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Abstract

We study the joint asymptotic behavior of the space requirement and the total path
length (either summing over all root-key distances or over all root-node distances) in ran-
dom m-ary search trees. The covariance turns out to exhibit a change of asymptotic be-
havior: it is essentially linear when 3 6 m 6 13 but becomes of higher order when
m > 14. Surprisingly, the corresponding asymptotic correlation coefficient tends to zero
when 3 6 m 6 26 but is periodically oscillating for larger m. Such a less anticipated phe-
nomenon is not exceptional and we extend the results in two directions: one for more gen-
eral shape parameters, and the other for other classes of random log-trees such as fringe-
balanced binary search trees and quadtrees. The methods of proof combine asymptotic
transfer for the underlying recurrence relations with the contraction method.
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1 Introduction
The m-ary search trees are a class of data structures introduced by Muntz and Uzgalis [35]
in 1971 in computer algorithms to support efficient searching and sorting of data; see the next
section for more details. When constructed from a random permutation of n elements, the space
requirement (total number of nodes to store the input) Sn of such random m-ary search trees
(m > 3) is known to exhibit a phase change phenomenon: its distribution is asymptotically
Gaussian for large n when the branching factor m satisfies 3 6 m 6 26 but does not approach
a limit law when m > 27; see [8, 22, 30, 31] and the references therein. On the other hand,
it is also known that the total key path length Kn (the sum over all distances from the root to
any key) does not change its limiting behavior when m varies, and tends asymptotically, after
properly centered and normalized, to a limit law for each m > 3. Another closely related shape
measure, the total node path length Nn (summing over all distances from the root to any node)
also follows asymptotically a very similar behavior.

Our motivating question was “how does Kn or Nn depend on Sn?” Surprisingly, despite
the strong dependence of the definition of Nn on Sn (see (2)), we show that the correlation
coefficient ρ(Sn, Nn) satisfies

ρ(Sn, Nn) ∼

{
0, if 3 6 m 6 26;

Fρ(β log n), if m > 27,
(1)

where Fρ(t) is a 2π-periodic function and β = βm is a structural constant depending on m.
The same type of results also holds for ρ(Sn, Kn). In words, Nn and Sn are asymptotically
uncorrelated for 3 6 m 6 26 and their correlation fluctuates (between −1 and 1) for m > 27;
see Figure 1 for an illustration.

Figure 1: The periodic functions Fρ(2πt) for m = 27, . . . , 100 (left) and Fρ(β log n) for m =
27, 54, . . . , 270 (right).

One reason why the above result (1) may seem less or even counter-intuitive is because
of the seemingly strong dependence of Nn on Sn in the recursive equations satisfied by both
random variables {

Sn
d
= S

(1)
I1

+ · · ·+ S
(m)
Im

+ 1,

Nn
d
= N

(1)
I1

+ · · ·+N
(m)
Im

+ S
(1)
I1

+ · · ·+ S
(m)
Im

,
(2)

where the (S
(r)
i , N

(r)
i )’s are independent copies of (Si, Ni), respectively, also independent of

(I1, . . . , Im), and

P(I1 = i1, . . . , Im = im) =
1(
n

m−1

) , (3)
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when i1, . . . , im > 0 and i1 + · · · + im = n −m + 1. Intuitively, we expect, from the above
relations, that the node path length Nn would have a strong correlation with Sn.

While one might ascribe this seemingly less intuitive result to the possibly nonlinear de-
pendence between Nn and Sn, we enhance such an uncorrelation by a stronger joint limit law
for (Sn, Nn) for 3 6 m 6 26, which further accents the asymptotic independence between Nn

and Sn; for m > 27, they are asymptotically dependent and we will derive a precise character-
ization of their joint asymptotic distributions. See Section 4 for a more precise description of
the joint asymptotic behaviors of (Sn, Nn) and (Sn, Kn).

Let α denote the real part of the second largest zero (in real parts) of the indicial equation
Λ(z) = 0, where

Λ(z) = z(z + 1) · · · (z +m− 2)−m!. (4)

Then α < 1 for m < 14 and 1 < α < 3
2

for 14 6 m 6 26; see Table 1. The main reason that

m 3 4 5 6 7 8 9 10
α −3 −2.5 −1.5 −0.768 −0.260 0.101 0.366 0.568

m 11 12 13 14 15 16 17 18
α 0.726 0.852 0.955 1.040 1.112 1.173 1.226 1.272

m 19 20 21 22 23 24 25 26
α 1.313 1.348 1.380 1.409 1.435 1.458 1.479 1.499

Table 1: Approximate numerical values of α = αm for 3 6 m 6 26.

ρ(Sn, Nn) → 0 for 3 6 m 6 26 is roughly that their covariance is of order max{n log n, nα}
(see Theorem 2.3 below), while the standard deviations for Sn and Nn are of orders

√
n and n,

respectively. So that

ρ(Sn, Nn) =

O
(
n−

1
2 log n

)
, if 3 6 m 6 13;

O
(
n−

3
2

+α
)
, if 14 6 m 6 26,

which tends to zero in both cases. Briefly, the large quadratic variance of Nn is the major
cause of the asymptotic independence between Sn and Nn for 3 6 m 6 26.

Such a change from being asymptotically independent to being asymptotically dependent
under a varying structural parameter is not an exception. We will extend our study to fringe-
balanced binary search trees and quadtrees; a typical related instance states that: the number of
comparisons (or exchanges) used by the median-of-(2t + 1) quicksort is asymptotically inde-
pendent of the number of partitioning stages when 0 6 t 6 58, but is asymptotically dependent
for t > 59.

2 M -ary search trees
We briefly introduce m-ary search trees in this section and then describe the random variables
we are studying in this paper.

Anm-ary tree is either empty or comprises of a single node called the root, together with an
ordered m-tuple of subtrees, each of which is, by definition, an m-ary tree. Given a sequence
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6

2 8

1 4 7 10

3 5 9

2, 6

1 4, 5 7, 8

3 9, 10

2, 4, 6

1 3 5 7, 8, 9

10

Figure 2: Three m-ary search trees for the sequence {6, 2, 4, 8, 7, 1, 5, 3, 10, 9}: m = 2 (left),
m = 3 (middle), and m = 4 (right).

of numbers, say {x1, . . . , xn}, we construct an m-ary search tree by the following procedure,
m > 2. If 1 6 n < m, then all keys are stored in the root. If n > m the first m − 1
keys are sorted and stored in the root, the remaining keys are directed to the m subtrees, each
corresponding to one of the m intervals formed by the m− 1 sorted keys in the root node; see
Figure 2 for an illustration (the rectangular nodes denote yet empty subtrees of full nodes). If
the m − 1 numbers in the root are xj1 < · · · < xjm−1 , then the keys directed to the ith subtree
all have their values lying between xji−1

and xji , where xj0 := 0 and xjm := n+1. All subtrees
are themselves m-ary search trees by definition. For more details, see Mahmoud [30].

While the practical usefulness of m-ary search trees is largely overshadowed by their bal-
anced counterparts such as B-trees, they have been a source of many interesting phenomena,
which are to some extent universal. The study of m-ary search trees is thus of fundamental and
prototypical value. Furthermore, the close connection between m-ary search trees and general-
ized quicksort adds an extra dimension to the richness of diverse variations and their asymptotic
behaviors.

2.1 Space requirement and total path lengths
Assume that the input sequence {x1, . . . , xn} is a random permutation, where all n! permuta-
tions are equally likely. The resulting m-ary search tree constructed from the given sequence is
then called a random m-ary search tree.

The major shape parameters of particular algorithmic interest include the depth, the height,
the space requirement, the total path length, and the profile; see [11, 30] for more information.
We are concerned in this paper with the following three random variables.

• Sn (space requirement): the total number of nodes used to store the input; the three trees
in Figure 2 have S10 equal to 10, 6, 6, respectively. If m = 2, then Sn ≡ n; if m > 3, we
can compute Sn recursively by S0 = 0, and

Sn
d
=

{
1, if 1 6 n < m,

S
(1)
I1

+ · · ·+ S
(m)
Im

+ 1, if n > m,
(5)

where the S(r)
i ’s are independent copies of Si, 1 6 r 6 m, 0 6 i 6 n − m + 1, and

independent of (I1, . . . , Im) defined in (3).
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• Kn (key path length, KPL): the sum of the distance between the root and each key; for the
trees in Figure 2, K10 = {19, 11, 8}, respectively. For m > 2, Kn satisfies the recurrence

Kn
d
=

{
0, if n < m,

K
(1)
I1

+ · · ·+K
(m)
Im

+ n−m+ 1, if n > m,
(6)

where the K(r)
i ’s are independent copies of Ki, 1 6 r 6 m, 0 6 i 6 n − m + 1,

independent of (I1, . . . , Im).

• Nn (node path length, NPL): the sum of the distance between the root and each node; so
that N10 = {19, 7, 6} for the three trees in Figure 2. Obviously, Nn = Kn when m = 2.
When m > 3,

Nn
d
=

{
0, if n < m,

N
(1)
I1

+ · · ·+N
(m)
Im

+ S
(1)
I1

+ · · ·+ S
(m)
Im

, if n > m,
(7)

where the (N
(r)
i , S

(r)
i )’s are independent copies of (Ni, Si), 1 6 r 6 m, 0 6 i 6 n −

m+ 1, independent of (I1, . . . , Im).

While the first two random variables have been widely studied in the literature, NPL was
only considered previously in [4, 21] in connection with the process of cutting trees. In addition
to this, our interest was to understand the extent to which the asymptotic independence for
small m between Sn and Kn subsists when the “toll function” changes from a linear function
to a function that is random and may depend on Sn.

2.2 A summary of known results
Let Hm :=

∑
16j6m j

−1. Knuth [27, §6.2.4] was the first to show that

E(Sn) ∼ φn, where φ :=
1

2(Hm − 1)
.

(see also [1]). Here φ denotes the “occupancy constant”, which will appear all over our analysis.
Mahmoud and Pittel [31] improved the result and derived an identity for E(Sn), which implies
in particular that

E(Sn) = φ(n+ 1)− 1

m− 1
+O

(
nα−1

)
,

where α has the same meaning as in Introduction; see (4). They also discovered and proved the
surprising result for the variance

V(Sn) ∼

{
CSn, if 3 6 m 6 26;

F1(β log n)n2α−2, if m > 27,

where CS is a constant depending on m, F1 is a π-periodic function given in (22), α + iβ
is the second largest zero (in real part) with β > 0 of the equation Λ(z) = 0 (see (4)), and
2α− 2 > 1 for m > 27. See also [9, 25, 33] for a closely related fragmentation model with the
same asymptotic behavior. A central limit theorem for Sn was then proved for 3 6 m 6 26 in
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[28, 31]; see also [30] for more details. Their approach is based on an inductive approximation
argument.

By the method of moments, two authors of this paper re-proved in [8] the central limit the-
orem for Sn when 3 6 m 6 26; the same approach was also used to establish the nonexistence
of a limit law for Sn due to inherent oscillations. Moreover, the convergence rates to the normal
distribution were characterized in [22] by a refined method of moments, which undergo further
change of behaviors.

Then several different approaches were developed in the literature for a deeper understand-
ing of the “phase change” at m = 26; these include martingale [6], renewal theory [25], urn
models [23, 32], contraction method [13, 39], method of moments [22], statistical physics
[9, 33], etc.

On the other hand, the KPL for general m > 2 was first studied by Mahmoud [29] and he
proved

E(Kn) = 2φn log n+ c1n+ o(n),

for some explicitly computable constant c1. The variance was computed in [30, §3.5] and
satisfies (H(2)

m :=
∑

16j6m j
−2)

V(Kn) ∼ CKn
2, where CK = 4φ2

(
(m+1)H

(2)
m −2

m−1
− π2

6

)
. (8)

The corresponding limit law was characterized in [38] by the contraction method

Kn − E(Kn)

n

d−→ K, (9)

where K is given by the recursive distributional equation (41); see also [4, 34] for a general
framework.

For NPL Nn, Broutin and Holmgren [4] proved that

E(Nn) = 2φ2n log n+ c2n+ o(n),

for some constant c2. We will give an alternative proof of this result below with tools from
[8, 14]. Our approach makes the computation of c2 feasible, but we have not carried it out since
the value is irrelevant for this work (no value was given in [4]).

It should be mentioned that there is a large literature on Kn when m = 2 because it is
identical to the comparison cost used by quicksort. Many fine results were obtained; see, for
example, the recent papers [3, 12, 17, 20, 37, 41] and the references therein for more informa-
tion.

2.3 Covariance, correlation, dependence and phase changes
We state in this section our results for the covariance and correlation between the space require-
ment and the total path lengths (KPL and NPL). The proofs and the tools needed will be given
in the next sections.

Unlike the space requirement Sn whose variance changes its asymptotic behavior for m >
27, the covariance Cov(Sn, Kn) changes its asymptotic behavior at m = 14.
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Theorem 2.1. The covariance between Sn and Kn satisfies

Cov(Sn, Kn) ∼

{
CRn, if 3 6 m 6 13;

F2 (β log n)nα, if m > 14;

where CR is a suitable constant and F2(z) is a 2π-periodic function given in (23) below.

This result has the following consequence.

Corollary 2.2. The correlation coefficient between Sn and Kn satisfies

ρ(Sn, Kn)


→ 0, if 3 6 m 6 26;

∼ F2 (β log n)√
CKF1(β log n)

, if m > 27,

where CK > 0 is given in (8).

See Figure 1 for two different plots for the periodic functions when m > 27.
The same consideration extends easily to clarify the correlation between space requirement

and NPL.

Theorem 2.3. The covariance between Sn and Nn satisfies

Cov(Sn, Nn) ∼

{
2φCSn log n, if 3 6 m 6 13;

φF2 (β log n)nα, if m > 14,

where CS is as in Section 2.2. Moreover, the variance of Nn satisfies

V(Nn) ∼ φ2CKn
2.

Notice the appearance of an extra log n factor when 3 6 m 6 13, which reflects the
additional random effect introduced by the toll function in (7). These estimates imply the
following consequence.

Corollary 2.4. The correlation coefficient ρ(Sn, Nn) satisfies

ρ(Sn, Nn)


→ 0, if 3 6 m 6 26;

∼ ρ(Sn, Kn) ∼ F2 (β log n)√
CKF1(β log n)

, if m > 27.

The last relation suggests considering the correlation between Kn and Nn.

Corollary 2.5. The random variable Kn is asymptotically linearly correlated to Nn

ρ(Kn, Nn)→ 1.

Indeed, we will show that

‖Nn − φKn − (E(Nn − φKn))‖2 = o(n)
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which then by Slutsky’s theorem implies that(
Kn − E(Kn)

n
,
Nn − E(Nn)

n

)
d−→ (K,φK);

see (9), Section 4.3 and 4.4.
These results will be proved by working out the asymptotics of the corresponding recur-

rence relations, which all have the same form

an = m
∑

06j6n−m+1

πn,jaj + bn, (n > m− 1),

where

πn,j =

(
n−1−j
m−2

)(
n

m−1

) (0 6 j 6 n−m+ 1)

is a probability distribution, and {bn} is a given sequence (referred to as the toll-function).
For that asymptotic purpose, our key tools will rely on the asymptotic transfer techniques (see
[8, 14]), which provide a direct asymptotic translation from the asymptotic behaviors of bn to
those of an. The remaining analysis will then consist of simplifying some multiple Dirichlet’s
integrals.

Since Pearson’s product-moment correlation coefficient ρ is known to be poor in measur-
ing nonlinear dependence between two random variables, we go further by considering the
joint limit laws for (Sn, Kn) and (Sn, Nn), which exhibits a change of behavior depending on
whether 3 6 m 6 26 (convergent case) or m > 27 (periodic case): they are asymptotically
independent in the former case but dependent in the latter.

Theorem 2.6. Assume 3 6 m 6 26. Let (Xn)n ∈ {(Kn)n, (Nn)n} and Qn = (Xn, Sn) denote
the vector of KPL or NPL and the space requirement used by a random m-ary search tree.
Then the convergence in distribution holds:

Cov(Qn)−1/2(Qn − E[Qn])
d−→ (X,N ), (10)

where N has the standard normal distribution and the limit law (X,N ) is described in
Lemma 4.2; moreover, X and N are independent.

Theorem 2.7. Assume m > 27. Let (Xn)n ∈ {(Kn)n, (Nn)n} and

Yn :=

(
Xn − E[Xn]

ιXn
,
Sn − φn
nα−1

)
with ιX = 1 for (Xn)n = (Nn)n and ιX = φ−1 for (Xn)n = (Kn)n. Then we have

`2(Yn, (X,<(niβΛ)))→ 0,

where β is as in Section 2.2 and (X,Λ) is a random vector whose distribution is specified as the
unique fixed point solution appearing in Lemma 4.1 for the choice γ = (0, θ) (θ being defined
below in (25)).
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See Section 4 for a more precise formulation. The proof is based on the contraction method
(see [36]) where we use the above moment asymptotics as input and combine well-known
estimates within the minimal L2-metric for the convergent case (as in [40]), and those with
estimates for the periodic case (as in [13]). Similar proof techniques related to periodic distri-
butional behaviors are also applied in [25, Theorem 1.3(iii)] and [26, Theorem 6.10]. If one is
only interested in the asymptotic (univariate) distribution of the NPL Nn (the case of the KPL
being known before), there are more direct proofs which we also discuss in Sections 4.3 and
4.4.

Our study on the dependence of random variables on random m-ary search trees can be
extended in at least two directions by the same methods used in this paper, namely, asymptotic
transfer techniques and the contraction method.

• Extension to more general linear and n log n shape measures: That the asymptotic co-
variance undergoes a phase change after m = 13 and the asymptotic correlation under-
goes a phase change after m = 26 is not restricted to the space requirement and KPL or
NPL. Indeed, we can replace the space requirement by many other linear shape measures
such as the number of leaves, the number of nodes of a specified type, the number of
occurrences of a fixed pattern, etc. (see [8] for more examples), and KPL or NPL by
other shape measures with mean of order n log n such as summing over the root-node or
root-key distance for certain specified nodes or patterns and weighted path length.

• Extension to other random trees of logarithmic height: the same change of asymptotic
behaviors from being independent to being dependent under a varying structural pa-
rameter also occurs in other classes of random log-trees; we content ourselves with the
brief discussion of two classes of random trees: fringe-balanced binary search trees and
quadtrees. The behaviors will be however very different for the classes of trees where the
underlying distribution of the subtree sizes are dictated by a binomial distribution, which
will be examined elsewhere; see a companion paper [18] for more information.

This paper is organized as follows. We prove in the next section our results for the co-
variances and the correlations. These results are then used to study the bivariate distributional
asymptotics in Section 4 by the multivariate contraction method (see [36]). Finally, in Sec-
tion 5, we discuss the dependence and phase changes in fringe-balanced binary search trees
and in quadtrees, where for the former, we study the joint behavior of the size and total path
length, while for the latter (since the size is a constant) we consider the joint behavior of the
number of leaves and total path length. Also we include a brief discussion for extending the
study and results to other shape parameters in Section 5.

3 Correlation between space requirement and path lengths
We prove in this section Theorems 2.1 and 2.3 for the covariances Cov(Sn, Kn) and Cov(Sn, Nn),
respectively.

3.1 Preliminaries and recurrences
We collect here the notations to be used in the proofs. Let m > 2 be a fixed integer. For
n > m, denote by I(n) = (I

(n)
1 , . . . , I

(n)
m ) the vector of the number of keys inserted in the m
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ordered subtrees of the root in a random m-ary search tree with n keys. When the dependence
on n is obvious, we write simply (I1, . . . , Im). Generate independently n uniform random
variables U1, . . . , Un on [0, 1]. Store the first m− 1 elements U1, . . . , Um−1 in the root-node of
the tree. Then they decompose the unit interval [0, 1] into spacings of lengths V1, . . . , Vm, where
Vj = U(j)−U(j−1) for j = 1, . . . ,mwith U(0) := 0, U(m) := 1 and U(j) for j = 1, . . . ,m−1 are
the order statistics of U1, . . . , Um−1. The uniform permutation model implies, that, conditional
on U1, . . . , Um−1, the vector I(n) has the multinomial distribution with success probabilities
V1, . . . , Vm, namely, we have

(I1, . . . , Im)
d
= M(n−m+ 1;V1, . . . , Vm).

In particular, we have the convergence

Ir
n
−→ Vr, (11)

for all r = 1, . . . ,m, where the convergence is in Lp for all 1 6 p <∞. Note that we also have
(3) for all m-tuples i1, . . . , im > 0 with i1 + · · ·+ im = n−m+ 1 and all n > m.

For each of the subtrees, the randomness (uniformity) is preserved; more precisely, condi-
tional on the number of keys inserted in a subtree, each subtree has the same distribution as
a random m-ary search tree of that number of keys in the uniform model. Moreover, condi-
tional on (I1, . . . , Im), the subtrees are independent. This can be seen by switching back to
the ranks {1, . . . , n} of the input elements, and then by checking that a uniform random per-
mutation yields independent permutations on the respective ranges. This recursive structure
of the random m-ary search tree implies the recursive relations for Sn, Kn and Nn given in
(5)–(7), where the summands appearing on the right-hand sides, namely, S(1)

j , . . . , S
(m)
j and

K
(1)
j , . . . , K

(m)
j and N (1)

j , . . . , N
(m)
j have the same distributions as Sj and Kj and Nj , respec-

tively. Furthermore, the triples
((
S

(r)
j

)
06j6n−m+1

,
(
K

(r)
j

)
06j6n−m+1

,
(
N

(r)
j

)
06j6n−m+1

)
are

independent for r = 1, . . . ,m and independent of (I1, . . . , Im). Finally, the recursive structure
of the m-ary search tree implies recurrences satisfied by their joint distributions. In particular,
the pair Qn := (Nn, Sn) satisfies the recurrence

(Qn)t d
=
∑

16r6m

[ 1 1
0 1

] (
Q

(r)
Ir

)t

+

(
0

1

)
, (n > m), (12)

where, as in (5)–(7), the Q(r)
j ’s are distributed as Qj for all 1 6 r 6 m and 0 6 j 6 n−m+ 1,

and the
(
Q

(r)
j

)
06j6n−m+1

are independent for r = 1, . . . ,m and independent of (I1, . . . , In).
The recurrence satisfied by the pair Zn := (Kn, Sn) is

(Zn)t d
=
∑

16r6m

[ 1 0
0 1

] (
Z

(r)
Ir

)t

+

(
n−m+ 1

1

)
, (n > m), (13)

with conditions on independence and identical distributions similar to (12).
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3.2 Asymptotic transfer and Dirichlet integrals
Starting from the distributional recurrences (5) and (6), we see that all centered and non-
centered moments satisfy the same recurrence of the following type

an = m
∑

06j6n−m+1

πn,jaj + bn, πn,j =

(
n−1−j
m−2

)(
n

m−1

) , (14)

for n > m − 1, where {bn}n>m−1 is a given sequence. The asymptotics of an can be system-
atically characterized by that of bn through the use of the following transfer techniques; see
Proposition 7 in [8] and Theorem 2.4 in [14] for details.

Proposition 3.1. Assume that an satisfies (14) with finite initial conditions a0, . . . , am−2. Define
bn := an for 0 6 n 6 m− 2.

(i) Assume bn = c(n+ 1) + tn, where c ∈ C. Then the conditions

tn = o(n) and

∣∣∣∣∣∑
n>1

tnn
−2

∣∣∣∣∣ <∞
are both necessary and sufficient for

an = 2cφnHn + c′n+ o(n),

where
c′ = 2φ

∑
j>0

tj
(j + 1)(j + 2)

+
c

2
− 2cφ+ 2c(H(2)

m − 1)φ2;

(ii) if bn ∼ cnv, where v > 1, then

an ∼
c

1− m!Γ(v+1)
Γ(v+m)

nv.

In particular, when c = 0 in (i), then we see that an is asymptotically linear

an
n
∼ 2φ

∑
j>0

bj
(j + 1)(j + 2)

iff bn = o(n) and

∣∣∣∣∣∑
n>1

bnn
−2

∣∣∣∣∣ <∞.
We will be dealing with Dirichlet integrals of the following type

I(u, v) :=

∫
x1+···+xm=1
06x1,...,xm61

( ∑
16l6m

xu−1
l

)( ∑
16r6m

xv−1
r

)
dx, (<(u),<(v) > 0).

Here dx is an abbreviation for dx1 · · · dxm−1. Such integrals have a closed-form expression.

Lemma 3.2. For m > 2 and <(u),<(v) > 0,

I(u, v) =
mΓ(u+ v − 1) +m(m− 1)Γ(u)Γ(v)

Γ(u+ v +m− 2)
. (15)

11



Proof. First, the claim is easily proved for m = 2. Assume m > 3. Then, by symmetry,

I(u, v) =

∫
x1+···+xm=1
06x1,...,xm61

(
mxu+v−2

1 +m(m− 1)xu−1
1 xv−1

2

)
dx

=
m

(m− 2)!

∫ 1

0

xu+v−2
1 (1− x1)m−2dx1

+
m(m− 1)

(m− 3)!

∫ 1

0

∫ 1−x1

0

xu−1
1 xv−1

2 (1− x1 − x2)m−3dx2dx1

=
mΓ(u+ v − 1)

Γ(u+ v +m− 2)
+
m(m− 1)Γ(u)Γ(v)

Γ(u+ v +m− 2)
,

which leads to (15).
The following two identities will be needed below.∫

x1+···+xm=1
06x1,...,xm61

( ∑
16l6m

xu−1
l

)( ∑
16r6m

xr log xr

)
dx

=
∂

∂v
I(u, v)

∣∣∣∣∣
v=2

=
mΓ(u)

Γ(m+ u)
(uψ(u+ 1) + (m− 1)(1− γ)− (m+ u− 1)ψ(m+ u)) ,

(16)

where ψ is the digamma function and γ is Euler’s constant. Similarly,∫
x1+···+xm=1
06x1,...,xm61

( ∑
16r6m

xr log xr

)2

dx =
∂2

∂u∂v
I(u, v)

∣∣∣∣∣
u=v=2

= H(2)
m +

4

φ2
− 2

m+ 1
− (m− 1)π2

6(m+ 1)
.

(17)

3.3 Correlation between the space requirement and KPL
We are now ready to prove Theorem 2.1.

Expected values of Sn and Kn. For convenience, let µn := E(Sn) and κn := E(Kn). Then,
by (5) and (6), for n > m− 1

µn = m
∑

06j6n−m+1

πn,jµj + 1,

κn = m
∑

06j6n−m+1

πn,jκj + n−m+ 1,

with the initial conditions µ0 = κn = 0 for 0 6 n 6 m− 2 and µn = 1 for 1 6 n 6 m− 2.
By applying Proposition 3.1(i), we obtain

µn ∼ φn, and κn = 2φn log n+ cn+ o(n), (18)

12



for some constant c whose value matters less. The latter approximation is sufficient for all our
purposes, but the former is not and we need the following stronger expansion (see [8, 31, 30])

µn = φ(n+ 1)− 1

m− 1
+
∑

26k63

Ak
Γ(λk)

nλk−1 + o(nα−1), (19)

where λ2 = α + iβ and λ3 := α− iβ and

Ak =
1

λk(λk − 1)
∑

06j6m−2
1

j+λk

.

Note that for 3 6 m 6 13 the constant term − 1
m−1

(together with φ) is the second-order term
on the right-hand side of (19), while for larger m, it is absorbed in the o-term.

Variance and covariance. To compute the asymptotics of the covariance, we first derive the
corresponding recurrences and then apply Proposition 3.1 of asymptotic transfer.

First, let S̄n = Sn − µn and K̄n = Kn − κn. We consider the moment-generating function

P̄n(u, v) := E
(
eS̄nu+K̄nv

)
.

Then, using (5) and (6), we obtain for n > m− 1

P̄n(u, v) =
1(
n

m−1

)∑
j

Pj1(u, v) · · ·Pjm(u, v)e∆ju+∇jv (20)

with the initial conditions P̄n(u, v) = 1 for 0 6 n 6 m− 2. Here, j = (j1, . . . , jm) is a vector
with j1, . . . , jm > 0 and j1 + · · ·+ jm = n−m+ 1 (we use this notation throughout),

∆j = 1− µn +
∑

16l6m

µjl , and ∇j = n−m+ 1− κn +
∑

16l6m

κjl . (21)

Define

V [S]
n = V(Sn), V [SK]

n = Cov(Sn, Kn), V [K]
n = V(Kn).

Then, by taking derivatives in (20), we obtain

V [X]
n = m

∑
06j6n−m+1

πn,jV
[X]
j + b[X]

n , (X ∈ {S, SK,K}),

where

b[S]
n =

1(
n

m−1

)∑
j

∆2
j , b[SK]

n =
1(
n

m−1

)∑
j

∆j∇j, and b[K]
n =

1(
n

m−1

)∑
j

∇2
j .

We first derive uniform asymptotic approximations for ∆j and ∇j.

Lemma 3.3. Uniformly in j,

∆j =
∑

26k63

Ak
Γ(λk)

nλk−1

(
−1 +

∑
16r6m

(
jr
n

)λk−1
)

+ o(nα−1),

and

∇j = n

(
1 + 2φ

∑
16r6m

jr
n

log
jr
n

)
+ o(n).

Proof. This follows from substituting the asymptotic approximations (18) and (19) into (21),
and standard manipulations.
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Asymptotics of V [S]
n . Although the asymptotic behaviors of the variance of Sn have been

computed before, we re-derive them here by a different approach, which is easily amended for
the calculation of other variances and covariances.

Consider first 3 6 m 6 26. Then α < 3/2. Moreover, from Lemma 3.3,

b[S]
n = O(n2α−2) = O(n1−ε),

for some 0 < ε < 0.00171. Consequently, by applying Proposition 3.1(i),

V [S]
n ∼ CSn,

for some constant CS; see [8] for a more explicit expression and the proof that CS > 0.
On other hand, if m > 27, since α > 3/2, we then have, by Lemmas 3.2 and 3.3,

b[S]
n ∼

∑
26k1,k263

(m− 1)!Ak1Ak2n
λk1+λk2−2

Γ(λk1)Γ(λk2)

×
∫
x1+···+xm=1
06x1,...,xm61

(
−1 +

∑
16l6m

x
λk1−1

l

)(
−1 +

∑
16r6m

x
λk2−1
r

)
dx

∼
∑

26k1,k263

Ak1Ak2n
λk1+λk2−2

Γ(λk1)Γ(λk2)

(
1− m!Γ(λk1)

Γ(λk1 +m− 1)
− m!Γ(λk2)

Γ(λk2 +m− 1)

+
m!Γ(λk1 + λk2 − 1)

Γ(λk1 + λk2 +m− 2)
+
m!(m− 1)Γ(λk1)Γ(λk2)

Γ(λk1 + λk2 +m− 2)

)
.

Note that
m!Γ(λkj)

Γ(λkj +m− 1)
= 1, (2 6 j 6 3).

Applying Proposition 3.1(ii) term by term then gives

V [S]
n ∼

∑
26k1,k263

Ak1Ak2n
λk1+λk2−2

Γ(λk1)Γ(λk2)

(
−1 +

m!(m− 1)Γ(λk1)Γ(λk2)

Γ(λk1 + λk2 +m− 2)−m!Γ(λk1 + λk2 − 1)

)
=: F1(β log n)n2α−2,

where

F1(z) := 2
|A2|2

|Γ(λ2)|2

(
−1 +

m!(m− 1)|Γ(λ2)|2

Γ(2α +m− 2)−m!Γ(2α− 1)

)
+ 2<

(
A2

2e
2iz

Γ(λ2)2

(
−1 +

m!(m− 1)Γ(λ2)2

Γ(2λ2 +m− 2)−m!Γ(2λ2 − 1)

))
.

(22)

Asymptotics of V [SK]
n . We now turn to V [SK]

n . If 3 6 m 6 13, then, by Lemma 3.3,

b[SK]
n = O (nα) ,

where α < 1. Consequently, by Proposition 3.1(i),

V [SK]
n ∼ CRn,
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for some constant CR. For the remaining range wherem > 14, we have α > 1, and, by Lemma
3.3 and (16),

b[SK]
n ∼

∑
26k63

(m− 1)!Akn
λk

Γ(λk)

∫
x1+···+xm=1
06x1,...,xm61

(
−1 +

∑
16l6m

xλk−1
l

)(
1 + 2φ

∑
16r6m

xr log xr

)
dx

∼
∑

26k63

Akn
λk

Γ(λk)

(
1− 2φ

m!Γ(λk + 1)

Γ(λk +m)

{
mψ(λk +m)− ψ(λk + 1)− (m− 1)(1− γ)

})
.

Now, we apply Proposition 3.1(ii) and again after some straightforward simplifications

V [SK]
n ∼ F2 (β log n)nα,

where

F2(z) := 2φ<

(
(λ2 +m− 1)A2e

iz

(m− 1)Γ(λ2)

(
1

2φ
− λ2

λ2 +m− 1

{
mψ(λ2 +m)− ψ(λ2 + 1)

− (m− 1)(1− γ)
}))

.

(23)

Asymptotics of V [K]
n . In a similar manner, we obtain, by Lemma 3.3,

b[K]
n ∼ (m− 1)!n2

∫
x1+···+xm=1
06x1,...,xm61

(
1 + 2φ

∑
16l6m

xl log xl

)2

dx

∼ 4φ2n2

(
H(2)
m −

2

m+ 1
− π2(m− 1)

6(m+ 1)

)
,

where the last line follows from applying (15), (16) and (17). Applying again Proposition
3.1(ii) gives

V [K]
n ∼ CKn

2,

which completes the proof of Theorem 2.1.

3.4 Correlation between space requirement and NPL
The calculations in this case are similar to those for ρ(Sn, Kn), so we only sketch the major
steps needed. Briefly, most asymptotic estimates differ either by a factor of the occupancy
constant φ or its powers. The only exception is the additional factor log n appearing in the
covariance Cov(Sn, Nn) (see (2.3)).

Let νn = E(Nn). Then

νn = m
∑

06j6n−m+1

πn,jνj + µn − 1.

Consequently, by the asymptotic estimate (19) and by applying Proposition 3.1(i), we obtain

νn = 2φ2n log n+ c2n+ o(n), (24)
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for some constant c2.
Let N̄n = Nn − νn. Then the moment-generating function P̄n(u, v) := E

(
eS̄nu+N̄nv

)
satisfies for n > m− 1

P̄n(u, v) =
1(
n

m−1

)∑
j

Pj1(u+ v, v) · · ·Pjm(u+ v, v)e∆ju+δjv,

with the initial conditions P̄n(u, v) = 1 for 0 6 n 6 m− 2 and

δj := −νn +
∑

16l6m

(νjl + µjl) .

Now define
V [SN ]
n := Cov(Sn, Nn) and V [N ]

n := V(Nn).

Then

V [X]
n = m

∑
06l6n−m+1

πn,jV
[X]
j + b[X]

n , (X ∈ {SN,N}),

where

b[SN ]
n =

1(
n

m−1

)∑
j

(
V

[S]
j + ∆jδj

)
= V [S]

n +
1(
n

m−1

)∑
j

(
∆jδj −∆2

j

)
b[N ]
n =

1(
n

m−1

)∑
j

(
V

[S]
j + 2V

[SN ]
j + δ2

j

)
= V [S]

n + 2V [SN ]
n +

1(
n

m−1

)∑
j

(
δ2
j − 2∆jδj + ∆2

j

)
.

As in the case of KPL, the following uniform estimate is crucial in our analysis.

Lemma 3.4. Uniformly in j,

δj = φn

(
1 + 2φ

∑
16l6m

jl
n

log
jl
n

)
+ o(n).

Proof. By the definition of δj and the estimates (19) and (24).
Note that the expansion differs from that for∇j in Lemma 3.3 by an additional factor φ.
If 3 6 m 6 13, then, by Lemmas 3.3 and 3.4,

b[SN ]
n = CSn+O

(
n1−ε) ,

for a sufficiently small ε > 0. Thus, by Proposition 3.1 (i),

V [SN ]
n ∼ CSn log n

Hm − 1
.
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Assume now m > 14. Then, again from Lemma 3.3 and Lemma 3.4 together with the known
asymptotics of V [S]

n , we see that

b[SN ]
n ∼ 1(

n
m−1

)∑
j

∆jδj ∼
φ(
n

m−1

)∑
j

∆j∇j ∼ φb[SK]
n .

Thus we deduce, as in the proof for V [SK]
n ,

V [SN ]
n ∼ φV [SK]

n ∼ φF2(β log n)nα.

Similarly, we have

b[N ]
n ∼

1(
n

m−1

)∑
j

δ2
j ∼

φ2(
n

m−1

)∑
j

∇2
j ∼ φ2b[K]

n .

Consequently,
V [N ]
n ∼ φ2V [K]

n ∼ φ2CKn
2.

This completes the proof of Theorem 2.3.

4 Bivariate distributional asymptotics for space requirement
and path lengths

In this section, we identify the asymptotic joint distributional behaviors of the pairs (Nn, Sn)
and (Kn, Sn). Although the sequences (Nn) and (Kn) converge after normalization for allm >
3 with limit distributions depending on m, we split the analysis into two cases depending on
3 6 m 6 26 orm > 26 due to the phase change in the limit behavior of Sn. We discuss the pair
(Nn, Sn) in detail in Sections 4.1 and 4.2. (the corresponding analysis for (Kn, Sn) is similar
and we will not give details). Moreover, in Section 4.3, we will show that the univariate limit
random variables of the normalized sequences (Nn) and (Kn) do have the same distribution.
We introduce the following notation

µ(n) := µn = E[Sn] = φ(n+ 1) + <(θnλ2−1) + o(1 ∨ nα−1), (25)

where θ := 2A2/Γ(λ2); see (19). Similarly, write κ(n) = κn = E(Kn) and ν(n) = νn =
E(Nn).

4.1 Node path length and space requirement. I. m > 27

We give in this section the precise formulation of the periodic case m > 27 of Theorem 2.7.

Normalization. We first normalize the vector Qn = (Nn, Sn) as follows. Let Y0 := 0 and

Yn :=

(
Nn − E[Nn]

n
,
Sn − φn
nα−1

)
, (n > 1).
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Then the recurrence (12) implies for n > m− 1

(Yn)t d
=
∑

16r6m

A(n)
r

(
Y

(r)

I
(n)
r

)t

+ b(n), (26)

where

A(n)
r :=


I

(n)
r

n

(
I

(n)
r

)α−1

n

0

(
I

(n)
r

n

)α−1

 , b(n) :=


1

n

( ∑
16r6m

(
ν
(
I(n)
r

)
+ φI(n)

r

)
− ν(n)

)
−φm− 1

nα−1

 ,

with assumptions on independence and on identical distributions as in Section 3.1. The expan-
sion (24) implies

1

n

( ∑
16r6m

(
ν
(
I(n)
r

)
+ φI(n)

r

)
− ν(n)

)
= φ+ 2φ2

∑
16r6m

I
(n)
r

n
log

I
(n)
r

n
+ o(1).

Moreover, by (11), we obtain the L2-convergence

I(n)

n

L2−→ (V1, . . . , Vm) =: V. (27)

This implies the L2-convergences

1

n

( ∑
16r6m

(
ν
(
I(n)
r

)
+ φI(n)

r

)
− ν(n)

)
→ φ+ 2φ2

∑
16r6m

Vr log Vr =: bN , (28)

and

b(n) →
(
bN
0

)
, A(n)

r →
[
Vr 0
0 V α−1

r

]
. (29)

For our limit result form > 27, we first define a distribution which governs the asymptotics.

The limiting map. To describe the asymptotic behavior of Qn, we use the following prob-
ability distribution on the space R × C. Let MR×C denote the space of all distributions
L(Z,W ) on R × C andMR×C

2 the subspace of distributions with finite second moment, i.e.,
‖(Z,W )‖2 := (E[Z2] + E[|W |2])1/2 <∞. For γ = (γ1, γ2) ∈ R× C, let

MR×C
2 (γ) :=

{
L(Z,W ) ∈MR×C

2

∣∣∣E[Z] = γ1,E[W ] = γ2

}
.

We define the following map TN onMR×C
2 :

TN :MR×C →MR×C

L(Z,W ) 7→ L

( ∑
16r6m

[
Vr 0
0 V λ2−1

r

](
Z(r)

W (r)

)
+

(
bN
0

))
, (30)
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where (Z(1),W (1)), . . . , (Z(m),W (m)), V are independent, (Z(r),W (r)) is distributed as (Z,W )
for all r = 1, . . . ,m and bN is defined in (28). The ‖ · ‖2-norm induces the minimal L2-metric
`2 by

`2(µ, ν) := inf{‖X − Y ‖2 : L(X) = µ,L(Y ) = ν}, (µ, ν ∈MR×C
2 ).

Given random variables X, Y , write for simplicity `2(X, Y ) = `2(L(X),L(Y )). For any dis-
tributions µ, ν ∈MR×C

2 , there exist optimal `2-couplings, i.e. random vectors Υ1,Υ2 in R×C
with `2(µ, ν) = ‖Υ1 −Υ2‖2.

Lemma 4.1. Assume m > 27. For any γ ∈ R × C, the restriction of the map TN defined in
(30) to MR×C

2 (γ) is a (strict) contraction with respect to `2, and has a unique fixed point in
MR×C

2 (γ).

Proof. Let γ ∈ R × C be arbitrary. For µ ∈ MR×C
2 (γ), let Υ be a random variable with

distribution T (µ). First, note that ‖Υ‖2 < ∞ by independence and ‖bN‖2 < ∞ (we even
have ‖bN‖∞ < ∞). To see that E[Υ] = γ, note that E[bN ] = 0 and

∑
16r6m Vr = 1 almost

surely. Hence, we only need to show that E[V λ2−1
1 ] = 1/m. Since V1 has density x 7→

(m− 1)(1− x)m−2 for x ∈ [0, 1], we see that

E
[
V λ2−1

1

]
=

∫ 1

0

(m− 1)(1− x)m−2xλ2−1 dx = (m− 1)
Γ(m− 1)Γ(λ2)

Γ(m+ λ2 − 1)
=

1

m
,

because Γ(m+ λ2 − 1)/Γ(λ2) = m!. This implies that E[Υ] = γ, and thus T (µ) ∈MR×C
2 (γ).

This in turn implies that the restriction of T toMR×C
2 (γ) maps intoMR×C

2 (γ).
That the restriction of T to MR×C

2 (γ) is a contraction with respect to `2 follows from a
standard calculation, e.g., with a slight modification as in [36, Lemma 3.1].

Proof of Theorem 2.7: NPL. Denote by L(X,Λ) the unique fixed point of the restriction of
TN toMR×C

2 ((0, θ)), with θ defined in (25). By Lemma 4.1, the distribution L(X,Λ) as in the
statement of the Theorem is well-defined. The fixed point property of (X,Λ) implies that

(
X

<(niβΛ)

)
d
=


∑

16r6m

VrX
(r) + bN∑

16r6m

<(niβV λ2−1
r Λ(r))

 , (31)

where (V1, . . . , Vm), (X(1),Λ(1)), . . . , (X(m),Λ(m)) are independent, and (X(r),Λ(r)) are iden-
tically distributed as (X,Λ).

Define now three matrices

Ã(n)
r :=


I

(n)
r

n
0

0

(
I

(n)
r

n

)α−1

 , B(n)
r :=

[
Vr 0
0 niβV λ2−1

r

]
, C(n)

r :=


I

(n)
r

n
0

0

(
I

(n)
r

)λ2−1

nα−1

 ,
and write

∆(n) := `2(Yn, (X,<(niβΛ))).
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To bound ∆(n), we use the following coupling between the Y (r)
j ’s appearing in the recurrence

(26) and the quantities appearing on the right-hand side of (31). Note that for any pair of
distributions on R2, there always exists an optimal `2-coupling. We first fix the random vectors
(X(1),Λ(1)), . . . , (X(m),Λ(m)). Then, for each j > 1 and r = 1, . . . ,m, we choose Y (r)

j as an
optimal `2-coupling to (X(r),<(jiβΛ(r))) on R2. This can be done such that the sequences(

Y
(1)
j , (X(1),<(jiβΛ(1)))

)
j>1

, . . . ,
(
Y

(m)
j , (X(m),<(jiβΛ(m)))

)
j>1

are independent and independent of (I(n), V1, . . . , Vm). Note that these couplings and indepen-
dence assumptions do not violate equations (26) and (31). Hence, we obtain

∆(n) 6

∥∥∥∥∥ ∑
16r6m

A(n)
r

(
Y

(r)

I
(n)
r

)t
+ b(n) −<

( ∑
16r6m

B(n)
r

(
X(r)

Λ(r)

)
+

(
b
0

))∥∥∥∥∥
2

.

Using the triangle inequality and writing the components as Yn = (Yn,1, Yn,2), we obtain

∆(n) 6

∥∥∥∥∥ ∑
16r6m

(
Ã(n)
r

(
Y

(r)

I
(n)
r

)t
−<

(
C(n)
r

(
X(r)

Λ(r)

)))∥∥∥∥∥
2

+

∥∥∥∥∥ ∑
16r6m

<
(
C(n)
r

(
X(r)

Λ(r)

))
−<

(
B(n)
r

(
X(r)

Λ(r)

))∥∥∥∥∥
2

+
∑

16r6m

∥∥∥∥∥(I
(n)
r )α−1

n
Y

(r)

I
(n)
r ,2

∥∥∥∥∥
2

+

∥∥∥∥b(n) −
(
b
0

)∥∥∥∥
2

.

The second and the fourth summand on the right-hand side tend to zero as n→∞ by (27) and
(29). For the third summand, note that the asymptotic behavior of the normalized size Yn,2 of
m-ary search trees is covered by Theorem 1, eq. (2) in [8]. In particular, from that theorem we
obtain supn>1 ‖Yn,2‖2 < ∞. Taking into account the prefactor (I

(n)
r )α−1/n and conditioning

on I(n)
r , we find that the third summand also tends to zero.
To bound the first summand in the latter display, we write, for r = 1, . . . ,m and n > m−1,

W (n)
r := Ã(n)

r

(
Y

(r)

I
(n)
r

)t
−<

(
C(n)
r

(
X(r)

Λ(r)

))
and denote the components of W (n)

r by W (n)
r = (W

(n)
r,1 ,W

(n)
r,2 ). For r = 1, . . . ,m, we have

E

∥∥∥∥∥ ∑
16r6m

W (n)
r

∥∥∥∥∥
2

= E

[ ∑
16r6m

{
(W

(n)
r,1 )2 + (W

(n)
r,2 )2

}
+
∑
r 6=s

{
W

(n)
r,1 W

(n)
s,1 +W

(n)
r,2 W

(n)
s,2

}]
.

(32)

We bound the three types of terms individually. First, for the dominant term

E
[
(W

(n)
r,1 )2 + (W

(n)
r,2 )2

]
= E

(I(n)
r

n

)2 (
Y

(r)

I
(n)
r ,1
−X(r)

)2

+

(
I

(n)
r

n

)2(α−1) (
Y

(r)

I
(n)
r ,2
−<

(
(I(n)
r )iβΛ(r)

))2
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6 E

(I(n)
r

n

)2(α−1)((
Y

(r)

I
(n)
r ,1
−X(r)

)2

+
(
Y

(r)

I
(n)
r ,2
−<

(
(I(n)
r )iβΛ(r)

))2
)

where we used the inequality (I
(n)
r /n)2 6 (I

(n)
r /n)2(α−1). Conditioning on I(n)

r and using that
Y

(r)
j and (X(r),<(jiβΛ(r))) are optimal couplings, we obtain

E
[
(W

(n)
r,1 )2 + (W

(n)
r,2 )2

]
6 E

(I(n)
r

n

)2(α−1)

∆2(I(n)
r )

 .
For the cross-product terms in (32), assume 1 6 r, s 6 m with r 6= s. Note that, by indepen-
dence, we have E[W

(n)
r,1 W

(n)
s,1 ] = 0 conditioning on I(n)

r and I(n)
s . From the expansion (25), we

obtain

E [Yn] =

(
0

<(θniβ) +R(n)

)
,

with a remainder R(n) = o(1). By independence and E[Λ] = θ, we obtain E[W
(n)
r,2 ] =

E[(I
(n)
r /n)α−1R(I

(n)
r )], and

E[W
(n)
r,2 W

(n)
s,2 ] = E

(I(n)
r

n
· I

(n)
s

n

)α−1

R(I(n)
r )R(I(n)

s )


which tends to 0 by the dominated convergence theorem as I(n)

r , I
(n)
s → 0 in probability.

Hence, collecting all estimates, we obtain

∆(n) 6

E

 ∑
16r6m

(
I

(n)
r

n

)2(α−1)

∆2(I(n)
r )

+ o(1)

1/2

+ o(1). (33)

Now ∆(n)→ 0 follows from a standard argument since we have

lim
n→∞

∑
16r6m

E

(I(n)
r

n

)2(α−1)
 =

∑
16r6m

E
[
V 2(α−1)
r

]
= m2B(m, 2α− 1) < 1;

(cf. the proof of Theorem 4.1 in [36]). This proves Theorem 2.7 for NPL.

4.2 Node path length and space requirement. II. 3 6 m 6 26

We begin with the recurrence (12), and recall that, for 3 6 m 6 26,

V(Sn) ∼ CSn, V(Nn) ∼ CNn
2 with CN = φ2CK ;

see (18) and (24). There exists an n1 > 1, such that for all n > n1, the matrix Cov(Qn) is
positive definite. We normalize it by Q̃n := Qn for 0 6 n < n1 and by(

Q̃n

)t

:=

[
(
√
CNn)−1 0

0 (CSn)−1/2

]
(Qn − E[Qn])t , (n > n1).
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Then, by (12), Q̃n satisfies the recurrence(
Q̃n

)t d
=
∑

16r6m

D(n)
r

(
Q̃

(r)

I
(n)
r

)t

+ b̃n, (n > m− 1),

where (denoting by Fn,r the event Fn,r := {I(n)
r > n1} and F c

n,r its complement)

D(n)
r =


(
I

(n)
r

n

)
1Fn,r +

1F c
n,r√

CN n

√
CSI

(n)
r√

CN n
1Fn,r +

1F c
n,r√
CNn

0

√
I

(n)
r√
n

1Fn,r +
1F c

n,r

σY
√
n

 ,

b̃n =


1√
CN n

( ∑
16r6m

(ν(I(n)
r ) + µ(I(n)

r ))− ν(n)

)
1

Csn

(
1− µ(n) +

∑
16r6m

ν(I(n)
r )

)
 , (34)

with assumptions on independence and identical distributions as in (12). Note that the asymp-
totic expressions for the variances and covariance between Nn and Sn imply that

Cov(Q̃n) = Id2 + o(1),

where Id2 denotes the 2×2 identity matrix and the o(1)-term means that all four components of
Cov(Q̃n) converge to the corresponding components of Id2, each o(1) in the four components
being different in general. In particular, Cov(Q̃n) is a symmetric, positive definite matrix for
all n > n1. Let Rn := Id2 for 0 6 n < n1 and Rn := (Cov(Q̃n))1/2 for n > n1. Note that, by
continuity, we have

Rn = Id2 + o(1), R−1
n = Id2 + o(1). (35)

Now normalize Q̃n by Yn := R−1
n Q̃n, for n > 1, so that Cov(Yn) = Id2 for n > n1, and

(Yn)t d
=
∑

16r6m

F (n)
r

(
Y

(n)

I
(n)
r

)t

+ b(n), (n > n1), (36)

where F (n)
r = R−1

n D
(n)
r R

I
(n)
r

and b(n) = R−1
n b̃n, with assumptions on independence and identi-

cal distributions as in (12). From (34), (35) and (27), we then obtain the convergences

F (n)
r →

[
Vr 0

0 V
1/2
r

]
=: F ∗r , b(n) →

(
C
−1/2
N bN

0

)
=: b∗N , (37)

which hold in Lp for any 1 6 p <∞ (we will need p = 3 below).

The limiting map. To describe the asymptotic behavior of Qn, we use the following proba-
bility distribution on the space R2. In accordance with the notation in [39], we denote byM2

the space of all probability distributions on R2, byM2
3 the subspace of all L(Z) ∈ M2 with

‖Z‖3 <∞, and furthermore
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M2
3(0, Id2) :=

{
L(Z) ∈M2

3

∣∣∣E[Z] = 0,Cov(Z) = Id2

}
.

Define the map T ′N onM2:

T ′N :M2 →M2, (38)

L(Z) 7→ L

( ∑
16r6m

F ∗r Z
(r) + b∗N

)
,

where Z(1), . . . , Z(m), (F ∗1 , . . . , F
∗
m, b

∗
N) are independent and Z(r) is distributed as Z for all

r = 1, . . . ,m. Here F ∗r and b∗N are defined in (37).

Lemma 4.2. The restriction of T ′N in (38) to M2
3(0, Id2) has a unique fixed point L(X ′,Λ′)

which is a product measure, i.e., its components X ′ and Λ′ are independent.

Proof. We check first that the restriction of T ′N toM2
3(0, Id2) maps intoM2

3(0, Id2):

• For any µ ∈M2
3(0, Id2), we see, by independence and ‖bN‖3 <∞, that T ′N(µ) ∈M2

3.

• For the mean of T ′N(µ), we have, from E[bN ] = 0, that T ′N(µ) is centered.

• For the covariance of T ′N(µ), we obtain (see also [39, Lemma 3.2]) the matrix

E
[
b2
N/CN 0

0 0

]
+mE

[
V 2

1 0
0 V1

]
= Id2. (39)

Thus T ′N(µ) ∈ M2
3(0, Id2). By Lemma 3.3 in [39], the existence of a unique fixed point

L(X ′,Λ′) follows from the inequality

mE ‖F ∗1 ‖
3
op = mE[V

3/2
1 ] < 1.

Alternatively, Theorem 5.1 in [11] (or Lemma 3.1 in [39] as well) implies the existence of a
unique fixed point L(X ′,Λ′) inM2

3(0, Id2).
To show that L(X ′,Λ′) is a product measure we recall that the existence of the unique fixed

point that we just obtained is based on the fact that the restriction of T ′N to M2
3(0, Id2) is a

contraction with respect to a complete metric onM2
3(0, Id2). We do not introduce this metric,

the Zolotarev metric ζ3, here, since we do not require the special description of ζ3. For more
information on ζ3, in particular the completeness of the metric space (M2

3(0, Id2), ζ3), see [11].
We denote the space of probability measures on R byM and

M3(0, 1) :=
{
L(Z) ∈M

∣∣∣E[|Z|3] <∞,E[Z] = 0,V(Z) = 1
}
.

Furthermore, the product of probability measures ν1 and ν2 on R by ν1⊗ν2. Consider the space

G := {ν1 ⊗N (0, 1) | ν1 ∈M3(0, 1)}.

Then G ⊂M2
3(0, Id2).
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To show that (G, ζ3) is a closed subspace of (M2
3(0, Id2), ζ3), let (µn ⊗ N (0, 1))n>1 be

a sequence in G that converges in (M2
3(0, Id2), ζ3), say to L(Y1, Y2). Since ζ3-convergence

implies weak convergence, we first obtain that Y2 is standard normally distributed. Clearly, we
have L(Y1) ∈ M3(0, 1). Since a weak limit of product measures is a product measure (see
e.g. [2, Theorem 2.8(ii)]), L(Y1, Y2) is a product measure. Now (G, ζ3) as a closed subspace of
the complete space (M2

3(0, Id2), ζ3) is complete.
We next show that the restriction of T ′N to G maps to G. Note that only here do we

use the fact that the second component in the definition of G is a normal distribution; see
(40) below. For µ = µ1 ⊗ N (0, 1) ∈ G, the covariance matrix of T ′N(µ) =: L(Y1, Y2)

is Id2 by (39). Since Y2 is distributed as
∑

16r6m V
1/2
r Nr, where the Nj’s are independent

normals and independent of (V1, . . . , Vm), we see that L(Y2) = N (0, 1). Thus it remains
to show that, for T ′N(µ) ∈ G, the components Y1 and Y2 are independent. Let A,B ⊂
R be measurable and (Y

(1)
1 , Y

(1)
2 ), . . . , (Y

(m)
1 , Y

(m)
2 ) be independent random vectors that are

independent of (V1, . . . , Vm) and identically distributed as µ. Then, denoting the distribu-
tion of V = (V1, . . . , Vm) by Υ and, for v = (v1, . . . , vm), writing tN(v) := C

−1/2
N (ϕm +

2ϕ2
m

∑
16r6m vr log vr), we have

P(Y1 ∈ A, Y2 ∈ B) = P

( ∑
16r6m

VrY
(1)
r + tN(V ) ∈ A,

∑
16r6m

V 1/2
r Y (2)

r ∈ B

)

=

∫
P

( ∑
16r6m

vrY
(1)
r + tN(v) ∈ A,

∑
16r6m

v1/2
r Y (2)

r ∈ B

)
dΥ(v)

=

∫
P

( ∑
16r6m

vrY
(1)
r + tN(v) ∈ A

)
P

( ∑
16r6m

v1/2
r Y (2)

r ∈ B

)
dΥ(v)

=

∫
P

( ∑
16r6m

vrY
(1)
r + tN(v) ∈ A

)
N (0, 1)(B)dΥ(v) (40)

= P(Y1 ∈ A)P(Y2 ∈ B).

We then deduce that T ′N(µ) ∈ G and T ′N maps G to G.
Finally, Banach’s fixed point theorem implies that the restriction of T ′N to G has a unique

fixed point. Since G ⊂ M2
3(0, Id2), we find L(X ′,Λ′) ∈ G. Consequently, X ′ and Λ′ are

independent.

Proof of Theorem 2.6: NPL. The proof of Theorem 2.6 relies on Theorem 4.1 in [39]. The
parameter d there is taken to be the dimension d = 2 here, and we choose the parameter
s = 3. Note that the normalization in (10) is as required in [39, eq. (22)] and is identical to
the normalization leading to the Yn in (36). We need to check the conditions (24)–(26) in [39].
Condition (24) in our case is, with F (n)

r and b(n) as in (37),

(F
(n)
1 , . . . , F (n)

m , b(n))→ (F ∗1 , . . . , F
∗
m, b

∗
N)

in L3. This is satisfied by (37). Condition (25) in our case is also satisfied because∑
16r6m

‖F ∗r ‖3
op = mE[V

3/2
1 ] < 1.
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Finally, condition (25) is, for all r = 1, . . . ,m and all ` ∈ N,

E
[
1{I(n)

r 6`}∪{I(n)
r =n}‖F

(n)
r ‖3

op

]
→ 0.

Since ‖F (n)
r ‖op are uniformly bounded random variables, this condition is equivalent to

P
(
I(n)
r 6 `

)
→ 0,

which is satisfied in view of (27). Hence, Theorem 4.1 in [39] applies and implies the con-
vergence Cov(Qn)−1/2(Qn − E[Qn]) → (X ′,Λ′) in the metric ζ3, which implies the stated
convergence in distribution.

Note that the components of T ′N imply univariate recursive distributional equations for
L(Λ′) and L(X ′):

Λ′
d
=
∑

16r6m

√
VrΛ

′(r),

X ′
d
=
∑

16r6m

VrX
′(r) + C

−1/2
N bN ,

with conditions on independence and identical distributions corresponding to the definition
of T ′N . Moreover, both equations are subject to the constraints of zero mean, unit variance
and bounded third absolute moment. The solution for L(Λ′) is given by the standard normal
distribution, and a comparison of the equation for L(X ′) with (30) shows that X ′ is identically
distributed as C−1/2

N X with X as in Theorem 2.7.

4.3 Limit law for NPL
From the previous two subsections, we see that the limit law of (Nn − E(Nn))/n is the unique
solution, subject to zero mean and finite variance, of the recursive distributional equation

X
d
=
∑

16r6m

VrX
(r) + φ+ 2φ2

∑
16r6m

Vr log Vr,

where X(1), . . . , X(m), V are independent and the X(r) have the same distribution as X .
Moreover, it is well-known that the limit law of (Kn − E(Kn))/n, which we denote by

L(K) in Section 2.2, is the unique solution, again subject to zero mean and finite variance, of

X
d
=
∑

16r6m

VrX
(r) + 1 + 2φ

∑
16r6m

Vr log Vr, (41)

where the meaning of the notations is as above.
Comparing these two distributional recurrences, we see that the solution to the first one is

L(φK). Thus, we have
Nn − E(Nn)

n

d−→ φK,

i.e., the limit law ofKn andNn are up to a constant identical. In fact, if one is only interested in
this result, then one does not need the analysis in the last two subsections but there are simpler
approaches, as we discussed below.
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4.4 Short proofs for the limit law of Nn

In this section, we discuss different means of proving directly the limit law for NPL without
the detour via the bivariate setting from Sections 4.1 and 4.2.

Limit law for NPL by the contraction method. A first alternative approach to the limit
law for NPL uses the contraction method and “over-normalizing” in recurrence (12). More
precisely, normalize with an α < α′ < 1 by

Rn :=

[
n−1 0

0 n−α
′

](
Nn − E[Nn]
Sn − E[Sn]

)
, (n > 1).

Now the recurrence (12) leads to the limit equation

(R)t d
=
∑

16r6m

[
Vr 0
0 V α′

r

] (
R(r)

)t
+

(
bN
0

)
, (42)

with conditions on independence and identical distributions as in (30). Theorem 4.1 in [36]
directly applies and implies that Rn → R in distribution and with second (mixed) moments,
where R is the unique fixed point subject to zero mean and finite second moment of the re-
cursive distributional equation (42). By substituting into (42), we see that (φK, 0) has the
distribution ofR, which implies that

Nn − E[Nn]

n

d−→ φK.

Univariate limit law for NPL via Slutsky’s theorem. Another approach is to apply Slutsky’s
theorem. For that purpose, we consider the moment generating function

P̄n(u, v, w) = E
(
eS̄nu+K̄nv+N̄nw

)
.

Then P̄n satisfies the recurrence

P̄n(u, v, w) =
1(
n

m−1

)∑
j

P̄j1(u+ w, v, w) · · · P̄jl(u+ w, v, w)e∆ju+∇jv+δjw,

with the initial conditions Pn(u, v, w) = 1 for 0 6 n 6 m− 2. Now define

V [KN ]
n := Cov(Kn, Nn).

Then
V [KN ]
n = m

∑
06j6n−m+1

πn,jV
[KN ]
j + b[KN ]

n ,

where

b[KN ]
n =

1(
n

m−1

)∑
j

(
V

[SK]
j +∇jδj

)
= V [SK]

n +
1(
n

m−1

)∑
j

(∇jδj −∆j∇j) .
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Observe that Lemma 3.3 and Lemma 3.3, together with the asymptotics of V [SK]
n , imply that

b[KN ]
n ∼ 1(

n
m−1

)∑
j

∇jδj ∼
φ(
n

m−1

)∑
j

∇2
j ∼ φb[K]

n .

Consequently, by the same method of proofs used in Section 3, we see that

V [KN ]
n ∼ φCKn

2.

Now consider the difference

E(φK̄n − N̄n)2 = φ2V [K]
n − 2φV [KN ]

n + V [N ]
n

∼ φ2CKn
2 − 2φ2CKn

2 + φ2CKn
2

= o(n2).

Consequently, by Chebyshev’s inequality, we obtain the convergence in probability

φK̄n − N̄n

n

P−→ 0.

From this, the claimed result follows from Slutsky’s theorem and the limit law for KPL.
Note that this argument in addition gives the following consequence.

Corollary 4.3. The correlation coefficient between Kn and Nn tends asymptotically to one

ρ(Kn, Nn)→ 1.

Identical limit random variables. To the pair (Nn, Kn), we could as well apply the contrac-
tion method, and prove that the normalization (Nn − E(Nn))/n, (Kn − E(Kn))/n) converges
to a limit given by

(P)t d
=
∑

16r6m

[
Vr 0
0 Vr

] (
P(r)

)t
+

(
φbK
bK

)
,

with conditions on independence and identical distributions as in (30) and subject to zero mean
and finite second moment. By plugging in, we find that (φK,K) has the limit distribution.
This re-derives Corollary 4.3 and shows that the limit random variables (up to scaling) are even
almost surely identical. It seems reasonable to conjecture that the sequences(

Nn − E[Nn]

φn

)
n>1

,

(
Kn − E[Kn]

n

)
n>1

both convergence almost surely to the same random variable with the distribution of K. This
requires the m-ary search trees to grow as a combinatorial Markov chain, which canonically is
obtained by building up the tree from i.i.d. uniformly on [0, 1] distributed data. For the notion
of a combinatorial Markov chain and related results on binary search trees, see Grübel [19].
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5 Extensions
The dependence and phase changes we established above for space requirement and path
lengths in random m-ary search trees are not confined to these shape parameters, neither are
they specific to m-ary search trees. The same study (including the same methods of proof) can
be carried out for other shape parameters and other classes of random trees. We consider first
random median-of-(2t+ 1) search trees in this section, where we discuss the joint asymptotics
of size (defined as the number of nodes with at least 2t descendants) and total key path length
(which is also the major cost measure for Quicksort using the median-of-(2t + 1) technique).
Random quadtrees will be also briefly discussed. Then we consider another line of extension,
namely, to other shape parameters in these trees. Since the technicalities follow more or less
the same pattern, we skip all proofs.

5.1 Random fringe-balanced binary search trees
Fringe-balanced binary search trees (FBBSTs) are binary search trees (m = 2) with local
re-organizations for all subtrees of size exactly 2t + 1 into more balanced ones. In terms of
quicksort, the corresponding tree structures choose at each partitioning stage the median of
a sample of 2t + 1 elements to partition the elements into smaller and larger groups. For a
precise description and other connections, see [8, 10]. The number of nodes Sn with at least
2t descendants (or the number of median-partitioning stages) and the total path length of these
nodes (TPL; KPL=NPL for binary search trees) Xn of a random FBBST constructed from
a random permutation of n elements satisfy the following distributional recurrence (Qn :=
(Xn,Sn))

(Qn)t d
=
(
Q(1)
I′n

)t

+
(
Q(2)
n−1−I′n

)t

+

(
n− 1

1

)
, (n > 2t+ 1),

with conditions on independence and identical distributions as in (12) and the initial conditions
S0 = · · · = S2t = X0 = · · · = X2t = 0. Here

P(I ′n = j) =

(
j−1
t

)(
n−j
t

)(
n

2t+1

) (t 6 j 6 n− 1− t).

We start with the mean. First, for Sn, it was proved in [8] that

E(Sn) = C1(n+ 1)− 1 +
∑

26k63

Ck
Γ(%k)

n%k−1 + o(nαt−1) (43)

where

Ck =
t!

2(%k − 1)%k · · · (%k + t− 1)
∑

t6j62t
1

j+%k

(k = 1, . . . , t+ 1),

with %1 = 2 > <(%2) = <(%3) = αt > <(%4) > · · · > <(%t+1) being the zeros of the indicial
equation

(z + t) · · · (z + 2t)− 2(2t+ 1)!

t!
.
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In particular,

C1 = φt :=
1

2(t+ 1)(H2t+2 −Ht+1)
.

Moreover, using the transfer theorems from [8], we obtain, for the mean of Xn,

E(Xn) =
1

H2t+2 −Ht+1

n log n+ ctn+ o(n),

for some constant ct. The same method of proofs (asymptotic transfer and the approach used
in Section 3.3) also leads to asymptotic estimates for the variances and the covariance between
Xn and Sn.

Theorem 5.1. The variance of the number of non-leaf nodes Sn and that of the TPL Xn in a
random FBBST, and their covariance satisfy

V(Sn) ∼

{
DSn, if 1 6 t 6 58;

G1(βt log n)n2αt−2, if t > 59,

Cov(Sn,Xn) ∼

{
DRn, if 1 6 t 6 28;

G2 (βt log n)nαt , if t > 29,

V(Xn) ∼ DXn
2,

where DS, DR are suitable constants, βt = =(%2), and all other constants and functions are
given below.

The periodic functions in the above theorem are given by

G1(z) = 2
|C2|2

|Γ(%2)|2

(
−1 +

2(2t+ 1)!|Γ(%2 + t)|2

t!2Γ(2αt + 2t)− 2t!(2t+ 1)!Γ(2αt + t− 1)

)
+ 2<

(
C2

2e
2iz

Γ(%2)2

(
−1 + 2

2(2t+ 1)!Γ(%2 + t)2

t!2Γ(2%2 + 2t)− 2t!(2t+ 1)!Γ(2%2 + t− 1)

))
and

G2(z) = <

(
C2e

iz

Γ(%2)

(
%2 + 2t+ 1

t+ 1

− (%2 + 2t+ 1)ψ(%2 + 2t+ 2)− (%2 + t)ψ(%2 + t+ 1)− (t+ 1)(Ht+1 − γ)

(t+ 1)(H2t+2 −Ht+1)

))
,

respectively. Moreover, we have

DX =
1

(H2t+2 −Ht+1)2

(
2t+ 3

t+ 1
H

(2)
2t+2 −

t+ 2

t+ 1
H

(2)
t+1 −

π2

6

)
.

The limit law for the normalized TPL of random FBBSTs was first shown in the dissertation of
Bruhn, [5]; see also [4, 8, 34, 40]. The phase change of the limit law of the normalized Sn was
first discovered in [8].
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To describe the joint limiting behavior of Sn and Xn, we denote by V a random variable that
is the median of (2t + 1) independent, identically distributed uniform [0, 1] random variables,
i.e., a Beta(t+ 1, t+ 1) distribution. We define the map Tmed by

Tmed :MR×C →MR×C,

L(Z,W ) 7→ L
([
V 0
0 V%2

](
Z(1)

W (1)

)
+

[
1− V 0

0 (1− V)%2

](
Z(2)

W (2)

)
+

(
bM
0

))
,

with conditions on independence and distributions as in (30) and

bM := 1 +
1

H2t+2 −Ht+1

(V logV + (1− V) log(1− V)) .

Then Lemma 4.1 and its proof also apply to the map Tmed as long as t > 59. The normalization
used is given by

Yn :=

(
Xn − E(Xn)

n
,
Sn − C1n

nαt−1

)
, (n > 1). (44)

We have the following asymptotic behavior for t > 59. Rewrite (43) as

E(Sn) = C1(n+ 1)− 1 + <(ϑn%2) + o(nαt−1), (45)

where ϑ := 2<(C2/Γ(%2)).

Theorem 5.2. Assume t > 59. Let Yn be the normalization of TPL and the number of non-leaf
nodes in a random FBBST defined in (44). Denote by L(Xmed,Λmed) the unique fixed point of
the restriction of Tmed toMR×C

2 ((0, ϑ)) with ϑ defined in (45). Then, denoting by βt := =(%2),
we have

`2

(
Yn, (Xmed,<(niβtΛmed))

)
→ 0, (n→∞).

For the range of 1 6 t 6 58, we define b∗med := (D
−1/2
X bM , 0)t and the map T ′med onM2:

T ′med :M2 →M2,

L(Z,W ) 7→ L
([
V 0
0 V1/2

](
Z(1)

W (1)

)
+

[
1− V 0

0 (1− V)1/2

](
Z(2)

W (2)

)
+ b∗med

)
,

with conditions on independence and distributions as in (38). Again Lemma 4.2 and its proof
apply to T ′med and imply that the restriction of T ′med to M2

3(0, Id2) has a unique fixed point
L(X ′med,Λ

′
med).

Similar to the small m case of m-ary search trees, the remaining range 1 6 t 6 58 also
leads to a convergence in distribution.

Theorem 5.3. Assume 1 6 t 6 58. Let Qn = (Xn,Sn) be the vector of TPL and the number
of non-leaf nodes in a random FBBST. With L(X ′med,Λ

′
med) as above, we have

Cov(Qn)−1/2 (Qn − E[Qn])
d−→ L (X ′med,Λ

′
med) ,

where Λ′med is a standard normal distribution. Moreover, X ′med and Λ′med are independent.
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5.2 Random quadtrees
Point quadtrees, first proposed by Finkel and Bentley [15], are one of the most natural exten-
sions of binary search trees to multivariate data in which each point splits the d-dimensional
space into 2d subspaces, corresponding to 2d subtrees in the corresponding tree structure. For a
precise definition of random d-dimensional quadtrees; see [7, 30]. Since the space requirement
is a constant, we discuss the number of leaves Ln and the internal path length Ξn in this section.
Note that for the pairWn := (Ξn, Ln), we have, for all n > 2,

(Wn)t d
=
∑

16r62d

(
W(r)

Jr

)t

+

(
n− 1

0

)
,

with conditions on independence and identical distributions as in (12), where the initial condi-
tions are L0 = 0, L1 = 1,Ξ0 = Ξ1 = 0. Moreover, the underlying splitting probabilities are
given by

P(J1 = j1, . . . , J2d = j2d) =

(
n− 1

j1, . . . , j2d

)∫
[0,1]d

q1(x)j1 · · · q2d(x)j2ddx,

where j1, . . . , j2d > 0, j1 + · · ·+ j2d = n− 1,x = (x1, . . . , xd) and

qh(x) =
∏

16l6d

((1− bl)xl + bl(1− xl)) ,

with (b1, . . . , bd)2 being the binary representation of h− 1.
First, it was proved in [7] that the mean of Ln satisfies, for d > 2,

E(Ln) = χdn+ c+n
α̂+iβ̂ + c−n

α̂−iβ̂ +
χd

2d − 1
+ o(nα̂), (46)

where χd, c+, c− (which is the conjugate of c+) are given in [7], and 2e2πi/d = α̂ + 1 + iβ̂.
Moreover, the asymptotic transfer results in [7] also lead to the asymptotic approximation (see
also [16])

E(Ξn) =
2

d
n log n+ ĉn+ o(n),

for some explicitly computable constant ĉ. In a similar manner, we can characterize the asymp-
totics of the variances and the covariance.

Theorem 5.4. For the number of leaves Ln and the internal path length Ξn in random d-
dimensional quadtrees, we have

V(Ln) ∼

{
ELn, if 1 6 d 6 8;

P1

(
β̂ log n

)
n2α̂, if d > 9,

Cov(Ξn, Ln) ∼

{
ERn, if 1 6 d 6 5;

P2

(
β̂ log n

)
nα̂+1, if d > 6,

V(Ξn) ∼ EXn
2,

where EL, ER are suitable constants, β̂ := 2 sin 2π
d

, and all other constants and functions are
given below.
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The periodic functions above are given by

P1(z) = 2
(2α̂ + 1)d

(2α̂ + 1)d − 2d
|c+|2cL(α̂ + iβ̂, α̂− iβ̂)

+ 2<

(
(2α̂ + 2iβ̂ + 1)d

(2α̂ + 2iβ̂ + 1)d − 2d
c2

+cL(α̂ + iβ̂, α̂ + iβ̂)e2iz

)
,

where cL(u, v) = 1− η(0, u)− η(0, v) + 2dη(u, v) with

η(u, v) :=

(
1

u+ v + 1
+

Γ(u+ 1)Γ(v + 1)

Γ(u+ v + 2)

)d
and

P2(z) = 2<

(
(α̂ + iβ̂ + 2)d

(α̂ + iβ̂ + 2)d − 2d
c+cK(α̂ + iβ̂)eiz

)
,

where

cK(u, v) = η(0, u) +
2d+1

d

∂

∂v
η(u, v)

∣∣∣
v=1

.

Finally,

EX =
3d

3d − 2d
· 21− 2π2

9d
.

The limit law for the normalized internal path length of random d-dimensional quadtrees was
first obtained in [38]; see also [4, 7, 34]. The asymptotic behavior of the normalized number
of leaves together with its phase change was first discovered in [7]; see also [9, 23, 24, 25] for
closely related types of phase changes.

We now describe the joint behavior of Ξn and Ln. A random variable U uniformly dis-
tributed over the unit hypercube [0, 1]d decomposes this cube into 2d quadrants by drawing the
d hyperplanes through U perpendicular to the edges of the cube. Choose an ordering of these
quadrants and denote their volumes by 〈U〉1, . . . , 〈U〉2d; see [38, Section 2]. Now define the
map Tquad by (with δ2 := 2e2πi/d)

Tquad :MR×C →MR×C,

L(Z,W ) 7→ L

 ∑
16r62d

[
〈U〉r 0

0 〈U〉δ2r

](
Z(r)

W (r)

)
+

(
bQ
0

) ,

with conditions on independence and distributions as in (30), and

bQ := 1 +
2

d

∑
16r62d

〈U〉r log〈U〉r.

Then Lemma 4.1 and its proof also apply to map Tquad as long as d > 9. The normalization
used is given by

Vn :=

(
Ξn − E(Ξn)

n
,
Ln − χdn

nα̂

)
(n > 1). (47)
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Rewrite (46) as

E(Ln) = χdn+ <(ϑ̂nα̂+iβ̂) +
χd

2d − 1
+ o(nα̂), (48)

where ϑ̂ = 2c+.

Theorem 5.5. Assume d > 9. Let Vn denote the normalization of the internal path length
and the number of leaves in a random d-dimensional quadtree defined in (47). Denote by
L(Xquad,Λquad) the unique fixed point of the restriction of Tquad toMR×C

2 ((0, ϑ̂)) with ϑ̂ de-
fined in (48). Then we have

`2

(
Vn,
(
Xquad,<

(
niβ̂Λquad

)))
→ 0.

For the remaining range of 1 6 d 6 8, we define b∗quad := (E
−1/2
X bM , 0)t and the map T ′quad

onM2

T ′quad :M2 →M2,

L(Z,W ) 7→ L

 ∑
16r62d

[
〈U〉r 0

0 〈U〉1/2r

](
Z(r)

W (r)

)
+ b∗quad

 ,

with conditions on independence and distributions as in (38). Similarly, Lemma 4.2 and its
proof again apply to T ′quad and imply that the restriction of T ′quad toM2

3(0, Id2) has a unique
fixed point L(X ′quad,Λ

′
quad).

Theorem 5.6. Assume 1 6 d 6 8. Let Vn = (Ξn, Ln) denote the vector of internal path length
and the number of leaves in a random d-dimensional quadtree. With L(X ′quad,Λ

′
quad) as above,

we have

Cov(Vn)−1/2(Vn − E[Vn])
d−→ L

(
X ′quad,Λ

′
quad

)
,

where Λ′quad is a standard normal distribution, and X ′quad, and Λ′quad are independent.

The case when d = 1 corresponds to binary search trees, or equivalently, to Hoare’s quick-
sort, and the above theorem can be re-worded as follows. The number of comparisons and the
number of partitioning stages used by Hoare’s quicksort are asymptotically uncorrelated and
independent. Note that our results in the previous section for random FBBSTs give indeed a
stronger statement for the asymptotic independence or asymptotical periodicity for quicksort
using median-of-(2t+ 1).

5.3 More general shape parameters
Our study can be extended to other shape parameters. For random m-ary search trees, the
generality of Proposition 3.1 provides an effective means of widening our study to a broader
class of “toll functions” in the definitions of Sn, Kn and Nn. For example, the following
extensions are straightforward.

Sn
d
= S

(1)
I1

+ · · ·+ S
(m)
Im

+

{
c+ o(n−ε), if 2 6 m 6 13;

o(nα−1), if m > 14
(49)

for some constant c, and
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– Kn
d
= K

(1)
I1

+ · · ·+K
(m)
Im

+ n+ tn with

tn = o(n) and

∣∣∣∣∣∑
n

tnn
−2

∣∣∣∣∣ <∞, (50)

and

– Nn
d
= N

(1)
I1

+ · · ·+N
(m)
Im

+S
(1)
I1

+ · · ·+S
(m)
Im

+ tn, where the Sn’s satisfy (49) and tn satisfies
(50).

Because the same iff-condition (50) also appears in the recurrence relations arising from
the two other classes of random trees (see [7, 8]), exactly the same conditions can be used to
extend the consideration for FBBSTs and quadtrees. Details are omitted here.
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[39] R. Neininger and L. Rüschendorf. A general limit theorem for recursive algorithms and
combinatorial structures. Ann. Appl. Probab., 14(1):378–418, 2004.

[40] U. Rösler. On the analysis of stochastic divide and conquer algorithms. Algorithmica,
29(1-2):238–261, 2001.

[41] H. Sulzbach. On martingale tail sums for the path length in random trees.
http://arXiv:1412.3508, 2014.

36


	Introduction
	M-ary search trees
	Space requirement and total path lengths
	A summary of known results
	Covariance, correlation, dependence and phase changes

	Correlation between space requirement and path lengths
	Preliminaries and recurrences
	Asymptotic transfer and Dirichlet integrals
	Correlation between the space requirement and KPL
	Correlation between space requirement and NPL

	Bivariate distributional asymptotics for space requirement and path lengths
	Node path length and space requirement. I. m27
	Node path length and space requirement. II. 3m26
	Limit law for NPL
	Short proofs for the limit law of Nn

	Extensions
	Random fringe-balanced binary search trees
	Random quadtrees
	More general shape parameters


