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Abstract

We consider geometric words ω1 · · ·ωn with letters satisfying the restricted growth property

ωk ≤ d + max{ω0, . . . , ωk−1},

where ω0 := 0 and d ≥ 1. For d = 1 these words are in 1-to-1 correspondence with set partitions
and for this case, we show that the number of left-to-right maxima (suitable centered) does
not converge to a fixed limit law as n tends to infinity. This becomes wrong for d ≥ 2, for
which we prove that convergence does occur and the limit law is normal. Moreover, we also
consider related quantities such as the value of the maximal letter and the number of maximal
letters and show again non-convergence to a fixed limit law.

1 Introduction and Results

There exists a vast literature on statistical properties of geometric words ω1 · · ·ωn, which are words
whose letters are generated by independent, geometrically distributed random variables, i.e.,

P (ωk = `) = pq`−1, (` ≥ 1),

where 0 < p < 1 is the success probability and, for convenience of notation, we set q := 1− p. For
instance, some of the various statistics which have been studied for such words are:

• left-to-right maxima (e.g., see Archibald and Knopfmacher [1, 2]; Bai, Hwang and Liang [4];
Brennan, Knopfmacher, Mansour and Wagner [8]; Knopfmacher and Prodinger [19]; Oliver
and Prodinger [30]; Prodinger [31, 32, 34, 35, 36]);
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• maximum value (e.g., see Bruss and O’Cinneide [9]; Eisenberg [10]; Prodinger [36]);

• number of times the maximum occurs (e.g., see Kirschenhofer and Prodinger [18]);

• number of different letters, missing letters and gaps (e.g., see Archibald and Knopfmacher [3];
Goh and Hitczenko [14]; Louchard and Prodinger [26]; Louchard, Prodinger and Ward [27]),

• inversions (e.g., see Prodinger [33]);

• ascends and descends (e.g., see Brennan [5]; Brennan and Knopfmacher [6, 7]; Knopfmacher
and Prodinger [20, 21, 22]; Louchard and Prodinger [25]);

• runs (e.g., see Eryilmaz [11]; Grabner, Knopfmacher and Prodinger [15]; Lee and Tsai [23];
Louchard and Prodinger [24]).

Here, we consider geometric words which satisfy the following (generalized) restricted growth property

ωk ≤ d+ max{ω0, . . . , ωk−1}, (1 ≤ k ≤ n) (1)

with ω0 := 0 and d ≥ 1.
For d = 1 such words are in a bijective correspondence with set partitions: order the blocks of

a set partition according to ascending values of the smallest elements from each block; then, define
ωi to be the block which contains the i-th element. It is easy to see that every such word satisfies
(1) with d = 1, and conversely, every word satisfying (1) with d = 1 corresponds to a set partition.
This and the fact that they are related to approximate counting (see Prodinger [37]) sparked the
recent interest in stochastic properties of geometric words satisfying (1) with d = 1.

We recall some of the results. The first quantity which was studied was the probability pn that
a geometric word satisfies (1) with d = 1, for which exact formulas were obtained by Mansour
and Shattuk [28] and Oliver and Prodinger [29]. In addition, the authors of [29] also obtained the
following asymptotic result

pn ∼
qQ(p)

log (1/q)Q(1)
nlog1/q p

∑
k

Γ
(
− log1/q p+ χk

)
n−χk , (2)

where χk = 2kπi/ log(1/q) and

Q(s) =
∏
`≥1

(
1− q`s

)
.

Moreover, in [37], Prodinger considered the number of left-to-right maxima L
(1)
n (or equivalently the

value of the maximal letter) of a geometric word of length n given (1) with d = 1 and derived an
asymptotic expansion of the mean

E
(
L(1)
n

)
∼ log1/q n+ Φ

(1)
1

(
log1/q n

)
,

where Φ
(1)
1 (z) is a one-periodic function. Our first result generalizes this to all higher moments. In

particular, this will imply non-convergence to a fixed limit distribution.

Theorem 1. We have, for all m ≥ 1,

E
(
L(1)
n − log1/q n

)m ∼ Φ(1)
m

(
log1/q n

)
,

where Φ
(1)
m (z) are one-periodic functions given in (9) below. As a consequence, L

(1)
n − log1/q n does

not converge to a fixed limit law.
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The interest in this result lies in the fact that for geometric words without (1) it is known that
the number of left-to-right maxima (suitable centered and normalized), in fact, does converge to
a limit law which is normal; see for example [4]. Thus, if we denote the number of left-to-right

maxima of a geometric word of length n given (1) with general d ≥ 1 by L
(d)
n , a natural question

is whether there is a phase change from non-convergence to a fixed limit law to convergence to
a normal limit law as d grows to infinity and if yes, where does the phase change occur? Both
questions are answered by our next result for whose formulation we need the following polynomial

P (z) = 1− p
d∑
`=1

q`−1z`.

Moreover, we use ρ to denote its (unique) positive real root.

Theorem 2. The sequence of random variables L
(d)
n , suitable centered and normalized, satisfies a

central limit theorem:
L

(d)
n + log1/q n/(ρP

′(ρ))√
log1/q n

d−→ N(0, σ2
d),

where

σ2
d :=

1

ρP ′(ρ)
+

P ′′(ρ)

ρP ′(ρ)3
+

1

ρ2P ′(ρ)2
.

Moreover, σ2
d > 0 if and only if d ≥ 2.

Note that the above result also holds for d = 1, but does not give a meaningful result in this
case.

As mentioned above, L
(1)
n can also be interpreted as the value of the maximal letter (or also

the number of blocks of the corresponding set partition). This, however, becomes wrong for d ≥ 2,
where the value of the maximal letter and the number of left-to-right maxima is different. Thus,
we investigate next the value of the maximal letter of a geometric word of length n given (1) with

d ≥ 2 which we denote by M
(d)
n . Here, we do not have a phase change from non-convergence to

convergence to a fixed limit law and, in fact, Theorem 1 can be generalized to all d ≥ 1 (for the
mean this was already proved by Fuchs and Prodinger in [13]).

Theorem 3. We have, for all m ≥ 1,

E
(
M (d)

n − log1/q n
)m ∼ Φ(d)

m

(
log1/q n

)
,

where Φ
(d)
m (z) are one-periodic functions given in (11) below. As a consequence, M

(d)
n − log1/q n does

not converge to a fixed limit law.

Finally, we will consider the number Nn of times the maximal letter occurs in a geometric word
of length n, where for the sake of the simplicity, we only consider the case d = 1 (this corresponds to
the size of the last block in the corresponding set partition, where the blocks are ordered as above).
Again, all the moments exhibit periodic fluctuations preventing convergence to a fixed limit law.

Theorem 4. We have, for all m ≥ 1,

ENm
n ∼ Ψm

(
log1/q n

)
,

where Ψm(z) are one-periodic functions given in (13) below. As a consequence, Nn does not converge
to a fixed limit law.
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We conclude the introduction with a short sketch of the paper. In the next section, we consider
left-to-right maxima and prove Theorem 1 and Theorem 2. The method of proof will be a refinement
of the method from [13], which will be recalled in the next section as well. The same approach can
be also used to establish Theorem 3, whose proof will be presented in Section 3. Finally, the proof
of Theorem 4 is similar, too, and will be briefly sketched in Section 4.

2 Left-to-right Maxima

In this section, we are going to consider the number of left-to-right maxima and prove Theorem 1
and Theorem 2. For the proof, we will refine the method from [13], which relied on the Mellin
transform and the theory of analytic depoissonization. The former is a classical tool in analytic
combinatorics and the reader is referred to the superb survey by Flajolet, Gourdon and Dumas [12]
for background. For the latter, see the survey of Jacquet and Szpankowski [17] (and also Hwang,
Fuchs and Zacharovas [16] from which the language used below is borrowed).

First, we use pn,k to denote the probability that a geometric word of length n satisfying (1) has
exactly k left-to-right maxima. Moreover, we set pn =

∑
k≥0 pn,k, which is the probability that a

geometric word of length n satisfies (1). Note that for d = 1, the asymptotics of this probability

was given in the introduction. By definition of L
(d)
n , we have

P
(
L(d)
n = k

)
=
pn,k
pn

.

The crucial observation (already made in [13]) is that pn,k satisfies the following recurrence

pn+1,k =
d∑
`=1

pq`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`jpj,k−1, (n ≥ 0, k ≥ 1) (3)

with initial conditions pn,0 = [[n = 0]] and p0,k = [[k = 0]], where [[·]] is the Iverson bracket. This
recurrence is easily explained: we first condition on the first letter `, which by definition satisfies
1 ≤ ` ≤ d (the probability for this is pq`−1, which is the factor after the first sum); next, we condition
on the event that the remaining n letters contain exactly n− j letters which are ≤ `. There are

(
n
j

)
choices of these letters and the probability that they are all ≤ ` is (1− q`)n−j. Moreover, the final
j letters are all larger than ` (the probability for this is q`j) and they form again a geometric word
satisfying (1) and having one less left-to-right maxima (so, their probability is given by pj,k−1).

Our goal is to use this recurrence in order to find an asymptotic expansion of
∑

k≥0 pn,ke
kt. To

this end, we use poissonization

L̃(z, t) := e−z
∑
n≥0

∑
k≥0

pn,ke
kt z

n

n!

which means that we replace n by a Poisson random variable of parameter z. Due to concentration
of the Poisson distribution, we expect

L̃(n, t) ∼
∑
k≥0

pn,ke
kt (4)

which is called the Poisson heuristic and will be justified below with the theory of analytic depois-
sonization. The advantage of poissonization is that (3) becomes

L̃(z, t) +
∂

∂z
L̃(z, t) = pet

d∑
`=1

q`−1L̃(q`z, t)
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and this differential-functional equation can be asymptotically solved.
For this, we apply the Mellin transform to the differential-functional equation, where the Mellin

transform of a function f̃(x) is defined as

M [f̃(x);ω] =

∫ ∞
0

f̃(x)xω−1dx.

By properties of the Mellin transform, the equation becomes

M [L̃(z, t);ω]− (ω − 1)M [L̃(z, t);ω − 1] = (1− Pt(q−ω))M [L̃(z, t);ω],

where

Pt(z) = 1− pet
d∑
`=1

q`−1z`.

(Note that P0(z) equals P (z) from the introduction.) Next, it is advantageous to consider the
normalization M̄ [L̃(z, t);ω] = M [L̃(z, t);ω]/Γ(ω). This yields

M̄ [L̃(z, t);ω] =
M̄ [L̃(z, t);ω − 1]

Pt(q−ω)
.

This recurrence has the general solution

M̄ [L̃(z, t);ω] =
c(t)

Pt(q−ω)Ωt(q−ωet)
,

where
Ωt =

∏
`≥1

Pt(q
`s)

and c(t) is a suitable function, which can be obtained by the observation that L̃(0, t) = 1 and
applying the direct mapping theorem from [12] (Theorem 3 on page 16) yielding

lim
ω→0

M̄ [L̃(z, t);ω] =
M [L̃(z, t);ω]

Γ(ω)
=

1/ω + · · ·
1/ω + · · ·

= 1.

Using this gives that
c(t) = Pt(1)Ωt(1)

and hence

M [L̃(z, t);ω] = Γ(ω)
Pt(1)Ωt(1)

Pt(q−ω)Ωt(q−ω)
. (5)

The reason for using Mellin transform is that there is an inverse formula

L̃(z, t) =
1

2πi

∫
↑
M [L̃(z, t);ω]z−ωdω,

where the integral is along a suitable chosen vertical line in the complex plane (here, <(ω) = ε with
ε > 0 suitable small such that the line <(ω) = ε is entirely contained in the domain of M [L̃(z, t)).
In order to get now an asymptotic expansion of L̃(z, t) as z → ∞, we move the line of integration
to the right and collect residues. Thus, we have to study the singularity structure of M [L̃(z, t)].
For this purpose, we first recall a lemma from [13] about the (unique) positive root ρ of P (z).
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Lemma 1. The root ρ of P (z) is a simple root and ρ > 1. Moreover, ρ is the only root of P (z)
with |z| ≤ ρ.

By this lemma and the analyticity of Pt(z) in z and t (recall that P0(z) = P (z)), we obtain that
for |t| ≤ ε with ε > 0 sufficiently small, Pt(z) has also a root ρt with the same properties as ρ in the
above lemma (with the only difference that the root might be now complex). Thus, we see from
(5), that the singularities of M [L̃(z, t)] which are closest to the imaginary axis are simple poles at
ω = log1/q ρt + χk with residues

Res
(
M [L̃(z, t);ω];ω = log1/q ρt + χk

)
=

Pt(1)Ωt(1)

log (1/q) ρtP ′t(ρt)Ωt(ρt)
Γ
(
log1/q ρt + χk

)
.

Applying now the residue theorem yields, as z →∞,

L̃(z, t) ∼ − Pt(1)Ωt(1)

log (1/q) ρtP ′t(ρt)Ωt(ρt)
z− log1/q ρt

∑
k

Γ
(
log1/q ρt + χk

)
z−χk ,

where this asymptotic holds uniformly in |t| ≤ ε with ε sufficiently small (the uniformity can be
seen directly or more generally comes from the fact that the denominator of (5) is analytic in both
ω and t).

Now, what is left is to justify the Poisson heuristic (4). Here, we use the notion of JS-admissibility
from [17] (the name comes from [16]) which ensures that we can depoissonize. The following lemma
is crucial.

Lemma 2. Let f̃(z, t) and g̃(z, t) be entire functions in z for |t| ≤ ε (ε > 0 is constant). Assume
that

f̃(z, t) +
∂

∂z
f̃(z, t) = pet

d∑
`=1

q`−1f̃(q`z, t) + g̃(z, t).

Then,
g̃(z, t) is uniformly JS-admissible ⇐⇒ f̃(z, t) is uniformly JS-admissible,

where uniform means here with respect to |t| ≤ ε.

Proof. Follows with the same method of proof as Proposition 6 in [16] (only minor modifications are
needed).

From this result and depoissonization, we obtain that∑
k≥0

pn,ke
kt ∼ − Pt(1)Ωt(1)

log (1/q) ρtP ′t(ρt)Ωt(ρt)
n− log1/q ρt

∑
k

Γ
(
log1/q ρt + χk

)
n−χk (6)

uniformly in |t| ≤ ε with ε > 0 sufficiently small. Dividing this by pn (whose asymptotics was
derived in [13], or alternatively, is also obtained from the above asymptotics by setting t = 0), we
obtain the following result.

Proposition 1. We have,

E
(
eL

(d)
n t
)
∼ Pt(1)Ωt(1)ρP ′(ρ)Ω0(ρ)

qdΩ0(1)ρtP ′t(ρt)Ωt(ρt)
n− log1/q(ρt/ρ)

∑
k Γ
(
log1/q ρt + χk

)
n−χk∑

k Γ
(
log1/q ρ+ χk

)
n−χk

(7)

uniformly in |t| ≤ ε with ε > 0 sufficiently small.

Now, we can use this result to prove Theorem 1 and Theorem 2.
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Proof of Theorem 1: Left-to-Right Maxima for d = 1. Since d = 1, (7) (slightly rearranged)
becomes

E
(
e

(
L
(1)
n −log1/q n

)
t

)
∼ (1− pet)Q(pet)

qQ(p)
·
∑

k Γ
(
− log1/q p− t/L+ χk

)
n−χk∑

k Γ
(
− log1/q p+ χk

)
n−χk

(8)

which holds uniformly in |t| ≤ ε with ε > 0 sufficiently small. From this, we obtain the asymptotics

of all moments of L
(1)
n − log1/q n by differentiation both sides (which is legitimate because of the

uniformity of the above expansions). This gives for the m-th moment

E
(
L(1)
n − log1/q n

)m ∼ Φ(1)
m

(
log1/q n

)
,

where

Φ(1)
m (x) =

dm

dtm
(1− pet)Q(pet)

qQ(p)
·
∑

k Γ
(
− log1/q p− t/L+ χk

)
e−2kπix∑

k Γ
(
− log1/q p+ χk

)
e−2kπix

∣∣∣∣∣
t=0

. (9)

For instance, for m = 1, this periodic function becomes

Φ
(1)
1 (x) = −αp −

1

L

∑
k Γ′

(
− log1/q p+ χk

)
e−2kπix∑

k Γ
(
− log1/q p+ χk

)
e−2kπix

with

αp =
∑
`≥0

pq`

1− pq`
.

This coincides with the result in [37].
As for the non-convergence part, first observe that {log1/q n} is dense in [0, 1]. (Here, {x} denotes

the fractional part of x.) Thus, we can always find subsequences which converge to two different

values in [0, 1]. Therefore, in order to show that L
(1)
n − log1/q n does not converge weakly to a fixed

limit law, we only have to show that for two suitable subsequences, we have that (8) converges to

two different functions. This problem, however, reduces to showing that Φ
(1)
1 (x) takes on at least

two different values. So, assume on the contrary, that Φ
(1)
1 (x) is constant. This would imply that∑

k

Γ′
(
− log1/q p+ χk

)
e−2kπix = c

∑
k

Γ
(
− log1/q p+ χk

)
e−2kπix.

These two Fourier series are equal if and only if all the coefficients coincide. This is, however,
impossible due to different speed of decay along vertical lines of Γ(x) and Γ′(x).

Proof of Theorem 2: Left-to-Right Maxima for d ≥ 2. We again use (7). First, note that
from the implicit function theorem, we have that ρt is an analytic function in t for small t with
Maclaurin series expansion, as t→ 0,

ρt = ρ+
t

P ′(ρ)
−
(

1

P ′(ρ)
+
P ′′(ρ)

P ′(ρ)3

)
t2

2
+O(t3).

Thus, as t→ 0,

− log1/q (ρt/ρ) =
µdt

L
+
σ2
dt

2

2L
+O(t3),
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where µd := −1/(ρP ′(ρ)). Now, we set t = u/
√

log1/q n with u fixed. Plugging this into the
expansions above and this expansion in turn into (7) yields after some computation

E
(

exp
(
L(d)
n u/

√
log1/q n

))
∼ exp

(
µdu
√

log1/q n+
σ2
dt

2

2

)
.

Hence,

E
(

exp
((
L(d)
n − µd log1/q n

)
u/
√

log1/q n
))
∼ eσ

2
dt

2/2 (10)

from which the claimed central limit theorem follows.
What is left is to show that σ2

d > 0 for all d ≥ 2 (note that σ2
1 = 0). Since we have an explicit

expression of σ2
d, one might try to show this from this explicit expression. However, we have not

been able to do so and leave such a direct proof as an open problem to the reader.
We will use instead a more subtle and (unfortunately) indirect argument. The idea of our proof

is to show that Var(L
(d)
n ) ≥ c log n for positive c > 0 and all n large enough. From this, our claim

clearly follows since

Var
(
L(d)
n

)
∼ E

(
L(d)
n − µd log1/q n

)2 ∼ σ2
d log1/q n

which follows by differentiating (10) which is legitimate since (10) holds uniformly in u with |u| ≤ ε
with ε > 0 suitable small.

In order to show the above lower bound for the variance, we will directly work with recurrences
and use some ideas of Schachinger from [38]. We first set

Sn(t) :=
∑
k≥0

pn,ke
kt.

Then, from the recurrence for pn,k, we obtain that

Sn+1(t) =
d∑
`=1

pq`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`jetSj(t), (n ≥ 0)

with initial condition S0(t) = 1. Next, we shift the mean

Tn(t) :=
∑
k≥0

pn,ke
(k−µd log∗

1/q n−Ξ1(log∗
1/q n))t = e−µd(log∗

1/q n)t−Ξ1(log∗
1/q n)tSn(t),

where log∗1/q n is the usual log for n ≥ 1 and 0 for n = 0, and Ξ1

(
log1/q n

)
, with Ξ1(x) a one-periodic

function, is the second term in the asymptotic expansion of the mean of L
(d)
n , which can be obtained

by differentiation of (7) and setting t = 0, i.e,

Ξ1(x) :=
d

dt

Pt(1)Ωt(1)ρP ′(ρ)Ω(ρ)

qdΩ(1)ρtP ′t(ρt)Ωt(ρt)
·
∑

k Γ
(
log1/q ρt + χk

)
e−2kπix∑

k Γ
(
log1/q ρ+ χk

)
e−2kπix

∣∣∣∣∣
t=0

.

Note that Tn(t) satisfies the recurrence

Tn+1(t) =
d∑
`=1

pq`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`je∆n,jtTj(t), (n ≥ 0)

8



with initial condition T0(t) = e−Ξ1(0)t and

∆n,j := 1− µd log∗1/q(n+ 1)− Ξ1

(
log∗1/q(n+ 1)

)
+ µd log∗1/q j + Ξ1

(
log∗1/q j

)
.

Differentiating this recurrence twice with respect to t and setting t = 0 gives for

νn :=
∑
k≥0

pn,k
(
k − µd log∗1/q n− Ξ1

(
log∗1/q n

))2

the following recurrence

νn+1 =
d∑
`=1

pq`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`jνj + ρn

with

ρn := 2
d∑
`=1

pq`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`j∆n,jmj + pn

d∑
`=1

pq`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`j∆2

n,j,

where
mn :=

∑
k≥0

pn,k
(
k − µd log∗1/q n− Ξ1

(
log∗1/q n

))
.

We need now a series of lemmas.

Lemma 3. As n→∞, we have that mn = o(n− log1/q ρ).

Proof. Note that
mn = pn

(
E
(
L(d)
n

)
− µd log∗1/q n− Ξ1

(
log∗1/q n

))
= o(pn),

where the last equality follows since µd log∗1/q +Ξ1

(
log∗1/q n

)
are the first two terms in the asymptotic

expansion of E
(
L

(d)
n

)
. The proof is now finished by plugging into this the asymptotics of pn, which

is obtained by setting t = 0 in (6).

Lemma 4. Let 1 ≤ ` ≤ d. Then, uniformly in j with |j − q`n| ≤ n2/3,

∆n,j ∼ 1− `µd.

Proof. Plugging j = q`n+O(n2/3) into the definition of ∆j,n and using Taylor series expansion yields
the claimed result.

Lemma 5. For n large enough, we have that ρn ≥ cn− log1/q ρ for a suitable c > 0.

Proof. We first consider the second sum in the definition of ρn, which we break into two parts

d∑
`=1

pq`−1
∑

|j−q`|≤n2/3

(
n

j

)(
1− q`

)n−j
q`j∆2

n,j +
d∑
`=1

pq`−1
∑

|j−q`|>n2/3

(
n

j

)(
1− q`

)n−j
q`j∆2

n,j.

The second part is easily shown to be exponentially small by Chernoff’s bound. Moreover, for the
first part, we can use Lemma 4 which shows that this part is bounded from below by a positive
constant for d ≥ 2 (note that this becomes wrong for d = 1 since ` = 1 and µ1 = 1). Thus, we get

pn

d∑
`=1

pq`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`j∆2

n,j ≥ c0pn ≥ c1n
− log1/q ρ

9



with c0 ≥ c1 > 0. Now, by a similar argument applied to the first sum in the definition of ρn with
Lemma 4 replaced by Lemma 3, we obtain that

2
d∑
`=1

pq`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`j∆n,jmj = o(n− log1/q ρ).

Putting these two estimates together gives the claimed result.
The proof of the positiveness of σ2

d for d ≥ 2 is now completed with the following proposition
which was essentially proved by Schachinger in [38].

Proposition 2. Let (bn)n≥1 be a given sequence and assume that an is defined by

an+1 =
d∑
`=1

qp`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`jaj + bn, (n ≥ n0)

with arbitrary initial conditions. If bn ≥ cn− log1/q ρ for n large enough with a suitable c > 0, then
an ≥ c0n

− log1/q ρ log n for n large enough with a suitable c0 > 0.

Proof. This follows with the same method of proof as Lemma 1, part (c) in [38].
Due to Lemma 5, we can apply the above proposition to νn and obtain that

νn ≥ c0n
− log1/q ρ log n

for n large enough with a suitable c0 > 0. But since

νn
pn

= E
(
L(d)
n − µd log∗1/q n− Ξ1

(
log∗1/q n

))2 ∼ Var
(
L(d)
n

)
,

the above bound for νn and the asymptotics of pn imply that Var
(
L

(d)
n

)
≥ c log n for n large enough

with a suitable c > 0. From this, it follows that σ2
d > 0 for all d ≥ 2 as claimed.

3 Maximal Letter

Here, we are going to prove Theorem 3. The method will be similar to the one used in the previous
section. Thus, we will only sketch it.

Recurrence. First, denote by qn,k the probability that a geometric word satisfies (1) with general
d and the maximal letter equals to k (note that for d = 1, we have that pn,k = qn,k). Then, as in
the last section

qn+1,k =
d∑
`=1

pq`−1

n∑
j=0

(
n

j

)(
1− q`

)n−j
q`jqj,k−`, (n ≥ 0, k ≥ 1)

with initial conditions qn,0 = [[n = 0]] and q0,k = [[k = 0]]. Note that the only different to the
recurrence in the previous section for pn,k is that the last term has second index k − ` instead of
k− 1. This is easily explained: after the first letter is fixed to be `, the remaining letters which are
larger than ` again form a geometric word satisfying (1) but with maximal letter being k − `.

10



Moment-generating Function. As in Section 2, we first consider

M̃(z, t) := e−z
∑
n≥0

∑
k≥0

qn,ke
kt z

n

n!
.

Then, we have

M̃(z, t) +
∂

∂z
M̃(z, t) =

d∑
`=1

pq`−1e`tM̃(q`z, t).

Now, by using the Mellin transform and solving the resulting equation in a similar way as in Section
2, we obtain that

M [M̃(z, t);ω] = Γ(ω)
P (et)Ω0(et)

P (etq−ω)Ω0(etq−ω)
.

Note that the singularities closest to the imaginary axis are simple poles at ω = log1/q ρ−t/ log (1/q)+
χk with residues

Res

(
M [M̃(z, t);ω];ω = log1/q ρ− t/ log (1/q) + χk

)

=
P (et)Ω0(et)

log (1/q) ρP ′(ρ)Ω0(ρ)
Γ
(
log1/q ρ− t/ log (1/q) + χk

)
.

Thus, by inverse the Mellin transform and depoissonization,∑
k≥0

qn,ke
kt ∼ − P (et)Ω0(et)

log (1/q) ρP ′(ρ)Ω0(ρ)
n− log1/q ρ+t/ log(1/q)

∑
k

Γ
(
log1/q ρ− t/ log (1/q) + χk

)
n−χk

uniformly in |t| ≤ ε with ε > 0 sufficiently small. Rearranging and dividing by pn gives the following
result.

Proposition 3. We have,

E
(
e

(
M

(d)
n −log1/q n

)
t

)
∼ P (et)Ω0(et)

qdΩ0(1)
·
∑

k Γ
(
log1/q ρ− t/ log (1/q) + χk

)
n−χk∑

k Γ
(
log1/q ρ+ χk

)
n−χk

uniformly in |t| ≤ ε with ε > 0 sufficiently small.

Moments and Non-convergence to a fixed Limit Law. First, note that differentiating the
expression in Proposition 3 once and setting t = 0 yields the main result from [13]. Differentiating
m times and setting t = 0 yields Theorem 3 with the periodic functions

Φ(d)
m (x) =

dm

dtm
P (et)Ω0(et)

qdΩ0(1)
·
∑

k Γ
(
log1/q ρ− t/ log (1/q) + χk

)
e−2kπix∑

k Γ
(
log1/q ρ+ χk

)
e−2kπix

∣∣∣∣∣
t=0

. (11)

Moreover, the claim about non-convergence to a fixed limit law is proved as in Section 2.

4 Number of Maximal Letters

Here, we will prove Theorem 4. The method is again as in Section 2. Thus, we will only highlight
differences.
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Recurrence. Denote by rn,k the probability that a geometric word of length n satisfies (1) with
d = 1 and has exactly k occurrences of the maximal letter. Then,

rn+1 = p

n∑
j=1

(
n

j

)
pn−jqjrj,k + pn+1[[n+ 1 = k]], (n ≥ 0, k ≥ 1)

with initial condition r0,k = 0 for all k ≥ 1. The explanation for this recurrence is similar as for
the one from Section 2: after fixing the first letter (which now can only be 1 since d = 1), either all
letters are one, in which case the probability is pn+1 if k = n+ 1 (this is the second term), or there
is at least one letter larger than one, in which case the problem can be reduced to considering only
the subword with letters all larger than one (this is the first term).

Moment-generating Function. Set

Ñ(z, t) := e−z
∑
n≥0

∑
k≥1

rn,ke
kt z

n

n!
.

Then, we have

Ñ(z, t) +
∂

∂z
Ñ(z, t) = pÑ(qz, t) + pete(pet−1)z.

The next step is to apply the Mellin transform which gives

M [Ñ(z, t);ω]− (ω − 1)M [Ñ(z, t);ω − 1] = pq−ωM [Ñ(z, t);ω] + pet(1− pet)−ωΓ(ω).

Define M̄ [Ñ(z, t);ω] = M [Ñ(z, t);ω]/Γ(ω). Then, we find

M̄ [Ñ(z, t);ω] =
M̄ [Ñ(z, t);ω − 1]

1− pq−ω
+
pet(1− pet)−ω

1− pq−ω
.

This recurrence is slightly different from the ones encountered before. However, it has again a
general solution

M̄ [Ñ(z, t);ω] =
pet

(1− pq−ω)Q(pq−ω)

∑
`≥0

(1− pet)−ω+`Q(pq−ω+`) +
c(t)

(1− pq−ω)Q(pq−ω)
.

In order to find c(t) observe that Ñ(0, t) = 0. Thus, by the direct mapping theorem from [12], we
have that limω→0 M̄ [Ñ(z, t);ω] = 0. This in turn yields that

c(t) = −pet
∑
`≥0

(1− pet)`Q(pq`).

Plugging this into the expression above gives that

M [Ñ(z, t);ω] =
Γ(ω)pet

(1− pq−ω)Q(pq−ω)

∑
`≥0

(
(1− pet)−ω+`Q(pq−ω+`)− (1− pet)`Q(pq`)

)
.

The remaining argument runs now along similar lines as in Section 2. More precisely, after applying
the inverse Mellin transform and depoissonization, we obtain that∑

k≥1

rn,ke
kt ∼ petnlog1/q p

log (1/q)Q(1)

∑
k

∑
`≥0

(
(1− pet)log1/q p−χk+`Q(q`)

− (1− pet)`Q(pq`)
)

Γ
(
− log1/q p+ χk

)
n−χk

uniformly in |t| ≤ ε with ε > 0 suitable small. Finally, dividing by pn gives the following result.

12



Proposition 4. We have,

E(eNnt)

∼ pet

qQ(p)
·
∑

k

∑
`≥0

(
(1− pet)log1/q p−χk+`Q(q`)− (1− pet)`Q(pq`)

)
Γ
(
− log1/q p+ χk

)
n−χk∑

k Γ
(
− log1/q p+ χk

)
n−χk

uniformly in |t| ≤ ε with ε > 0 suitable small.

Moments and Non-convergence to a fixed Limit Law. First, note that plugging in t = 0
into the result from Proposition 4 must give 1. This gives the following curious identity, for which
we will give a direct proof in the appendix.

Corollary 1. We have, ∑
`≥0

(
q`

p
Q(q`)− q`Q(pq`)

)
=
q

p
Q(p). (12)

Next, observe that the claimed expansions of the moments of Theorem 4 follows from Proposition
4 and differentiation. In particular this yields for the periodic function Ψm(x),

dm

dtm
pet

qQ(p)
·
∑

k

∑
`≥0

(
(1− pet)log1/q p−χk+`Q(q`)− (1− pet)`Q(pq`)

)
Γ
(
− log1/q p+ χk

)
e−2kπix∑

k Γ
(
− log1/q p+ χk

)
e−2kπix

∣∣∣∣∣
t=0

.

(13)
For instance, for m = 1, this gives

1−
p log1/q p

q2Q(p)
− βp
qQ(p)

+
p

q2Q(p)
·
∑

k χkΓ
(
− log1/q p+ χk

)
n−χk∑

k Γ
(
− log1/q p+ χk

)
n−χk

,

where

βp = p2
∑
`≥0

(
`q`−1

p
Q(q`)− `q`−1Q(pq`)

)
.

The non-convergence to a fixed limit law follows from this as in Section 2.
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5 Appendix: A Direct Proof of (12).

We use the following famous identity of Euler:

∑
j≥0

(−1)jq(
j
2)

(1− q) · · · (1− qj)
zj =

∏
`≥0

(1− q`z). (14)
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This identity implies that

Q(s) =
∑
j≥0

(−1)jq(
j+1
2 )

(1− q) · · · (1− qj)
sj.

Now, observe that

1

p

∑
`≥0

q`Q(q`) =
1

p

∑
j≥0

(−1)jq(
j+1
2 )

(1− q) · · · (1− qj)
∑
`≥0

q(j+1)`

= −1

p

∑
j≥0

(−1)j+1q(
j+1
2 )

(1− q) · · · (1− qj)(1− qj+1)
=

1

p
,

where in the last step, we again used (14). Similarly, one shows that∑
`≥0

q`Q(pq`) =
1− qQ(p)

p
.

Putting everything together gives the claimed result.
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