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Abstract

We consider inhomogeneous Diophantine approximation for formal Laurent series over a finite base
field. We establish an analogue of a strong law of large numbers due to W. M. Schmidt with a better
error term than in the real case. A special case of our result improves upon a recent result by H. Nakada
and R. Natsui and completes a result of M. M. Dodson, S. Kristensen, and J. Levesley. Moreover, we
prove various results for inhomogeneous Diophantine approximation with restricted denominators.

1 Introduction

Several recent studies have been concerned with the metric theory of Diophantine approximation in the
field of formal Laurent series; for some references see below. The aim of this paper is to make some
further progress on the inhomogeneous Diophantine approximation problem. More precisely, we will
establish some analogues of results from the real number case (which in the sequel will be referred to
as the "classical case”) with some improvements which are arising from the more simple nature of the
metric structure of the formal Laurent series field.

First, let us fix some notation. Subsequently, we will denot& pa finite field withg elements; the
polynomial ring overF,, the field of rational functions ovéf,, and the field of formal Laurent series
overF, will be denoted byF, [T, F,(T), andF,((T~1)), respectively. Fof € F,((T~!)) with

f=a "+ an T 4, a, € Fy, a, #0, n € Z,

we defing| f| := ¢™ and|0| := 0. Itis easily checked that | is a norm which satisfies the ultra-metric
property, i.e.,
|f — gl < max{|f],|g[}

with equality if | f| # |g|. This property in particular implies that two balls (defined in the standard
way) are either disjoint or they are contained in each other. Finally, we set

L={feF,((T™"):[fl <1}.

Note thatl. equipped with the restriction of the normltois a compact abelian group. Consequently,
there exist a unique, translation-invariant probability measure which will be denoted by
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In the following, we will be concerned with the inhomogeneous Diophantine approximation prob-
lem: for f, g € IL consider the Diophantine inequality

1 . .
\Qf—Q—P’<W,Q|5m0mG deg Q@ =n, @

whose solutions are pairs of polynomial, Q) € F,[T] x F,[T] with @ # 0 (throughout this work
we will use (-, -) to denote pairs, whereds, -) is reserved for thecd). Here,l,, is a sequence of
non-negative integers. In particular, note thajust depends odeg Q.

In a recent paper, C. Ma and W.-Y. Si] [nvestigated the above problem and proved a Khintchine
type0-1 law for the number of solutions if botfiandg are chosen randomly (with respecttg from
L. Their result is an analogue of a result of J. W. S. Cass2lEgm the classical case, where this
situation is sometimes called the "double-metric” case. Moreover, the following two "single-metric”
cases were considered over the real number field as well (e.g1,§emf [L2]): (S1) fix f and choose
arandomy € L; (S2) fix g and choose a randoghe L.

In this paper, we are interested in stochastic properties of the solution sgtfof (f, g such that
the number of solutions is infinite. More precisely, we will derive strong laws of large numbers with
error terms for the number of solutiok®, @) of (1) with deg @ < N. Such results have so far only
been established for (S2) with= 0; see [] and H. Nakada and R. Natsui][ Here, we will further
improve these results and extend them to gengr&o, the main part of the paper will focus on the
case (S2). The other "single-metric” case and the "double metric” case exhibit a somehow different
behavior and will be only briefly discussed in the final section.

From now on, leyy € LL be fixed. Moreover, define

U(N) =) 1

ln
n<N q
Ouir first result reads as follows.

Theorem 1. The number of solutions ofwith 0 < deg @ < N satisfies
T(N)+ 0 (qf(N)l/?(log \I/(N))2+€> . as,

wheree > 0 is an arbitrary constant.

This result is an analogue of a result of W. M. Schmidf][from the classical case. In fact, we will
use a variant of Schmidt's method to prove it. Note, however, that the error term is better than the one
from the classical case. Moreover, no monotonicity assumptidp @required.

For g = 0 the improved error term was also achieved in the classical case; see G. Haijman |
The result in this special case improves upon Theorem 3]iby removing some further technical
conditions onl,, and providing an error term. Moreover, our result completes the main resul} in [
which was concerned with Diophantine approximation of linear forms with at least two terms. Here,
the missing case of only one term is considered. As in the real case, the current situation turns out to
be more complex, a claim which is further supported by the fact that the resdlthiag a better error
term; for a discussion of this phenomena in the real caselske [

In fact, our method of proof can be used to obtain even more general results. More precisely, the
method will allow us to investigate inhomogeneous Diophantine approximation with restricted denom-
inators as well. Therefore, replach py

1 . .
’F(Q>f—9—P‘<anln7 @ is monig deg @ = n, 2
wherel,, is as above and' is a function fromF,[7] into F,[T7].
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First, we will fix some further notation. Let

F :={Q : Q monic andF'(Q) # 0}

and denote byF,, the subset of all polynomial® € F with deg@ = n. Subsequently, we will
only considerF’ that satisfy the following property: fof, Q" € F with deg@Q < deg@’, we have
deg F(Q) < deg F(Q"). Finally, set

(N, F)= ) #

n—+l,
n<N q

Then, the following generalization of the above result holds.

Theorem 2. Assume thaF'(Q) is either@ or 0. Then, the number of solutions @) with @) € F and
0 < deg@ < N satisfies

U(N, F) + O ((B(N)2 (log W(N)**) . ass, €)

wheree > 0 is an arbitrary constant.

In particular, the latter result gives a meaningful asymptotic formula whenever

lim inf #f” > 0. (4)

n—oo q

Two important special cases are collected in the following corollary, the first of which has to be com-
pared with the results irf].

Corollary 1. (i) LetC, D e F,[T] withdegC < deg D. Then, the number of solutions (@f) with
Q =C (D)and0 < deg@ < N satisfies

1

oYM +0 ((\I/(N))l/z (log m(zv))“) . as, (5)

wheree > 0 is an arbitrary constant.
(i) The number of solutions ¢f) with @ monic, square-free andl < deg @ < N satisfies

‘1;1\1/(N) + O ((BV)? (og B(N)), as. (©)

wheree > 0 is an arbitrary constant.

Note that condition4) is not satisfied for some interestitfsuch as the set of monic, irreducible
polynomials. This situation, however, turns out to be more simpler and we can obtain a strong law of
large numbers with an even better error term. Therefore, we first prove an analogue of Theorem 3.1 in
[7] which holds for generak'.

Theorem 3. The number of solutions ¢2) with @ € F and0 < deg @ < N satisfies
U(N, F) + O ((Bo(N)2(log Wo(N)*2+) , as,

wheree > 0 is an arbitrary constant and

1 F(Q),F(Q
W)=Y oy Yy el

n<N msn Q€Fn Q'E€Fm




This result entails the following corollary.

Corollary 2. (i) Let

Uy (N) =) !

e
n n
n<N q

Then, the number of solutions @f) with  monic, irreducible and) < deg @ < N satisfies
3 (N) + O (B1(N)2 (log W1 (N))/) . as,

wheree > 0 is an arbitrary constant.
(i) LetF(Q) = Q! witht > 2. Then, the number of solutions @) with 0 < deg @ < N satisfies

U(N)+ O ((\II(N))W (log xI/(N))?’/?*E) . as,

wheree > 0 is an arbitrary constant.

It is worth mentioning that Theore®does not give a meaningful result in the situations discussed
in Theoreml and Corollaryl. Consequently, part (ii) of Corollargshows that the complexity of= 1
andt > 2 are rather different.

We conclude the introduction by giving a short plan of the paper. In the next section, we will prove
a weak independence result which will form the crucial step in deriving all results above. In particular,
Theorem3 will follow rather quickly from this result and this will be demonstrated in the next section
as well. Then, in SectioB, we will show how to amend Schmidt's method to the current situation to
obtain a proof of Theorerh and Theoren2. In the final section, we will then briefly discuss the other
"single-metric” case and the "double-metric” case.

Notation.All logarithms appearing throughout this work will only attain values, i.e.,log, = should
be interpreted amax{log, =, 1}. We will use Landau’s notatiofi(z) = O(g(x)) as well as Vino-
gradov’s notatiory (z) < g(z) to indicate that there exist a const@ht> 0 such thatf(x)| < C|g(x)|
for all z sufficiently large.

2 A weak independence result with applications

We start by proving a technical lemma that constitutes a refinement of Lemma 2]3 in [

Lemma 1. Let@, Q' be two non-zero polynomials with= deg Q, m = deg Q' andd = deg(Q, Q).
Let! be a non-negative integer. Then, the numbeof pairs (P, P') with deg P < n,deg P’ < m and

1
qm—H

‘g—i—P_g—i—P’
Q Q'

()

is given by
N =¢" ifn>1+d;
< ¢4, ifn<l+d.

Proof. First, (7) can be reformulated to
9(Q — Q)+ PQ' — P'Q| < ¢" ",
Next, setQ = (Q,Q’) - Q andQ’' = (Q,Q’) - Q'. Then,

9(Q' = Q) + PQ' = P'Q| < ¢" 1.
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Let —C denote the polynomial part gf Q" — Q). Now, we will consider two cases.
First, assume that < [ 4+ d. Then, a necessary condition f@?, P’) being a solution of the above
inequality isPQ’ — P'Q = C. Observe that foP with deg P < n and

PQ = C modQ, (8)
we havePQ’ = C + P'Q with some polynomiaP’ and
deg P' +degQ = deg(PQ' — C) < deg P +deg Q' < n+degQ'.

Consequentlyleg P’ < m. So, eithetN = 0 or N equals the number of solutions @) (which isq®.

Next, we considen > [ + d. Here, we can argue similar as above, the only difference being
that N equals the number of solutions &) (with C' replaced byC' + D for all polynomialsD with
deg D < n —1— d. ConsequentlyN = ¢"~*. |

Next, we define fo) € F,, the set

Fg :={f €L : f satisfieq2) with someP € F,[T}.
Obviously, Fy is the union of F'(@)| disjoint balls. Consequently,

1
m(Fg) = P

Moreover, we have the following weak independence result.
Proposition 1. LetQ € F,,, Q" € F,, andd = deg(F(Q), F(Q')). Then,
m(FQ N FQ/) < m(FQ)m(FQ/) + qdidEgF(Q)inil".

Proof. First assume that + [, + deg F(Q) > m + I, + deg F(Q'). Then, all balls which make up
Fg have radius at most as large as the radius of the balls which makguso, by the ultra-metric
property of the norm, we have to count how many of the+ P)/F(Q) are contained in balls with
center(g + P')/F(Q’) and radiug;— de¢ F(@)—m—lm i e. we have to count the number of solutions of

1
qdeg F(Q)+m+lm

F+P_9+P
FQ)  F(Q)

The latter number is given by the above lemma. We first consider the caséogith( Q) > m+1,,, +d.
Here, the number of solutions equaf$s (@) —m—im So. we obtain

F@lg " 11
|F(Q)|gnttn  gntin gmtim

= m(Fg)m(Fy).

Hence, the assertion holds in this case. Now, consider the second caselwghB(€)) < m + 1,,, +d.
Then, again by the above lemma,

d
m(FQ N FQ/) < m.
Hence, the claim is proved in this case as well.

Next, if n+1, deg F(Q) < m+1,,+deg F(Q'), we obtain from the arguments above the claim with
the second term replaced h§de8 (@) —m~lm Thijs term is trivially bounded by?—deg F(@)—n—ln_
Hence, the proof of the proposition is finished.

The above proposition will turn out to be one of the key ingredients in the prove of our results. The
other key ingredient is the following important lemma which is a standard tool in metric number theory.
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Lemma 2 (Lemma 1.5inT]). Let¢,(w) be a sequence of non-negative random variables defined on
a probability space(, B, P). Lety,, andy,, be sequences of real numbers with

Define

=Y ¢n

n<N

and assume thab(N) — co asN — oo. Finally, assume that
2
El Y G—-va] < D ¢n
M<n<N M<n<N

for all non-negativeM < N. Then,

D baw)=> ha+0 ((@(N))l/Z(log B(N))3/2He 4 maxzpn) . as,

n<N
n<N n<N
wheree > 0 is an arbitrary constant.

As a first application of this lemma, we show how to deduce The@&&om it. Therefore, set

&n = #{(P,Q) : (P, Q) is a solution of ®)}.

This sequence of random variables satisfies the following properties.

E (Z gn) = U(N, F).
n<N
(i) We have,

(S i)« g s p x e

Proposition 2. (i) We have,

M<n<N m<n QeF, Q' €Fm
for all non-negative integerd/ < N.

Proof. Part (i) follows from

fn = Z 1FQ

QEFn

and basic properties of the mean value.
For part (ii), we also use the above representation which yields

M<n<N M<n<N M<m<n—1Q€Fn,Q €Fm

+ > Yo m(Fg N Fy) — m(Fo)m(Fg).

M<n<N QeFn, Q' €Fm

2
( D, G- an) =2 ) > Y. mFgn Fo) —m(Fo)m(Fg)

Applying Propositionl immediately yields the claimed resultl
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Now, we can prove Theore

Proof of TheorenB. If (N, F) — ¢ > 0asN — oo, the result follows by a standard application of
the Lemma of Borel-Cantelli. Hence, we can assume¥h@, ) — oo asN — oo. But then the
claim follows from the Proposition above together with Lemzna l

Corollary 2 follows from the last result as follows.

Proof of Corollary2. For part (i), we use the well-known result (see Chapter 3jn [

n

#Fu =1+ 0™, (©)
wheree < 1 is a suitable constant. Hence,
U(N,F)=T1(N)+O(1).

Moreover,

To(N) = Y M 3 Z Y. Q)< u(W),

nSN m<n de deg Q’:m
@ monic, lrredUClbleQ’ monic, irreducible
where the last line again follows b9)( This proves the claim.

As for part (ii), first observe tha#F,, = ¢" and hencel/( N, F) = ¥(N). The bound for¥( (V)
is slightly more tricky. First,

Wo(N) = Z t—i—l)n-l—ln Z Z Z

n<N q m<n degQ=n degQ’'=m
Q monic Q' monic

<) q(t+1)n+ln > Z ’D|t

n<N degQ=n D|Q
@ monic D monic

Next, we have

Z Z ’D‘tl Z Z "D‘tl—q thl <<qtn

degQ=n D|Q d<n deg D= d d<n
Q monic D monic D monic

Plugging this into the estimate above yielllg(N) < ¥ (V). Hence, the result is established.

3 Schmidt’'s method in positive characteristic

Note that the method from the last section does not yield a meaningful result for the'@se- Q.
More specifically, it is easily checked that the error term from the proof of part (ii) of Cordtidoy
t = 1 would be larger than the main term. The same phenomena also occurs in the real case, where this
problem was overcome by an ingenious method introduced by W. M. Schmitt]iad [L1]. In this
section, Schmidt’s method will be amended to the current situation.
We start with a couple of (easy) lemmas.

Lemma 3 (Dirichlet’s principle in positive characteristicjor all non-zero polynomial§) there exist
polynomials4, B with0 < |A| < |Q|and(A, B) = 1 such that

o3l

g— — — .

Al Al



Proof. This is proved as in the classical casé.

Observe thatd and B in the previous lemma just depend deg Q. Subsequently, for any given
non-zero polynomiaf), we will choose a fixed paifA, B) satisfying the assumption of the previous
lemma for a polynomiaf)’ with deg Q' = |deg Q/2].

Next, we define the following two sets

S(Q;k) ={P :deg P < deg@ anddeg(P, Q) < k},
S*(Q; k) ={P :deg P < deg@ anddeg(AP + B, Q) < k},

whose cardinalities will be denote y(Q; k) andy*(Q; k), respectively.

Lemma 4. We have,

O (Q: k) > p(Qs k).

Proof.First, letQ = Q1Q2, where every prime factor @} is also a prime factor ol and(Q2, A) = 1.
Then, we have

P(Q; k) < @(Qu; k)p(Q2; k) < [Q1lp(Q2; k).

Now, note thatA P + B with deg P < deg Q)2 are all different modul&)2. Hencep(Q2; k) = #{ P :
deg P < deg Q2 anddeg(AP + B, Q2) < k}. Finally notice that

Consequently,
0" (Q; k) = |Q1] - #{P : deg P < deg Q2 and deg(AP + B, Q2) < k}.

Combining everything yields the claimed resull.

Next, we fix F'(QQ) = Q. Moreover, as in the last section, it suffices to consider the case where
U(N) — oo asN — oo. The method of the last section did not work when directly applied to the
sequencé,,. Therefore, we will approximate this sequence by the following one

&o=#{(P,Q): PeS*(Q;T'(n)) and(P, Q) is a solution of 1) },
wherel'(n) = [log, ¥(n)?|. Moreover, similar as in the last section, we define
Fg = {f € L: f satisfies {) with someP’ € S*(Q;T'(n))}.

& = Z 1r,

deg Q=n
@ monic

Then,

and consequently

2n-+ln,
deg Q=n
@ monic

The next result shows that the mean values of the partial sug)said¢ are very close to each
other.

Proposition 3. We have,

IE( 3 5;;) > o

M<n<N M<n<N

for all non-negative integer8/ < N.



Proof. First, observe that

1 . — o*(Q;T(n
s ¥ oo F 8] 2w reggn

M<n<N M<n<N M<n<N (ggm%nré
<y q" —p(Q;T'(n))

q2n+ln ’

M<n<N degQ=n
@ monic

where we have used the above lemma in the last step. Next, it is well-knowrb[stef the number
of pairs(P, Q) with deg P = | < deg @ = n, P, @ monic anddeg(P, Q) = k < L is given by

qn+l—k <1 - 1) _
q

Consequently,
n—1 T(n) I'(n) 1
Z 0(Q,T(n)) = 2 ) an+l—k — 40 (q2n—F(n)) ‘
deg Q=n q I=T'(n)+1 k=0 =0 k=0
@ monic

Plugging this into the above expression, we obtain
N 1
0< > *—E 2. G < > awme
M<n<N M<n<N N<n<M

Since the latter series is convergent by the Abel-Dini theorem, the claim is proled.
Finally, we need the following property.

Proposition 4. We have,

o Z G-+ < Z I'(n)

M<n<N M<n<N

for all non-negative integer8/ < N.

Proof. We start with an observation that is needed below. By a close inspection of the proof of Propo-

sition 1, we have
1 1 1

anrln ’ qm+lm q2n+ln

A(Q,Q"), (10)

whereA(Q, Q) is the number of all pair®, P’ with P € S*(Q;T'(n)), P’ € S*(Q;T'(m)) and

m(Fy N FYy) <

9(Q = Q) + P'Q — PQ/| < min {|(Q, Q)] gm={r=mtmm=nti}}, (11)

Moreover, observe that(Q, Q) < [(Q,Q")].
We will use this to bound the expected value from the claim. First,

2
(2
M<n<N



- Y YEa-—:y 2Bl Y al+s Y ¥ &

M<n<N M<m<N M<n<N N<n<M M<n<N M<m<N
1 1 1
* *
>, D <Efn'5m—z'z +o| > -
M<n<N M<m<N M<n<N

e o 11 . 1 1
=2 Z Z <E§n'§m—qln'qlm>+ Z <E(£n)2_qgln>+o Z |

M<n<N M<m<n-—1 M<n<N M<n<N

where the third step follows from Propositi@nNow, applying L0) gives

doOEGgn= D D> Y mFEGNFY)

M<m<n M<m<n degQ=n degQ=m
@ monic @ monic

1

1
San' Z qlm 2n+ln Z Z Z A(Q, Q")

M<m<n M<m<n degQ=n degQ'=m
Q monic Q" monic

Using this to bound the first and second term in the expression above yields

(Lo t)es Ly v 5 aeen >

M<n<N M<n<N M<m<n degQ=n degQ'=m M<n<N
Q monic Q' monic

Next, we will estimate

1 !

M<n<N M<m<n degQ=n degQ'=m
Q monic Q' monic

Therefore, we fix an arbitrary smalland break® into two partsy’ andX”, where the first part runs
over all pairs(Q, Q") with deg Q" < [n — § deg(Q, Q)] and the second part runs over the remaining
pairs. In order to boun®’, we change the order of summation as follows: first we sum @yehen
over D|@ and finally over@Q’ with D = (Q,Q’). Note that for fixedQ and D the number ofQ"’s is
bounded by;"/|D\1+‘5. This together withd(Q, Q') < |D| then yields

1 1
¥ = Z q2n+ln Z Z |D|1+5‘D|<< Z g Z |DJ+e <

M<n<N deg Q=n M<n<N deg D<n
@ monic D monlc D monic

ln
M<n<N q
As for ©.” observe thatleg Q' > [n — ¢ deg(Q, Q’)] implies

min {!(Q,Q’)!,qma"{”‘m‘lm’m‘"‘l"}} <[(Q.Q).
Hence, for al{Q, Q) involved in the range of” the relation 1) can be replaced by
9(Q Q)+ P'Q - PQ'| < |(Q.Q). (13)

This yields

I JD DI DI

M<n<N M<m<n degQ=n degQ'=m
@ monic Q' monic
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whereB(Q, Q') denotes the number of alt, P’ with P € S*(Q;T'(n)) andP’ € S*(Q';T'(m)) that

satisfy (L3). Again note thaB3(Q, Q') < |(Q, Q).
Collecting all bounds so far, we see that the right hand sid&é2)fqan be replaced by

> anl-H > > > B+ Y ; (14)

M<n<N M<m<n degQ=n degQ'=m M<n<N
Q@ monic Q" monic

Next, we will estimate the first term

1 /
Soi= Y o 2. X 2 BQQ)

M<n<N M<m<n degQ=n degQ'=m
Q monic Q" monic
which we will break into three parts;, 2{, X', where the ranges will be given below. For every part
we will proceed similar as foE’ above. More precisely, we will change the order of summation as
follows: as forY the first two sums will run ove® and D|Q. The final sum will run oveQ’ with
(Q',Q/D) = 1. Here, we introduce the notatigpi = DQ’ and@Q = D(Q. Using this notation, we can
rewrite (L3) to
9(Q - Q")+ P'Q - PQ'| < |D|7'*". (15)

Finally, we need the notatioR = g — B/A, where(A, B) is the pair belonging t@). Now, we will
separately estimate the three patfs X(, X’

As for X)), the first two sums of this part run over &, D) with D|Q and|A| > |D|%, wheres;
will be chosen later. The last sum runs ogrand our goal is to count the number®@f such that {5)
has solutions irP, P’ (whose number will then be bounded [y|). First, we conside€)’ of the form
Q' = C; + Cy, where( is fixed andCy is an arbitrary polynomial withleg C, < deg A. Plugging
this into (15) and doing some simplifications yields

|9C2 + L +g| < |D|7'*°,

whereg € L does not depend ofi; € F,[7] might depend orC’;. From the ultra-metric property of
the norm, we obtain

B
‘ACQ + L —|—§' < max{|gCy + L + g|,|RCs|} < max{|D|_1+5, |RA|}.

Observe that sinc€’, runs through a complete set of residues moddland (A, B) = 1, BC also
runs through a complete set of residues modilld@Consequently,

)Z + L+ g' < max{|D|71* |RA|},

where we now have to count the number(8§$ satisfying this inequality withleg C' < deg A. Here,
L is another polynomial that might depend 6h However, since the right hand side of the above
inequality is smaller thaih, L must be equal t6. Thus,

|C + Ag| < max{|A||D|~"**, |RA®*|} < max{|A||D|~***, 1}

and the number of sudfi’s is clearly bounded byA||D|~'+° + 1. Next, observe that the number of
Cy’s above is bounded bi)||DA|~! + 1. Therefore, the number ¢}’ such that {5) has a solution in
P, P"is bounded by

(|AHD’_1+5 + 1)(‘QHDA|_1 4 1) < ’Q||D|_2+5 + |QHD’_1_61 + \/@|D‘_1+5 +1
< QDI +1,
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whered, ¢ are chosen such that- 6, < 1/2. Overall, this yields the following bound faz;,

i< ¥ omm XY (o 1) )

M<n<N degQ=n D|Q
Q monic D monic

ey iy Lyiey L as)

M<n<N M<n<N deg D<n M<n<N
D monic

Next, we turn to%}) whose first two sums run over all pait®, D) with D|Q,|A| < |D|%, and
|R| > |D|/|QA|. Again, we will estimate the number of solutions @b in Q’, P, P'. Therefore, first
observe thati5) can be rewritten as

L
‘RC +7| < |D|~1F0 (17)

for some polynomial€’ and L. If L is fixed, then the number of solutions@hof the above inequality
is bounded byR|~!|D|~*9 + 1. On the other hand, we have

|L| < max{|A||D| "%, |RCA| < max{|A||D|~**,|RQA|/|D]}.
So, overall, we obtain for the number ©fs such that there exidt satisfying (7)
(|IRI7Y DI + 1)(JAIID|~* + |RQA|/|D| + 1)
< [QA%||IDI7* +1QA|ID|** + V/IQIID| " +1
< Q[P+ ¢ \/|Q]| DI +- 1.

Note that the above number also equals the numb@r'skuch that {4) has solutions itP, P’. Hence,
¥ is bounded as follows

n/2
0< D 2n+ln > > (\DP =01 +q‘D| +1> D]

M<n<N degQ=n D|Q
Q monic D monic

1 1 1
<<ZW+ZWZ@

M<n<N M<n<N q deg D<n
D monic
1
<Y ey Aiey as)
M<n<N ]V[gngN M<n<N

So, what is left is to bountL{’. Here, the first two sums run over all pa{@, D) with D|Q, | 4| <
|D|%, and|R| < |D|/|QA|. Then, (L5) together with the ultra-metric property of the norm yields

|Q(AP' + B) — Q' (AP + B)| < max{|R(Q — Q")A],|A[|¢g(Q - Q") + P'Q - PQ'[} < L.
Consequently,
Q(AP' + B) = Q'(AP + B).
ThusAP + B = 0 (Q) and this impliesleg Q < I'(n). The latter in turn yieldsleg D > n — T'(n).
So, in this case, we obtain the bound

g Y e XY ﬁ;]lm

M<n<N deg @=n DI|Q,Q monic
Q monic deg D>n—I'(n)

=aniznZ Yo 3 (19)

M<n<N deg Q=n D|Q,Q monic M<n<N
Q monic deg D<I'(n)

12



Finally, combining 16), (18), and (9) gives the bound

Plugging this into {4) then proves the claimed result.l
Now, we can start with the proof of Theorein

Proof of Theoren. First, from Propositior together with Lemma, we obtain
> &= W(N) + O (U (N)/2(1og W (N))), as,
n<N

wheree > 0 is an arbitrary constant. Next, observe

TN = Fq(l’:) < U(N)log U(N).
n<N

Hence, the claimed result holds for the sequefjce
In order to show that the claimed result holds §gras well, observe that from Propositi8n

P (Z (60— €) > logw)) < (log W(N)) ™",

n<N

Next, chooseVy to be the minimal positive integer witlog U (V) > 2k Then, the Borel-Cantelli
lemma implies that

D (& — &) < log U(Ny)

for almost all f andk large enough. Now, lelV be a large enough integer withi, < N < Ni.1.
Then,
Y G- Y (€ —&) <logU(Niy1) < log U(Ny,) < log W(N).

n<N n<Ngi1

Overall, we have shown that for almost #ll

S 6= 3 &+ Ollog U(N)).

n<N n<N

Combining with the above result yields the claiml
We note that Theorer also follows from the method above with only minor modifications. So,
what is left is the proof of Corollary.

Proof of Corollaryl. For part (i), choosé" such that
F ={C+ LD : monic andL € F,[T]}.

Then,#F,, = ¢"/|D| for all n > deg D. Consequently,
1

For part (ii), it suffices to point out that it is well-known (see Chapter 3L that the number of
monic, square-free polynomials of degree> 2 is given byg” — ¢"~!. Hence,

-1
(N, F) = QTW(N) +O(1).
From this the result follows. 1
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4 The "double-metric” and the other "single-metric” case

We first turn our attention to the "double-metric” case. So, in the following, we consijierith both
f,g random. As before, we define the set

Fo :={(f,9) e LxL:(f,g)is asolution of {) with someP € F,[T},

where() is a hon-zero polynomial.

As already mentioned in the introduction, this case is much easier than the "single-metric” case
discussed in the previous sections. The reason for this is the second property of the following lemma
which was proved ind].

Lemmab5. (i) We have,
1

(m xm)(Fg) = i
(i) For @ # @', we have
(m x m)(Fo N Fg) = (m x m)(FQ)(m x m)(Fg).

So, if we define

&n = #{(P,Q) : (P,Q) is a solution of )},

gn = Z 1FQ'

deg Q=n
@ monic

then we again have

However, the above lemma shows thaiconsidered as a sequence of random variables on the product
probability space is pairwise independent. This yields

2
1 1 1 1

M<n<N M<n<N M<n<N
Hence, if we assume that
1
U(N) := Z—Hoo, asN — oo,
n<N q

then Lemma2 directly applies and yields the following result (whose proof in case the above assump-
tion does not hold is trivial).

Theorem 4. The number of solutions ofwith 0 < deg Q < N satisfies
U(N) + 0 ((R(N)2(log w(N)/), as.

wheree > 0 is an arbitrary constant.

Note that a.s. here means with respect to the product measure:.

Finally, we briefly discuss the other "single-metric” case where the roleg ahd g are inter-
changed. Therefore, assume now tfias fixed andg is random. Here, without proof, we state the
following result: for any sequendg tending to infinity arbitrarily slowly, there exists ghe L such
that for almost ally the number of solutions dfi) is finite (see P. Sisz [L7] for the corresponding re-
sultin the real number case). Consequently, results of a similar type as in the cases above are impossible
in this case.
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