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Abstract

In a recent paper, the first and third author proved a central limit theorem for the number of coprime
solutions of the diophantine approximation problem for formal Laurent series in the setting of the
classical theorem of Khintchine. In this note, we consider a more general setting and show that even an
invariance principle holds, thereby improving upon earlier work of the second author. Our result yields
two consequences: (i) the functional central limit theorem and (ii) the functional law of the iterated
logarithm. The latter is a refinement of Khintchine’s theorem for formal Laurent series. Despite a lot
of research efforts, the corresponding results for diophantine approximation of real numbers have not
been established yet.

1 Introduction

The last few years have witnessed an increasing interest in the metric theory of diophantine approximation
for formal Laurent series; for recent results concerning limit laws see Deligero and Nakada [1], Fuchs
[3], [5], Inoue and Nakada [6]; for recent results concerning Hausdorff dimensions of exceptional sets see
Kristensen [7], Niederreiter and Vielhaber [12], Wu [15].

In this short note, we are studying invariance principles for the number of coprime solutions of the
diophantine approximation problem. In the classical case, invariance principles were obtained by Fuchs in
[4]; see Fuchs [5] for corresponding results for formal Laurent series. The main difference to the previous
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line of research is a new approach that does not involve continued fraction expansion. Continued fraction
expansion made necessary several restrictions on earlier results which will be shown to be superfluous in
this paper. This new approach was devised by Deligero and Nakada in [1] and it is the paper’s aim to
further demonstrate its usefulness.

We give a short outline of the paper: in this section, we briefly recall metric diophantine approximation
for formal Laurent series, state our new result and discuss some consequences. The proof of the main
result which rests on blocking techniques and a general invariance principle obtained by Fuchs [4] will
then be given in the final two sections.

Formal Laurent Series. Denote byFq the finite field withq elements, whereq is a power ofp, p a prime.
We consider the field of formal Laurent series

Fq((T
−1)) =

{
f =

∞∑
n=n0

anT
−n
∣∣∣an ∈ Fq, n0 ∈ Z, an0 6= 0

}
∪ {0}

together with the valuation|f | = q−n0 , f 6= 0 and|0| = 0. It is easy to see that| · | is non-Archimedean and
that the polynomial ringFq[T ] and the field of rational functionsFq(T ) are both contained inFq((T

−1)),
where we have the chain of inclusionsFq[T ] ⊆ Fq(T ) ⊆ Fq((T

−1)), a situation that closely resembles the
corresponding chainZ ⊆ Q ⊆ R.

In order to consider metric diophantine approximation, we restrict to the set

L =
{
f ∈ Fq((T

−1))||f | < 1
}

as we restrict to the unit interval in the classical case. It is straightforward to prove thatL together with the
restriction of the valuation is a compact metric space. Hence, there exists a unique, translation-invariant
probability measure on(L,L) (L denoting the set of all Borel sets) that we are going to denote bym.

Diophantine Approximation Problem and Three Sets. For f a formal Laurent series with|f | < 1,
consider the diophantine approximation problem in unknownsP, Q ∈ Fq[T ], Q 6= 0,∣∣∣∣f − P

Q

∣∣∣∣ < 1

q2n+ln
, deg Q = n, (P, Q) = 1, (1)

where(ln) is a sequence of positive integers.
We are interested in studying the solution set. Results of different strengths made necessary different

restrictions on the set of sequences(ln). The sets which will be considered in this paper are as follows:

A = {(ln)n≥0 | ln > 0 and non-decreasing} ;

B =
{

(ln)n≥0 | ln > 0 and either (C1) lim
n→∞

ln = l < ∞, or (C2) lim
n→∞

ln = ∞, lim
i→∞

∑
i<j≤i+li

q−lj exists
}

;

C = {(ln)n≥0 | ln > 0} .

Note that we have the following chain of proper inclusionsA ⊂ B ⊂ C.

0-1 Laws. In [2], deMathan proved an analogue of Khintchine’s theorem: for(ln) ∈ A the solution
set of the above inequality is either finite or infinite for almost allf , the latter holding if and only if∑∞

n=0 q−ln = ∞ (see Fuchs [3] for a different approach based on continued fraction expansions).
In a recent paper, Inoue and Nakada [6] showed that the monotonicity assumption is in fact superfluous

(see Section 2 for a simplified proof of their result).
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Theorem 1 (Inoue and Nakada [6]). Let(ln) ∈ C. (1) has either finitely many or infinitely many solutions
for almost allf ; the latter holds if and only if

∞∑
n=0

q−ln = ∞.

Central Limit Theorems. Define a sequence of random variables as

ZN(f) := # {P/Q : 〈P, Q〉 is a solution of (1), deg Q ≤ N} .

Assuming that(ln) ∈ A,
∑∞

n=0 q−ln = ∞ and under some further technical conditions on(ln), Fuchs
[3] proved the central limit theorem for(ZN). His approach was based on continued fraction expansions
which made the additional conditions seemingly hard to drop.

A new approach, not relying on continued fraction expansions, was devised by Deligero and Nakada in
[1]. With this approach they succeeded in dropping the additional conditions in Fuchs’s result, thereby gen-
eralizing the central limit theorem to Khintchine’s setting, i.e., to all sequences(ln) ∈ Awith

∑∞
n=0 q−ln =

∞. Note that a similar result for the real number field has not been proved yet; see LeVeque [9], [10] and
Philipp [13] for similar but weaker results in the real case.

The Invariance Principle. In [5], Fuchs obtained the invariance principle for sequences(ln) ∈ A that
satisfy

∑∞
n=0 q−ln = ∞ and some technical extra conditions. Here, we are going to explore further

the approach of Deligero and Nakada in order to extend Fuchs’s result to all sequences(ln) ∈ B with∑∞
n=0 q−ln = ∞.
In order to state the result we fix some notation. Set

F (N) :=

{
q−2l−2

(
ql+1(q − 1)− (2l + 1)(q − 1)2

)
N, if (C1);

q−1 (q − 1)
∑

n≤N q−ln , if (C2),

and

Nt :=

{
max{n : F (n) ≤ t}, if t ≥ F (0);

0, otherwise,

for t ≥ 0. Define on(L,L, m)× ([0, 1], B̄, λ) the following stochastic process

Z(t) := Z(t; f, x) := ZNt(f)−
(

1− 1

q

) N∑
n=0

q−ln ,

whereB̄ denotes the set of Borel sets on[0, 1] andλ is the Lebesgue measure. Note that the definition
does not depend on the second variable. However, adjoining a uniformly distributed random variable is
necessary to guaranteeing that the probability space is rich enough (see Remark 6 in Fuchs [4]).

Theorem 2. There exists a sequence(Yn)n≥0 of independent, standard normal random variables on
(L,L, m)× ([0, 1], B̄, λ) such that, asN →∞,∣∣∣∣∣Z(N)−

∑
n≤N

Yn

∣∣∣∣∣ = o
(
(N log log N)1/2

)
, a.s.

and

(m× λ)

[
1√
N

max
n≤N

∣∣∣∣∣Z(n)−
∑
k≤n

Yk

∣∣∣∣∣ ≥ ε

]
→ 0

for all ε > 0.
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Consequences. The above result implies the functional central limit theorem which generalizes the result
of Deligero and Nakada [1].

Corollary 1. AsN →∞, {
Z(F (N)t)√

F (N)
, 0 ≤ t ≤ 1

}
−→ {W (t), 0 ≤ t ≤ 1},

whereW (t) denotes the standard Brownian motion.

Moreover, we have the functional law of the iterated logarithm.

Corollary 2. The sequence of functions{
Z(F (N)t)

(2F (N) log log F (N))1/2
, 0 ≤ t ≤ 1

}
N≥0

is a.s. relatively compact in the topology of uniform convergence and has Strassen’s set as its set of limit
points.

Since our set of sequences(ln) contains the sequences of Khintchine’s theorem, we note the following
consequence of the latter result which is a refinement of Khintchine’s theorem for formal Laurent series.

Corollary 3 (Law of the iterated logarithm for Khintchine’s setting). Assume that(ln) ∈ A and∑∞
n=0 q−ln = ∞. Then, for almost allf ,

lim sup
n→∞

∣∣ZN(f)− (1− q−1)
∑

n≤N q−ln
∣∣√

2F (N) log log F (N)
= 1.

Note that a similar result for the real number field has so far not been established; see Philipp [13] and
Fuchs [4] for similar but weaker results in the real case. Moreover note that the above result also gives the
optimal bound in the law of large numbers:

Let (ln) ∈ A. Then, for almost allf ,

ZN(f) =
(
1− q−1

)∑
n≤N

q−ln +O
(
(F (N) log log F (N))1/2

)
.

The previous best bound was of orderF (N)1/2(log F (N))3/2+ε, ε > 0 which more generally even holds
for all (ln) ∈ C; see a remark by Inoue and Nakada [6].

2 Blocking

Define a sequence of sets as

Fn := {f ∈ L : ∃〈P, Q〉 such that (1) holds}.

The measure of these sets was computed by Inoue and Nakada [6],

m(Fn) = q−ln

(
1− 1

q

)
. (2)
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Moreover, as was proved by Inoue and Nakada [6] as well, two distinct setsFi andFj are either indepen-
dent or have empty intersection, the first case occurring if and only ifi + li < j.

Note that the latter implies

m(Fi ∩ Fj) ≤ m(Fi)m(Fj) (i 6= j). (3)

Sequences of sets satisfying this condition are called negative quadrant dependent (see Lehmann [8]). This
gives a simplified proof of Theorem1.

Proof of Theorem1. Since
∑

n≤N m(Fn) = (1− q−1)
∑

n≤N q−ln the result follows from the Borel-
Cantelli lemma for negative quadrant dependent sequences of sets (see Matula [11] or Rényi [14]).

In the sequel, we use the notation
Xn := 1Fn −m(Fn),

where1A denotes the indicator function of the setA. Furthermore, we setlimn→∞ ln = l regardless
whether we have (C1) or (C2). Subsequently, we shall interpret all expressions in terms ofl for (C2) as
the corresponding value obtained by taking the limit, e.g.q−∞ = 0. Finally, the constantc is defined in
the following lemma.

Lemma 1. With the assumptions from the introduction,

c := lim
i→∞

∑
i<j≤i+li

q−lj = lq−l.

Proof. If we assume (C1), then the assertion follows from the fact thatln = l, n ≥ N for a sufficiently
largeN . For (C2), since the limit is assumed to exist, it suffices to prove that

lim inf
i→∞

∑
i<j≤i+li

q−lj = 0.

Assume that this is wrong. Then there is anε > 0 such that for alli ≥ i(ε),∑
i<j≤i+li

q−lj ≥ ε.

If li ≤ li+1 ≤ · · · ≤ li+li then ∑
i<j≤i+li

q−lj ≤ liq
−li .

Sinceln →∞, the above chain of inequalities cannot hold ifi(ε) is chosen large enough. Hence, starting
with any fixedi0 ≥ i(ε), we can find ani1 > i0 such thatli0 > li1 etc. This gives a contradiction.

Blocking I: 2-dependent process. Define the sequenceτn recursively asτ0 = 0 and

τn+1 := max
τn≤j≤τn+lτn

{j : j + lj ≥ i + li for all τn ≤ i ≤ τn + lτn}.

Furthermore, denote by

Yn :=

τn+1−1∑
j=τn

Xj, (n ≥ 0).

We gather some properties of the sequence(Yn).
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Lemma 2. (i) (Yn)n≥0 is a 2-dependent process.

(ii)

V

(∑
n≤N

Yn

)
∼ F (τN+1 − 1) . (4)

Proof.Due to the properties of the setsFn, the first part follows from

max
τn≤j<τn+1

(j + lj) < τn+3.

In order to prove the latter, observe that the left hand side is bounded byτn+1 + lτn+1 . Moreover, we have

τn+2 + lτn+2 < τn+3 + lτn+3 . (5)

Assuming thatτn+3 ≤ τn+1 + lτn+1 would now imply that

τn+2 + lτn+2 ≥ τn+3 + lτn+3

which however contradicts (5). Hence, we have proved the first part of the lemma.
For the second part, we first observe that

V

(∑
n≤N

Yn

)
=

∑
n<τN+1

m(Fn)−
∑

n<τN+1

m(Fn)2 + 2
∑

i<j<τN+1

(m(Fi ∩ Fj)−m(Fi)m(Fj)) .

From the assumptions on(ln) and (2),∑
n<τN+1

m(Fn)2 ∼ q−l

(
1− 1

q

)2 ∑
n<τN+1

q−ln .

Moreover, from the property of the sequenceFn mentioned in the paragraph preceding (3),∑
i<j<τN+1

(m(Fi ∩ Fj)−m(Fi)m(Fj)) = −
∑

i<τN+1

m(Fi)
∑

i<j≤min{i+li,τN+1−1}

m(Fj)

∼ −c

(
1− 1

q

)2 ∑
i<τN+1

q−li ,

the last step following from the assumptions on(ln), Lemma1, and(2).
Putting everything together yields the claimed result.

Blocking II: Linear variance. For any positive integern define the integerjn by

F (τjn+1 − 1) ≤ n < F (τjn+2 − 1)

and setj0 = −1. Note that

F (τn+2 − 1)− F (τn+1 − 1)

≤

(
(1− 1

q
)−

(
2c + q−l

)(
1− 1

q

)2
) ∑

τn+1≤j≤τn+1+lτn+1

q−lj

< 1,
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where the last line holds ifn is chosen large enough. Hence, the above definition makes sense.
Now, we define

ξn :=

jn+1∑
j=jn+1

Yj, (n ≥ 0).

Some properties of(ξn) are summarized in the next lemma.

Lemma 3. We have

(i) (ξn)n≥0 is a 2-dependent process.

(ii)
E|ξn|3 � 1.

(iii)

V

(∑
n≤N

ξn

)
∼ N.

Proof.Property (i) is clear. For the proof of (ii), we first apply the multinomial theorem,

E|ξn|3 ≤ E

τjn+1+1−1∑
j=τjn+1

|Xj|

3

=
∑

eτjn+1+···+eτjn+1+1−1=3

(
3

eτjn+1
, . . . , eτjn+1+1−1

)
E|Xτjn+1

|eτjn+1 · · · |Xτjn+1+1−1|
eτjn+1+1−1 . (6)

In order to estimate the right hand side, we use property (3), a property that more generally holds for
any finite number of pairwise distinctFi’s as was proved by Deligero and Nakada [1].

Now, observe
τjn+1+1−1∑
j=τjn+1

E|Xj|3 �
τjn+1+1−1∑
j=τjn+1

m(Fj) � 1,

where the last estimate follows by the definition ofjn.
Next, we treat the following sum

∑
τjn+1≤i<j≤τjn+1+1−1

E|Xi|2|Xj| �
∑

τjn+1≤i<j≤τjn+1+1−1

m(Fi)m(Fj) �

τjn+1+1−1∑
j=τjn+1

m(Fj)

2

� 1.

Similarly, we have ∑
τjn+1≤i<j≤τjn+1+1−1

E|Xi||Xj|2 � 1.

Hence, we are left with

∑
τjn+1≤i<j<l≤τjn+1+1−1

E|Xi||Xj||Xl| �

τjn+1+1−1∑
j=τjn+1

m(Fj)

3

� 1.
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Plugging the last three estimates into (6) gives property (ii).
For property (iii), observe that by (4),

V

(∑
n≤N

ξn

)
= V

 ∑
n≤jN+1

Yn

 = F
(
τjN+1+1 − 1

)
.

Moreover, by the definition ofjn and the remark succeeding the definition, we have

N < F
(
τjN+1+2 − 1

)
+
(
F
(
τjN+1+1 − 1

)
− F

(
τjN+1+2 − 1

))
= F

(
τjN+1+1 − 1

)
≤ N + 1.

This yields the desired result.

3 Proof of the invariance principle

The proof of Theorem2 will rest on the following extension of a theorem of Philipp and Stout (see Fuchs
[4]). We state the result in a simplified form that will be sufficient for our purpose.

Proposition 1. Letξn denote a 2-dependent process of centered random variables on the probability space
(Ω,A, P ) and suppose that

E|ξn|3 � 1

and

V

(∑
n≤N

ξn

)
∼ N.

Define a stochastic processξ(t) on (Ω,A, P )× ([0, 1], B̄, λ) by

ξ(t) =
∑
n≤t

ξn.

Then, ast →∞,
ξ(t)−W (t) = o

(
(t log log t)1/2

)
, a.s.

and

(P × λ)

[
1√
t
sup
s≤t

|ξ(s)−W (s)| ≥ ε

]
−→ 0

for all ε > 0.

Due to the Lemma3, the sequenceξn of the previous section satisfies all the assumptions of the above
proposition. Therefore, we obtain, ast →∞,

ξ(t)−W (t) = o
(
(t log log t)1/2

)
, a.s.

and

(m× λ)

[
1√
t
sup
s≤t

|ξ(s)−W (s)| ≥ ε

]
−→ 0

for all ε > 0, whereξ(t) =
∑

n≤t ξn.
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The invariance principle for Z(t). We prove the following lemma.

Lemma 4. Ast →∞,
Z(t)− ξ(t) � t1/2−ε, a.s.

for all 0 < ε < 1/6.

Proof.We have

m

τjn+1+1−1∑
j=τjn+1

|Xj| ≥ n1/2−ε

 ≤ n−3/2+3εE

τjn+1+1−1∑
j=τjn+1

|Xj|

3

� n−3/2+3ε.

Consequently, by the Borel-Cantelli lemma,

τjn+1+1−1∑
j=τjn+1

|Xj| � n1/2−ε, a.s.. (7)

Now, observe

|Z(t)− ξ(t)| =

∣∣∣∣∣∣
∑
n≤Nt

Xn −
∑

n≤τj[t]+1+1−1

Xn

∣∣∣∣∣∣ ≤
τj[t]+1+1−1∑
j=τj[t]+1

|Xj|

and combining with (7) concludes the proof of the desired result.

The above lemma yields, ast →∞,

Z(t)−W (t) = o
(
(t log log t)1/2

)
, a.s.

and

(m× λ)

[
1√
t
sup
s≤t

|Z(s)−W (s)| ≥ ε

]
−→ 0

for all ε > 0. Reformulation gives Theorem2.
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