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Abstract

We consider inhomogeneous Diophantine approximation for formal Laurent series over a finite base
field. We establish an analogue of a strong law of large numbers due to W. M. Schmidt with a better
error term than in the real case. A special case of our result improves upon a recent result by H. Nakada
and R. Natsui and completes a result of M. M. Dodson, S. Kristensen, and J. Levesley. Moreover, we
prove various results for inhomogeneous Diophantine approximation with restricted denominators.

1 Introduction

Several recent studies have been concerned with the metric theory of Diophantine approximation in the
field of formal Laurent series; for some references see below. The aim of this paper is to make some
further progress on the inhomogeneous Diophantine approximation problem. More precisely, we will
establish some analogues of results from the real number case (which in the sequel will be referred to
as the ”classical case”) with some improvements which are arising from the more simple nature of the
metric structure of the formal Laurent series field.

First, let us fix some notation. Subsequently, we will denote byFq a finite field withq elements; the
polynomial ring overFq, the field of rational functions overFq, and the field of formal Laurent series
overFq will be denoted byFq[T ], Fq(T ), andFq((T−1)), respectively. Forf ∈ Fq((T−1)) with

f = anT
n + an−1T

n−1 + · · · , ak ∈ Fq, an 6= 0, n ∈ Z,

we define|f | := qn and|0| := 0. It is easily checked that| · | is a norm which satisfies the ultra-metric
property, i.e.,

|f − g| ≤ max{|f |, |g|}

with equality if |f | 6= |g|. This property in particular implies that two balls (defined in the standard
way) are either disjoint or they are contained in each other. Finally, we set

L = {f ∈ Fq((T−1)) : |f | < 1}.

Note thatL equipped with the restriction of the norm toL is a compact abelian group. Consequently,
there exist a unique, translation-invariant probability measure which will be denoted bym.

Key words:formal Laurent series, inhomogeneous Diophantine approximation, Diophantine approximation with restricted
denominators, strong laws of large numbers, Schmidt’s method.
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In the following, we will be concerned with the inhomogeneous Diophantine approximation prob-
lem: forf, g ∈ L consider the Diophantine inequality

|Qf − g − P | < 1
qn+ln

, Q is monic, degQ = n, (1)

whose solutions are pairs of polynomials〈P,Q〉 ∈ Fq[T ] × Fq[T ] with Q 6= 0 (throughout this work
we will use 〈·, ·〉 to denote pairs, whereas(·, ·) is reserved for thegcd). Here, ln is a sequence of
non-negative integers. In particular, note thatln just depends ondegQ.

In a recent paper, C. Ma and W.-Y. Su [8] investigated the above problem and proved a Khintchine
type0-1 law for the number of solutions if bothf andg are chosen randomly (with respect tom) from
L. Their result is an analogue of a result of J. W. S. Cassels [3] from the classical case, where this
situation is sometimes called the ”double-metric” case. Moreover, the following two ”single-metric”
cases were considered over the real number field as well (e.g., see [11] and [12]): (S1) fix f and choose
a randomg ∈ L; (S2) fixg and choose a randomf ∈ L.

In this paper, we are interested in stochastic properties of the solution set of (1) for f, g such that
the number of solutions is infinite. More precisely, we will derive strong laws of large numbers with
error terms for the number of solutions〈P,Q〉 of (1) with degQ ≤ N . Such results have so far only
been established for (S2) withg = 0; see [6] and H. Nakada and R. Natsui [9]. Here, we will further
improve these results and extend them to generalg. So, the main part of the paper will focus on the
case (S2). The other ”single-metric” case and the ”double metric” case exhibit a somehow different
behavior and will be only briefly discussed in the final section.

From now on, letg ∈ L be fixed. Moreover, define

Ψ(N) :=
∑
n≤N

1
qln

.

Our first result reads as follows.

Theorem 1. The number of solutions of (1) with 0 ≤ degQ ≤ N satisfies

Ψ(N) +O
(
Ψ(N)1/2(log Ψ(N))2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant.

This result is an analogue of a result of W. M. Schmidt [11] from the classical case. In fact, we will
use a variant of Schmidt’s method to prove it. Note, however, that the error term is better than the one
from the classical case. Moreover, no monotonicity assumption onln is required.

For g = 0 the improved error term was also achieved in the classical case; see G. Harman [7].
The result in this special case improves upon Theorem 3 in [9] by removing some further technical
conditions onln and providing an error term. Moreover, our result completes the main result in [4]
which was concerned with Diophantine approximation of linear forms with at least two terms. Here,
the missing case of only one term is considered. As in the real case, the current situation turns out to
be more complex, a claim which is further supported by the fact that the result in [4] has a better error
term; for a discussion of this phenomena in the real case see [10].

In fact, our method of proof can be used to obtain even more general results. More precisely, the
method will allow us to investigate inhomogeneous Diophantine approximation with restricted denom-
inators as well. Therefore, replace (1) by

|F (Q)f − g − P | < 1
qn+ln

, Q is monic, degQ = n, (2)

whereln is as above andF is a function fromFq[T ] into Fq[T ].
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First, we will fix some further notation. Let

F := {Q : Q monic andF (Q) 6= 0}

and denote byFn the subset of all polynomialsQ ∈ F with degQ = n. Subsequently, we will
only considerF that satisfy the following property: forQ,Q′ ∈ F with degQ ≤ degQ′, we have
degF (Q) ≤ degF (Q′). Finally, set

Ψ(N,F) :=
∑
n≤N

#Fn

qn+ln
.

Then, the following generalization of the above result holds.

Theorem 2. Assume thatF (Q) is eitherQ or 0. Then, the number of solutions of(2) withQ ∈ F and
0 ≤ degQ ≤ N satisfies

Ψ(N,F) +O
(
(Ψ(N))1/2 (log Ψ(N))2+ε

)
, a.s., (3)

whereε > 0 is an arbitrary constant.

In particular, the latter result gives a meaningful asymptotic formula whenever

lim inf
n→∞

#Fn

qn
> 0. (4)

Two important special cases are collected in the following corollary, the first of which has to be com-
pared with the results in [6].

Corollary 1. (i) LetC,D ∈ Fq[T ] with degC < degD. Then, the number of solutions of(1) with
Q ≡ C (D) and0 ≤ degQ ≤ N satisfies

1
|D|

Ψ(N) +O
(
(Ψ(N))1/2 (log Ψ(N))2+ε

)
, a.s., (5)

whereε > 0 is an arbitrary constant.

(ii) The number of solutions of(1) withQ monic, square-free and0 ≤ degQ ≤ N satisfies

q − 1
q

Ψ(N) +O
(
(Ψ(N))1/2 (log Ψ(N))2+ε

)
, a.s., (6)

whereε > 0 is an arbitrary constant.

Note that condition (4) is not satisfied for some interestingF such as the set of monic, irreducible
polynomials. This situation, however, turns out to be more simpler and we can obtain a strong law of
large numbers with an even better error term. Therefore, we first prove an analogue of Theorem 3.1 in
[7] which holds for generalF .

Theorem 3. The number of solutions of(2) withQ ∈ F and0 ≤ degQ ≤ N satisfies

Ψ(N,F) +O
(
(Ψ0(N))1/2(log Ψ0(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant and

Ψ0(N) =
∑
n≤N

1
qn+ln

∑
m≤n

∑
Q∈Fn

∑
Q′∈Fm

|(F (Q), F (Q′))|
|F (Q)|

.
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This result entails the following corollary.

Corollary 2. (i) Let

Ψ1(N) :=
∑
n≤N

1
nqln

.

Then, the number of solutions of(1) withQ monic, irreducible and0 ≤ degQ ≤ N satisfies

Ψ1(N) +O
(
(Ψ1(N))1/2 (log Ψ1(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant.

(ii) LetF (Q) = Qt with t ≥ 2. Then, the number of solutions of(2) with 0 ≤ degQ ≤ N satisfies

Ψ(N) +O
(
(Ψ(N))1/2 (log Ψ(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant.

It is worth mentioning that Theorem3 does not give a meaningful result in the situations discussed
in Theorem1 and Corollary1. Consequently, part (ii) of Corollary2 shows that the complexity oft = 1
andt ≥ 2 are rather different.

We conclude the introduction by giving a short plan of the paper. In the next section, we will prove
a weak independence result which will form the crucial step in deriving all results above. In particular,
Theorem3 will follow rather quickly from this result and this will be demonstrated in the next section
as well. Then, in Section3, we will show how to amend Schmidt’s method to the current situation to
obtain a proof of Theorem1 and Theorem2. In the final section, we will then briefly discuss the other
”single-metric” case and the ”double-metric” case.

Notation.All logarithms appearing throughout this work will only attain values≥ 1, i.e.,loga x should
be interpreted asmax{loga x, 1}. We will use Landau’s notationf(x) = O(g(x)) as well as Vino-
gradov’s notationf(x) � g(x) to indicate that there exist a constantC ≥ 0 such that|f(x)| ≤ C|g(x)|
for all x sufficiently large.

2 A weak independence result with applications

We start by proving a technical lemma that constitutes a refinement of Lemma 2.3 in [2].

Lemma 1. LetQ,Q′ be two non-zero polynomials withn = degQ,m = degQ′ andd = deg(Q,Q′).
Let l be a non-negative integer. Then, the numberN of pairs〈P, P ′〉 with degP < n, degP ′ < m and∣∣∣∣g + P

Q
− g + P ′

Q′

∣∣∣∣ < 1
qm+l

(7)

is given by

N

{
= qn−l, if n ≥ l + d;
≤ qd, if n < l + d.

Proof.First, (7) can be reformulated to

|g(Q′ −Q) + PQ′ − P ′Q| < qn−l.

Next, setQ = (Q,Q′) · Q̄ andQ′ = (Q,Q′) · Q̄′. Then,

|g(Q̄′ − Q̄) + PQ̄′ − P ′Q̄| < qn−l−d.
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Let−C denote the polynomial part ofg(Q̄′ − Q̄). Now, we will consider two cases.
First, assume thatn < l + d. Then, a necessary condition for〈P, P ′〉 being a solution of the above

inequality isPQ̄′ − P ′Q̄ = C. Observe that forP with degP < n and

PQ̄′ ≡ C modQ̄, (8)

we havePQ̄′ = C + P ′Q̄ with some polynomialP ′ and

degP ′ + deg Q̄ = deg(PQ̄′ − C) ≤ degP + deg Q̄′ < n+ deg Q̄′.

Consequently,degP ′ < m. So, eitherN = 0 orN equals the number of solutions of (8) which isqd.
Next, we considern ≥ l + d. Here, we can argue similar as above, the only difference being

thatN equals the number of solutions of (8) with C replaced byC + D for all polynomialsD with
degD < n− l − d. Consequently,N = qn−l.

Next, we define forQ ∈ Fn the set

FQ := {f ∈ L : f satisfies(2) with someP ∈ Fq[T ]}.

Obviously,FQ is the union of|F (Q)| disjoint balls. Consequently,

m(FQ) =
1

qn+ln
.

Moreover, we have the following weak independence result.

Proposition 1. LetQ ∈ Fn, Q
′ ∈ Fm, andd = deg(F (Q), F (Q′)). Then,

m(FQ ∩ FQ′) ≤ m(FQ)m(FQ′) + qd−deg F (Q)−n−ln .

Proof. First assume thatn + ln + degF (Q) ≥ m + lm + degF (Q′). Then, all balls which make up
FQ have radius at most as large as the radius of the balls which make upFQ′ . So, by the ultra-metric
property of the norm, we have to count how many of the(g + P )/F (Q) are contained in balls with
center(g+P ′)/F (Q′) and radiusq− deg F (Q′)−m−lm , i.e., we have to count the number of solutions of∣∣∣∣g + P

F (Q)
− g + P ′

F (Q′)

∣∣∣∣ < 1
qdeg F (Q′)+m+lm

.

The latter number is given by the above lemma. We first consider the case withdegF (Q) ≥ m+lm+d.
Here, the number of solutions equalsqdeg F (Q)−m−lm . So, we obtain

m(FQ ∩ FQ′) =
|F (Q)|q−m−lm

|F (Q)|qn+ln
=

1
qn+ln

· 1
qm+lm

= m(FQ)m(FQ′).

Hence, the assertion holds in this case. Now, consider the second case wheredegF (Q) < m+ lm + d.
Then, again by the above lemma,

m(FQ ∩ FQ′) ≤ qd

qdeg F (Q)+n+ln
.

Hence, the claim is proved in this case as well.
Next, ifn+ln degF (Q) < m+lm+degF (Q′), we obtain from the arguments above the claim with

the second term replaced byqd−deg F (Q′)−m−lm . This term is trivially bounded byqd−deg F (Q)−n−ln .
Hence, the proof of the proposition is finished.

The above proposition will turn out to be one of the key ingredients in the prove of our results. The
other key ingredient is the following important lemma which is a standard tool in metric number theory.
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Lemma 2 (Lemma 1.5 in [7]). Let ξn(ω) be a sequence of non-negative random variables defined on
a probability space(Ω,B, P ). Letψn andϕn be sequences of real numbers with

0 ≤ ψn ≤ ϕn.

Define
Φ(N) =

∑
n≤N

ϕn

and assume thatΦ(N) →∞ asN →∞. Finally, assume that

E

 ∑
M≤n≤N

ξn − ψn

2

�
∑

M≤n≤N

ϕn.

for all non-negativeM < N . Then,∑
n≤N

ξn(ω) =
∑
n≤N

ψn +O
(

(Φ(N))1/2(log Φ(N))3/2+ε + max
n≤N

ψn

)
, a.s.,

whereε > 0 is an arbitrary constant.

As a first application of this lemma, we show how to deduce Theorem3 from it. Therefore, set

ξn := #{〈P,Q〉 : 〈P,Q〉 is a solution of (2)}.

This sequence of random variables satisfies the following properties.

Proposition 2. (i) We have,

E

∑
n≤N

ξn

 = Ψ(N,F).

(ii) We have,

E

 ∑
M≤n≤N

ξn −
#Fn

qn+ln

2

�
∑

M≤n≤N

1
qn+ln

∑
m≤n

∑
Q∈Fn

∑
Q′∈Fm

|(F (Q), F (Q′))|
|F (Q)|

for all non-negative integersM < N .

Proof.Part (i) follows from
ξn =

∑
Q∈Fn

1FQ

and basic properties of the mean value.
For part (ii), we also use the above representation which yields

E

 ∑
M≤n≤N

ξn −
#Fn

qn+ln

2

= 2
∑

M≤n≤N

∑
M≤m≤n−1

∑
Q∈Fn,Q′∈Fm

m(FQ ∩ FQ′)−m(FQ)m(FQ′)

+
∑

M≤n≤N

∑
Q∈Fn,Q′∈Fm

m(FQ ∩ FQ′)−m(FQ)m(FQ′).

Applying Proposition1 immediately yields the claimed result.
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Now, we can prove Theorem3.

Proof of Theorem3. If Ψ(N,F) → c ≥ 0 asN → ∞, the result follows by a standard application of
the Lemma of Borel-Cantelli. Hence, we can assume thatΨ(N,F) → ∞ asN → ∞. But then the
claim follows from the Proposition above together with Lemma2.

Corollary2 follows from the last result as follows.

Proof of Corollary2. For part (i), we use the well-known result (see Chapter 3 in [1])

#Fn =
qn

n
+O (qεn) , (9)

whereε < 1 is a suitable constant. Hence,

Ψ(N,F) = Ψ1(N) +O(1).

Moreover,

Ψ0(N) =
∑
n≤N

1
q2n+ln

∑
m≤n

∑
deg Q=n

Q monic, irreducible

∑
deg Q′=m

Q′ monic, irreducible

|(Q,Q′)| � Ψ1(N),

where the last line again follows by (9). This proves the claim.
As for part (ii), first observe that#Fn = qn and henceΨ(N,F) = Ψ(N). The bound forΨ0(N)

is slightly more tricky. First,

Ψ0(N) =
∑
n≤N

1
q(t+1)n+ln

∑
m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

|(Qt, (Q′)t)|

�
∑
n≤N

1
q(t+1)n+ln

∑
deg Q=n
Q monic

∑
D|Q

D monic

qn

|D|
|D|t.

Next, we have∑
deg Q=n
Q monic

∑
D|Q

D monic

|D|t−1 =
∑
d≤n

∑
deg D=d
D monic

qn

|D|
|D|t−1 = qn

∑
d≤n

q(t−1)d � qtn.

Plugging this into the estimate above yieldsΨ0(N) � Ψ(N). Hence, the result is established.

3 Schmidt’s method in positive characteristic

Note that the method from the last section does not yield a meaningful result for the caseF (Q) = Q.
More specifically, it is easily checked that the error term from the proof of part (ii) of Corollary2 for
t = 1 would be larger than the main term. The same phenomena also occurs in the real case, where this
problem was overcome by an ingenious method introduced by W. M. Schmidt in [10] and [11]. In this
section, Schmidt’s method will be amended to the current situation.

We start with a couple of (easy) lemmas.

Lemma 3 (Dirichlet’s principle in positive characteristic). For all non-zero polynomialsQ there exist
polynomialsA,B with 0 < |A| ≤ |Q| and(A,B) = 1 such that∣∣∣∣g − B

A

∣∣∣∣ < 1
|A||Q|

.
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Proof.This is proved as in the classical case.
Observe thatA andB in the previous lemma just depend ondegQ. Subsequently, for any given

non-zero polynomialQ, we will choose a fixed pair〈A,B〉 satisfying the assumption of the previous
lemma for a polynomialQ′ with degQ′ = bdegQ/2c.

Next, we define the following two sets

S(Q; k) = {P : degP < degQ and deg(P,Q) ≤ k},
S∗(Q; k) = {P : degP < degQ and deg(AP +B,Q) ≤ k},

whose cardinalities will be denote byϕ(Q; k) andϕ∗(Q; k), respectively.

Lemma 4. We have,
ϕ∗(Q; k) ≥ ϕ(Q; k).

Proof.First, letQ = Q1Q2, where every prime factor ofQ1 is also a prime factor ofA and(Q2, A) = 1.
Then, we have

ϕ(Q; k) ≤ ϕ(Q1; k)ϕ(Q2; k) ≤ |Q1|ϕ(Q2; k).

Now, note thatAP +B with degP < degQ2 are all different moduleQ2. Hence,ϕ(Q2; k) = #{P :
degP < degQ2 anddeg(AP +B,Q2) ≤ k}. Finally notice that

(AP +B,Q2) = (AP +B,Q1Q2) = (AP +B,Q).

Consequently,

ϕ∗(Q; k) = |Q1| ·#{P : degP < degQ2 and deg(AP +B,Q2) ≤ k}.

Combining everything yields the claimed result.
Next, we fixF (Q) = Q. Moreover, as in the last section, it suffices to consider the case where

Ψ(N) → ∞ asN → ∞. The method of the last section did not work when directly applied to the
sequenceξn. Therefore, we will approximate this sequence by the following one

ξ∗n := #{〈P,Q〉 : P ∈ S∗(Q; Γ(n)) and〈P,Q〉 is a solution of (1)},

whereΓ(n) = blogq Ψ(n)2c. Moreover, similar as in the last section, we define

F ∗Q := {f ∈ L : f satisfies (1) with someP ∈ S∗(Q; Γ(n))}.

Then,
ξ∗n =

∑
deg Q=n
Q monic

1F ∗
Q

and consequently

Eξ∗n =
∑

deg Q=n
Q monic

ϕ∗(Q; Γ(n))
q2n+ln

.

The next result shows that the mean values of the partial sums ofξn andξ∗n are very close to each
other.

Proposition 3. We have,

E

 ∑
M≤n≤N

ξ∗n

 =
∑

M≤n≤N

1
qln

+O(1)

for all non-negative integersM < N .
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Proof.First, observe that

0 ≤
∑

M≤n≤N

1
qln

− E

 ∑
M≤n≤N

ξ∗n

 =
∑

M≤n≤N

∑
deg Q=n
Q monic

qn − ϕ∗(Q; Γ(n))
q2n+ln

≤
∑

M≤n≤N

∑
deg Q=n
Q monic

qn − ϕ(Q; Γ(n))
q2n+ln

,

where we have used the above lemma in the last step. Next, it is well-known (see [5]) that the number
of pairs〈P,Q〉 with degP = l < degQ = n, P,Q monic anddeg(P,Q) = k < l is given by

qn+l−k

(
1− 1

q

)
.

Consequently,

∑
deg Q=n
Q monic

ϕ(Q,Γ(n)) =
(q − 1)2

q

n−1∑
l=Γ(n)+1

Γ(n)∑
k=0

qn+l−k +O

Γ(n)∑
l=0

l∑
k=0

qn+l−k

 = q2n +O
(
q2n−Γ(n)

)
.

Plugging this into the above expression, we obtain

0 ≤
∑

M≤n≤N

1
qln

− E

 ∑
M≤n≤N

ξ∗n

�
∑

N≤n≤M

1
qlnΨ(n)2

.

Since the latter series is convergent by the Abel-Dini theorem, the claim is proved.
Finally, we need the following property.

Proposition 4. We have,

E

 ∑
M≤n≤N

ξ∗n −
1
qln

2

�
∑

M≤n≤N

Γ(n)
qln

for all non-negative integersM < N .

Proof.We start with an observation that is needed below. By a close inspection of the proof of Propo-
sition1, we have

m(F ∗Q ∩ F ∗Q′) ≤
1

qn+ln
· 1
qm+lm

+
1

q2n+ln
A(Q,Q′), (10)

whereA(Q,Q) is the number of all pairsP, P ′ with P ∈ S∗(Q; Γ(n)), P ′ ∈ S∗(Q′; Γ(m)) and

|g(Q−Q′) + P ′Q− PQ′| < min
{
|(Q,Q′)|, qmax{n−m−lm,m−n−ln}

}
. (11)

Moreover, observe thatA(Q,Q) ≤ |(Q,Q′)|.
We will use this to bound the expected value from the claim. First,

E

( ∑
M≤n≤N

ξ∗n −
1
qln

)2

=

9



=
∑

M≤n≤N

∑
M≤m≤N

Eξ∗n · ξ∗m − 2
∑

M≤n≤N

1
qln

E

 ∑
N≤n≤M

ξ∗n

+
∑

M≤n≤N

∑
M≤m≤N

1
qln

· 1
qlm

=
∑

M≤n≤N

∑
M≤m≤N

(
Eξ∗n · ξ∗m − 1

qln
· 1
qlm

)
+O

 ∑
M≤n≤N

1
qln


= 2

∑
M≤n≤N

∑
M≤m≤n−1

(
Eξ∗n · ξ∗m − 1

qln
· 1
qlm

)
+

∑
M≤n≤N

(
E(ξ∗n)2 − 1

q2ln

)
+O

 ∑
M≤n≤N

1
qln

 ,

where the third step follows from Proposition3. Now, applying (10) gives∑
M≤m≤n

Eξ∗n · ξ∗m =
∑

M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q=m
Q monic

m(F ∗Q ∩ F ∗Q′)

≤ 1
qln

·
∑

M≤m≤n

1
qlm

+
1

q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

A(Q,Q′)

Using this to bound the first and second term in the expression above yields

E

 ∑
M≤n≤N

ξ∗n −
1
qln

2

�
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

A(Q,Q′)+
∑

M≤n≤N

1
qln

. (12)

Next, we will estimate

Σ :=
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

A(Q,Q′).

Therefore, we fix an arbitrary smallδ and breakΣ into two partsΣ′ andΣ′′, where the first part runs
over all pairs〈Q,Q′〉 with degQ′ ≤ dn − δ deg(Q,Q′)e and the second part runs over the remaining
pairs. In order to boundΣ′, we change the order of summation as follows: first we sum overQ, then
overD|Q and finally overQ′ with D = (Q,Q′). Note that for fixedQ andD the number ofQ′’s is
bounded byqn/|D|1+δ. This together withA(Q,Q′) ≤ |D| then yields

Σ′ =
∑

M≤n≤N

1
q2n+ln

∑
deg Q=n
Q monic

∑
D|Q

D monic

qn

|D|1+δ
|D| �

∑
M≤n≤N

1
qln

∑
deg D≤n
D monic

1
|D|1+δ

�
∑

M≤n≤N

1
qln

.

As for Σ′′ observe thatdegQ′ > dn− δ deg(Q,Q′)e implies

min
{
|(Q,Q′)|, qmax{n−m−lm,m−n−ln}

}
< |(Q,Q′)|δ.

Hence, for all〈Q,Q′〉 involved in the range ofΣ′′ the relation (11) can be replaced by

|g(Q−Q′) + P ′Q− PQ′| < |(Q,Q′)|δ. (13)

This yields

Σ′′ �
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

B(Q,Q′),
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whereB(Q,Q′) denotes the number of allP, P ′ with P ∈ S∗(Q; Γ(n)) andP ′ ∈ S∗(Q′; Γ(m)) that
satisfy (13). Again note thatB(Q,Q′) ≤ |(Q,Q′)|.

Collecting all bounds so far, we see that the right hand side of (12) can be replaced by∑
M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

B(Q,Q′) +
∑

M≤n≤N

1
qln

. (14)

Next, we will estimate the first term

Σ0 :=
∑

M≤n≤N

1
q2n+ln

∑
M≤m≤n

∑
deg Q=n
Q monic

∑
deg Q′=m
Q′ monic

B(Q,Q′)

which we will break into three partsΣ′
0,Σ

′′
0,Σ

′′′
0 , where the ranges will be given below. For every part

we will proceed similar as forΣ′ above. More precisely, we will change the order of summation as
follows: as forΣ′ the first two sums will run overQ andD|Q. The final sum will run overQ̄′ with
(Q̄′, Q/D) = 1. Here, we introduce the notationQ′ = DQ̄′ andQ = DQ̄. Using this notation, we can
rewrite (13) to

|g(Q̄− Q̄′) + P ′Q̄− PQ̄′| < |D|−1+δ. (15)

Finally, we need the notationR = g − B/A, where〈A,B〉 is the pair belonging toQ. Now, we will
separately estimate the three partsΣ′

0,Σ
′′
0,Σ

′′′
0 .

As for Σ′
0, the first two sums of this part run over all〈Q,D〉 with D|Q and|A| ≥ |D|δ1 , whereδ1

will be chosen later. The last sum runs overQ̄′ and our goal is to count the number ofQ̄′ such that (15)
has solutions inP, P ′ (whose number will then be bounded by|D|). First, we consider̄Q′ of the form
Q̄′ = C1 + C2, whereC1 is fixed andC2 is an arbitrary polynomial withdegC2 < degA. Plugging
this into (15) and doing some simplifications yields

|gC2 + L+ ḡ| < |D|−1+δ,

whereḡ ∈ L does not depend onC2 ∈ Fq[T ] might depend onC2. From the ultra-metric property of
the norm, we obtain∣∣∣∣BAC2 + L+ ḡ

∣∣∣∣ ≤ max{|gC2 + L+ ḡ|, |RC2|} < max{|D|−1+δ, |RA|}.

Observe that sinceC2 runs through a complete set of residues moduloA and(A,B) = 1, BC2 also
runs through a complete set of residues moduloA. Consequently,∣∣∣∣CA + L̄+ ḡ

∣∣∣∣ < max{|D|−1+δ, |RA|},

where we now have to count the number ofC ’s satisfying this inequality withdegC < degA. Here,
L̄ is another polynomial that might depend onC. However, since the right hand side of the above
inequality is smaller than1, L̄ must be equal to0. Thus,

|C +Aḡ| < max{|A||D|−1+δ, |RA2|} ≤ max{|A||D|−1+δ, 1}

and the number of suchC ’s is clearly bounded by|A||D|−1+δ + 1. Next, observe that the number of
C1’s above is bounded by|Q||DA|−1 + 1. Therefore, the number of̄Q′ such that (15) has a solution in
P, P ′ is bounded by

(|A||D|−1+δ + 1)(|Q||DA|−1 + 1) ≤ |Q||D|−2+δ + |Q||D|−1−δ1 +
√
|Q||D|−1+δ + 1

� |Q||D|−1−δ1 + 1,

11



whereδ1, δ are chosen such thatδ + δ1 ≤ 1/2. Overall, this yields the following bound forΣ′
0

Σ′
0 �

∑
M≤n≤N

1
q2n+ln

∑
deg Q=n
Q monic

∑
D|Q

D monic

(
qn

|D|1+δ1
+ 1
)
|D|

�
∑

M≤n≤N

1
qln

+
∑

M≤n≤N

1
qn+ln

∑
deg D≤n
D monic

1 �
∑

M≤n≤N

1
qln

. (16)

Next, we turn toΣ′′
0 whose first two sums run over all pairs〈Q,D〉 with D|Q, |A| < |D|δ1 , and

|R| ≥ |D|/|QA|. Again, we will estimate the number of solutions of (15) in Q̄′, P, P ′. Therefore, first
observe that (15) can be rewritten as ∣∣∣∣RC +

L

A

∣∣∣∣ < |D|−1+δ (17)

for some polynomialsC andL. If L is fixed, then the number of solutions inC of the above inequality
is bounded by|R|−1|D|−1+δ + 1. On the other hand, we have

|L| ≤ max{|A||D|−1+δ, |RCA| ≤ max{|A||D|−1+δ, |RQA|/|D|}.

So, overall, we obtain for the number ofC ’s such that there existL satisfying (17)

(|R|−1|D|−1+δ + 1)(|A||D|−1+δ + |RQA|/|D|+ 1)

� |QA2||D|−3+2δ + |QA||D|−2+δ +
√
|Q||D|−1 + 1

� |Q||D|−2+δ+δ1 +
√
|Q||D|−1 + 1.

Note that the above number also equals the number ofQ̄′’s such that (14) has solutions inP, P ′. Hence,
Σ′′

0 is bounded as follows

Σ′′
0 �

∑
M≤n≤N

1
q2n+ln

∑
deg Q=n
Q monic

∑
D|Q

D monic

(
qn

|D|2−δ−δ1
+
qn/2

|D|
+ 1

)
|D|

�
∑

M≤n≤N

1
qln

+
∑

M≤n≤N

1
qn/2+ln

∑
deg D≤n
D monic

1
|D|

�
∑

M≤n≤N

1
qln

+
∑

M≤n≤N

n

qn/2+ln
�

∑
M≤n≤N

1
qln

. (18)

So, what is left is to boundΣ′′′
0 . Here, the first two sums run over all pairs〈Q,D〉 with D|Q, |A| <

|D|δ1 , and|R| < |D|/|QA|. Then, (15) together with the ultra-metric property of the norm yields

|Q̄(AP ′ +B)− Q̄′(AP +B)| ≤ max{|R(Q̄− Q̄′)A|, |A||g(Q̄− Q̄′) + P ′Q̄− PQ̄′|} < 1.

Consequently,
Q̄(AP ′ +B) = Q̄′(AP +B).

ThusAP + B ≡ 0 (Q̄) and this impliesdeg Q̄ ≤ Γ(n). The latter in turn yieldsdegD ≥ n − Γ(n).
So, in this case, we obtain the bound

Σ′′′
0 �

∑
M≤n≤N

1
q2n+ln

∑
deg Q=n
Q monic

∑
D|Q,Q monic

deg D≥n−Γ(n)

qn

|D|
|D|

=
∑

M≤n≤N

1
qn+ln

∑
deg Q=n
Q monic

∑
D|Q,Q monic
deg D≤Γ(n)

1 �
∑

M≤n≤N

Γ(n)
qln

. (19)
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Finally, combining (16), (18), and (19) gives the bound

Σ0 �
∑

M≤n≤N

Γ(n)
qln

.

Plugging this into (14) then proves the claimed result.
Now, we can start with the proof of Theorem1.

Proof of Theorem1. First, from Proposition4 together with Lemma2, we obtain∑
n≤N

ξ∗n = Ψ(N) +O
(
(Ψ∗(N))1/2(log Ψ∗(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant. Next, observe

Ψ∗(N) =
∑
n≤N

Γ(n)
qln

� Ψ(N) log Ψ(N).

Hence, the claimed result holds for the sequenceξ∗n.
In order to show that the claimed result holds forξn as well, observe that from Proposition3

P

∑
n≤N

(ξn − ξ∗n) > log Ψ(N)

� (log Ψ(N))−1.

Next, chooseNk to be the minimal positive integer withlog Ψ(Nk) ≥ 2k. Then, the Borel-Cantelli
lemma implies that ∑

n≤Nk

(ξn − ξ∗n) ≤ log Ψ(Nk)

for almost allf andk large enough. Now, letN be a large enough integer withNk ≤ N < Nk+1.
Then, ∑

n≤N

(ξn − ξ∗n) ≤
∑

n≤Nk+1

(ξn − ξ∗n) ≤ log Ψ(Nk+1) � log Ψ(Nk) � log Ψ(N).

Overall, we have shown that for almost allf∑
n≤N

ξn =
∑
n≤N

ξ∗n +O(log Ψ(N)).

Combining with the above result yields the claim.
We note that Theorem2 also follows from the method above with only minor modifications. So,

what is left is the proof of Corollary1.

Proof of Corollary1. For part (i), chooseF such that

F = {C + LD : monic andL ∈ Fq[T ]}.

Then,#Fn = qn/|D| for all n ≥ degD. Consequently,

Ψ(N,F) =
1
|D|

Ψ(N) +O(1).

For part (ii), it suffices to point out that it is well-known (see Chapter 3 in [1]) that the number of
monic, square-free polynomials of degreen ≥ 2 is given byqn − qn−1. Hence,

Ψ(N,F) =
q − 1
q

Ψ(N) +O(1).

From this the result follows.

13



4 The ”double-metric” and the other ”single-metric” case

We first turn our attention to the ”double-metric” case. So, in the following, we consider (1) with both
f, g random. As before, we define the set

FQ := {〈f, g〉 ∈ L× L : 〈f, g〉 is a solution of (1) with someP ∈ Fq[T ]},

whereQ is a non-zero polynomial.
As already mentioned in the introduction, this case is much easier than the ”single-metric” case

discussed in the previous sections. The reason for this is the second property of the following lemma
which was proved in [8].

Lemma 5. (i) We have,

(m×m)(FQ) =
1

qn+ln
.

(ii) For Q 6= Q′, we have

(m×m)(FQ ∩ FQ′) = (m×m)(FQ)(m×m)(FQ′).

So, if we define
ξn := #{〈P,Q〉 : 〈P,Q〉 is a solution of (1)},

then we again have
ξn =

∑
deg Q=n
Q monic

1FQ
.

However, the above lemma shows thatξn considered as a sequence of random variables on the product
probability space is pairwise independent. This yields

E

 ∑
M≤n≤N

ξn −
1
qln

2

=
∑

M≤n≤N

Var(ξn) =
∑

M≤n≤N

1
qln

(
1− 1

qn+ln

)
=

∑
M≤n≤N

1
qln

+O(1).

Hence, if we assume that

Ψ(N) :=
∑
n≤N

1
qln

→∞, asN →∞,

then Lemma2 directly applies and yields the following result (whose proof in case the above assump-
tion does not hold is trivial).

Theorem 4. The number of solutions of (1) with 0 ≤ degQ ≤ N satisfies

Ψ(N) +O
(
(Ψ(N))1/2(log Ψ(N))3/2+ε

)
, a.s.,

whereε > 0 is an arbitrary constant.

Note that a.s. here means with respect to the product measurem×m.

Finally, we briefly discuss the other ”single-metric” case where the roles off and g are inter-
changed. Therefore, assume now thatf is fixed andg is random. Here, without proof, we state the
following result: for any sequenceln tending to infinity arbitrarily slowly, there exists anf ∈ L such
that for almost allg the number of solutions of(1) is finite (see P. Sz̈usz [12] for the corresponding re-
sult in the real number case). Consequently, results of a similar type as in the cases above are impossible
in this case.
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