Height and Saturation Level of Random DIGITAL TREES

(joint with M. Drmota, H.-K. Hwang and R. Neininger)

Michael Fuchs

Department of Mathematical Sciences National Chengchi University

NATIONAL CHENGCHI UNIVERSITY

August 21st, 2019

Michael Fuchs (NCCU) The [Height and Saturation Level](#page-102-0) August 21st, 2019 1/36

4 0 F

Name from the word data retrieval (suggested by Fredkin).

目

イロト イ押ト イヨト イヨト

Name from the word data retrieval (suggested by Fredkin).

Example:

4 0 F

目

 \Box

Name from the word data retrieval (suggested by Fredkin).

Example:

4 0 F

目

Name from the word data retrieval (suggested by Fredkin).

Example:

> $x = x$ \rightarrow \equiv \rightarrow

← ← ←

4 D F

目

Name from the word data retrieval (suggested by Fredkin).

Example:

4 D F

- ⊿ ⊯

э

 \sim \rightarrow \pm

Name from the word data retrieval (suggested by Fredkin).

Example:

4 0 8

э

 \sim \equiv

Name from the word data retrieval (suggested by Fredkin).

Example:

4日下

э

 \sim \equiv

Name from the word data retrieval (suggested by Fredkin).

Example:

4日下

э

 \sim \equiv

PATRICIA Tries

Proposed by Donald R. Morrison in 1968.

PATRICIA=Practical Algorithm To Retrieve Information Coded In Alphanumeric

目

イロト イ押ト イヨト イヨト

PATRICIA Tries

Proposed by Donald R. Morrison in 1968.

PATRICIA=Practical Algorithm To Retrieve Information Coded In **Alphanumeric**

4 D F

 \sim ÷ э

PATRICIA Tries

Proposed by Donald R. Morrison in 1968.

PATRICIA=Practical Algorithm To Retrieve Information Coded In **Alphanumeric**

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

目

 QQ

4 0 F

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

4 0 F

目

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

4 D F

э

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

4 **D F**

← ← ← →

э

 λ in the set of \mathbb{R}^n is

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

> $x = x$ \rightarrow \pm \rightarrow

- ⊿ ⊯

4 **D F**

э

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

> $x = x$ λ = λ

4 **D F**

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

4 **D F**

 \sim

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

4 **D F**

 \sim \equiv

Bits are generated by independent Bernoulli random variables with mean p

−→ Bernoulli model

E

 299

イロト イ部 トイモ トイモト

Bits are generated by independent Bernoulli random variables with mean p

−→ Bernoulli model

Two types of digital trees:

- $p = 1/2$: symmetric digital trees;
- $p \neq 1/2$: asymmetric digital trees.

目

 QQ

4 **D F**

Bits are generated by independent Bernoulli random variables with mean p

−→ Bernoulli model

Two types of digital trees:

- $p = 1/2$: symmetric digital trees;
- $p \neq 1/2$: asymmetric digital trees.

Question: What can be said about the "shape" of the tree?

目

 QQQ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Bits are generated by independent Bernoulli random variables with mean p

−→ Bernoulli model

Two types of digital trees:

- $p = 1/2$: symmetric digital trees;
- $p \neq 1/2$: asymmetric digital trees.

Question: What can be said about the "shape" of the tree?

This question is important because its answer will shed light on the complexity of algorithms performed on digital trees.

 QQQ

イロト イ押 トイヨ トイヨ トーヨ

- $H_n =$ longest path to a leaf;
- S_n = shortest path to a leaf;
- F_n = saturation (or fill-up) level;

目

4 0 F

- $H_n =$ longest path to a leaf;
- S_n = shortest path to a leaf;
- F_n = saturation (or fill-up) level;

Example:

4 0 8

 Ω

- $H_n =$ longest path to a leaf;
- S_n = shortest path to a leaf;
- F_n = saturation (or fill-up) level;

Example:

4 0 8

э

 Ω

- $H_n =$ longest path to a leaf;
- S_n = shortest path to a leaf;
- F_n = saturation (or fill-up) level;

Example:

 $H_n = 4;$

 $S_n = 2$;

4 **D F**

●▶

в

э

- $H_n =$ longest path to a leaf;
- S_n = shortest path to a leaf;
- F_n = saturation (or fill-up) level;

Example:

 $H_n = 4$;

$$
S_n=2;
$$

 $F_n=1$.

4 **D F**

{ n →

≖

э

Results for Tries (i)

Flajolet (1983):

Theorem

For symmetric tries,

$$
\mathbb{P}(H_n \le k) \to e^{-e^{-t}},
$$

where k and n tend to infinity such that $\log(2^{k+1}/n^2) \rightarrow t$.

 QQ

Results for Tries (i)

Flajolet (1983):

Theorem

For symmetric tries,

$$
\mathbb{P}(H_n \le k) \to e^{-e^{-t}},
$$

where k and n tend to infinity such that $\log(2^{k+1}/n^2) \rightarrow t$.

This shows that the "limit distribution" of the height is a Gumbel distribution.

目

 QQ

Results for Tries (i)

Flajolet (1983):

Theorem

For symmetric tries,

$$
\mathbb{P}(H_n \le k) \to e^{-e^{-t}},
$$

where k and n tend to infinity such that $\log(2^{k+1}/n^2) \rightarrow t$.

This shows that the "limit distribution" of the height is a Gumbel distribution.

The above result was generalized to asymmetric tries by Pittel (with a probabilistic approach) and Jacquet $&$ Règnier (with a complex-analytic approach) in 1986.

 Ω

Results for Tries (ii)

Theorem (Pittel; 1986)

Let $p > q$. The distribution of S_n is concentrated on two points:

$$
\mathbb{P}(S_n = k_S \text{ or } k_S + 1) \longrightarrow 1, \qquad \text{as } n \longrightarrow \infty.
$$

Here, k_S is a sequence of n which satisfies

$$
k_S = \begin{cases} \log_2 n - \log_2 \log n + \mathcal{O}(1), & \text{if } p = q; \\ \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1), & \text{if } p \neq q. \end{cases}
$$

 QQ

Results for Tries (ii)

Theorem (Pittel; 1986)

Let $p > q$. The distribution of S_n is concentrated on two points:

$$
\mathbb{P}(S_n = k_S \text{ or } k_S + 1) \longrightarrow 1, \qquad \text{as } n \longrightarrow \infty.
$$

Here, k_S is a sequence of n which satisfies

$$
k_S = \begin{cases} \log_2 n - \log_2 \log n + \mathcal{O}(1), & \text{if } p = q; \\ \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1), & \text{if } p \neq q. \end{cases}
$$

Theorem (Hwang & Nicodème & Park & Szpankowski; 2006) We have.

$$
\mathbb{P}(F_n = S_n - 1) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.
$$

 \equiv

 QQ

イロト イ部 トイヨ トイヨト

External and Internal Node Profile

 $B_{n,k}$ = number of external nodes at level k;

 $I_{n,k}$ = number of internal nodes at level k.

E

 298

External and Internal Node Profile

 $B_{n,k}$ = number of external nodes at level k;

 $I_{n,k}$ = number of internal nodes at level k.

Example:

4 0 8

IN
External and Internal Node Profile

 $B_{n,k}$ = number of external nodes at level k;

 $I_{n,k}$ = number of internal nodes at level k.

Example:

$$
B_{6,0} = 0;
$$

\n
$$
B_{6,1} = 0;
$$

\n
$$
B_{6,2} = 1;
$$

\n
$$
B_{6,3} = 1;
$$

\n
$$
B_{6,4} = 4;
$$

4 0 8

 Ω

External and Internal Node Profile

 $B_{n,k}$ = number of external nodes at level k;

 $I_{n,k}$ = number of internal nodes at level k.

Example:

 $B_{6,0} = 0;$ $B_{6,1} = 0;$ $B_{6,2} = 1$; $B_{6,3} = 1$; $B_{6,4} = 4;$ $I_{6,4} = 0;$ $I_{6,0} = 1$; $I_{6,1} = 2$; $I_{6,2} = 2$; $I_{6,3} = 2$;

目

 QQQ

イロト イ押 トイヨ トイヨト

H_n, S_n, F_n and the Profile of Tries

$$
H_n = \max\{k : B_{n,k} > 0\};
$$

\n
$$
S_n = \min\{k : B_{n,k} > 0\};
$$

\n
$$
F_n = \max\{k : I_{n,k} = 2^k\}.
$$

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

H_n, S_n, F_n and the Profile of Tries

$$
H_n = \max\{k : B_{n,k} > 0\};
$$

\n
$$
S_n = \min\{k : B_{n,k} > 0\};
$$

\n
$$
F_n = \max\{k : I_{n,k} = 2^k\}.
$$

So, for instance, we have

$$
S_n > k \qquad \Longrightarrow \qquad B_{n,k} = 0
$$

$$
\quad \text{and} \quad
$$

$$
S_n < k \qquad \Longrightarrow \qquad B_{n,\ell} > 0 \text{ for some } \ell < k
$$

メロトメ 倒 トメ ミトメ ミト

一番

 2990

H_n, S_n, F_n and the Profile of Tries

$$
H_n = \max\{k : B_{n,k} > 0\};
$$

\n
$$
S_n = \min\{k : B_{n,k} > 0\};
$$

\n
$$
F_n = \max\{k : I_{n,k} = 2^k\}.
$$

So, for instance, we have

$$
S_n > k \qquad \Longrightarrow \qquad B_{n,k} = 0
$$

and

$$
S_n < k \qquad \Longrightarrow \qquad B_{n,\ell} > 0 \text{ for some } \ell < k
$$

and thus

$$
\mathbb{P}(S_n > k) \le \mathbb{P}(B_{n,k} = 0) \quad \text{and} \quad \mathbb{P}(S_n < k) \le \sum_{\ell=0}^{k-1} \mathbb{P}(B_{n,\ell} > 0).
$$

First and Second Moment Method

Theorem

Let X be a non-negative, integer-valued random variable. Then,

 $\mathbb{P}(X > 0) \leq \mathbb{E}(X)$.

and

$$
\mathbb{P}(X=0) \le \frac{\text{Var}(X)}{(\mathbb{E}(X))^2}.
$$

- 30

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

4 0 F

 2990

First and Second Moment Method

Theorem

Let X be a non-negative, integer-valued random variable. Then,

 $\mathbb{P}(X > 0) \leq \mathbb{E}(X)$.

and

$$
\mathbb{P}(X=0) \le \frac{\text{Var}(X)}{(\mathbb{E}(X))^2}.
$$

Thus,

$$
\mathbb{P}(S_n > k) \le \frac{\text{Var}(B_{n,k})}{(\mathbb{E}(B_{n,k}))^2}
$$

and

$$
\mathbb{P}(S_n < k) \le \sum_{\ell=0}^{k-1} \mathbb{E}(B_{n,\ell}).
$$

- ④ → ④ ミト ④ ミト

 \Rightarrow

 QQ

Profile of Tries (Hwang et al.; 2006)

Let $p \geq q$ and

$$
\alpha_1 := \frac{1}{\log(1/q)}, \ \alpha_2 := \frac{p^2 + q^2}{p^2 \log(1/p) + q^2 \log(1/q)}, \ \alpha_3 := \frac{2}{\log(1/(p^2 + q^2))}
$$

and

$$
\rho:=\frac{1}{\log (p/q)}\log \left(\frac{1-\alpha \log (1/p)}{\alpha \log (1/q)-1}\right) \qquad \text{with } \alpha=\lim_n (k/\log n).
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Profile of Tries (Hwang et al.; 2006)

Let $p \geq q$ and

$$
\alpha_1 := \frac{1}{\log(1/q)}, \ \alpha_2 := \frac{p^2 + q^2}{p^2 \log(1/p) + q^2 \log(1/q)}, \ \alpha_3 := \frac{2}{\log(1/(p^2 + q^2))}
$$

and

$$
\rho := \frac{1}{\log(p/q)} \log \left(\frac{1 - \alpha \log(1/p)}{\alpha \log(1/q) - 1} \right) \quad \text{with } \alpha = \lim_{n} (k/\log n).
$$

Then,

$$
\frac{\log \mathbb{E}(B_{n,k})}{\log n} \to \begin{cases} 0, & \text{if } \alpha \leq \alpha_1; \\ -\rho + \alpha \log(p^{-\rho} + q^{-\rho}), & \text{if } \alpha_1 \leq \alpha \leq \alpha_2; \\ 2 + \alpha \log(p^2 + q^2), & \text{if } \alpha_2 \leq \alpha \leq \alpha_3; \\ 0, & \text{if } \alpha \geq \alpha_3 \end{cases}
$$

and $\text{Var}(B_{n,k}) = \Theta(\mathbb{E}(B_{n,k})).$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Concentration of Saturation Level and Height

Saturation Level:

一番

 OQ

イロト イ部 トイヨ トイヨト

Concentration of Saturation Level and Height

Saturation Level:

Height:

Michael Fuchs (NCCU) **[Height and Saturation Level](#page-0-0)** August 21st, 2019 13/36

 \Rightarrow

 2990

イロト イ部 トイモ トイモト

Profile of Symmetric DSTs: Mean

Let

$$
Q(z) = \prod_{\ell=1}^{\infty} \left(1 - z 2^{-\ell}\right), \qquad Q_n = \prod_{\ell=1}^n \left(1 - 2^{-\ell}\right) = \frac{Q(2^{-n})}{Q(1)}.
$$

 2990

イロト イ団 トイ ヨト イヨト 一番

Profile of Symmetric DSTs: Mean

Let

$$
Q(z) = \prod_{\ell=1}^{\infty} \left(1 - z 2^{-\ell}\right), \qquad Q_n = \prod_{\ell=1}^n \left(1 - 2^{-\ell}\right) = \frac{Q(2^{-n})}{Q(1)}.
$$

Theorem (Drmota & F. & Hwang & Neininger; 2019+) We have,

$$
\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1),
$$

where $F(x)$ is the positive function

$$
F(x) = \sum_{j\geq 0} \frac{(-1)^j 2^{-\binom{j}{2}}}{Q_j Q(1)} e^{-2^j x}.
$$

G.

イロト イ押ト イヨト イヨト

 QQ

Profile of Symmetric DSTs: $F(x)$ (i)

As $x \to \infty$,

$$
F(x) = \frac{e^{-x}}{Q(1)} + \mathcal{O}(e^{-2x})
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Profile of Symmetric DSTs: $F(x)$ (i)

As $x \to \infty$.

$$
F(x) = \frac{e^{-x}}{Q(1)} + \mathcal{O}(e^{-2x})
$$

and as $x \to 0$,

$$
F(x) \sim \frac{X^{1/\log 2}}{\sqrt{2\pi x}} \exp\left(-\frac{(\log(X \log X))^2}{2 \log 2} - \sum_{j \in \mathbb{Z}} c_j (X \log X)^{-\chi_j}\right),\,
$$

where $X = 1/(x \log 2)$, $\chi_j = 2j\pi i/\log 2$,

$$
c_0 = \frac{\log 2}{12} + \frac{\pi^2}{6 \log 2}
$$

and

$$
c_j = \frac{1}{2j\sinh(2j\pi^2/\log 2)}, \qquad (j \neq 0).
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Profile of Symmetric DSTs: $F(x)$ (ii)

Profile of Symmetric DSTs: Variance

Theorem (Drmota & F. & Hwang & Neininger; 2019+) We have.

$$
Var(B_{n,k}) = 2kG(n/2k) + \mathcal{O}(1),
$$

where $G(x)$ is a function with

$$
G(x) = \frac{e^{-x}}{Q(1)} + \mathcal{O}(xe^{-2x}), \qquad (x \to \infty)
$$

and

$$
G(x) \sim 2F(x), \qquad (x \to 0).
$$

 Ω

イロト イ団 トイ ヨト イヨト 一番

Profile of Symmetric DSTs: $G(x)$ (i)

We have,

$$
G(x) = \sum_{j,r=0}^{\infty} \sum_{0 \le h,\ell \le j} \frac{2^{-j}(-1)^{r+h+\ell}2^{-\binom{r}{2}-\binom{h}{2}-\binom{\ell}{2}+2h+2\ell}}{Q_r Q(1) Q_h Q_{j-h} Q_\ell Q_{j-\ell}} \varphi(2^{r+j}, 2^h + 2^{\ell}; x),
$$

where

$$
\varphi(u,v;x)=\begin{cases} \displaystyle\frac{e^{-ux}-((v-u)x+1)e^{-vx}}{(v-u)^2}, & \text{if } u\neq v; \\ \displaystyle x^2e^{-ux}/2, & \text{if } u=v. \end{cases}
$$

一番

 2990

イロト イ部 トイヨ トイヨト

Profile of Symmetric DSTs: $G(x)$ (i)

We have,

$$
G(x) = \sum_{j,r=0}^{\infty} \sum_{0 \le h,\ell \le j} \frac{2^{-j}(-1)^{r+h+\ell}2^{-\binom{r}{2}-\binom{h}{2}-\binom{\ell}{2}+2h+2\ell}}{Q_r Q(1)Q_h Q_{j-h} Q_\ell Q_{j-\ell}} \varphi(2^{r+j}, 2^h + 2^{\ell}; x),
$$

where

$$
\varphi(u,v;x)=\begin{cases} \displaystyle\frac{e^{-ux}-((v-u)x+1)e^{-vx}}{(v-u)^2}, & \text{if } u\neq v; \\ \displaystyle x^2e^{-ux}/2, & \text{if } u=v. \end{cases}
$$

Proposition (Drmota & F. & Hwang & Neininger; 2019+) $G(x)$ is a positive function on $(0, \infty)$.

目

イロト イ押ト イヨト イヨト

 QQ

Profile of Symmetric DSTs: $G(x)$ (ii)

Michael Fuchs (NCCU) [Height and Saturation Level](#page-0-0) August 21st, 2019 19/36

Michael Fuchs (NCCU) **[Height and Saturation Level](#page-0-0)** August 21st, 2019 20/36

 2990

イロト イ部 トイヨト イヨト 一君

Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).

G.

 QQ

Barat B

4 0 F

- Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).
- **Theory of Poisson Variance**

Developed by F., Hwang, Zacharovs (2010,2014).

G.

 QQ

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

- Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).
- **Theory of Poisson Variance** Developed by F., Hwang, Zacharovs (2010,2014).
- Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

G.

 QQQ

- Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).
- **Theory of Poisson Variance** Developed by F., Hwang, Zacharovs (2010,2014).
- Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

• Laplace Transform

G.

 QQQ

- Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).
- **Theory of Poisson Variance** Developed by F., Hwang, Zacharovs (2010,2014).
- Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

- **•** Laplace Transform
- **•** Saddle-point Method

G.

 QQQ

Profile of Symmetric DSTs: Limit Laws

$$
k_f := \log_2 n - \log_2 \log n + 1 + \frac{\log_2 \log n}{\log n};
$$

\n
$$
k_h := \log_2 n + \sqrt{2 \log_2 n} - \frac{1}{2} \log_2 \log_2 n + \frac{1}{\log 2} - \frac{3 \log \log n}{4 \sqrt{2(\log n)(\log 2)}}.
$$

Michael Fuchs (NCCU) [Height and Saturation Level](#page-0-0) August 21st, 2019 21/36

一番

 2990

イロト イ部 トイヨ トイヨト

Profile of Symmetric DSTs: Limit Laws

$$
k_f := \log_2 n - \log_2 \log n + 1 + \frac{\log_2 \log n}{\log n};
$$

\n
$$
k_h := \log_2 n + \sqrt{2 \log_2 n} - \frac{1}{2} \log_2 \log_2 n + \frac{1}{\log 2} - \frac{3 \log \log n}{4 \sqrt{2(\log n)(\log 2)}}.
$$

Theorem (Drmota & F. & Hwang & Neininger; 2019+) (i) $\mathbb{E}(B_{n,k}), \text{Var}(B_{n,k}) \to \infty$ iff there exists $\omega_n \to \infty$ with

$$
k_f + \frac{\omega_n}{\log n} \le k \le k_h - \frac{\omega_n}{\sqrt{\log n}}.
$$

(ii) If $\mathbb{E}(B_{n,k}) \to \infty$, then

$$
\frac{B_{n,k}-\mathbb{E}(B_{n,k})}{\sqrt{\text{Var}(B_{n,k})}}\stackrel{d}{\longrightarrow} N(0,1).
$$

B

 299

 $(1 + 4\sqrt{2}) + (1 + 4\sqrt{2})$

Recall,

$$
\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1).
$$

メロトメ 倒 トメ ミトメ ミト

重

 2990

Recall,

$$
\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1).
$$

This result is not precise enough to understand the behavior of the saturation level and height!

4 D F

E.

э

 QQ

Recall,

$$
\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1).
$$

This result is not precise enough to understand the behavior of the saturation level and height!

However, it can be refined to

$$
\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + F'(n/2^k) - 2^{-k-1} n F''(n/2^k) + \mathcal{O}(n^{-1} + n/4^k)
$$

and for $n/2^k\to\infty$

$$
\mathbb{E}(B_{n,k}) \sim \frac{2^k}{Q_k}(1-2^{-k})^n.
$$

 QQ

 $\left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\} \rightarrow \left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\} \rightarrow \left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\}$

Recall,

$$
\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1).
$$

This result is not precise enough to understand the behavior of the saturation level and height!

However, it can be refined to

$$
\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + F'(n/2^k) - 2^{-k-1} n F''(n/2^k) + \mathcal{O}(n^{-1} + n/4^k)
$$

and for $n/2^k\to\infty$

$$
\mathbb{E}(B_{n,k}) \sim \frac{2^k}{Q_k}(1-2^{-k})^n.
$$

These results are sufficient!

4 D F

 QQ

Theorem (Drmota & F. & Hwang & Neininger; $2019+$)

$$
k_H := \left\lfloor \log_2 n + \sqrt{2 \log_2 n} - \frac{1}{2} \log_2 \log_2 n + \frac{1}{\log 2} \right\rfloor
$$

Then, for the height H_n of symmetric DSTs.

$$
\mathbb{P}(H_n = k_H \text{ or } k_H + 1) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.
$$

This was conjectured by Aldous & Shields (1988).

Let

- 3

 QQ

イロト イ母ト イヨト イヨト

.

Theorem (Drmota & F. & Hwang & Neininger; $2019+$)

$$
k_H:=\left\lfloor \log_2 n + \sqrt{2\log_2 n} - \frac{1}{2}\log_2\log_2 n + \frac{1}{\log 2} \right\rfloor
$$

Then, for the height H_n of symmetric DSTs,

$$
\mathbb{P}(H_n = k_H \text{ or } k_H + 1) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.
$$

This was conjectured by Aldous & Shields (1988).

Theorem (Drmota & F. & Hwang & Neininger; 2019+) Let $k_F := \lceil \log_2 n - \log_2 \log n \rceil$. Then, for the saturation level F_n of symmetric DSTs,

$$
\mathbb{P}(F_n = k_F - 1 \text{ or } k_F) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.
$$

Let

э

 \rightarrow \equiv

K ロ ト K 伺 ト K ミ ト

 QQ

.

Profile of Asymmetric DSTs: Notation

Assume that $p > q$.

Set $\alpha_1 = \frac{1}{\log(1)}$ $\frac{1}{\log(1/q)}, \qquad \alpha_2 = \frac{1}{\log(1/q)}$ $log(1/p)$ and $\rho = \frac{1}{1-\epsilon}$ $\frac{1}{\log(p/q)} \log \left(\frac{1-\alpha \log(1/p)}{\alpha \log(1/q)-1} \right)$ $\alpha \log(1/q) - 1$ $\Big)$, where $\alpha = \lim_{n \to \infty} \frac{k}{\log n}$ $\frac{n}{\log n}$.

Moreover, set

$$
v = -\rho + \alpha \log(p^{-\rho} + q^{-\rho}).
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 900

Profile of Asymmetric DSTs: Mean & Variance

Theorem (Drmota & Szpankowski; 2011) If $(\alpha_1 + \epsilon) \log n \leq k \leq (\alpha_2 - \epsilon) \log n$, then

$$
\mathbb{E}(B_{n,k}) \sim H_1\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho} q^{\rho} (p^{-\rho} + q^{-\rho})}{\sqrt{2\pi \alpha} \log(p/q)} \cdot \frac{n^v}{\sqrt{\log n}}
$$

where $H_1(\rho; x)$ is a 1-periodic function.

 QQ

イロト イ何 トイヨト イヨト ニヨー

,
Profile of Asymmetric DSTs: Mean & Variance

Theorem (Drmota & Szpankowski; 2011) If $(\alpha_1 + \epsilon)$ log $n \leq k \leq (\alpha_2 - \epsilon)$ log n, then

$$
\mathbb{E}(B_{n,k}) \sim H_1\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho} q^{\rho} (p^{-\rho} + q^{-\rho})}{\sqrt{2\pi \alpha} \log(p/q)} \cdot \frac{n^v}{\sqrt{\log n}}
$$

where $H_1(\rho; x)$ is a 1-periodic function.

Theorem (Kazemi & Vahidi-Asl; 2011)

If $(\alpha_1 + \epsilon) \log n \leq k \leq (\alpha_2 - \epsilon) \log n$, then

$$
\text{Var}(B_{n,k}) \sim H_2\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho} q^{\rho} (p^{-\rho} + q^{-\rho})}{\sqrt{2\pi\alpha} \log(p/q)} \cdot \frac{n^{\nu}}{\sqrt{\log n}}
$$

where $H_2(\rho; x)$ is a 1-periodic function.

э

 290

,

,

Recurrences

$$
B_{n+1,k} \stackrel{d}{=} B_{I_n,k-1} + B_{n-I_n,k-1}^*
$$

- $I_n\stackrel{d}{=} \mathsf{Binomial}(n,p);$
- $B_{n,k} \stackrel{d}{=} B_{n,k}^*;$
- $B_{n,k}, B_{n,k}^*, I_n$ independent.

イロト イ部 トイモ トイモト

重

Recurrences

$$
B_{n+1,k} \stackrel{d}{=} B_{I_n,k-1} + B_{n-I_n,k-1}^*
$$

\n• $I_n \stackrel{d}{=} \text{Binomial}(n, p);$
\n• $B_{n,k} \stackrel{d}{=} B_{n,k}^*;$
\n• $B_{n,k}, B_{n,k}^*, I_n$
\n
$$
\text{independent.}
$$

\n
$$
I_n
$$

\n
$$
\text{Size:}
$$

\n
$$
I_n
$$

This gives the following recurrence for the mean $(\mu_{n,k} := \mathbb{E}(B_{n,k}))$

$$
\mu_{n+1,k} = \sum_{j=0}^{n} {n \choose j} p^j q^{n-j} (\mu_{j,k-1} + \mu_{n-j,k-1}).
$$

イロト イ押 トイヨ トイヨト

画

$$
\mu_{n+1,k} = \sum_{j=0}^{n} {n \choose j} p^j q^{n-j} (\mu_{j,k-1} + \mu_{n-j,k-1}).
$$

Michael Fuchs (NCCU) **[Height and Saturation Level](#page-0-0)** August 21st, 2019 27/36

イロト イ部 トイヨ トイヨト

小店

$$
\mu_{n+1,k} = \sum_{j=0}^{n} {n \choose j} p^j q^{n-j} (\mu_{j,k-1} + \mu_{n-j,k-1}).
$$

Consider the Poisson-generating function:

$$
\tilde{f}_k(z) := e^{-z} \sum_n \mu_{n,k} \frac{z^n}{n!}.
$$

Then,

$$
\tilde{f}'_k(z) + \tilde{f}_k(z) = \tilde{f}_{k-1}(pz) + \tilde{f}_{k-1}(qz).
$$

4 0 8

G.

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and \mathcal{B}

 QQ

$$
\mu_{n+1,k} = \sum_{j=0}^{n} {n \choose j} p^j q^{n-j} (\mu_{j,k-1} + \mu_{n-j,k-1}).
$$

• Consider the Poisson-generating function:

$$
\tilde{f}_k(z) := e^{-z} \sum_n \mu_{n,k} \frac{z^n}{n!}.
$$

Then,

$$
\tilde{f}'_k(z) + \tilde{f}_k(z) = \tilde{f}_{k-1}(pz) + \tilde{f}_{k-1}(qz).
$$

Consider the (normalized) Mellin-transform:

$$
F_k(s) := \frac{1}{\Gamma(s)} \int_0^\infty \tilde{f}_k(z) z^{s-1} \mathrm{d} s,
$$

where $\Gamma(s)$ is the Gamma-function.

G.

 QQ

イロト イ押ト イヨト イヨト

Then,

$$
F_k(s) - F_k(s-1) = T(s)F_{k-1}(s),
$$

where

$$
T(s) := p^{-s} + q^{-s}.
$$

画

 299

イロト イ部 トイモ トイモト

Then,

$$
F_k(s) - F_k(s-1) = T(s)F_{k-1}(s),
$$

where

$$
T(s):=p^{-s}+q^{-s}.
$$

• Consider the ordinary generating function:

$$
f(s,\omega) := \sum_{k} F_k(s)\omega_k.
$$

Then,

$$
f(s,\omega) = \frac{f(s-1,\omega)}{1 - \omega T(s)}
$$

Michael Fuchs (NCCU) Theight and Saturation Level August 21st, 2019 28/36

G.

イロト イ押ト イヨト イヨト

Then,

$$
F_k(s) - F_k(s-1) = T(s)F_{k-1}(s),
$$

where

$$
T(s):=p^{-s}+q^{-s}.
$$

• Consider the **ordinary generating function**:

$$
f(s,\omega) := \sum_{k} F_k(s)\omega_k.
$$

Then,

$$
f(s,\omega) = \frac{f(s-1,\omega)}{1-\omega T(s)}
$$

and by iteration

$$
f(s,\omega) = \frac{g(s,\omega)}{g(0,\omega)}, \qquad g(s,\omega) := \prod_{j\geq 0} \frac{1}{1 - \omega T(s-j)}.
$$

G.

イロト イ押ト イヨト イヨト

 QQ

What is left to invert the whole process.

4 0 F

÷. **Service** G.

 QQ

What is left to invert the whole process.

• From $f(s, \omega)$ to $F_k(s)$:

$$
F_k(s) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{f(s,\omega)}{\omega^{k+1}} d\omega,
$$

where C_1 is a suitable contour.

G.

 QQ

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

4 **D F**

What is left to invert the whole process.

• From $f(s, \omega)$ to $F_k(s)$:

$$
F_k(s) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{f(s,\omega)}{\omega^{k+1}} d\omega,
$$

where C_1 is a suitable contour.

• From $F_k(s)$ to $\tilde{f}_k(z)$:

$$
\tilde{f}_k(z) = \frac{1}{2\pi i} \int_{\mathcal{C}_2} \Gamma(s) F_k(s) z^{-s} \mathrm{d}s,
$$

where C_2 is a suitable vertical line.

G.

 QQQ

What is left to invert the whole process.

• From
$$
f(s, \omega)
$$
 to $F_k(s)$:

$$
F_k(s) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{f(s,\omega)}{\omega^{k+1}} \mathrm{d}\omega,
$$

where C_1 is a suitable contour.

• From $F_k(s)$ to $\tilde{f}_k(z)$:

$$
\tilde{f}_k(z) = \frac{1}{2\pi i} \int_{C_2} \Gamma(s) F_k(s) z^{-s} \mathrm{d}s,
$$

where C_2 is a suitable vertical line.

• From $\tilde{f}_k(z)$ to $\mu_{n,k}$:

$$
\mu_{n,k} = \frac{n!}{2\pi i} \int_{\mathcal{C}_3} \frac{e^z \tilde{f}_k(z)}{z^{n+1}} \mathrm{d}z
$$

where C_3 is a suitable contour.

目

 QQQ

Drmota & Szpankowski (2011):

 $(\alpha_1 + \epsilon) \log n \leq k \leq (\alpha_2 + \epsilon) \log n$.

D.

 Ω

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

4 0 F

Drmota & Szpankowski (2011):

- $(\alpha_1 + \epsilon) \log n \leq k \leq (\alpha_2 + \epsilon) \log n$.
	- From $f(s, \omega)$ to $F_k(s)$ via residue theorem.
	- From $F_k(s)$ to $\tilde{f}_k(z)$ and $\tilde{f}_k(z)$ to $\mu_{n,k}$ via saddle-point method.

Drmota & Szpankowski (2011):

 $(\alpha_1 + \epsilon) \log n \leq k \leq (\alpha_2 + \epsilon) \log n$.

- From $f(s, \omega)$ to $F_k(s)$ via residue theorem.
- From $F_k(s)$ to $\tilde{f}_k(z)$ and $\tilde{f}_k(z)$ to $\mu_{n,k}$ via saddle-point method.

→ "double saddle-point approach" (Hwang et al.; 2006)

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA} \rightarrow \overline{BA}

Drmota & Szpankowski (2011):

 $(\alpha_1 + \epsilon) \log n \leq k \leq (\alpha_2 + \epsilon) \log n$.

- From $f(s, \omega)$ to $F_k(s)$ via residue theorem.
- From $F_k(s)$ to $\tilde{f}_k(z)$ and $\tilde{f}_k(z)$ to $\mu_{n,k}$ via saddle-point method. → "double saddle-point approach" (Hwang et al.; 2006)

Drmota & F. $(2019+)$:

 $k \approx \alpha_1 \log n$.

KED KARD KED KED E VOOR

Drmota & Szpankowski (2011):

 $(\alpha_1 + \epsilon) \log n \leq k \leq (\alpha_2 + \epsilon) \log n$.

- From $f(s, \omega)$ to $F_k(s)$ via residue theorem.
- From $F_k(s)$ to $\tilde{f}_k(z)$ and $\tilde{f}_k(z)$ to $\mu_{n,k}$ via saddle-point method. → "double saddle-point approach" (Hwang et al.; 2006)

Drmota & F. $(2019+)$:

 $k \approx \alpha_1 \log n$.

Saddle point method for the inversion from $\tilde{F}_k(s)$ to $\tilde{f}_k(z)$ has to be replaced by the Poisson summation formula!

KOD KOD KED KED DAR

Profile of Asymmetric DSTs: Mean

Theorem (Drmota $&$ F.; 2019+) Let $k = \alpha_1(\log n - \log \log \log n + D)$, where $D = \mathcal{O}(1)$. Then, $\mathbb{E}(B_{n,k}) = \frac{1+o(1)}{\prod_{j\geq 1} (1-q^j)} (\log n)^{\frac{D-\log\log(p/q)-1}{\log(p/q)}}$ $\int (\log(1/q))^{-m_0}$ $\frac{1/q))^{-m_0}}{m_0!}(\log n)^{-\frac{H(m_0\log(p/q)-D+\log\log(p/q))}{\log(p/q)}}$ × $\frac{\ln((1/q))^{-m_0-1}}{(m_0+1)!}(\log n)^{-\frac{H((m_0+1)\log(p/q)-D+\log\log(p/q))}{\log(p/q)}}\Bigg)$ $+\frac{(\log(1/q))^{-m_0-1}}{(\log(1/\gamma))}$ $+\mathcal{O}\left(\left(\log n\right)^{\frac{D-\log\log\left(p/q\right)-1}{\log\left(p/q\right)}-1}\right),$ where $m_0 := \max(\lfloor(\frac{D-\log\log(p/q)}{\log(p/q)}\rfloor)$ $\frac{\log\log(p/q)}{\log(p/q)} \rfloor, 0)$ and $H(x) := e^x - 1 - x$. QQ 4 伺 ▶

Michael Fuchs (NCCU) and [Height and Saturation Level](#page-0-0) August 21st, 2019 31/36

Theorem (Drmota & F.; 2019+) For the saturation level of asymmetric DSTs, we have

$$
\mathbb{P}(F_n = k_F - 1 \quad \text{or} \quad F_n = k_F \quad F_n = k_F + 1) \longrightarrow 1, \qquad \text{as} \; \longrightarrow \infty,
$$

where k_F is a sequence of n which satisfies

$$
k_F = \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1).
$$

G.

 QQ

4 **D F**

Theorem (Drmota $&$ F.; 2019+) For the saturation level of asymmetric DSTs, we have $\mathbb{P}(F_n = k_F - 1 \quad \text{or} \quad F_n = k_F \quad F_n = k_F + 1) \longrightarrow 1, \quad \text{as} \longrightarrow \infty,$ where k_F is a sequence of n which satisfies

$$
k_F = \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1).
$$

Remarks:

 \bullet Two point concentration holds for almost the whole range of p.

KED KARD KED KED E VOOR

Theorem (Drmota $&$ F.; 2019+) For the saturation level of asymmetric DSTs, we have

$$
\mathbb{P}(F_n = k_F - 1 \quad \text{or} \quad F_n = k_F \quad F_n = k_F + 1) \longrightarrow 1, \qquad \text{as} \; \longrightarrow \infty,
$$

where k_F is a sequence of n which satisfies

$$
k_F = \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1).
$$

Remarks:

- \bullet Two point concentration holds for almost the whole range of p.
- We conjecture that two point concentration holds for $1/2 < p < 1$.

E

 QQQ

 $A \oplus B$ $A \oplus B$ $A \oplus B$

4 0 F

Theorem (Drmota $&$ F.; 2019+) For the saturation level of asymmetric DSTs, we have

$$
\mathbb{P}(F_n = k_F - 1 \quad \text{or} \quad F_n = k_F \quad F_n = k_F + 1) \longrightarrow 1, \qquad \text{as} \; \longrightarrow \infty,
$$

where k_F is a sequence of n which satisfies

$$
k_F = \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1).
$$

Remarks:

- \bullet Two point concentration holds for almost the whole range of p.
- We conjecture that two point concentration holds for $1/2 < p < 1$.
- We are currently working on a similar concentration result for the height.

- 3

 QQ

イロト イ押ト イヨト イヨト

Concentration of Saturation Level and Height

Saturation Level:

Height:

画

 2990

イロト イ部 トイヨ トイヨト

Profile of Asymmetric PATRICIA Tries

Theorem (Magner & Szpankowski; 2018) If $(\alpha_1 + \epsilon)$ log $n \leq k \leq (\alpha_2 - \epsilon)$ log n, then $\mu_{n,k} \sim P_1\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho} q^{\rho}(p^{-\rho} + q^{-\rho})}{\sqrt{2\pi n} \log(p/\rho)}$ $2\pi\alpha\log(p/q)$ $\cdot \frac{n^v}{\sqrt{n}}$ √ $\frac{n}{\log n},$ and $\sigma_{n,k}^2 \sim P_2\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho} q^{\rho} (p^{-\rho} + q^{-\rho})}{\sqrt{2\pi n} \log(p \log(p))}$ $2\pi\alpha\log(p/q)$ $\cdot \frac{n^v}{\sqrt{n}}$ √ $\frac{n}{\log n},$ where $P_1(\rho; x)$ and $P_2(\rho; x)$ are 1-periodic functions.

Moreover,

$$
\frac{B_{n,k} - \mu_{n,k}}{\sigma_{n,k}} \xrightarrow{d} N(0,1).
$$

 QQ

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right. \right. & \rightarrow & \left\langle \bigcirc \right. & \square & \rightarrow & \left\langle \bigcirc \right. & \square \end{array} \right.$

Height of PATRICIA tries

By extending the previous study to the boundary.

イロト イ押ト イヨト イヨト

一番

Height of PATRICIA tries

By extending the previous study to the boundary.

Theorem (Drmota & Magner & Szpankowski; 2019) With high probability,

$$
H_n = \begin{cases} \log_2 n + \sqrt{2\log_2 n} + o(\sqrt{\log n}), & \text{if } p = q; \\ \log_{1/p} n + \frac{1}{2}\log_{p/q} \log n + o(\log \log n), & \text{if } p > q. \end{cases}
$$

See the paper:

M. Drmota, A. Magner, W. Szpankowski (2019). Asymmetric Rényi problem, Combinatorics, Probability and Computing, 28:4, 542–573

or the (more detailed) arxiv version of this paper.

 QQ

イロト イ何 トイヨト イヨト ニヨー

Profile of Random Digital Trees:

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Profile of Random Digital Trees:

Major Open Tasks:

Michael Fuchs (NCCU) **[Height and Saturation Level](#page-0-0)** August 21st, 2019 36/36

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Profile of Random Digital Trees:

Major Open Tasks:

• profile of symmetric PATRICIA tries;

イロト イ母ト イヨト イヨト

STEP

 OQ

Profile of Random Digital Trees:

Major Open Tasks:

- **•** profile of symmetric PATRICIA tries;
- refined results for the profile at the boundary of the "central range" for asymmetric PATRICIA tries (very complicated!).

그 그는 거

イロト イ母ト イヨト イヨト

 QQ