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Tries

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).
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Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

0

1

0 1

1

0 1

0

1

0 1

0

011011
010101
101110
010000
101010
001100

Michael Fuchs (NCCU) Height and Saturation Level August 21st, 2019 2 / 36



Tries
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PATRICIA Tries

Proposed by Donald R. Morrison in 1968.

PATRICIA=Practical Algorithm To Retrieve Information Coded In
Alphanumeric
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Digital Search Trees (DSTs)

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:
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Random Model

Bits are generated by independent Bernoulli random variables with mean p

−→ Bernoulli model

Two types of digital trees:

p = 1/2: symmetric digital trees;

p 6= 1/2: asymmetric digital trees.

Question: What can be said about the “shape” of the tree?

This question is important because its answer will shed light on the
complexity of algorithms performed on digital trees.
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Three Shape Parameters

Hn = longest path to a leaf;

Sn = shortest path to a leaf;

Fn = saturation (or fill-up) level;

Example:
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Hn = 4;

Sn = 2;

Fn = 1.

Hn = 4;

Sn = 2;

Fn = 1.
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Results for Tries (i)

Flajolet (1983):

Theorem

For symmetric tries,
P(Hn ≤ k)→ e−e

−t
,

where k and n tend to infinity such that log(2k+1/n2)→ t.

This shows that the “limit distribution” of the height is a Gumbel
distribution.

The above result was generalized to asymmetric tries by Pittel (with a
probabilistic approach) and Jacquet & Règnier (with a complex-analytic
approach) in 1986.
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approach) in 1986.

Michael Fuchs (NCCU) Height and Saturation Level August 21st, 2019 7 / 36



Results for Tries (i)

Flajolet (1983):

Theorem

For symmetric tries,
P(Hn ≤ k)→ e−e

−t
,

where k and n tend to infinity such that log(2k+1/n2)→ t.

This shows that the “limit distribution” of the height is a Gumbel
distribution.

The above result was generalized to asymmetric tries by Pittel (with a
probabilistic approach) and Jacquet & Règnier (with a complex-analytic
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Results for Tries (ii)

Theorem (Pittel; 1986)

Let p ≥ q. The distribution of Sn is concentrated on two points:

P(Sn = kS or kS + 1) −→ 1, as n −→∞.

Here, kS is a sequence of n which satisfies

kS =

{
log2 n− log2 log n+O(1), if p = q;

log1/q n− log1/q log logn+O(1), if p 6= q.

Theorem (Hwang & Nicodème & Park & Szpankowski; 2006)

We have,
P(Fn = Sn − 1) −→ 1, as n −→∞.
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External and Internal Node Profile

Bn,k = number of external nodes at level k;

In,k = number of internal nodes at level k.

Example:
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B6,2 = 1;

B6,3 = 1;

B6,4 = 4;

I6,0 = 1;

I6,1 = 2;

I6,2 = 2;

I6,3 = 2;

I6,4 = 0;
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Hn, Sn, Fn and the Profile of Tries

Hn = max{k : Bn,k > 0};

Sn = min{k : Bn,k > 0};

Fn = max{k : In,k = 2k}.

So, for instance, we have

Sn > k =⇒ Bn,k = 0

and
Sn < k =⇒ Bn,` > 0 for some ` < k

and thus

P(Sn > k) ≤ P(Bn,k = 0) and P(Sn < k) ≤
k−1∑
`=0

P(Bn,` > 0).
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First and Second Moment Method

Theorem

Let X be a non-negative, integer-valued random variable. Then,

P(X > 0) ≤ E(X).

and

P(X = 0) ≤ Var(X)

(E(X))2
.

Thus,

P(Sn > k) ≤
Var(Bn,k)

(E(Bn,k))2

and

P(Sn < k) ≤
k−1∑
`=0

E(Bn,`).
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Profile of Tries (Hwang et al.; 2006)

Let p ≥ q and

α1 :=
1

log(1/q)
, α2 :=

p2 + q2

p2 log(1/p) + q2 log(1/q)
, α3 :=

2

log(1/(p2 + q2))

and

ρ :=
1

log(p/q)
log

(
1− α log(1/p)

α log(1/q)− 1

)
with α = lim

n
(k/ log n).

Then,

logE(Bn,k)

log n
→


0, if α ≤ α1;

−ρ+ α log(p−ρ + q−ρ), if α1 ≤ α ≤ α2;

2 + α log(p2 + q2), ifα2 ≤ α ≤ α3;

0, if α ≥ α3

and Var(Bn,k) = Θ(E(Bn,k)).
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Concentration of Saturation Level and Height

Saturation Level:

Trees p = q? Concentration Reference

Tries 0 < p < 1 2 points HNPS2006

DSTs
p = 1

2 2 points DFHN2019+
p 6= 1

2 at most 3 points DF2019+

PATRICIA Tries 0 < p < 1 2 points HNPS2006

Height:

Trees p = q? Concentration Reference

Tries 0 < p < 1 no F1983; P1986; JR1986

DSTs
p = 1

2 2 points DFHN2019+
p 6= 1

2 ? DF2019+

PATRICIA Tries
p = 1

2 3 points Conjectured by KS2002
p 6= 1

2 ? ?
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Profile of Symmetric DSTs: Mean

Let

Q(z) =

∞∏
`=1

(
1− z2−`

)
, Qn =

n∏
`=1

(
1− 2−`

)
=
Q(2−n)

Q(1)
.

Theorem (Drmota & F. & Hwang & Neininger; 2019+)

We have,
E(Bn,k) = 2kF (n/2k) +O(1),

where F (x) is the positive function

F (x) =
∑
j≥0

(−1)j2−(j2)

QjQ(1)
e−2

jx.
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Profile of Symmetric DSTs: F (x) (i)

As x→∞,

F (x) =
e−x

Q(1)
+O(e−2x)

and as x→ 0,

F (x) ∼ X1/ log 2

√
2πx

exp

−(log(X logX))2

2 log 2
−
∑
j∈Z

cj(X logX)−χj

 ,

where X = 1/(x log 2), χj = 2jπi/ log 2,

c0 =
log 2

12
+

π2

6 log 2

and

cj =
1

2j sinh(2jπ2/ log 2)
, (j 6= 0).
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Profile of Symmetric DSTs: F (x) (ii)
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Profile of Symmetric DSTs: Variance

Theorem (Drmota & F. & Hwang & Neininger; 2019+)

We have,
Var(Bn,k) = 2kG(n/2k) +O(1),

where G(x) is a function with

G(x) =
e−x

Q(1)
+O(xe−2x), (x→∞)

and
G(x) ∼ 2F (x), (x→ 0).
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Profile of Symmetric DSTs: G(x) (i)

We have,

G(x) =

∞∑
j,r=0

∑
0≤h,`≤j

2−j(−1)r+h+`2−(r2)−(h2)−(`
2)+2h+2`

QrQ(1)QhQj−hQ`Qj−`
ϕ(2r+j , 2h+2`;x),

where

ϕ(u, v;x) =


e−ux − ((v − u)x+ 1)e−vx

(v − u)2
, if u 6= v;

x2e−ux/2, if u = v.

Proposition (Drmota & F. & Hwang & Neininger; 2019+)

G(x) is a positive function on (0,∞).
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Profile of Symmetric DSTs: G(x) (ii)
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Major Tools for the Proofs

Analytic Depoissonization & JS-admissibility

Developed by Jacquet & Szpankowski (1998).

Theory of Poisson Variance

Developed by F., Hwang, Zacharovs (2010,2014).

Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

Laplace Transform

Saddle-point Method
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Profile of Symmetric DSTs: Limit Laws

kf := log2 n− log2 log n+ 1 +
log2 log n

log n
;

kh := log2 n+
√

2 log2 n−
1

2
log2 log2 n+

1

log 2
− 3 log log n

4
√

2(log n)(log 2)
.

Theorem (Drmota & F. & Hwang & Neininger; 2019+)

(i) E(Bn,k),Var(Bn,k)→∞ iff there exists ωn →∞ with

kf +
ωn

log n
≤ k ≤ kh −

ωn√
log n

.

(ii) If E(Bn,k)→∞, then

Bn,k − E(Bn,k)√
Var(Bn,k)

d−→ N(0, 1).
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Saturation Level and Height of Symmetric DSTs (i)

Recall,
E(Bn,k) = 2kF (n/2k) +O(1).

This result is not precise enough to understand the behavior of the
saturation level and height!

However, it can be refined to

E(Bn,k) = 2kF (n/2k) + F ′(n/2k)− 2−k−1nF ′′(n/2k)

+O(n−1 + n/4k)

and for n/2k →∞

E(Bn,k) ∼
2k

Qk
(1− 2−k)n.

These results are sufficient!
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Saturation Level and Height of Symmetric DSTs (ii)

Theorem (Drmota & F. & Hwang & Neininger; 2019+)

Let

kH :=

⌊
log2 n+

√
2 log2 n−

1

2
log2 log2 n+

1

log 2

⌋
.

Then, for the height Hn of symmetric DSTs,

P(Hn = kH or kH + 1) −→ 1, as n −→∞.

This was conjectured by Aldous & Shields (1988).

Theorem (Drmota & F. & Hwang & Neininger; 2019+)

Let kF := dlog2 n− log2 log ne. Then, for the saturation level Fn of
symmetric DSTs,

P(Fn = kF − 1 or kF ) −→ 1, as n −→∞.
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Profile of Asymmetric DSTs: Notation

Assume that p ≥ q.

Set

α1 =
1

log(1/q)
, α2 =

1

log(1/p)

and

ρ =
1

log(p/q)
log

(
1− α log(1/p)

α log(1/q)− 1

)
,

where

α = lim
n→∞

k

log n
.

Moreover, set
v = −ρ+ α log(p−ρ + q−ρ).
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Profile of Asymmetric DSTs: Mean & Variance

Theorem (Drmota & Szpankowski; 2011)

If (α1 + ε) log n ≤ k ≤ (α2 − ε) log n, then

E(Bn,k) ∼ H1

(
ρ; logp/q p

kn
) pρqρ(p−ρ + q−ρ)√

2πα log(p/q)
· nv√

log n
,

where H1(ρ;x) is a 1-periodic function.

Theorem (Kazemi & Vahidi-Asl; 2011)

If (α1 + ε) log n ≤ k ≤ (α2 − ε) log n, then

Var(Bn,k) ∼ H2

(
ρ; logp/q p

kn
) pρqρ(p−ρ + q−ρ)√

2πα log(p/q)
· nv√

log n
,

where H2(ρ;x) is a 1-periodic function.
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Recurrences

Bn+1,k
d
= BIn,k−1 +B∗n−In,k−1

In
d
= Binomial(n, p);

Bn,k
d
= B∗n,k;

Bn,k, B
∗
n,k, In

independent.

Root

Size:

In

Size:

n−In

0 1

This gives the following recurrence for the mean (µn,k := E(Bn,k))

µn+1,k =
n∑
j=0

(
n

j

)
pjqn−j (µj,k−1 + µn−j,k−1) .
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Solving the Recurrence for the Mean (i)

µn+1,k =

n∑
j=0

(
n

j

)
pjqn−j (µj,k−1 + µn−j,k−1).

Consider the Poisson-generating function:

f̃k(z) := e−z
∑
n

µn,k
zn

n!
.

Then,
f̃ ′k(z) + f̃k(z) = f̃k−1(pz) + f̃k−1(qz).

Consider the (normalized) Mellin-transform:

Fk(s) :=
1

Γ(s)

∫ ∞
0

f̃k(z)z
s−1ds,

where Γ(s) is the Gamma-function.
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Solving the Recurrence for the Mean (ii)

Then,
Fk(s)− Fk(s− 1) = T (s)Fk−1(s),

where
T (s) := p−s + q−s.

Consider the ordinary generating function:

f(s, ω) :=
∑
k

Fk(s)ωk.

Then,

f(s, ω) =
f(s− 1, ω)

1− ωT (s)

and by iteration

f(s, ω) =
g(s, ω)

g(0, ω)
, g(s, ω) :=

∏
j≥0

1

1− ωT (s− j)
.
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Solving the Recurrence for the Mean (iii)

What is left to invert the whole process.

From f(s, ω) to Fk(s):

Fk(s) =
1

2πi

∫
C1

f(s, ω)

ωk+1
dω,

where C1 is a suitable contour.

From Fk(s) to f̃k(z):

f̃k(z) =
1

2πi

∫
C2

Γ(s)Fk(s)z
−sds,

where C2 is a suitable vertical line.

From f̃k(z) to µn,k:

µn,k =
n!

2πi

∫
C3

ez f̃k(z)

zn+1
dz

where C3 is a suitable contour.
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Solving the Recurrence for the Mean (iv)

Drmota & Szpankowski (2011):

(α1 + ε) log n ≤ k ≤ (α2 + ε) log n.

From f(s, ω) to Fk(s) via residue theorem.

From Fk(s) to f̃k(z) and f̃k(z) to µn,k via saddle-point method.

−→ “double saddle-point approach” (Hwang et al.; 2006)

Drmota & F. (2019+):

k ≈ α1 log n.

Saddle point method for the inversion from F̃k(s) to f̃k(z) has to be
replaced by the Poisson summation formula!
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Profile of Asymmetric DSTs: Mean

Theorem (Drmota & F.; 2019+)

Let k = α1(log n− log log log n+D), where D = O(1). Then,

E(Bn,k) =
1 + o(1)∏
j≥1(1− qj)

(log n)
D−log log(p/q)−1

log(p/q)

×

(
(log(1/q))−m0

m0!
(log n)

−H(m0 log(p/q)−D+log log(p/q))
log(p/q)

+
(log(1/q))−m0−1

(m0 + 1)!
(log n)

−H((m0+1) log(p/q)−D+log log(p/q))
log(p/q)

)

+O
(

(log n)
D−log log(p/q)−1

log(p/q)
−1
)
,

where m0 := max(b(D−log log(p/q)log(p/q) c, 0) and H(x) := ex − 1− x.
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Saturation Level of Asymmetric DSTs

Theorem (Drmota & F.; 2019+)

For the saturation level of asymmetric DSTs, we have

P(Fn = kF − 1 or Fn = kF Fn = kF + 1) −→ 1, as −→∞,

where kF is a sequence of n which satisfies

kF = log1/q n− log1/q log log n+O(1).

Remarks:

Two point concentration holds for almost the whole range of p.

We conjecture that two point concentration holds for 1/2 < p < 1.

We are currently working on a similar concentration result for the
height.
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Concentration of Saturation Level and Height

Saturation Level:

Trees p = q? Concentration Reference

Tries 0 < p < 1 2 points HNPS2006

DSTs
p = 1

2 2 points DFHN2019+
p 6= 1

2 at most 3 points DF2019+

PATRICIA Tries 0 < p < 1 2 points HNPS2006

Height:

Trees p = q? Concentration Reference

Tries 0 < p < 1 no F1983; P1986; JR1986

DSTs
p = 1

2 2 points DFHN2019+
p 6= 1

2 ? DF2019+

PATRICIA Tries
p = 1

2 3 points Conjectured by KS2002
p 6= 1

2 ? ?
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Profile of Asymmetric PATRICIA Tries

Theorem (Magner & Szpankowski; 2018)

If (α1 + ε) log n ≤ k ≤ (α2 − ε) log n, then

µn,k ∼ P1

(
ρ; logp/q p

kn
) pρqρ(p−ρ + q−ρ)√

2πα log(p/q)
· nv√

log n
,

and

σ2n,k ∼ P2

(
ρ; logp/q p

kn
) pρqρ(p−ρ + q−ρ)√

2πα log(p/q)
· nv√

log n
,

where P1(ρ;x) and P2(ρ;x) are 1-periodic functions.

Moreover,
Bn,k − µn,k

σn,k

d−→ N(0, 1).
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Height of PATRICIA tries

By extending the previous study to the boundary.

Theorem (Drmota & Magner & Szpankowski; 2019)

With high probability,

Hn =

{
log2 n+

√
2 log2 n+ o(

√
log n), if p = q;

log1/p n+ 1
2 logp/q log n+ o(log log n), if p > q.

See the paper:

M. Drmota, A. Magner, W.Szpankowski (2019). Asymmetric Rényi
problem, Combinatorics, Probability and Computing, 28:4, 542–573

or the (more detailed) arxiv version of this paper.
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Summary and Open Problems

Profile of Random Digital Trees:

Trees p = q? Mean Variance CLT

Tries 0 < p < 1 X X X

DSTs
p = 1

2 X X X
p 6= 1

2 X X ?

PATRICIA Tries
p = 1

2 ? ? ?
p 6= 1

2 X X X

Major Open Tasks:

profile of symmetric PATRICIA tries;

refined results for the profile at the boundary of the “central range”
for asymmetric PATRICIA tries (very complicated!).
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