
DIGITAL EXPANSION OF EXPONENTIAL SEQUENCES∗

MICHAEL FUCHS∗∗

Abstract. We consider the q-ary digital expansion of the first N terms
of an exponential sequence an. Using a result due to Kiss und Tichy [8],
we prove that the average number of occurrences of an arbitrary digital
block in the last c logN digits is asymptotically equal to the expected
value. Under stronger assumptions we get a similar result for the first

(logN)
3

2
−ε digits, where ε is a positive constant. In both methods, we

use estimations of exponential sums and the concept of discrepancy of
real sequences modulo 1 plays an important role.

1. Introduction

In this paper, we write N,Z,R for the sets of positive integers, integers,
and real numbers. With P, we denote the set of primes and for an element
of P we usually write p. For a real number x, we use the standard notations
e(x) = e2πix, {x} for the fractional part of x, and ‖x‖ for the distance from
x to the nearest integer.

Let q ≥ 2 be an integer. We consider for n ∈ N the q-ary digital expansion

(1) n =
∑

i≥0

di(n)q
i, 0 ≤ di(n) ≤ q − 1, ∀i.

We are going to introduce further notations, which we use throughout this
paper. We start with

(2) Bq(n) := #{i ≥ 1 | di(n) 6= di−1(n)},
which is the number of changes of digits (or the number of blocks) in the dig-
ital expansion of n. Furthermore, we write for arbitrary digits e0, e1, · · · , es
with s ≥ 0, 0 ≤ ei ≤ q−1, 0 ≤ i ≤ s, not all digits are equal to 0 and integers
a, b ≥ 0

(3) Bq,a,b(n; eses−1 · · · e0) := #{a ≤ i ≤ b | di−s+j(n) = ej , 0 ≤ j ≤ s}
for the number of occurrences of the digital block eses−1 · · · e0 in the digital
expansion of n between a and b. (If a < s then we start with i = s and if
we omit a and b then we assume i ≥ s.) If we use the word digital block, we
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2 MICHAEL FUCHS

always assume that at least one digit is not equal to zero. Finally, we use
the well known notation of

(4) Sq(n) :=
∑

i≥0

di(n)

for the sum-of-digits function.
In this paper, we consider the q-ary expansion of an exponential sequence

an, where a ≥ 2 is an integer. In a recent work Blecksmith, Filaseta, and
Nicol [5] proved the following result:

loga q ∈ R\Q =⇒ lim
n−→∞

Bq(a
n) =∞.

Later Barat, Tichy, and Tijdeman [3] gave a quantitative version of the
above result, by applying Baker’s theorem on linear forms in logarithm (see
for instance [1] or [2]). They proved the following result:

Theorem 1. Let a and q be integers both ≥ 2. Assume that loga q is irra-
tional. Then there exist effectively computable constants c0 and n0, where c0
is a positive real number and n0 is an integer, such that

Bq(a
n) > c0

logn

log logn

for all n ≥ n0.

Clearly, as a consequence of this result, we obtain the same lower bound
for the sum-of-digits function Sq(a

n) and for the mean value of the sum-of-
digits function of an exponential sequence.

Corollary 1. Let q, a be as in Theorem 1. Then we have, as N −→∞,

1

N

N
∑

n=1

Sq(a
n)À logN

log logN
.

One aim of this paper is to improve this lower bound. More generally we
are interested in the behavior of the following mean value

(5)
1

N

N
∑

n=1

Bq(a
n; eses−1 · · · e0)

where eses−1 · · · e0 is an arbitrary digital block. Of course, results about the
behavior of (5) imply results about other interesting mean values, e.g., the
mean value of the sum-of-digits function and the mean value of the number
of changes of digits.

First, we consider only the last digits in the digital expansion of the
exponential sequence. By using a result due to Kiss and Tichy [8], we can
prove that the average number of occurrences of an arbitrary digital block
is, except of a bounded error term, asymptotically equal to the expected
value. In detail the following theorem holds:
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Theorem 2. Let a, q be integer both ≥ 2 such that loga q is irrational. We
consider a digital block eses−1 · · · e0 with s ≥ 0,0 ≤ ei ≤ q − 1, 0 ≤ i ≤ s.
There exists a positive real constant γ, such that we have, as N −→∞,

1

N

N
∑

n=1

Bq,u(n),v(n)(a
n; eses−1 · · · e0) =

γ

qs+1
logqN +O(1),

with
u(n) =

[

n logq a− γ logqN
]

, v(n) =
[

n logq a
]

.

As an easy consequence, we can remove the log logN factor in the lower
bound of Corollary 1.

Corollary 2. Let a, q and eses−1 · · · e0 be as in Theorem 2. Then we have,
as N −→∞,

1

N

N
∑

n=1

Bq(a
n; eses−1 · · · e0)À logN

and consequently

1

N

N
∑

n=1

Bq(a
n)À logN

and

1

N

N
∑

n=1

Sq(a
n)À logN.

Next, we consider the first digits. Here it seems to be more convenient
to use the stronger assumption (a, q) = 1, instead of loga q ∈ R\Q. Then,
we are able to prove a result similar to Theorem 2 for the first logN digits,
but such a result yields no improvement of the lower bounds of the mean
values considered in Corollary 2. Therefore, we don’t state it, but we are
going to state a stronger result, which follows similarly but under stronger
assumptions, namely that q is a prime:

Theorem 3. Let a ≥ 2 be an integer and p ∈ P a prime with (a, p) = 1. We
consider a digital block eses−1 · · · e0 with s ≥ 0 and 0 ≤ ei ≤ p−1, 0 ≤ i ≤ s.
Further let ε, η be arbitrary positive real numbers and A1(N), A2(N) positive
integer-valued functions with

[(logpN)η] ≤ A1(N) < A2(N) ≤ [(logpN)
3

2
−ε].

Then we have for a positive real number λ, as N −→∞,

1

N

N
∑

n=1

Bp,A1(N)+1,A2(N)(a
n; eses−1 · · · e0)

=
1

ps+1
(A2(N)−A1(N)) +O

(

1

logλN

)

.

Again we have the following simple consequence:
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Corollary 3. Let a, p, and eses−1 · · · e0 be as in Theorem 3 and ε an arbi-
trary positive real number. Then we have, as N −→∞,

1

N

N
∑

n=1

Bp(a
n; eses−1 · · · e0)À (logN)

3

2
−ε

and consequently

1

N

N
∑

n=1

Bp(a
n)À (logN)

3

2
−ε

and

1

N

N
∑

n=1

Sp(a
n)À (logN)

3

2
−ε.

The paper is organized as follows: in section 2, we prove Theorem 2 and
in Section 3 Theorem 3. In the final section, we make some remarks.

2. Proof of the Theorem 2

In this section, we use the following notation: with a and q we denote two
integers both ≥ 2. We define α := loga q and assume that α is irrational.

First, we need the well-known concept of discrepancy (see [6]):

Definition 1. Let (xn)n≥1 be a sequence of real numbers and N ≥ 1. Then
the N-th discrepancy of the sequence xn is defined by

(6) DN (xn) = sup
[a,b)⊆[0,1)

∣

∣

∣

∣

∣

1

N

N
∑

n=1

χ[a,b)({xn})− (b− a)
∣

∣

∣

∣

∣

where χ[a,b) is the characteristic function of the set [a, b).

Our first Lemma is a famous inequality for the discrepancy, which is due
to Erdős and Turán [7].

Lemma 1. Let (xn)n≥1 be a sequence of real numbers and N ≥ 1. Then we
have

(7) DN (xn) ≤ c

(

K
∑

h=1

1

h

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e(hxn)

∣

∣

∣

∣

∣

+
1

K

)

for any positive integer K. The constant c is absolute.

Next, we need a result, which is a special case of a more general result due
to Kiss and Tichy [8]. The proof follows by using the Erdős-Turán inequality
together with Baker’s theorem on linear forms in logarithm.

Lemma 2. There exists a positive real constant γ such that

DN (−αn)¿ N−γ .

The last ingredient is a very simple fact, but it is one of the key ideas of
the proofs of Theorem 2 and Theorem 3.
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Lemma 3. Let n ∈ N and we consider the q-ary digital expansion (1) of n.
Let eses−1 · · · e0 be a digital block and put m =

∑s
i=0 eiq

i. Then for all k ≥ s

we have

(8) dk−s+j(n) = ej , 0 ≤ j ≤ s⇐⇒
{

n

qk+1

}

∈
[

m

qs+1
,
m+ 1

qs+1

[

.

Now, we are able to prove Theorem 2.

Proof of Theorem 2. Let K =
[

N
α

]

, l ≤ [Nγ ] a positive integer, where γ is

the constant in Lemma 3, and put m =
∑s

i=0 eiq
i. We consider

Al = #

{

(n, k)|1 ≤ n ≤ N, s ≤ k ≤ K : l +
m

qs+1
≤ an

qk+1
< l +

m+ 1

qs+1

}

.

It is easy to see that

Al = #
{

1 ≤ k ≤ K − s+ 1|∃n : 1 ≤ n ≤ N

log
(

l + m
qs+1

)

log a
≤ n− (k + s)α <

log
(

l + m+1
qs+1

)

log a

}

= #{1 ≤ k ≤ K̃|{−(k + s)α} ∈ I}+O(u
(l)
2 − u

(l)
1 ),

where K̃ = K − c log l − s + 1 with a suitable constant c and I is either

[{u(l)1 }, {u
(l)
2 }[ or [0, {u

(l)
2 }[∪[{u

(l)
1 }, 1[, where

u
(l)
1 =

log
(

l + m
qs+1

)

log a
, u

(l)
2 =

log
(

l + m+1
qs+1

)

log a
.

We use now the definition of discrepancy (6) and it follows

Al = K̃(u
(l)
2 − u

(l)
1 ) + O(K̃DK̃(−(k + s)α)) + O(u

(l)
2 − u

(l)
1 ).

Applying Lemma 3, we get

Al = K̃(u
(l)
2 − u

(l)
1 ) + O(N−γ+1) + O(u

(l)
2 − u

(l)
1 ).

Next, we consider

[Nγ ]
∑

l=1

Al =

[Nγ ]
∑

l=1

K̃(u
(l)
2 − u

(l)
1 ) + O(N) +

[Nγ ]
∑

l=1

O(u
(l)
2 − u

(l)
1 )

and it is an easy calculation that

[Nγ ]
∑

l=1

(u
(l)
2 − u

(l)
1 ) =

γ logN

qs+1 log a
+O(1),

and
[Nγ ]
∑

l=1

log l(u
(l)
2 − u

(l)
1 ) =

(γ logN)2

qs+1 log a
+O(1).
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Therefore, we have

(9)

[Nγ ]
∑

l=1

Al =
γN

qs+1
logqN +O(N)

In the sum on the left hand side of (9), we count all tuples (n, k), 1 ≤ n ≤
N, s ≤ k ≤ K, such that the following condition holds

l +
m

qs+1
≤ an

qk+1
< l +

m+ 1

qs+1
,

where l is an integer with 1 ≤ l ≤ [N γ ]. If we fix n, then, the above inequality
implies

max
{[

n logq a− logq

(

[Nγ ] +
m+ 1

qs+1

)]

, s
}

≤ k

≤
[

n logq a− logq

(

1 +
m

qs+1

)]

− 1

and Theorem 2 follows from (9). ¤

3. Proof of the Theorem 3

In this section a ≥ 2 is an integer and p ∈ P denotes a prime with
(a, p) = 1.

Let k be a positive integer. With τ(pk), we denote the multiplicative order
of a mod pk. For τ(p) we write just τ . If p is odd then, we denote by β the
smallest number such that pβ |aτ − 1. If p = 2 then, we set δ = 1 if a ≡ 1
mod 4 and δ = 2 if a ≡ 3 mod 4. In this case β is the smallest number such
that 2β |aδ − 1. This number β has the following property:

Lemma 4. Let a, p and β as above. For all integers n > β we have

τ(pn) = pτ(pn−1).

Proof. See [9]. ¤

For the proof of Theorem 3, we need estimations for special exponen-
tial sums. The first Lemma is a special case of a result, which is due to
Niederreiter [13].

Lemma 5. Let k ≥ 2, h be integers and (h, p) = 1. Assume that τ(pk) =
pτ(pk−1). Then it follows

τ(pk)
∑

n=1

e

(

h
an

pk

)

= 0.

The next result is due to Korobov (see [10] or [11]).

Lemma 6. Let m ≥ 2, h be integers with (a,m) = 1 and (h,m) = 1. Let τ
be the multiplicative order of a mod m. Then we have for 1 ≤ N ≤ τ

∣

∣

∣

∣

∣

N
∑

n=1

e

(

h
an

m

)

∣

∣

∣

∣

∣

≤
√
m(1 + log τ).
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We will apply this Lemma for the special case m = pk. Notice that this
lemma provides only a good estimation when N is not too small. We also
need good estimations for very small N . The best known result in this
direction is again due to Korobov (see [10] or [11]).

Lemma 7. Let k ≥ 1, h be integers and (h, p) = 1. Then for all integers N
with N ≤ τ(pk) we have

(10)

∣

∣

∣

∣

∣

N
∑

n=1

e

(

h
an

pk

)

∣

∣

∣

∣

∣

¿ N exp

(

−γ log
3N

log2 pk

)

,

where γ > 0 is an absolute constant and the implied constant depends only
on a and p.

If n is a positive integer then we write in the following for the p-ary digital
expansion of an:

an =
∑

i≥0

di(a
n)pi.

We prove now the following Lemma:

Lemma 8. Let eses−1 · · · e0 be a digital block to base p. Let ε, η > 0 be given
and N, k be positive integers such that

(11) (logpN)η < k ≤ (logpN)
3

2
−ε,

We consider

Ak = #{1 ≤ n ≤ N |dk−s+j(a
n) = ej , 0 ≤ j ≤ s}.

Then we have for an arbitrary positive real number λ, as N −→∞,

Ak =
N

ps+1
+O

(

N

logλN

)

and this holds uniformly for k with (11).

Proof. Put m =
∑s

i=0 eip
i. We use (8) and obtain

Ak = #

{

1 ≤ n ≤ N |
{

an

pk+1

}

∈
[

m

ps+1
,
m+ 1

ps+1

[}

.

With the definition of discrepancy (6) it follows

(12) Ak =
N

ps+1
+O

(

NDN

(

an

pk+1

))

,

where the implied O-constant is 1. In order to get the desired result, we have
to estimate the discrepancy on the right hand side. Therefore, we use once
more inequality (7).

Let 1 < δ < 2 be a real number. We distinguish between two cases.
First we consider k with

(13) δ logpN < k ≤ (logpN)
3

2
−ε
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Let λ > 0 be a real number and h ≤ logλN be a positive integer. First, we
observe for large enough N

pk+1

h
≥ N δ

logλN
≥ pβ+1N = plogp N+1+β ≥ p[logp N ]+1+β ,

where β is the integer introduced in the beginning of the section. We use
Lemma 5 and it follows

(14) τ(p[logp N ]+1+β) = p[logp N ]+1τ(pβ) ≥ N

if N is large enough. Because of (14) we can estimate the exponential sum

in inequality (7) with help of Lemma 8 for h ≤ logλN . It follows
∣

∣

∣

∣

∣

N
∑

n=1

e

(

h
an

pk+1

)

∣

∣

∣

∣

∣

≤ cN exp

(

−γ log3N

log2 pk+1

)

,

where c depends only on a, p and γ is absolute. With (13) we can estimate
the right hand side of the above inequality

exp

(

−γ log3N

(k + 1)2 log2 p

)

≤ exp
(

−γ̄(logpN)2ε
)

,

where γ̄ is a suitable constant.
Now we can finish the proof of the first case. We consider

DN

(

an

pk+1

)

¿ 1

N

K
∑

h=1

1

h

∣

∣

∣

∣

∣

N
∑

n=1

e

(

h
an

pk+1

)

∣

∣

∣

∣

∣

+
1

K

and choose K = [logλN ]. Then, with the estimation of the exponential sum,
we have

DN

(

an

pk+1

)

¿ 1

logλN
,

where the implied constant does not depend on k with (13). By (12) this
completes the proof of the first case.

Next, we consider

(15) (logpN)η < k ≤ δ logpN.

Let λ and h be as in the first case. With the notations of Lemma 5 and
because of (15) we have for large enough N

pk+1

h
≥ pβ+1.

It follows from Lemma 6 that the exponential sum in the inequality (7) is
0, if we sum over a period. Hence, we can use the estimation of Lemma 7:

∣

∣

∣

∣

∣

N
∑

n=1

e

(

h
an

pk+1

)

∣

∣

∣

∣

∣

≤
√

pk+1(1 + log τ(pk+1)).
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Using (15) it is an easy calculation to show that

1

N

∣

∣

∣

∣

∣

N
∑

n=1

e

(

h
an

pk+1

)

∣

∣

∣

∣

∣

¿ 1

N δ̄
,

where δ̄ is a suitable constant. Notice that the implied constant does not
depend on k.

The rest of the proof of the second case is similar to the first case. If we
combine the two cases, then we get the claimed result. ¤

Theorem 3 is an easy consequence of this Lemma:

Proof of Theorem 3. Of course the following equality is true

1

N

N
∑

n=1

Bp,A1(N)+1,A2(N)(a
n; eses−1 · · · e0) =

∑

A1(N)+1≤k≤A2(N)

1

N
Ak,

where Ak is as in Lemma 9.
We use now Lemma 9 and the claimed result follows. ¤

4. Remarks

Remark 1. In Theorem 2, we consider the last digits of the digital expansion
of the exponential sequence. Notice that the leading term γ

qs+1 logqN is

exactly the expected term, if one assumes that the digits are equidistributed.
A similar result should hold for more digits. However, with the method

of proof, it doesn’t seem to be possible to extend the range of digits in
order to prove a stronger result.

Remark 2. In Theorem 3, we are interested in the first digits of the
digital expansion of the exponential sequence. The result is of the same
type as Theorem 2, especially we have the expected order of magnitude.
Truncation of the first digits is necessary, because the multiplicative order
of a mod pk can be very small, for small k and therefore, it is possible that
not all digits occur at the k− th position. However, the lower bound for the
digit range could be reduced to c logp logpN + d, where c and d are suitable
constants, but then λ in the error term would not be arbitrary any more.

If we assume that p is not necessary a prime, then the method of proof
could be used to get a result for the first logN digits of the digital expansion.
In this situation only the simpler estimation of Lemma 7 for the involved
exponential sum of the form

N
∑

n=1

e

(

h
an

pk

)

, (a, p) = 1, (h, p) = 1,

is needed.
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These exponential sums have been very frequently studied, because they
are important in the theory of generating pseudo-random numbers with the
linear congruential generator (see vor instance [12] or [13]).

The proof of Theorem 3 heavily depends on estimations of these
exponential sums, especially one needs estimations for very short inter-
vals. Of course, better estimations would yield a better result, however, to
obtain good estimations for very short intervals seems to be a hard problem.

Remark 3. In the proof of Theorem 1, all digits of the digital ex-
pansions are considered. One can adopt this idea to get a lower bound for
the number of digits, which are not zero and therefore a lower bound for
the mean value of the sum-of-digits function. However, we have not been
able to obtain a lower bound better than the one in Theorem 1 with such
ideas. It seems that for better results by taking all digits in account, a
totally new method is needed.

We end with a conjecture, which seems to be far away from what can be
obtained with the methods introduced in this paper.

Conjecture 1. Let a, q ≥ 2 be integers and assume that loga q is irrational.
Let eses−1 · · · e0 be a digital block. Then we have

1

N

N
∑

n=1

Bq(a
n; eses−1 · · · e0) ∼

N log a

2qs+1 log q
.

As a consequence one would have N as lower bound for the mean values
in Corollary 2 and Corollary 3.

Acknowledgement. The author would like to thank Prof. Drmota
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[7] P. Erdős and P. Turán, On a problem in the theory of uniform distributions I,II,
Indagationes Math. 10, 1948, 370-378, 406-413.

[8] P. Kiss and R. F. Tichy, A discrepancy problem with applications to linear recurrences

I,II, Proc. Japan Acad. Ser. A Math. Sci. 65, 1989, no. 5, 135-138, no. 6, 191-194.
[9] N. M. Korobov, Trigonometric sums with exponential functions and the distribution

of signs in repeating decimals, Mat. Zametki 8, 1970, 641-652 = Math. Notes 8, 1970,
831-837.

[10] N. M. Korobov, On the distribution of digits in periodic fractions, Matem. Sbornik
89, 1972, 654-670.

[11] N. M. Korobov, Exponential Sums and Their Applications, Kluwer Acad. Publ.,
North-Holland, 1992.

[12] H. Niederreiter, On the Distribution of Pseudo-Random Numbers Generated by the

Linear Congruential Method II, Mathematics of Computation 28, 1974, 1117-1132.
[13] H. Niederreiter, On the Distribution of Pseudo-Random Numbers Generated by the

Linear Congruential Method III, Mathematics of Computation 30, 1976, 571-597.


