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Set Partitions

Example.

{{2, 7}, {1, 3, 4}, {5, 6}}.

Set partition of {1, 2, 3, 4, 5, 6, 7} with three blocks.

# of set partitions of {1, . . . , n}: Bell number Bn.

We have,

Bn ∼ n!
ee

r−1

rn
√

2πr(r + 1)er
,

where rer = n+ 1, i.e., asymptotically

r = log n− log logn+ o(1)
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Number of Blocks

# of set partitions with k blocks: Stirling partition number S(n, k).

Assume that all partitions are equally likely.

Xn = # of blocks of a random partition. Then,

P (Xn = k) =
S(n, k)

Bn
.

Theorem (Harper; 1967)

We have,
E(Xn) ∼ n

log n
, Var(Xn) ∼ n

log2 n
.

Moreover,
Xn − E(Xn)√

Var(Xn)

d−→ N(0, 1).
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Set Partitions as Words

Consider
{{2, 7}, {1, 3, 4}, {5, 6}}.

Choose smallest element of every block as block leader.

Arrange blocks such that block leaders are increasing.

{
#1︷ ︸︸ ︷

{1, 3, 4},
#2︷ ︸︸ ︷
{2, 7},

#3︷ ︸︸ ︷
{5, 6}}

ω1 · · ·ω7 with wi = # of the block, i.e.,

ω1 · · ·ω7 = 1211332.

This gives a 1-1 correspondence between set partitions and certain words.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 4 / 32



Set Partitions as Words

Consider
{{2, 7}, {1, 3, 4}, {5, 6}}.

Choose smallest element of every block as block leader.

Arrange blocks such that block leaders are increasing.

{
#1︷ ︸︸ ︷

{1, 3, 4},
#2︷ ︸︸ ︷
{2, 7},

#3︷ ︸︸ ︷
{5, 6}}

ω1 · · ·ω7 with wi = # of the block, i.e.,

ω1 · · ·ω7 = 1211332.

This gives a 1-1 correspondence between set partitions and certain words.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 4 / 32



Set Partitions as Words

Consider
{{2, 7}, {1, 3, 4}, {5, 6}}.

Choose smallest element of every block as block leader.

Arrange blocks such that block leaders are increasing.

{
#1︷ ︸︸ ︷

{1, 3, 4},
#2︷ ︸︸ ︷
{2, 7},

#3︷ ︸︸ ︷
{5, 6}}

ω1 · · ·ω7 with wi = # of the block, i.e.,

ω1 · · ·ω7 = 1211332.

This gives a 1-1 correspondence between set partitions and certain words.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 4 / 32



Set Partitions as Words

Consider
{{2, 7}, {1, 3, 4}, {5, 6}}.

Choose smallest element of every block as block leader.

Arrange blocks such that block leaders are increasing.

{
#1︷ ︸︸ ︷

{1, 3, 4},
#2︷ ︸︸ ︷
{2, 7},

#3︷ ︸︸ ︷
{5, 6}}

ω1 · · ·ω7 with wi = # of the block, i.e.,

ω1 · · ·ω7 = 1211332.

This gives a 1-1 correspondence between set partitions and certain words.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 4 / 32



Set Partitions as Words

Consider
{{2, 7}, {1, 3, 4}, {5, 6}}.

Choose smallest element of every block as block leader.

Arrange blocks such that block leaders are increasing.

{
#1︷ ︸︸ ︷

{1, 3, 4},
#2︷ ︸︸ ︷
{2, 7},

#3︷ ︸︸ ︷
{5, 6}}

ω1 · · ·ω7 with wi = # of the block, i.e.,

ω1 · · ·ω7 = 1211332.

This gives a 1-1 correspondence between set partitions and certain words.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 4 / 32



Geometric Words

ω = ω1 · · ·ωn: word corresponding to a set partition.

ω satisfies restricted growth property (RGP):

ωi ≤ 1 + max{ω0, . . . , ωi−1} with ω0 = 0.

Largest letter of ω=# of blocks.

Random Model on Words:

ωi independent, geometric random variables with success probability p.

Words generated by this random model are called geometric words.

pn: probability that a geometric word satisfies RGP.
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Results for pn (i)

q = 1− p.

(x; q)n = (1− x)(1− xq) · · · (1− xqn−1).

(x; q)∞ = limn→∞(x; q)n.

Theorem (Oliver, Prodinger; 2011; Mansour, Shattuck; 2012)

We have,

pn = p

n−1∑
j=0

(−1)j
(
n− 1

j

)
qj(p; q)j

=

n∑
j=0

(−1)j
(
n

j

)
(p; q)j .
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Results for pn (ii)

Q = 1/q.

L = logQ.

χk = 2πik/L.

Theorem (Oliver, Prodinger; 2011)

We have,

pn ∼
(p; q)∞
L(q; q)∞

Γ(− logQ p)n
logQ p + nlogQ pΨ(logQ n),

where Ψ(z) is the 1-periodic function with average value 0 and

Ψ(z) =
(p; q)∞
L(q; q)∞

∑
k 6=0

Γ(− logQ p+ χk)e
−2πikz.
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Largest Letter

pn,k: probability that a geometric word has largest letter k and satisfies
RGP.

nq = 1 + q + q2 + · · ·+ qn−1 =
1− qn

1− q
.

nq! = 1q2q · · ·nq.(
n

k

)
q

=
nq

kq(n− k)q
.

Theorem (Mansour, Shattuck; 2012)

We have,

pn,k =
pn

kq!

k∑
j=0

(−1)jq(
j
2)((k − j)q)n

(
k

j

)
q

.
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Average Value of Largest Letter

Xn: largest letter of geometric word subject to RGP. Then,

P (Xn = k) =
pn,k
pn

.

Theorem (Prodinger; 2012)

We have,

E(Xn) ∼ logQ n− αp −
ψ(− logQ p)

L
+ Φ(logQ n),

where Φ(z) is a 1-periodic function with average value 0, ψ = Γ′/Γ and

αp =
∑
l≥0

pql

1− pql
.
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Approximate Counting with Black Holes

State diagram:

0 1 2 3 4
p

1− q

pq

1− q2

pq2

1− q3

pq3

1− q4

· · ·

In every state there is a positive probability of violating RGP.

Above diagram implies

pn,k = pqk−1pn−1,k−1 + (1− qk)pn−1,k.

Prodinger used this as starting point for his analysis.
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Approximate Counting

State diagram:

0 1 2 3 4
1

1− q

q

1− q2

q2

1− q3

q3

1− q4

· · ·

Approximate Counting (Morris 1978):

Counter Cn with C0 = 0 and

Cn+1 =

{
Cn + 1, with probability qCn ;

Cn, with probability 1− qCn .

Only Θ(log logn) space is needed for counting n objects.
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Applications

Approximate counting has found many applications:

Analysis of the Webgraph.

Monitoring network traffic.

Finding patterns in protein and DNA sequencing.

Computing frequency moments of data streams.

Data storage in flash memory.

Etc.

Many refinements have been proposed.
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Analysis of Approximate Counting

Flajolet (1985):

E(Cn) ∼ logQ n+ Cmean + F (logQ n),

where F (z) is a 1-periodic function

and

Var(Cn) ∼ Cvar +G(logQ n),

where G(z) is a 1-periodic function and

Cvar =
π2

6L2
− α− β +

1

12
− 1

L

∑
l≥1

1

l sinh(2lπ2/L)

with α =
∑

l≥1 q
l/(1− ql) and β =

∑
l≥1 q

2l/(1− ql)2.
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Methods

Many different methods have been used:

Mellin Transform: Flajolet (1985); Prodinger (1992)

Rice Method: Kirschenhofer & Prodinger (1991)

Euler Transform: Prodinger (1994)

Analysis of Extreme Value Distributions: Louchard & Prodinger
(2006)

Martingale Theory: Rosenkrantz (1987)

Probability Theory: Robert (2005)

Poisson-Laplace-Mellin Method: F. & Lee & Prodinger (2012).

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 14 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100 010011 100001 111110

011110 1101111

0 1

0 1 0 1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100 010011 100001 111110

011110 1101111

0 1

0 1 0 1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100 010011 100001 111110

011110 1101111

0 1

0 1 0 1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011

101011

000100 010011 100001 111110

011110 1101111

0

1

0 1 0 1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011

101011

000100 010011

100001

111110

011110 1101111

0

1

0 1

0

1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100 010011

100001

111110

011110 1101111

0 1

0 1

0

1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100 010011

100001 111110

011110 1101111

0 1

0 1

0 1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100 010011

100001 111110

011110

1101111

0 1

0 1

0 1

1

0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100

010011 100001 111110

011110

1101111

0 1

0

1 0 1

1

0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100

010011 100001 111110

011110 1101111

0 1

0

1 0 1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100 010011 100001 111110

011110 1101111

0 1

0 1 0 1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 15 / 32



Random Model and Leftmost Path

Random Model:

Bits are generated by independent Bernoulli random variables with mean p.

Two types of trees:

p = 1/2: symmetric digital search tree;

p 6= 1/2: asymmetric digital search tree.

Length of the Leftmost Path:

Xn: number of vertices on leftmost path.

Note that:
Xn

d
= Cn.
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Distributional Recurrence of Xn

Xn+1
d
= XIn + 1

In
d
= Binomial(n, q);

Xn, In independent.

Root

Size:

In

Size:

n−In

0 1

Recurrence of moments:

fn+1 =

n∑
j=0

(
n

j

)
qjpn−jfj + gn.
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Analytic Methods for DSTs

Rice Method:

Introduced by Flajolet and Sedgewick.

Approach of Flajolet and Richmond:

Based on Euler transform, Mellin transform, and singularity analysis.

Approach via Analytic Depoissonization:

Introduced by Jacquet & Regnier and Jacquet & Szpankowski. Based
on saddle point method and Mellin transform.

Poisson-Laplace-Mellin Approach:

Introduced by F. & Hwang & Zacharovas. Based on analytic
depoissonization and a combination of Laplace and Mellin transform.
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Variance of Approximate Counting

Qn = (q; q)∞/(q
n+1; q)∞; Q∞ = limn→∞Qn.

Theorem (F., Lee, Prodinger; 2012)

We have,
Var(Cn) ∼

∑
k

gke
2kπi logQ n,

where

gk =
Q∞

LΓ(1 + χk)

∑
h,l,j≥0

(−1)jqh+l+(j+1
2 )

QhQlQj
ϕ(χk; q

h+j + ql+j).

Here,

ϕ(χ;x) =

{
π(xχ − 1)/(sin(πχ)(x− 1)), if x 6= 1;

πχ/ sin(πχ), if x = 1.
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An Identity

Corollary (F., Lee, Prodinger; 2012)

We have,

Q∞
L

∑
h,l,j≥0

(−1)jqh+l+(j+1
2 )

QhQlQj
ψ(qh+j + ql+j)

=
π2

6L2
− α− β +

1

12
− 1

L

∑
l≥1

1

l sinh(2lπ2/L)
,

where

ψ(x) =

{
log x/(x− 1), if x 6= 1;

1, if x = 1.
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Geometric Words satisfying GRGP

ω = ω1 · · ·ωn: geometric word.

ω satisfies generalized restricted growth property (GRGP):

ωi ≤ d+ max{ω0, . . . , ωi−1} with ω0 = 0,

where d ≥ 1 fixed.

pn: probability that a geometric word satisfies GRGP.

pn,k: probability that a geometric word with largest letter k satisfies GRGP.

Xn: largest letter of geometric word subject to GRGP. Again,

P (Xn = k) =
pn,k
pn

.
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Analysis of pn (i)

Conditioning on first letter and # of letters ≤ first letter:

pn+1 =

d∑
l=1

pql−1
n∑
j=0

(
n

j

)
(1− ql)n−jqljpj .

Set

f̃(z) = e−z
∑
n≥0

pn
zn

n!
.

Then,

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz).

This is the probability in the Poisson model.
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Poisson Heuristic

Poisson Heuristic:

pn sufficiently smooth =⇒ pn ≈ f̃(n) = e−n
∑
j≥0

pj
nj

j!
.

More precisely: if pn is smooth enough,

pn ∼
∑
j≥0

f̃ (j)(n)

n!
τj(n) = f̃(n)− n

2
f̃
′′
(n) + . . . ,

where τj(n) := n![zn](z − n)jez.

This is called Poisson-Charlier expansion (can be already found in
Ramanujan’s notebooks).
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Jacquet-Szpankowski-admissibility (JS-admissibility)

f̃(z) is called JS-admissible if

(I) Uniformly for | arg(z)| ≤ ε,

f̃(z) = O
(
|z|α logβ |z|

)
,

(O) Uniformly for ε < | arg(z)| ≤ π,

f(z) := ez f̃(z) = O
(
e(1−ε)|z|

)
.

Theorem (Jacquet, Szpankowski; 1998)

If f̃(z) is JS-admissible, then

fn ∼ f̃(n)− n

2
f̃
′′
(n) + · · · .
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Depoissonization

JS-admissibility satisfies closure properties:

(i) f̃ , g̃ JS-admissible, then f̃ + g̃ JS-admissible.

(ii) f̃ JS-admissible, then f̃ ′ JS-admissible. Etc.

Proposition

Consider

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz) + g̃(z).

We have,

g̃(z) JS-admissible ⇐⇒ f̃(z) JS-admissible.
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Analysis of pn (ii)

Recall

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz).

Obviously, f̃(z) is JS-admissible. Thus,

pn ∼ f̃(n).

We only have to find an asymptotic of f̃(z).

This can be done via Mellin transform.

M [f̃(z); s] =

∫ ∞
0

f̃(z)zs−1dz.
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Analysis of pn (iii)

We have,

M [f̃(z); s] =
qdΩ(1)Γ(s)

P (q−s)Ω(q−s)
,

where

P (z) = 1− p
d∑
l=1

ql−1zl

and
Ω(s) =

∏
j≥1

P (sqj).

Lemma

Let ρ be the smallest positive root of P (z). Then, ρ is simple and the only
root with |z| ≤ ρ.
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Converse Mapping Theorem

Theorem (Flajolet, Gourdon, Dumas; 1995)

Let the Mellin transform of f̃(z) exist in the strip 〈α, β〉.

Assume that M [f̃(z); s] can be continued to a meromorphic function on
〈α, γ〉 with β < γ with simple poles at s1, · · · , sk.

Then, under some technical conditions,

f̃(z) = −
k∑
j=1

Res(M [f̃(z); s], s = sj)z
−sj +O

(
z−γ

)
as z →∞.
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Analysis of pn (iv)

M [f̃(z); s] has simple poles at logQ ρ+ χk with

Res(M [f̃(z); s]) =
qdΩ(1)

LρP ′(ρ)Ω(ρ)
Γ(logQ ρ+ χk).

Thus,

f̃(z) ∼ − qdΩ(1)

LρP ′(ρ)Ω(ρ)
z− logQ ρ

∑
k

Γ(logQ ρ+ χk)z
−χk

and

pn ∼ −
qdΩ(1)

LρP ′(ρ)Ω(ρ)
n− logQ ρ

∑
k

Γ(logQ ρ+ χk)n
−χk .
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Result for pn

Theorem (F., Prodinger; 2013)

We have,

pn ∼ −
qdΩ(1)

LρP ′(ρ)Ω(ρ)
Γ(logQ ρ)n− logQ ρ + n− logQ ρΨ(logQ n),

where Ψ(z) is the 1-periodic function with average value 0 and

Ψ(z) = − qdΩ(1)

LρP ′(ρ)Ω(ρ)

∑
k 6=0

Γ(logQ ρ+ χk)e
−2πikz.

For d = 1: ρ = 1/p and result coincides with Oliver and Prodinger’s result.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 30 / 32



Average Value of Xn

Xn: largest letter of geometric word subject to GRGP.

Similar (but more involved) analysis gives:

Theorem (F., Prodinger; 2013)

We have,

E(Xn) ∼ logQ n− αp −
ψ(logQ ρ)

L
+ Φ(logQ n),

where Φ(z) is a 1-periodic function with average value 0, ψ = Γ′/Γ and

αp = −
∑
l≥0

qlP ′(ql)

P (ql)
.
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Further Extensions

Further Restrictions on Geometric Words:

Geometric words satisfying RGP with largest letter k and fixed levels,
rises, descends, etc.

More properties of Xn:

Find variance, higher moments and limit laws.

Generality of our method:

The method seems to be applicable to asymmetric DSTs with
log p/ log q ∈ Q. This might yield simplifications of expressions in
asymptotics of total path length, peripheral path length, profile,
number of leaves, patterns, etc.
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