ(ti)ϕ(tiδ(ti))
≤ 1

tiϕ(tiδ(ti))

for i large enough. Thus, for qk ≤ n < qk+1, we have

‖qkθ‖ ≥ ‖qis−1θ‖ > ψ(qis − 1) ≥ ψ(qis) ≥ ψ
(⌊

1

tiϕ(tiδ(ti))

⌋)
.

Combining the latter with (3.6) yields, for n with ti−1 ≤ n < ti in the
series of (1.3), the lower bound

(ti − ti−1)ψ
(⌊

1

tiϕ(tiδ(ti))

⌋)
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for i large enough. Since, from (3.3) and (3.5), we have

ti ≥ ti−1δ2(ti−1) ≥ 2ti−1

for i large enough, we see that a remainder of the series in (1.3) has a
remainder of the series in (3.4) as lower bound, which proves the desired
result.

3.2. θ 6∈ Ω(∗). Here, we have to show that there exists a positive, non-
increasing sequence ψ(n) satisfying

∑
n≥1 ψ(n)τ =∞ in the case of Tseng’s

theorem, and the condition above Theorem 3.2 in the case of that theorem,
such that (1.2) does not hold. Such sequences have already been constructed
by Tseng and Kurzweil in the proof of their results. One only has to check
that these sequences do not satisfy (1.3). Since the check is the same for all
of them, we only give details for Tseng’s construction which we recall next.

First, since θ 6∈ Ω(τ), there exists a sequence of positive integers v` with
v`+1 ≥ 2v` and

(3.7) ‖v`θ‖ ≤
1

2`2τ+2vτ`
.

Now, set u` = b`2τvτ` c and, for u` ≤ n < u`+1,

ψ(n) = 2−1(`+ 1)−2v−1`+1.

Obviously,
u`+1−1∑
n=u`

ψ(n)τ ≥ c

for some constant c, and hence
∑

n≥1 ψ(n)τ = ∞. Next, in order to show
that (1.3) does not hold, for qk ≤ n < qk+1 we set

h(n) = min{ψ(n), ‖qkθ‖}.
Thus,

u`+1−1∑
n=u`

h(n) =

v`+1−1∑
n=u`

h(n) +

u`+1−1∑
n=v`+1

h(n) ≤ v`+1ψ(u`) + u`+1‖v`+1θ‖

≤ v`+1

2(`+ 1)2v`+1
+

u`+1

2(`+ 1)2τ+2vτ`+1

≤ 1

(`+ 1)2
;

we used (3.7) in the above estimate. Summing over ` shows that (1.3) does
not hold, as required.

4. Khintchine sequences. In this section, we assume that ψ(n) is a
Khintchine sequence, i.e., ψ(n) = 1/(nφ(n)) with φ(n) non-decreasing. For
this special case, the second author proved in [10] the following result.
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Theorem 4.1 (Kim [10]). Let φ(n) be a positive, non-decreasing se-
quence which tends to infinity, and θ be an irrational number with principal
convergents pk/qk. Then, for almost all s ∈ R,

‖nθ − s‖ < 1

nφ(n)
for infinitely many n ∈ N

if and only if
∞∑
k=0

log
(
min(φ(qk), qk+1/qk)

)
φ(qk)

=∞.

Remark 4.2. By using the main result of [9] and replacing log x by
Log x := max{log x, 0}, the assumption that φ(n) tends to infinity can be
dropped (if φ(n) is bounded, then there are always an infinite number of
solutions). Moreover, this can also be obtained by Minkowski’s inhomoge-
neous approximation theorem (see, e.g., [2, p. 48]) and Cassels’ lemma [6,
Lemma 2.1]. Note that this situation is also covered by our main result.
More precisely, if φ(n) ≤ c for some c ≥ 2, then we have

∞∑
k=0

(qk+1−1∑
n=qk

min

(
1

nφ(n)
, ‖qkθ‖

))
≥
∞∑
k=0

(q2k+2−1∑
n=q2k

min

(
1

cn
, ‖q2k+1θ‖

))

≥
∞∑
k=0

(q2k+2−1∑
n=q2k

1

cq2k+2

)
=
∞∑
k=0

q2k+2 − q2k
cq2k+2

≥
∞∑
k=0

1

2c
=∞.

Theorem 4.1 is indeed a special case of our Theorem 1.2 since the fol-
lowing proposition holds.

Proposition 4.3. Under the assumptions of the above theorem,
∞∑
k=0

log
(
min(φ(qk), qk+1/qk)

)
φ(qk)

=∞

if and only if
∞∑
k=0

(qk+1−1∑
n=qk

min(ψ(n), ‖qkθ‖)
)

=∞,

where ψ(n) = 1/(nφ(n)).

Proof. Since we assume that φ(n) tends to infinity, ψ(qk+1− 1) < ‖qkθ‖
for large enough k as before. For such a large k let

q∗k = min{qk ≤ n < qk+1 : ψ(n) < ‖qkθ‖}.
Then

1

q∗k
< φ(q∗k)‖qkθ‖ ≤

φ(q∗k)

qk+1
,
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and if q∗k ≥ qk + 1, then

2

q∗k
≥ 1

q∗k − 1
≥ φ(q∗k − 1)‖qkθ‖ ≥ φ(qk)‖qkθ‖ ≥

φ(qk)

2qk+1
.

Therefore,

min

{
qk+1

qk
,
φ(qk)

4

}
≤ qk+1

q∗k
≤ min

{
qk+1

qk
, φ(q∗k)

}
,

and if q∗k ≥ qk + 1 and φ(qk) ≥ 2e, then

(q∗k − qk)‖qkθ‖ ≤ (q∗k − 1)‖qkθ‖ ≤
1

φ(qk)
≤ log(φ(qk)/2)

φ(qk)

≤ log(qk+1‖qkθ‖φ(qk))

φ(qk)
≤ log(qk+1/qk)

φ(qk)
.

If we consider φ as a function on R, then for large k such that φ(qk) ≥ 16,
we have

qk+1−1∑
n=qk

min(ψ(n), ‖qkθ‖) ≥
qk+1−1∑
n=q∗k

1

nφ(n)

≥
qk+1�

q∗k

dx

xφ(x)
=

log qk+1�

log q∗k

dt

φ(et)
≥

log(qk+1/q
∗
k)

φ(qk+1)

≥
log
(
min(φ(qk)/4, qk+1/qk)

)
φ(qk+1)

≥
log
(
min(φ(qk), qk+1/qk)

)
2φ(qk+1)

,

and for φ(qk) ≥ 2e,

qk+1−1∑
n=qk

min(ψ(n), ‖qkθ‖) = (q∗k − qk)‖qkθ‖+
1

q∗kφ(q∗k)
+

qk+1−1∑
n=q∗k+1

1

nφ(n)

≤
log
(
min(φ(qk), qk+1/qk)

)
φ(qk)

+
1

qkφ(qk)
+

qk+1�

q∗k

dx

xφ(x)

≤
log
(
min(φ(qk), qk+1/qk)

)
φ(qk)

+

qk�

q∗k−1

dx

xφ(x)
+

log(qk+1/q
∗
k)

φ(q∗k)

≤
log
(
min(φ(qk), qk+1/qk)

)
φ(qk)

+
log(qk/q

∗
k−1)

φ(q∗k−1)
+

log
(
min(φ(q∗k), qk+1/qk)

)
φ(q∗k)

≤
2 log

(
min(φ(qk), qk+1/qk)

)
φ(qk)

+
log
(
min(φ(qk−1), qk/qk−1)

)
φ(qk−1)

.
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Therefore, for some k0 ≥ 1, we have∑
k>k0

log
(
min(φ(qk), qk+1/qk)

)
2φ(qk+1)

≤
∑
k>k0

qk+1−1∑
n=qk

min(ψ(n), ‖qkθ‖)

≤
∞∑

k≥k0

3 log
(
min(φ(qk), qk+1/qk)

)
φ(qk)

.

Let Λ = {k ≥ 1 : φ(qk+1) ≤ 2φ(qk)}. Then∑
k∈Λ

log
(
min(φ(qk), qk+1/qk)

)
φ(qk+1)

≤
∑
k∈Λ

log
(
min(φ(qk), qk+1/qk)

)
φ(qk)

≤ 2
∑
k∈Λ

log
(
min(φ(qk), qk+1/qk)

)
φ(qk+1)

and ∑
k∈Λc

log
(
min(φ(qk), qk+1/qk)

)
φ(qk+1)

≤
∑
k∈Λc

log
(
min(φ(qk), qk+1/qk)

)
φ(qk)

≤
∑
k∈Λc

log φ(qk)

φ(qk)
<∞.

Hence,
∞∑
k=0

log
(
min(φ(qk), qk+1/qk)

)
φ(qk+1)

=∞

if and only if
∞∑
k=0

log
(
min(φ(qk), qk+1/qk)

)
φ(qk)

=∞,

which completes the proof.

5. An analogue in the field of formal Laurent series. In this
section, we will briefly discuss an analogue of our Theorem 1.2 in the field
of formal Laurent series. As in the real case, this analogue will imply the
analogues of Kurzweil’s theorem and its extensions as well as the analogue
of Kim’s theorem [10] which have all been established in the field of formal
Laurent series.

We start by recalling the definition of the field of formal Laurent series;
for further details see [5]. First, denote by Fq the finite field of q elements,
where q is a prime power. Moreover, let Fq[X] be the polynomial ring over
Fq and denote by Fq(X) its quotient field. The field of formal Laurent series
is defined by

Fq((X−1)) := {f = anX
n + an−1X

n−1 + · · · , ai ∈ Fq, an 6= 0, n ∈ Z} ∪ {0}



Kurzweil’s 0-1 law 15

with addition and multiplication defined as for polynomials. We set {f} =
a−1X

−1+ · · · , which is called the fractional part of f . Moreover, we define a
norm by setting |f | = qdeg(f), where deg(f) is the generalized degree function
(by definition |0| := 0). This norm is non-Archimedean. Next, set

L := {f ∈ Fq((X−1)) : |f | < 1}.
Restricting the norm to L gives a compact topological group. Thus, there
exists a unique, translation-invariant probability measure (the Haar mea-
sure).

Metric Diophantine approximation is now done in L equipped with the
above measure with integers replaced by elements of Fq[X] and real numbers
replaced by elements in L. In particular, the inhomogeneous Diophantine
approximation problem (1.1) in this setting becomes

|{Qf} − g| < 1

qln
, deg(Q) = n,

where f, g ∈ L and solutions are sought in Q ∈ Fq[X]. Here, ln is a non-
negative sequence of integers which plays the role of the approximation
sequence.

In this setting, our Theorem 1.2 reads as follows.

Theorem 5.1. Let ln be a non-decreasing sequence and f ∈ L be irra-
tional with principal convergents Pk/Qk. Then, for almost all g ∈ L,

|{Qf} − g| < 1/qln , deg(Q) = n for infinitely many Q ∈ Fq[X]

if and only if
∞∑
k=0

(nk+1−1∑
n=nk

qn−max{nk+1,ln}
)

=∞,

where nk := deg(Qk).

We remark that under the stronger assumption that ln − n is non-
decreasing this result was already proved in [12] (this corresponds to the
case of a Khintchine sequence). Also, it was shown in [16] that the diver-
gence part holds without the monotonicity assumption. The convergence
part (which was conjectured in [16]) can be proved with a similar reason-
ing to the one above. It might be possible to remove also in this case the
monotonicity assumption (as is frequently done for metric Diophantine ap-
proximation in the field of formal Laurent series), but we will not pursue
this here.

We finish this section by pointing out that the above theorem implies
the analogue of Kurzweil’s theorem in the field of formal Laurent series
which was proved in [3] and [11]. Moreover, the analogue of Tseng’s theorem
(proved in [13]) and the analogue of Theorem 3.2 (proved in [16]) are also
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deduced from the above theorem similarly to Section 3. Finally, our result
again extends the analogue of Kim’s theorem for Khintchine sequences which
was obtained in [12]. This was already proved in [12] and the reader is
referred to that paper for details.

6. Conclusion. The main goal of this paper was to prove a dual result
to a classical result of Khintchine [8] and its extensions of Szüsz [19] and
Schmidt [17]. Our result contains several previous results as special cases.
Khintchine’s theorem sparked a long line of research in metric Diophantine
approximation. One could now ask: do some of the subsequent results have
a “dual version” in the spirit of this paper, too?

For instance, for the convergence part ((1.2) holds for a set of s of
Lebesgue measure zero), is it possible to compute the Hausdorff dimen-
sion of the set of s (similar to, e.g., [15])? By using the mass transference
principle of [1], one seems to get a lower bound. In the opposite direction,
for the divergence part ((1.2) holds for a set of s of Lebesgue measure one),
is there an asymptotic formula for the number of solutions (in the style of,
e.g., [17])? We might come back to these questions in a future work.
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Abstract (will appear on the journal’s web site only)

We give a necessary and sufficient condition such that, for almost all
s ∈ R,

‖nθ − s‖ < ψ(n) for infinitely many n ∈ N,
where θ is fixed and ψ(n) is a positive, non-increasing sequence. This can
be seen as a dual result to classical theorems of Khintchine and Szüsz which
dealt with the situation where s is fixed and θ is random. Moreover, our
result contains several earlier ones as special cases: two old theorems of
Kurzweil, a theorem of Tseng and a recent result of the second author. We
also discuss a similar result (with the same consequences) in the field of
formal Laurent series.
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