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Abstract

We study the size and the external path length of random tries and show that they are
asymptotically independent in the asymmetric case but strongly dependent with small pe-
riodic fluctuations in the symmetric case. Such an unexpected behavior is in sharp contrast
to the previously known results on random tries that the size is totally positively correlated
to the internal path length and that both tend to the same normal limit law. These two
dependence examples provide concrete instances of bivariate normal distributions (as limit
laws) whose correlation is 0, 1 and periodically oscillating. Moreover, the same type of
behaviors is also clarified for other classes of digital trees such as bucket digital trees and
Patricia tries.

AMS 2010 Subject Classifications. 60C05 60F05 68P05 05C05 68W40
Keywords. Random tries, covariance, total path length, Pearson’s correlation coefficient,
asymptotic normality, poissonization/de-Poissonization, integral transform, contraction method.

1 Introduction
Tries are one of the most fundamental tree-type data structures in computer algorithms; see
Knuth [18] and Mahmoud [19] for a general introduction. Their general efficiency depends
on several shape parameters, the principal ones including the depth, the height, the size, the
internal path-length (IPL), and the external path-length (EPL); see below for a more precise
description of those studied in this paper. While most of these measures have been extensively
investigated in the literature, we are concerned here with the question: how does the EPL de-
pend on the size in a random trie? Surprisingly, while the pair (IPL, size) is known to have
asymptotic correlation coefficient tending to one and to have the same normal limit law after
each being properly normalized (see [10, 12]), this paper aims to show that the pair (EPL, size)
exhibits a completely different behavior depending on the parameter of the underlying ran-
dom bits being biased or unbiased. This is a companion paper to [2] where we clarified the
dependence structure of another class of search trees in computer algorithms.

1



Given a sequence of binary strings (or keys), one can construct a binary trie (very similar
to constructing a dictionary of binary words) as follows. If n = 1, then the trie consists of a
single root-node holding the sole string; if n > 2, the root is used to direct the strings into the
corresponding subtree: if the first bit of the input string is 0 (or 1), then the string goes to the
left (or right) subtree; strings directed to the same subtree are then processed recursively in the
same manner but instead of splitting according to the first bit, the second bit of each string is
then used. In this way, a binary dictionary-type tree with two types of nodes is constructed:
external nodes for storing strings and internal nodes for splitting the strings; see Figure 1 for a
trie of seven strings.

00011100

0

01010100

0

01100111

1

1

0

10111010

0

11000011

0

11001000

0

11001010

1

1

0

0

1

1

Figure 1: A trie with n = 7 records: the (filled) circles represent internal nodes and rectangles
holding the binary strings are external nodes. In this example, Sn = 8,Kn = 27, andNn = 18.

The random trie model we consider here assumes that each of the n binary keys is an infinite
sequence of independent Bernoulli bits each with success probability 0 < p < 1. Then the trie
constructed from this sequence is a random trie.

We define three shape parameters in a random trie of n strings:

• Size Sn: the total number of internal nodes used (the circle nodes in Figure 1);

• IPL (or node path-length, NPL) Nn: the sum of the distance between the root and each
internal node;

• EPL (or key path-length, KPL) Kn: the sum of the distance between the root and each
external node.

We will use mostly NPL in place of IPL, and KPL in place of EPL, the reason being an eas-
ier comparison with the corresponding results derived for random m-ary search trees in the
companion paper [2]; see below for more details.

By the recursive definition and our model assumption, we have the following recurrence
relations 

Sn
d
= SBn + S∗n−Bn + 1,

Kn
d
= KBn +K∗n−Bn + n,

Nn
d
= NBn +N∗n−Bn + SBn + S∗n−Bn ,

(n > 2), (1)
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with the initial conditions Sn = Kn = Nn = 0 for n 6 1, where Bn = Binom(n, p) denotes
a binomial distribution with parameters n and p ∈ (0, 1). Also (S∗n), (K∗n), and (N∗n) are
independent copies of (Sn), (Kn) and (Nn), respectively. While many stochastic properties
of these random variables are known (see Clément et al. [3], Devroye [5] and [10] and many
references cited there), much less attention has been paid to their correlation and dependence
structure.

The asymptotic behaviors of the moments of random variables defined on tries typically
depend on the ratio log p

log q
being rational or irrational, where q = 1− p. So we introduce, similar

to [10], the notation

F [g](z) =

{∑
k∈Z gkz

−χk , if log p
log q
∈ Q;

g0, if log p
log q
6∈ Q,

(2)

where gk represents a sequence of (Fourier) coefficients and χk = 2rkπi
log p

when log p
log q

= r
l

with
r and l coprime. In simpler words, F [g](z) is a periodic function in the rational case, and a
constant in the irrational case. We also use F [·](z) as a generic symbol if the exact form of the
underlying sequence matters less, and in this case each occurrence may not represent the same
function.

With this notation, the asymptotics of the mean and the variance are summarized in the
following table; see [10, 15, 19] and the references therein for more information.

Shape parameters 1
n
(mean) ∼ 1

n
(variance) ∼

Size Sn F [·](n) F [g(1)](n)

NPL Nn
E(Sn)
n
· logn

h
V(Sn)
n
· (logn)2

h2

KPL Kn
logn
h

+ F [·](n)
pq log2 p

q

h2
· logn
h

+ F [g(3)](n)

Depth Dn E(Dn) = E(Kn)
n

V(Dn) = V(Kn)
n

+O(1)

Table 1: Asymptotic patterns of the means and the variances of the shape parameters discussed
in this paper. Here F [·](n) differs from one occurrence to another and h = −p log p− q log q

denotes the entropy. Expressions for g(1)
k and g(3)

k will be given below. All three random vari-
ables Sn, Nn, Kn are asymptotically normally distributed.

Note specially that the leading constant

λ = λp :=
pq log2 p

q

h3
=

(p log2 p+ q log2 q)− h2

h3

in the asymptotic approximation to V(Kn) equals zero when p = q, implying that V(Kn) is not
of order n log n but of linear order in the symmetric case. This change of order can be regarded
as the source property distinguishing between the dependence and independence of Kn on Sn.

On the other hand, we have the relation E(Kn) = E(Dn)n between the external path length
and the depth Dn, which is defined to be the distance between the root and a randomly chosen
external node (each with the same probability). Furthermore, we also have the asymptotic
equivalent V(Kn) ∼ V(Dn)n when p 6= 1/2 (or λ > 0), and a central limit theorem for Dn;
see Devroye [4].
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From Table 1, we see roughly that each internal node contributes logn
h

to Nn, namely, that
Nn ≈ Sn · logn

h
. Indeed, it was proved in [10] that the correlation coefficient of Sn and Nn

satisfies

ρ(Sn, Nn) ∼ 1 (0 < p < 1). (3)

Such a linear correlation was further strengthened in [12], where it was proved that both random
variables tend to the same normal limit law N1 (with zero mean and unit variance)(

Sn − E(Sn)√
V(Sn)

,
Nn − E(Nn)√

V(Nn)

)
d−→ (N1,N1),

where d−→ denotes convergence in distribution. In terms of the bivariate normal law N2 (see
Tong [27]), we can write(

Sn − E(Sn)√
V(Sn)

,
Nn − E(Nn)√

V(Nn)

)ᵀ

d−→ N2(0, E2),

where E2 =
(

1 1
1 1

)
is a singular matrix and Aᵀ denotes the transpose of matrix A.

We show that the correlation and dependence ofKn on Sn are drastically different. We start
with their correlation coefficient.

Theorem A. The covariance of the number of internal nodes and KPL in a random trie of n
strings satisfies

Cov(Sn, Kn) ∼ nF [g(2)](n),

where g(2)
k is given in Proposition A below, and their correlation coefficient satisfies

ρ(Sn, Kn) ∼

{
0, if p 6= 1

2

F (n), if p = 1
2
.

(4)

Here F (n) = F [g(2)](n)√
F [g(1)](n)F [g(3)](n)

is a periodic function with average value 0.927 · · · .

The result (4) is to be compared with (3) (which holds for all p ∈ (0, 1)): the surprising
difference here comes not only from the (common) distinction between p = 1

2
and p 6= 1

2
but

also from the (less expected) intrinsic asymptotic nature.
Furthermore, we show that this different behavior cannot be ascribed to the weak mea-

surability of nonlinear dependence of Pearson’s correlation coefficient because the limiting
distribution also exhibits a similar dependence pattern. (For the univariate central limit theo-
rems implied by the result below, see Jacquet and Régnier [14] where such results were first
established.)

Theorem B. (i) For p 6= 1
2
, we have(
Sn − E(Sn)√

V(Sn)
,
Kn − E(Kn)√

V(Kn)

)ᵀ

d−→ N2(0, I2),

where I2 denotes the 2× 2 identity matrix.
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Figure 2: p = 1
2
: periodic fluctuations of (i) ρ(Sn, Kn) (left) for n = 32, . . . , 1024, (ii)

Cov(Sn,Kn)√
V(Sn)(V(Kn)+1.046)

(middle) in logarithmic scale, and (iii) F (n) by its Fourier series expansion

(right). Note that the fluctuations are only visible by a proper correction in the denominator
because the amplitude of F is very small: |F (·)| 6 1.5× 10−5.

(ii) For p = 1
2
, we have

Σ
− 1

2
n

(
Sn − E(Sn)
Kn − E(Kn)

)
d−→ N2(0, I2),

where Σn denotes the (asymptotic) covariance matrix of Sn and Kn:

Σn := n

(
F [g(1)](n) F [g(2)](n)
F [g(2)](n) F [g(3)](n)

)
.

Alternatively, we may define

Σn := n

(
F [g(1)](n) F [g(2)](n)
F [g(2)](n) λ log n+ F [g(3)](n)

)
.

Then both cases can be stated in one as

Σ
− 1

2
n

(
Sn − E(Sn)
Kn − E(Kn)

)
d−→ N2(0, I2).

On the other hand, since for bivariate normal distribution, zero correlation implies indepen-
dence (see [27]), it is more transparent to split the statement into two cases. See Figure 3 for
(Monte Carlo) 3D-plots of the joint distributions of (Sn, Kn) when n = 107.

These results are to be compared with the corresponding ones for randomm-ary search trees
[2], and the differences for correlation coefficients are summarized in Table 2. Furthermore, the
joint distribution for m-ary search trees undergoes a phase change at m = 26: if the branching
factor m satisfies 3 6 m 6 26, then the space requirement is asymptotically independent
with the KPL and NPL, while for m > 27, their limiting joint distributions contain periodic
fluctuations and are dependent; see [2] for more information.

The dependence phenomena as those discovered in this paper are not limited to random
tries and have indeed a wider range of connections. They also appear in different forms in
other structures and algorithms with an underlying binomial splitting process; see Flajolet [6]
and [10, 13] for references on data structures, algorithms, conflict resolution protocols and
stochastic models. A typical example is the dependence between the number of coin-tossings
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p = 0.4 p = 0.5 p = 0.6

p = 0.1 p = 0.2 p = 0.3

p = 0.7 p = 0.8 p = 0.9

Figure 3: Joint distributions of (Sn, Kn) by Monte-Carlo simulations for n = 107 and varying
p: the case p = 0.5 is seen to have stronger dependence than the others.

trees ρ(Sn, Kn) ρ(Sn, Nn)

tries
{
p 6= q :→ 0
p = q : periodic ∼ 1

m-ary
search trees

{
3 6 m 6 26 :→ 0
m > 27 : periodic

Table 2: A comparison of the correlation coefficients defined on random tries and on random
m-ary search trees: the size of m-ary search trees corresponds to the space requirement, and
the KPL and NPL are defined similarly as in tries.

(or bits generated, or bits inspected) and the number of partitioning rounds in (i) CTM tree
algorithm (see Rom and Sidi [25]), (ii) bucket sort (see [18] and Mahmoud et al. [20]), (iii)
RS Algorithm for generating random permutations (see Bacher et al. [1]), and (iv) initializing
radio networks (see Myoupo et al. [21]). We will also present the results without proof for
three other classes of digital trees in the last section.

Our approach is mostly analytic and it is unknown if our results can be characterized by
probabilistic arguments. Indeed, we believe that the less expected results we discovered are of
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special interest to probabilists as more structural interpretation or characterization remains to
be clarified.

An extended abstract of this paper was presented at the 27th International Meeting on Prob-
abilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (Kraków,
Poland; July 4–8, 2016); see [9]. More details of the proofs, as well as a section on extensions
are added in this version (some of them in an appendix). Also, we corrected the plots of Figure
3 in [9]. The extended abstract [9] was peer-reviewed and we incorporated the comments and
suggestions of the referees into this version.

2 Covariance and Correlation Coefficient
In this section, we prove Theorem A on the asymptotics of the covariance and correlation
coefficient of Sn and Kn, where we content ourselves with a detailed sketch of the method
because similar proofs have been given in [10]. In fact, we will also need the variances of Sn
and Kn, whose derivations will be recalled below and which have been known for some time;
see Jacquet and Régnier [14], Kirschenhofer and Prodinger [16], Kirschenhofer et al. [17],
Régnier and Jacquet [24]) and [10]. See also Table 1 for a brief summary of these results.

Our method of proof is based on the by-now standard two-stage approach relying on the
theory of analytic de-Poissonization and Mellin transform whose origin can be traced back to
Jacquet and Régnier [14]. See Flajolet et al. [7] for a survey on Mellin transform, and Jacquet
and Szpankowski [15] for a survey on analytic de-Poissonization. For the computation of the
covariance, the manipulation can be largely simplified by the additional notions of Poissonized
variance and admissible functions further developed in our previous papers [10, 13].

The starting point of our analysis is the recurrence satisfied by Sn andKn in (1). A standard
means in the computation of moments of Sn and Kn is the Poisson generating function, which
corresponds to the moments of Sn and Kn with n replaced by a Poisson random variable with
parameter z (this step is called Poissonization).

More precisely, define the Poisson generating function of E(Sn) and that of E(Kn):

f̃1,0(z) := e−z
∑
n>0

E(Sn)
zn

n!
, and f̃0,1(z) := e−z

∑
n>0

E(Kn)
zn

n!
.

Then the recurrences (1) lead to the functional equations{
f̃1,0(z) = f̃1,0(pz) + f̃1,0(qz) + 1− (1 + z)e−z,

f̃0,1(z) = f̃0,1(pz) + f̃0,1(qz) + z(1− e−z).
(5)

From these equations, we obtain, by Mellin transform techniques [7],

f̃1,0(z) ∼ zF [·](z), and f̃0,1(z) ∼ h−1z log z + zF [·](z), (6)

for large |z| in the half-plane <(z) > ε > 0, where h denotes the entropy of Bernoulli(p).
Then, by Cauchy’s integral representation and analytic de-Poissonization techniques [15], we
obtain precise asymptotic approximations to E(Sn) and to E(Kn); see [10] for more details.

Similarly, for the variances V(Sn) and V(Kn), we introduce the Poisson generating func-
tions of the second moments:

f̃2,0(z) := e−z
∑
n>0

E(S2
n)
zn

n!
, and f̃0,2(z) := e−z

∑
n>0

E(K2
n)
zn

n!
,
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which then satisfy, by (1), the same type of functional equations as in (5) but with different non-
homogeneous parts. Instead of computing directly asymptotic approximations to the second
moments, it proves computational more advantageous to consider the Poissonized variances{

ṼS(z) := f̃2,0(z)− f̃1,0(z)2 − zf̃ ′1,0(z)2,

ṼK(z) := f̃0,2(z)− f̃0,1(z)2 − zf̃ ′0,1(z)2,
(7)

and then following the same Mellin-de-Poissonization approach (as for the means) to derive
the first and the third asymptotic estimate in the second column of Table 1; again see [10] for
details.

It remains to derive the claimed estimate for the covariance. For that purpose, we introduce
the Poisson generating function

f̃1,1(z) := e−z
∑
n>0

E(SnKn)
zn

n!
,

which satisfies, again by (1),

f̃1,1(z) = f̃1,1(pz) + f̃1,1(qz) + f̃1,0(pz)
(
f̃0,1(qz) + z

)
+ f̃1,0(qz)

(
f̃0,1(pz) + z

)
+ pzf̃ ′1,0(pz) + qzf̃ ′1,0(qz) + f̃0,1(pz) + f̃0,1(qz) + z(1− e−z).

To compute the covariance, it is beneficial to introduce now the Poissonized covariance (see
(7) or [10] for similar details)

C̃(z) = f̃1,1(z)− f̃1,0(z)f̃0,1(z)− zf̃ ′1,0(z)f̃ ′0,1(z),

which satisfies

C̃(z) = C̃(pz) + C̃(qz) + h̃1(z) + h̃2(z), (8)

where
h̃1(z) = pqz

(
f̃ ′1,0(pz)− f̃ ′1,0(qz)

)(
f̃ ′0,1(pz)− f̃ ′0,1(qz)

)
,

and

h̃2(z) = ze−z
(
f̃1,0(pz) + f̃1,0(qz) + p(1− z)f̃ ′1,0(pz) + q(1− z)f̃ ′1,0(qz)

)
+ e−z

(
(1 + z)f̃0,1(pz) + (1 + z)f̃0,1(qz)− pz2f̃ ′0,1(pz)− qz2f̃ ′0,1(qz)

)
+ ze−z

(
1− (1 + z2)e−z

)
.

(9)

Note that h̃1 is zero when p = 1
2
. Furthermore, from (6) (which can be differentiated since

they hold in a sector S = {z ∈ C : <(z) ≥ ε, |Arg(z)| 6 θ0} with 0 < θ0 < π/2 in the
complex plane), we obtain that h̃1(z) = O(|z|) and h̃2(z) is exponentially small for large |z| in
<(z) > 0. Also h̃1(z)+ h̃2(z) = O(|z|2) as z → 0. Thus the Mellin transform of h̃1(z)+ h̃2(z)
exists in the strip 〈−2,−1〉, and we have then the inverse Mellin integral representation

C̃(z) =
1

2πi

∫ − 3
2

+i∞

− 3
2
−i∞

M [h̃1(z) + h̃2(z); s]

1− p−s − q−s
z−sds, (10)
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where M [φ(z); s] :=
∫∞

0
φ(z)zs−1dz denotes the Mellin transform of φ; see [7].

Next, again from (6) we see that M [h̃1(z); s] can be analytically continued to the vertical
line <(s) = −1 and has no singularities there. Thus, by shifting the line of integration in (10)
and computing residues, we obtain

C̃(z) ∼ zF [g(2)](z),

uniformly for z in a sector.
What is left is the computation of the Fourier coefficients of the periodic function (see

Proposition A below). This is in fact the most technical part of the proof because h̃1(z) contains
the product of the two terms f̃ ′1,0(pz)− f̃ ′1,0(qz) and f̃ ′0,1(pz)− f̃ ′0,1(qz), and thus M [h̃1(z); s]
is a Mellin convolution integral. In [10], a general procedure was given for the simplification of
such integrals (see [10, p. 24 et seq.]). This simplification procedure (see Appendix A for de-
tails) and a direct application of the theory of admissible functions of analytic de-Poissonization
now yield the following estimate for the covariance of Sn and Kn.

Proposition A. The covariance of Sn and Kn is asymptotically linear

Cov(Sn, Kn) ∼ nF [g(2)](n).

Here

g
(2)
k =

Γ(χk)

h

(
1− χk + 2

2χk+1

)
− 1

h2

∑
j∈Z\{0}

Γ(χk−j + 1)(χj − 1)Γ(χj)

− Γ(χk + 1)

h2

(
γ + 1 + ψ(χk + 1)− p log2 p+ q log2 q

2h

)
+

1

h

∑
`>2

(−1)`(p` + q`)

`!(1− p` − q`)
Γ(χk + `− 1)(2`2 − 2`+ 1 + χk(2`− 1)),

(11)

where γ denotes Euler’s constant, ψ(z) is the digamma function and χk is defined in (2).

Remark 1. If log p
log q
6∈ Q, then only k = 0 is needed and the second term (the sum over j) on the

right-hand side of (11) has to be dropped. Also the first term here Γ(χk)
h

(
1− χk+2

2χk+1

)
is taken to

be its limit 1
h
(log 2 + 1

2
) as χk → 0 when k = 0.

The asymptotic estimate for the correlation coefficient in Theorem A now follows from this
and the results for the variances of Sn and Kn (see Table 1), where expressions for g(1)

k and g(3)
k

can be found, e.g., in [10]. For convenience, we give below the expressions in the unbiased
case. Note that both F [g(1)](n) and F [g(3)](n) are strictly positive; see Schachinger [26] for
details.

In the symmetric case, an alternative expression to (11) (avoiding the convolution of two
Fourier series) is

g
(2)
k =

Γ(χk)
(

1− χ2
k+χk+4

2χk+2

)
log 2

+
1

log 2

∑
`>1

(−1)`Γ(χk + `) (`(2`+ 1)(χk + `)− (`+ 1)2)

(`+ 1)!(2` − 1)
;
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see the discussion of the size of tries in [10], where a similar alternative expression was given
for g(1)

k , which reads

g
(1)
k = −Γ(χk − 1)χk(χk + 1)2

4 log 2
+

2

log 2

∑
`>1

(−1)`Γ(χk + `)`
(
`(χk + `)− 1

)
(`+ 1)!(2` − 1)

.

Moreover, also in [10], the following expression for g(3)
k can be found

g
(3)
k =

Γ(χk)
(

1− χ2
k−χk+4

2χk+2

)
log 2

+
2

log 2

∑
`>1

(−1)`Γ(χk + `)(`(χk + `− 1)− 1)

`!(2` − 1)
.

Note that χk = 2kπi
log 2

and 2χk = 1, and the reason of retaining 2χk+2 in the denominator is to
give a uniform expression for all k (notably k = 0). These provide an explicit expression for
the periodic function F (n) in Theorem A. Also, since all the periodic functions have very small
amplitude, the average value of the periodic function F (z) can be well-approximated by

g
(2)
0√

g
(1)
0 g

(3)
0

≈ 0.9272416035 · · · .

3 Limit Law
In this section, we prove Theorem B, part (i); the proof of part (ii) is similar and only sketched.
The key tool of the proof is the multivariate version of the contraction method; see Neininger
and Rüschendorf [23]. More precisely, we will use Theorem 3.1 in [23].

We first recall the expression for the square-root of a positive-definite 2× 2 matrix

M =

(
a b
b c

)
.

It is well-known that such a matrix has exactly one positive-definite square root which is given
by

M
1
2 =

1√
a+ c+ 2

√
ac− b2

(
a+
√
ac− b2 b

b c+
√
ac− b2

)
, (12)

with the inverse

M− 1
2 =

1√
(ac− b2)

(
a+ c+ 2

√
ac− b2

) (c+
√
ac− b2 −b
−b a+

√
ac− b2

)
. (13)

Now we give the proof of Theorem B, part (i).

Proof of Theorem B, Part (i). Note first that(
Sn
Kn

)
d
=

(
1 0
0 1

)(
SBn
KBn

)
+

(
1 0
0 1

)(
S∗n−Bn
K∗n−Bn

)
+

(
1
n

)
,

where the notation is as in Section 1. The contraction method was specially developed for
obtaining limiting distribution results for such recurrences; see [23].
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We need some notation. First, define

Σ̂n :=

(
V(Sn) Cov(Sn, Kn)

Cov(Sn, Kn) V(Kn)

)
. (14)

This matrix is clearly positive-definite for all n sufficiently large. Next define

M (1)
n := Σ̂

− 1
2

n Σ̂
1
2
Bn
, M (2)

n := Σ̂
− 1

2
n Σ̂

1
2
n−Bn

and (
b

(1)
n

b
(2)
n

)
= Σ̂

− 1
2

n

(
1− µ(n) + µ(Bn) + µ(n−Bn)
n− ν(n) + ν(Bn) + ν(n−Bn)

)
,

where µ(n) = E(Sn) and ν(n) = E(Kn).
Now to apply the contraction method in [23], it suffices to show that the following condi-

tions hold

b(i)
n

L3−→ 0, M (i)
n

L3−→Mi, (15)

E
(
‖M1‖3

op + ‖M2‖3
op

)
< 1, E

(
‖M (i)

n ‖3
opχ{B(i)

n 6j}∪{B(i)
n =n}

)
−→ 0 (16)

for i = 1, 2 and j ∈ N, where L3−→ denotes convergence in the L3-norm, ‖ · ‖op is the operator
norm, χS denotes the characteristic function of set S, B(1)

n = Bn, B
(2)
n = n−Bn and

M1 =

(√
p 0

0
√
p

)
, M2 =

(√
q 0

0
√
q

)
.

Then the contraction method in [23] guarantees that (Sn, Kn) (centralized and normalized)
converges in distribution to the unique fixed-point with mean 0, covariance matrix the unity
matrix and finite L3-norm of(

X1

X2

)
d
=

(√
p 0

0
√
p

)(
X1

X2

)
+

(√
q 0

0
√
q

)(
X∗1
X∗2

)
,

where (X∗1 , X
∗
2 ) is an independent copy of (X1, X2). Obviously, the bivariate normal distribu-

tion is the solution. All this is summarized as follows.

Proposition B. The following convergence in distribution holds:

Σ̂
− 1

2
n

(
Sn − E(Sn)
Kn − E(Kn)

)
d−→ N2(0, I2).

Proof. We only check (15) because the second condition of (16) follows along similar lines
and the first condition of (16) follows from (15) in view of

‖M1‖op =
√
p and ‖M2‖op =

√
q.

We start with proving (15) for b(i)
n for which we use the notations

Ω1(n) = V(Sn), Ω2(n) = Cov(Sn, Kn), Ω3(n) = V(Kn)

11



and
D(n) = Ω1(n)Ω3(n)− Ω2(n)2.

Also define
R(n) = Ω1(n) + Ω3(n) + 2

√
D(n).

Then, by (12), we see that

b(1)
n = (1− µ(n) + µ(Bn) + µ(n−Bn))

Ω3(n) +
√
D(n)√

D(n)R(n)

− (n− ν(n) + ν(Bn) + ν(n−Bn))
Ω2(n)√
D(n)R(n)

and a similar expression for b(2)
n holds. From the normality of both Sn and Kn (proved for Sn

via the contraction method in [11] and a similar method of proof also applies to Kn), we have

1− µ(n) + µ(Bn) + µ(n−Bn)√
n

L3−→ 0

and
n− ν(n) + ν(Bn) + ν(n−Bn)√

n log n

L3−→ 0.

Moreover, we have
√
n

Ω3(n) +
√
D(n)√

D(n)R(n)
∼ 1√

F [g(1)](n)
,

and √
n log n

Ω2(n)√
D(n)R(n)

∼ F [g(2)](n)

λ
√

log nF [g(1)](n)
,

where g(1), g(2) and λ are as above. Thus, both sequences are bounded and, consequently, we
obtain the claimed result with L3-convergence above. Similarly, one proves (15) for b(2)

n .
Next, we consider M (i)

n . Here, we only show the claim for the (1, 1) entry of M (1)
n (denoted

by M
(1)
n (1, 1)) all other cases being treated similarly. First, observe that by definition and

matrix square-root, we have

M (1)
n (1, 1) =

√
R(n)√
R(Bn)

·
(Ω3(n) +

√
D(n))(Ω1(Bn) +

√
D(Bn))− Ω2(n)Ω2(Bn)√

D(n)R(n)
.

Now, from the strong law of large numbers for the binomial distribution

Bn

n

a.s.−→ p

and from Taylor series expansion (note that all periodic functions are infinitely differentiable),
we have √

R(n)√
R(Bn)

a.s.−→ 1
√
p
,

12



and
(Ω3(n) +

√
D(n))(Ω1(Bn) +

√
D(Bn))− Ω2(n)Ω2(Bn)√

D(n)R(n)

a.s.−→ p.

Thus, M (1)
n (1, 1)

a.s.−→ √p from which the claim follows by the dominated convergence theo-
rem.

Next, set

Σ̃n :=

(
nF [g(1)](n) 0

0 λn log n

)
.

Then, we have the following simple lemma.

Lemma 1. We have, as n→∞,
Σ̂
− 1

2
n Σ̃

1
2
n → I2.

Proof. This follows by a straightforward computation using the expressions for the matrix
square-root (12) and its inverse (13). For example, the entry (1, 2) of Σ̂

− 1
2

n Σ̃
1
2
n (where we use

the notations from the proof of the previous proposition) satisfies

−Ω2(n)
√
λn log n√

D(n)R(n)
∼ − F [g(2)](n)√

λ log nF [g(1)](n)
,

which tends to 0 as claimed. The other entries are treated similarly,
Theorem B, part (i) now follows from this lemma and Proposition B.
Next, we sketch the (similar) proof of Theorem B, part (ii).

Proof of Theorem B, Part (ii). The proof runs along similar lines as in Part (i). The only
difference is that now it is not entirely obvious that Σ̂n is positive definite. Note, however, that
from the discussion in the introduction, this matrix is positive-definite if and only if Σn (defined
in Theorem B) is positive definite. This is ensured by the following lemma.

Lemma 2. Σn is positive-definite for all n large enough.

Proof. It suffices to show that det(Σn) > 0 for all n large enough. Indeed, we have

det(Σn) = n2F [g(1)](n)F [g(3)](n)− n2(F [g(1)](n))2

= n2F [g(1)](n)F [g(3)](n)(1− F (log2 n)2),

from which the result follows.
Note that this in addition shows the stronger result det(Σn) > dn2 for all n large enough

where d > 0. (A proof avoiding numerical computations can be performed using the same
approach as in Proposition 3 of [12].)

The rest of the proof is similar as in the asymmetric case and is omitted.

4 Extensions
In this section, we show that the dependence phenomena we discovered here on random binary
tries (Theorem A and Theorem B) also find their appearance in other trees and structures whose
subtree-sizes and sub-structure-sizes are dictated by a binomial or a multinomial distribution.
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For simplicity, we consider in this section only three varieties of random digital trees: ran-
dom m-ary tries, random PATRICIA tries and random bucket digital search trees; see [10] for
more potential examples with the same splitting principles.

m-ary Tries. It is straightforward to extend our tries constructed from binary input strings
to inputs from an m-ary alphabets, m > 2. In this case, the resulting trie becomes an m-ary
tree (since each node now has m subtrees one belonging to each letter). As a random model,
we assume that bits are generated independently at random with the i-th letter occurring with
probability pi, where p1 + · · ·+ pm = 1 and 0 < pi < 1 for 1 6 i 6 m.

The size and the key path length (which we again denote by Sn and Kn) in such random
m-ary tries satisfy the recurrences Sn

d
= S

(1)

I
(1)
n

+ · · ·+ S
(m)

I
(m)
n

+ 1,

Kn
d
= K

(1)

I
(1)
n

+ · · ·+K
(m)

I
(m)
n

+ n,
(n > 2),

with the initial conditions Sn = Kn = 0 for n 6 1, where (S
(i)
n ) and (K

(i)
n ) are independent

copies of (Sn) and (Kn), respectively, for 1 6 i 6 m, and

P(I(1)
n = j1, . . . , I

(m)
n = jm) =

(
n

j1, . . . , jm

)
pj11 · · · pjmm , (17)

for all j1, . . . , jm > 0 with j1 + · · ·+ jm = n.
The pair (Sn, Kn) satisfies the same type of properties as those described in Theorem A

and Theorem B for binary tries, where the symmetric case here corresponds to p1 = · · · =

pm = 1/m and all other cases are asymmetric. Only the expressions for g(1)
k , g

(2)
k , g

(3)
k and λ

are different but they can be computed via the same analytic tools as those used in [10]. For the
sake of simplicity, we only give the expressions in the symmetric case (χk = 2kπi/ logm) as
follows:

g
(1)
k =

Γ(χk − 1)
(
χk −

χ3
k+2χ2

k+5χk
2χk+2

)
logm

+
2

logm

∑
`>1

(−1)`Γ(χk + `)`
(
`(χk + `)− 1

)
(`+ 1)!(m` − 1)

,

g
(2)
k =

Γ(χk)
(
1− χ2

k+χk+4

2χk+2

)
logm

+
1

logm

∑
`>1

(−1)`Γ(χk + `) (`(2`+ 1)(χk + `)− (`+ 1)2)

(`+ 1)!(m` − 1)
,

g
(3)
k =

Γ(χk)
(
1− χ2

k−χk+4

2χk+2

)
logm

+
2

logm

∑
`>1

(−1)`Γ(χk + `)(`(χk + `− 1)− 1)

`!(m` − 1)
.

Note that the variance of the size was considered in [12], but no explicit expression was given
for the Fourier coefficients of the periodic function.

With the help of these expressions, we obtain the following numerical approximations to
the average value of the periodic function of the correlation coefficient between Sn and Kn in
the symmetric case. We see that they differ little.

PATRICIA Tries. A simple idea to increase the efficiency of tries is to remove all internal
nodes with one-way branching. The resulting tree is called a PATRICIA trie; here PATRICIA
is an acronym of “Practical Algorithm To Retrieve Information Coded In Alphanumeric”.
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m 2 3 4 5 6
average value of the
periodic fluctuations 0.927 0.925 0.924 0.922 0.921

Table 3: Numerical approximations to the average values of the periodic functions F (n) arising
in the asymptotic estimate ρ(Sn, Kn) ∼ F (n) for the symmetric case and m = 2, . . . , 6.

We use the same random model as we used above for m-ary tries and consider the size and
key-path length of PATRICIA tries (which we again denote by Sn and Kn). Then they satisfy
the recurrences

Sn
d
= S

(1)

I
(1)
n

+ · · ·+ S
(m)

I
(m)
n

+ Tn,

Kn
d
= K

(1)

I
(1)
n

+ · · ·+K
(m)

I
(m)
n

+ nTn,
(n > 2),

with the initial conditions Sn = Kn = 0 for n > 1, where I(i)
n is defined as in (17) above, (S

(i)
n )

and (K
(i)
n ) are independent copies of (Sn) and (Kn), respectively, and

Tn =

{
1, if I(i)

n < n for all 1 6 i 6 m;

0, otherwise.

Note that for m = 2, the size is deterministic. We thus assume m > 3 to avoid trivialities.
Then the dependence of (Sn, Kn) satisfies mutatis mutandis Theorem A and Theorem B. In
particular, the required changes for g(1)

k , g
(2)
k , g

(3)
k in the symmetric case are given as follows

(χk = 2kπi/ logm):

g
(1)
k =

(m− 1)Γ(χk − 1)

logm

(
− 1− (m− 1)(χk + 1)

2χk

+

(
1− 1

m

)−χk(
1− (m− 1)χk +m+ 1

2χk

)
+

(
2− 1

m

)−χk
(2(m− 1)χk + 2m)

)

+
2(m− 1)2

logm

∑
`>1

(−1)`+1Γ(`+ χk)`
(
1−

(
1− 1

m

)`)(
1−

(
1− 1

m

)−`−χk)
(`+ 1)!(m` − 1)

,

g
(2)
k =

Γ(χk)

logm

((
1− 1

m

)−χk (
1− (m− 1)χk + 2

2χk+1

)
+

(
2− 1

m

)−χk (m− 1)2χk
2m− 1

)

+
m− 1

logm

∑
`>1

(−1)`+1Γ(`+ χk)`

(`+ 1)!(m` − 1)

(
(`+ 1)

(
1− 1

m

)`
+ (χk − 1)

(
1− 1

m

)−χk
− (`+ χk)

(
1− 1

m

)−`−χk )
,

g
(3)
k =

Γ(χk)

logm

(
1− 1

m

)−χk (
1 +

χk
m− 1

− (m− 1)χ2
k − (m− 3)χk + 4(m− 1)

(m− 1)2χk+2

)
+

2(m− 1)−χk

logm

∑
`>1

(−1)`Γ(`+ χk + 1)

(`− 1)!(m` − 1)
.
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These expressions are also valid for m = 2, where g(1)
k and g(2)

k can be shown to be iden-
tically zero. Note that the result for the variance of the key-path length was already derived in
[10] (for m = 2) and that for the size was established in [12] but without a precise expression
for the Fourier coefficients.

Again, we can use the above expressions to obtain the average value of the periodic function
of the correlation coefficient between Sn and Kn in the symmetric case. Note that unlike tries,
these values increase with m.

m 3 4 5 6
average value of the
periodic fluctuations 0.751 0.814 0.841 0.856

Table 4: Numerical approximations to the average values of the periodic functions F (n) arising
in the asymptotic estimate ρ(Sn, Kn) ∼ F (n) for the symmetric case and m = 3, . . . , 6.

Bucket Digital Search Trees. Digital search trees (DST) represent yet another class of digital
tree structures; see [18, 19] for more information. In contrast to tries and PATRICIA tries, they
only have one type of nodes where data are stored. More precisely, given a set of data consisting
of n infinite 0-1 strings, a DST is constructed as follows: if n = 1, then the DST consists of
only one node holding the sole string; otherwise, the first string is stored in the root and all
others are directed to the subtrees according to their first bit being 0 or 1; then, the subtrees are
built recursively but by using consecutive bits to split the data.

Clearly, the size of such a DST is deterministic and equals the input cardinality. We consider
instead a bucket version with an additional capacity b > 2, allowing each node holding up to b
strings and nodes having subtrees only when they are filled up.

We adopt the same Bernoulli random model as for random tries and consider the size and
key-path length in random bucket digital search trees (again denoted by Sn and Kn), which
then satisfy {

Sn+b
d
= SBn + S∗n−Bn + 1,

Kn+b
d
= KBn +K∗n−Bn + n,

(n > 0),

with the initial conditions S0 = K0 = K1 = · · · = Kb−1 = 0 and S1 = · · · = Sb−1 = 1, where
(S∗n) and (K∗n) are independent copies of (Sn) and (Kn), respectively.

The same dependence phenomena as those described in Theorem A and Theorem B also
hold for the pair (Sn, Kn). The computation of the sequences g(1)

k , g
(2)
k , g

(3)
k is nevertheless

more intricate. In the asymmetric case, one can again use analytic de-Poissonization and Mellin
transform techniques, however, the resulting expressions are less explicit. On the other hand, in
the symmetric case, explicit expressions for g(1)

k , g
(2)
k , g

(3)
k are available via the Poisson-Laplace-

Mellin method from [13]. As the expressions are long, we omit them here. Note that the results
for the variances of Sn and Kn have already been obtained in [13].

Other Shape Parameters. Theorem A and Theorem B also extend to pairs of random vari-
ables where the size is replaced by the number of various patterns (such as the number of
internal-external nodes discussed, e.g., by Flajolet and Sedgewick in [8]) and the key-path

16



length is replaced by other notions of the path length (such as the total path length of internal-
external nodes).
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A A Sketch of Proof of (11)

We sketch here some details of how the expression (11) for g(2)
k in Proposition A is obtained.

The method we use is based on that introduced in [10]; see p. 25 et seq.

18



First, by moving the line of integration in (10) to the right and using the residue theorem,
we have

g
(2)
k =

G2(−1 + χk)

h
,

where G2(s) = M [h̃1(z) + h̃2(z); s]. Note that in the above expression and in what follows,
if log p/ log q is irrational, then only the term with k = 0 is retained. Thus, our problem boils
down to the computation of G2(s).

We first consider the Mellin transform of h̃2(z) which is easier to handle. By the expression
(9) for h̃2(z) from Section 2, the Mellin transform is given by

M [h̃2(z); s] = Γ(s+ 1)

(
1− s2 + 3s+ 6

2s+3

)
+ Y (s),

where

Y (s) =

∫ ∞
0

e−z
(
zf̃1,0(pz) + pz(1− z)f̃ ′1,0(pz) + zf̃1,0(qz) + qz(1− z)f̃ ′1,0(qz)

+ (1 + z)f̃0,1(pz)− pz2f̃ ′0,1(pz) + (1 + z)f̃0,1(qz)− qz2f̃ ′0,1(qz)
)
zs−1dz.

Observe that by applying the Mellin transform and its inverse to (5), we obtain

f̃1,0(z) =
1

2πi

∫
(−3/2)

−(ω + 1)Γ(ω)

1− p−ω − q−ω
z−ωdω (18)

and

f̃0,1(z) =
1

2πi

∫
(−3/2)

−ωΓ(ω)

1− p−ω − q−ω
z−ωdω. (19)

Substituting these into the integral representation of Y (s) and interchanging the integrals, we
see that

Y (s) =
1

2πi

∫
(−3/2)

Γ(ω)Γ(s− ω)

1− p−ω − q−ω
(
p−ω + q−ω

) (
ω2 − (s− ω)(2ω2 + 3ω + 1)

)
dω

=
∑
`>2

(−1)`(p` + q`)

`!(1− p` − q`)
Γ(s+ `)

(
`2 − (s+ `)(2`2 − 3`+ 1)

)
,

where the last line follows from moving the vertical line of integration to minus infinity and
summing over all the residues of the poles encountered.

For M [h̃1(z);−1 + χk], we use the expression for h̃1(z) in Section 2, (18) and (19), and
Mellin convolution, giving

1

2πi

∫
(0)+

pq (p−ω − q−ω) (pω − qω)

(1− p1−ω − q1−ω)(1− p1+ω − q1+ω)
Γ(ω + 1)(χk − ω − 1)Γ(χk − ω)dω,

where the integration path is the imaginary axis with a small indentation to the right at the zeros
of 1− p1−ω − q1−ω. Now by the decomposition

pq (p−ω − q−ω) (pω − qω)

(1− p1−ω − q1−ω)(1− p1+ω − q1+ω)
=

1

1− p1−ω − q1−ω +
p1+ω + q1+ω

1− p1+ω − q1+ω
,
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the above integral is rewritten as

1

2πi

∫
(0)+

(
1

1− p1−ω − q1−ω +
p1+ω + q1+ω

1− p1+ω − q1+ω

)
Γ(ω+ 1)(χk−ω− 1)Γ(χk−ω)dω. (20)

We break now this integral into two parts according to the two terms in the bracket. For the
first part, we use the substitution ω ↔ χk − ω and standard residue calculus, and obtain

1

2πi

∫
(0)−

1

1− p1+ω − q1+ω
Γ(χk − ω + 1)(ω − 1)Γ(ω)dω

=− Γ(χk + 1)

h

(
γ + 1 + ψ(χk + 1)− p log2 p+ q log2 q

2h

)
− 1

h

∑
j∈Z\{0}

Γ(χk−j + 1)(χj − 1)Γ(χj)

+
1

2πi

∫
(0)+

1

1− p1+ω − q1+ω
Γ(χk − ω + 1)(ω − 1)Γ(ω)dω,

where the second line follows by moving the line of integration over the imaginary axis and
ψ(s) denotes the derivative of log Γ(s). Next, note that

1

2πi

∫
(0)+

1

1− p1+ω − q1+ω
Γ(χk − ω + 1)(ω − 1)Γ(ω)dω

=
1

2πi

∫
(0)+

Γ(χk − ω + 1)(ω − 1)Γ(ω)dω

+
1

2πi

∫
(0)+

p1+ω + q1+ω

1− p1+ω − q1+ω
Γ(χk − ω + 1)(ω − 1)Γ(ω)dω.

The first integral on the right-hand side is a Mellin convolution integral and can be evaluated
explicitly as

1

2πi

∫
(0)+

Γ(χk − ω + 1)(ω − 1)Γ(ω)dω =

∫ ∞
0

e−zzχk(1− (1− z)e−z)dz − Γ(χk + 1)

= Γ(χk + 1)
χk − 1

2χk+2
.

For the second integral, we move the line of integration to infinity and use the residue theorem,
yielding

1

2πi

∫
(0)+

p1+ω + q1+ω

1− p1+ω − q1+ω
Γ(χk − ω + 1)(ω − 1)Γ(ω)dω

=
∑
`>2

(−1)`(p` + q`)

(`− 1)!(1− p` − q`)
Γ(χk + `− 1)(`− 1)(χk + `− 2).

In a similar way, the second part of (20) has the series representation

1

2πi

∫
(0)+

p1+ω + q1+ω

1− p1+ω − q1+ω
Γ(ω + 1)(χk − ω − 1)Γ(χk − ω)dω

=
∑
`>2

(−1)`(p` + q`)

(`− 1)!(1− p` − q`)
Γ(χk + `− 1)`(χk + `− 1).
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Since

G2(−1 + χk) = M [h̃1(z);−1 + χk] + M [h̃2(z);−1 + χk]

= M [h̃1(z);−1 + χk] + Γ(χk)

(
1− χ2

k + χk + 4

2χk+2

)
+ Y (−1 + χk),

we then deduce (11) by collecting all expressions.
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