
Enumeration of d-combining
Tree-Child Networks

Yu-Sheng Chang∗ Michael Fuchs∗ Hexuan Liu∗

Michael Wallner† Guan-Ru Yu‡

March 15, 2022

Abstract

Tree-child networks are one of the most prominent network classes for modeling evolu-
tionary processes which contain reticulation events. Several recent studies have addressed
counting questions for bicombining tree-child networks which are tree-child networks with
every reticulation node having exactly two parents. In this paper, we extend these studies
to d-combining tree-child networks where every reticulation node has now d ≥ 2 parents.
Moreover, we also give results and conjectures on the distributional behavior of the number
of reticulation nodes of a network which is drawn uniformly at random from the set of all
tree-child networks with the same number of leaves.

1 Introduction and Results
The evolutionary process of, e.g., chromosomes, species, and populations is not always tree-like
due to the occurrence of reticulation events caused by meiotic recombination on the chromo-
some level, specification and horizontal gene transfer on the species level, and sexual recombi-
nation on the population level. Because of this, phylogenetic networks have been introduced as
appropriate models for reticulate evolution. Studying the properties of these networks is at the
moment one of the most active areas of research in phylogenetics; see [9, 12].

While algorithmic and combinatorial aspects of phylogenetic networks have been inves-
tigated now for a few decades, enumerating and counting phylogenetic networks as well as
understanding their “typical shape” are relatively recent areas of research; see [12, page 253]
where such questions are only discussed in one short paragraph. However, the last couple of
years have seen a lot of progress on these questions, in particular for the class of tree-child
networks, which is one of the most prominent subclasses amongst the many subclasses of phy-
logenetic networks; see [1, 4–8, 10, 11].

Most of the studies on tree-child networks have focused on bicombining tree-child networks
which are tree-child networks where every reticulation event involves exactly two individuals.
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Figure 1: (a) A 3-combining phylogenetic network which is not a tree-child network (because
both children of the tree node x are reticulation nodes and the only child of the reticulation
node y is also a reticulation node); (b) a 3-combining tree-child network; (c) a 3-combining
one-component tree-child network.

The purpose of this extended abstract is to discuss extensions of previous results to multicom-
bining tree-child networks. More precisely, we will focus on d-combining tree-child networks
which are tree-child networks whose reticulation events involve exactly d ≥ 2 individuals. We
will highlight similarities and differences between the two cases d = 2 and d > 2.

Before explaining our results, we will first give precise definitions and fix some notation.
We start with the definition of phylogenetic networks.

Definition 1.1 (Phylogenetic network). A (rooted) phylogenetic network with n leaves is a
rooted, simple, directed acyclic graph (DAG) with no nodes of in- and outdegree 1 and exactly
n nodes of indegree 1 and outdegree 0 (i.e., leaves) which are bijectively labeled with labels
from the set {1, . . . , n}.

In this work, we will only consider phylogenetic networks whose nodes all have either
indegree 1 or outdegree 1 and whose internal nodes (i.e., nodes which are neither leaves nor the
root) with indegree 1 all have outdegree 2 (bifurcating case); the latter nodes will be called tree
nodes. Finally, we will assume that all internal nodes with outdegree 1 have indegree d ≥ 2
and these nodes will be called reticulation nodes; see Figure 1 for examples with d = 3. Note
that d = 2 is the above mentioned bicombining case.

We next recall the definition of tree-child networks.

Definition 1.2 (Tree-child network). A phylogenetic network is called a tree-child network if
every non-leaf node has at least one child which is not a reticulation node.

In other words, a phylogenetic network is a tree-child network if (a) the root is not followed
by a reticulation node; (b) a reticulation node is not followed by another reticulation node; and
(c) a tree node has at least one child which is not a reticulation node; see Figure 1, (b) for an
example. A simple and important subclass of tree-child networks is the class of one-component
tree-child networks; see the definition below and Figure 1, (c) for an example.

Definition 1.3 (One-component tree-child network). A tree-child network is called a one-
component tree-child network if every reticulation node is directly followed by a leaf.
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One-component networks are more “tree-like” than general tree-child networks. Moreover,
they constitute an important building block in the construction of general tree-child networks;
see [1] for the bicombining case.

In the following, we denote by OTC
(d)
n,k and TC

(d)
n,k the number of one-component and gen-

eral d-combining tree-child networks with n leaves and k reticulation nodes, respectively. Note
that the tree-child property implies that k ≤ n− 1. Thus, the total numbers of one-component
and general d-combining tree-child networks, denoted by OTC(d)

n and TC(d)
n , satisfy

OTC(d)
n :=

n−1∑
k=0

OTC
(d)
n,k and TC(d)

n :=
n−1∑
k=0

TC
(d)
n,k.

Now, we are ready to present our results. First, for one-component tree-child networks, we
have the following formula which extends the one for d = 2 from Theorem 13 in [1].

Theorem 1.4. The numbers of one-component d-combining tree-child networks with n leaves
and k reticulation nodes for 0 ≤ k ≤ n− 1 are given by

OTC
(d)
n,k =

(
n

k

)
(2n+ (d− 2)k − 2)!

(d!)k 2n−k−1 (n− k − 1)!

and equal to 0 otherwise.

Using this formula, we obtain the following consequence.

Corollary 1.5. Let R(d)
n be the number of reticulation nodes of a one-component d-combining

tree-child network picked uniformly at random from the set of all one-component d-combining
tree-child networks with n leaves. Then, we have the following limit behavior of R(d)

n .

(i) For d = 2 (bicombining case), we have the weak convergence result:

R
(2)
n − n+

√
n

4
√
n/4

w−→ N(0, 1).

(ii) For d = 3, we have
n− 1−R(3)

n
w−→ Bessel(1, 2),

where Bessel(v, a) denotes the Bessel distribution, i.e.,

P(Bessel(1, 2) = k) =
1

I1(2)k!(k + 1)!
, (k ≥ 0).

Here, Iv(a) =
(
a
2

)v∑∞
k=0

1
k!Γ(k+v+1)

a2k

4k
is the modified Bessel function of the first kind.

(iii) For d ≥ 4, the limit law of n− 1−R(d)
n is degenerate, i.e.,

n− 1−R(d)
n

w−→ 0.

Remark 1.6. If t denotes the number of tree nodes and N the total number of nodes, then by
the handshaking lemma, we have

t = n+ (d− 1)k − 1 and N = 2n+ dk. (1)

Therefore, we have similar limit distribution results for these numbers as well.
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Note that the above result for d = 2 is already contained in the proof of Theorem 3 in [8]
where even a local limit theorem was proved; see also [7]. Using the above corollary, we now
obtain the first order asymptotics of the total number of one-component tree-child networks.

Corollary 1.7. (i) For d = 2 (bicombining case), we have

OTC(2)
n ∼

1

4π
√
e

(n!)22ne2
√
nn−9/4.

(ii) For d = 3, we have

OTC(3)
n ∼ I1(2) ·OTC

(3)
n,n−1 ∼

I1(2)
√

3

9π
(n!)3

(
9

2

)n
n−3,

where Iv(α) is as in Corollary 1.5, (ii).

(iii) For d ≥ 4, we have

OTC(d)
n ∼ OTC

(d)
n,n−1 ∼

d!

dd−1/2(2π)(d−1)/2
(n!)d

(
dd

d!

)n
n3(1−d)/2.

Again, the result for the case d = 2 is already contained in [8]. It is also the only case of
the three above in which we find a stretched exponential in the asymptotics; see [3].

We next turn to general tree-child networks. Here, in contrast to one-component tree-child
networks, we only understand the behavior of TC

(d)
n,k for fixed k and for k = n − 1 (i.e., for

maximally reticulated networks).
First, for fixed k, the first order asymptotics in the bicombining case (d = 2) was derived

in [4, 5] and with a different method in [6]; see also [11] where the result was re-derived with
yet another method which is however based on a (yet) unproven conjecture. The approach
from [6] can also be used in the d-combining case leading to the following result.

Theorem 1.8. For the number of d-combining tree-child networks with n leaves and k reticu-
lation nodes, we have for fixed k, as n→∞,

TC
(d)
n,k ∼

2(4−d)k−1

d!k k!
√
π
n!2nn(4−d)k−3/2.

Remark 1.9. Our approach can also be used to compute tables of TC
(d)
n,k for small values of n,

k, and d; see the Appendix. Moreover, the approach is also capable of giving exact formulas
for TC

(d)
n,k and small values of k; see [1, 5] for formulas in the bicombining case.

Note that the asymptotic order in the above theorem is much smaller than the one obtained
for one-component tree-child networks. Thus, the majority of tree-child networks do not have
a bounded number of reticulation nodes. In fact, the number of reticulation nodes of a “typical”
tree-child network is close to the maximum n− 1. More precisely, the following result holds.

Theorem 1.10. For the number of d-combining tree-child networks with n leaves, we have

TC(d)
n = Θ

(
TC

(d)
n,n−1

)
= Θ

(
(n!)d γ(d)n e3a1β(d)n1/3

nα(d)
)
,

where a1 = −2.33810741 . . . is the largest root of the Airy function of the first kind and

α(d) = −d(3d− 1)

2(d+ 1)
, β(d) =

(
d− 1

d+ 1

)2/3

, γ(d) = 4
(d+ 1)d−1

(d− 1)!
.
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For the bicombining case, this result was proved in [8] by encoding tree-child networks
with n leaves and n−1 reticulation nodes by certain words and (asymptotically) counting these
words with the method from [3]. In the more general d-combining case, we will use a similar
strategy, however, details will be more demanding due to the dependence on the parameter d.

As for the stochastic behavior of the number of reticulation nodes for general tree-child
networks, we have a conjecture for the limit laws which we are going to present in Section 4.
Note that even for d = 2, no limit law for any shape parameter of random tree-child networks
has been established yet.

Our conjecture will clarify the behavior of TC
(d)
n,k for k close to n. Thus, the behavior of

TC
(d)
n,k for small and large k is clear. For the remaining range, there is an interesting recent

conjecture for the bicombining case in [11], which has been proved for the special case of one-
component tree-child networks in [7]. Whether this conjecture can be extended to d-combining
tree-child networks is not clear yet; see the comments in Section 4.

We conclude the introduction with an outline of this extended abstract. In the next section,
we will consider one-component networks and prove Theorem 1.4 and Corollaries 1.5 and 1.7.
In Section 3, we will discuss our results for general networks. Finally, Section 4 will contain the
above mentioned conjecture for the limit laws of the number of reticulation nodes of a random
d-combining tree-child network and some concluding remarks.

2 One-Component Networks
In this section, we will prove our results for one-component tree-child networks. We start with
Theorem 1.4.

Proof of Theorem 1.4. Suppose N is a one-component d-combining tree-child network with
n− 1 leaves and k − 1 reticulation nodes.

Then, we can construct one-component d-combining tree-child networks with n leaves and
k reticulation nodes fromN by the following three steps: (i) put d new nodes into the candidate
edges where we call an edge of N a candidate edge if it is not incident to any reticulation node;
(ii) create a new reticulation node which is adjacent to the d new nodes; and (iii) add a new leaf
as a child of this reticulation node; moreover, label it with a label from {1, . . . , n} and increase
all (old) labels in N which are at least as large as the new label by +1 (if there are any).

Now, note that in step (i), we have

n− 1 + (d− 1)(k − 1)− 1︸ ︷︷ ︸
# edges leading to
a tree node; see (1)

+ n− 1︸ ︷︷ ︸
# edges leading

to a leaf

− (k − 1)︸ ︷︷ ︸
# edges below

ret. nodes

= 2n+ (d− 2)(k − 1)− 3

candidate edges and thus there are (
2n+ (d− 2)k − 2

d

)
choices of the d nodes. Moreover, in step (iii), there are n choices of the label. Finally, note
that the above construction gives each network exactly k times.

Overall, the above arguments give

OTC
(d)
n,k =

n

k

(
2n+ (d− 2)k − 2

d

)
OTC

(d)
n−1,k−1,
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and by iteration,

OTC
(d)
n,k =

(
n

k

)
(2n+ (d− 2)k − 2)!

d!k(2n− k − 2)!
OTC

(d)
n−k,0.

The result follows now by the fact that

OTC
(d)
n−k,0 = (2(n− k)− 3)!! =

(2n− 2k − 2)!

2n−k−1(n− k − 1)!

since OTC
(d)
n−k,0 is the number of phylogenetic trees with n − k leaves; e.g., see [12, Section

2.1].
Now, we can prove the two corollaries from above.

Proof of Corollaries 1.5 and 1.7. Since the results for d = 2 are already contained in [8] (see
also [7]), we can focus on the cases d ≥ 3.

We start with the case d = 3. Note that

OTC
(3)
n,k =

(
n

k

)
(2n+ k − 2)!

3k2n−1(n− k − 1)!
, (0 ≤ k ≤ n− 1)

and this sequence is increasing in k. (This is in contrast to d = 2 where this sequence has a
maximum at k = n −

√
n+ 1; see [8].) By replacing k by n − 1 − k and using Stirling’s

formula, we obtain that

OTC
(3)
n,n−1−k =

1

k!(k + 1)!
· n(3n− 3)!

6n−1

(
1 +O

(
1 + k2

n

))
(2)

uniformly for k with k = o(
√
n). Thus, by a standard application of the Laplace method:

OTC(3)
n ∼

(∑
k≥0

1

k!(k + 1)!

)
· n(3n− 3)!

6n−1
= I1(2) · n(3n− 3)!

6n−1

which is the first claim from Corollary 1.7, (ii); the second follows from this by another appli-
cation of Stirling’s formula. Moreover, since

P(R(3)
n = n− 1− k) =

OTC
(3)
n,n−1−k

OTC(3)
n

,

the result from Corollary 1.5, (ii) follows from the above two expansions too.
Next, we consider the case d ≥ 4. The details of the proof are the same as above, with the

main difference that the expansion (2) now becomes

OTC
(d)
n,n−1−k =

(
d2d!

2dd

)k
1

k!(k + 1)!
· n(3−d)k · n(dn− d)!

d!n−1

(
1 +O

(
1 + k2

n

))
uniformly for k with k = o(

√
n). This expansion, for d ≥ 4, contains the (non-trivial de-

creasing) factor n(3−d)k which is responsible for OTC(d)
n being now asymptotically dominated

by OTC
(d)
n,n−1 (proving Corollary 1.7, (iii)) and the limiting distribution of n − 1 − R(d)

n being
degenerate (proving Corollary 1.5, (iii)).
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3 General Networks
In this section, we will discuss the asymptotic enumeration of general d-combining tree-child
networks with a fixed (Theorem 1.8) and a maximal number of reticulation nodes (Theo-
rem 1.10). Note that the latter dominates asymptotically all networks of a given size.

We start with Theorem 1.8 on d-combining networks with a fixed number of reticulation
nodes. It can be proved by generalizing the approach from [6], which was based on the clas-
sification of tree-child networks via component graphs from [1]. Component graphs can also
be defined for d-combining tree-child networks and then be used to prove Theorem 1.8; details
will be given in the journal version of this work. Moreover, component graphs can also be used
as in [1] to (a) compute TC

(d)
n,k for small values of n, k, and d (see the Appendix); and (b) give

explicit formulas for small values of k.
The remainder of this section is devoted to the proof of Theorem 1.10, which extends the

approaches from [3, 8]. We start with some lemmas which are generalizations of the corre-
sponding results from [8] (and are proved with similar arguments). The first lemma shows that
the asymptotic growth of TC(d)

n is, up to a constant, determined by the asymptotics of TC
(d)
n,n−1.

Lemma 3.1. For n→∞, we have

TC(d)
n = Θ

(
TC

(d)
n,n−1

)
.

Proof. Let N be a d-combining tree-child network with n leaves and k reticulation nodes. A
free tree node is a tree node whose children are both not reticulation nodes; the edges to these
children are called free edges. Using a simple counting argument, it is easy to see that N has
2(n− k − 1) free edges; see [8, Lemma 1] for the case d = 2.

Next, we can construct d-combining tree-child networks with n leaves and k+1 reticulation
nodes by (i) inserting d tree nodes into the root edge of N and a reticulation node into a free
edge and (ii) connecting the d new tree nodes to the new reticulation node. Note that each
network built in this way is different. Thus,

2(n− k − 1)TC
(d)
n,k ≤ TC

(d)
n,k+1.

Iterating this construction yields

TC
(d)
n,k ≤

1

2n−k−1(n− k − 1)!
TC

(d)
n,n−1 (3)

and thus,

TC
(d)
n,n−1 ≤ TC(d)

n ≤
(∑

j≥0

1

2jj!

)
· TC

(d)
n,n−1 =

√
e · TC

(d)
n,n−1,

which proves the claim.

Next, we define a generalization of the class of words from [8] which is used to encode
d-combining tree-child networks with a maximal number of reticulation nodes.

Definition 3.2. Let C(d)
n denote the class of words built from n letters {ω1, . . . , ωn} in which

each letter occurs exactly d + 1 times such that in every prefix the letter ωi has either not yet
occurred more than d− 2 times, or, if it has, then the number of occurrences of ωi is at least as
large as the number of occurrences of ωj for all j > i.
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In [8], a bijection between bicombining tree-child networks with n leaves and k reticu-
lationd nodes whose labels are removed and C(2)

n−1 was proved. In fact, this bijection can be
extended to d-combining networks. Then, because the networks are all different when labeling
the (now empty) leaves by a random permutation, we obtain the following lemma.

Lemma 3.3. Let c(d)
n be the cardinality of C(d)

n . Then

TC
(d)
n,n−1 = n!c

(d)
n−1.

Now the recursive nature of this encoding allows us to derive the following counting result.

Lemma 3.4. We have

c(d)
n =

∑
m≥1

b(d)
n,m, (4)

where b(d)
n,m satisfies the recurrence

b(d)
n,m =

dn+m− 2

dn+m− d− 1
b

(d)
n,m−1 +

(
dn+m− 2

d− 1

)
b

(d)
n−1,m, (n ≥ 2, 0 ≤ m ≤ n) (5)

with b(d)
1,1 = 1 and b(d)

n,m = 0 for (i) n ≥ 2 and m = −1; (ii) n = 1 and m = 0; and (iii) n < m.

Proof. First, note that any word in C(d)
n has a suffix ωnωmωm+1 · · ·ωn−1ωn with 1 ≤ m ≤ n.

Denote by b(d)
n,m the number of these words. Removing the d occurrences of ωn from these words

gives a word of C(d)
n−1 with suffix ωmωm+1 · · ·ωn−1, i.e., it has a suffix ωn−1ωjωj+1 . . . ωn−1 for

j = 1, . . . ,m. Reversing this procedure gives

b(d)
n,m =

(
dn+m− 2

d− 1

) m∑
j=1

b
(d)
n−1,j, (6)

where the binomial coefficient counts the number of ways of adding back the d−1 occurrences
of ωn after two ωn’s have been added, one before the last ωm and one at the end of the word.
By Definition 3.2 these first d− 1 occurrences of ωn may be anywhere. Differencing yields

b
(d)
n,m(

dn+m−2
d−1

) − b
(d)
n,m−1(

dn+m−3
d−1

) = b
(d)
n−1,m.

This gives the claimed recurrence and the initial conditions are easily checked.

The advantage of the recurrence for b(d)
n,m is that we are actually only interested in the asymp-

totics of b(d)
n,n as by (4) and (6) we have

b(d)
n,n =

(
(d+ 1)n− 2

d− 1

)
c

(d)
n−1.

Now we are ready to use the method from [3]. Due to the similarities, we will only discuss
the main differences. We start with the following transformation of (bn,m)0≤m≤n to (e

(d)
i,j ) 0≤i≤j

i−j even
,

which changes the indices and captures the exponential and superexponential terms coming
from the binomial coefficient in (5).
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Lemma 3.5. We have

b(d)
n,m = λ(d)n(n!)d−1e

(d)
n+m,n−m with λ(d) =

(d+ 1)d−1

(d− 1)!
,

where e(d)
n,m satisfies the following recurrence

e(d)
n,m = µ(d)

n,me
(d)
n−1,m+1 + ν(d)

n,me
(d)
n−1,m−1 (7)

with

µ(d)
n,m = 1 +

2(d− 1)

(d+ 1)n+ (d− 1)m− 2(d+ 1)
and ν(d)

n,m =
d∏
i=2

(
1− 2(m+ i)

(d+ 1)(n+m)

)
for n ≥ 3 and m ≥ 0, where e(d)

n,−1 = e
(d)
2,n = 0 except for e(d)

2,0 = 1/λ(d).

Note that we are interested in e(d)
2n,0 =

b
(d)
n,n

λ(d)n(n!)d−1 because by the previous lemmas we have

TC(d)
n = Θ

(
TC

(d)
n,n−1

)
= Θ

(
n!c

(d)
n−1

)
= Θ

(
n!n1−d b(d)

n,n

)
= Θ

(
(n!)d λ(d)n n1−d e

(d)
2n,0

)
. (8)

Moreover, observe that for the Theta-result the initial value of e(d)
2,0 is irrelevant, as it creates

only a constant factor. So we may set it to e(d)
2,0 = 1, or any convenient constant. Note that this

recurrence is very similar to that of relaxed trees [3, Equation (2)], yet with more complicated
factors. Observe also that this is exactly recurrence [8, Equation (10)] for d = 2.

Motivated by experiments for large n, we use the following ansatz

e(d)
n,m ≈ h(n)f

(
m+ 1

n1/3

)
,

where h and f are some “regular” functions. Next, we substitute s(n) = h(n)/h(n − 1) and
m = κn1/3 − 1 into (7). Then, for n→∞ we get the expansion

f(κ)s(n) = 2f(κ) +

(
f ′′(κ)− 2(d− 1)

d+ 1
κf(κ)

)
n−2/3 +O

(
n−1
)
.

Hence, we may assume that s(n) = 2 + c1n
−2/3 + c2n

−1 + . . . and this implies that f(κ)
satisfies the differential equation

f ′′(κ) =

(
c1 +

2(d− 1)

d+ 1
κ

)
f(κ)

that is solved by the Airy function Ai of the first kind. Additionally, the boundary conditions
allow to compute c1 and we get that

f(κ) = CAi
(
a1 +B1/3κ

)
where B :=

2(d− 1)

d+ 1
,

a1 ≈ 2.338 is the largest root of the Airy function Ai, and C is an arbitrary constant. From
this we get that c1 = a1B

1/3. These heuristic arguments guide us to the following results. The
proofs are analogous to [2, 3, 8]; for the details we refer to the accompanying Maple work-
sheet [13].
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Proposition 3.6. For all n,m ≥ 0 let

X̃n,m :=

(
1− 2d− 1

3(d+ 1)

m2

n
− 3d2 + 12− 11

6(d+ 1)

m

n

)
Ai
(
a1 +

B1/3(m+ 1)

n1/3

)
and

s̃n := 2 +
a1B

2/3

n2/3
− 3d2 − 5d+ 4

3(d+ 1)n
− 1

n7/6
.

Then, for any ε > 0, there exists an ñ0 such that

X̃n,ms̃n ≤ µ(d)
n,mX̃n−1,m+1+ν(d)

n,mX̃n−1,m−1

for all n ≥ ñ0 and for all 0 ≤ m < n2/3−ε, where µ(d)
n,m and ν(d)

n,m are as in Lemma 3.5.

Proposition 3.7. Choose η > (2d−1)2

18(d+1)2
fixed and for all n,m ≥ 0 let

X̂n,m :=

(
1− 2d− 1

3(d+ 1)

m2

n
− 3d2 + 12− 11

6(d+ 1)

m

n
+ η

m4

n2

)
Ai
(
a1 +

B1/3(m+ 1)

n1/3

)
and

ŝn := 2 +
a1B

2/3

n2/3
− 3d2 − 5d+ 4

3(d+ 1)n
+

1

n7/6
.

Then, for any ε > 0, there exists a constant n̂0 such that

X̂n,mŝn ≥ µ(d)
n,mX̂n−1,m+1+ν(d)

n,mX̂n−1,m−1

for all n ≥ n̂0 and all 0 ≤ m < n1−ε.

Proof of Theorem 1.10. Let us start with the lower bound. We first define a sequence Xn,m :=
max{X̃n,m, 0} which satisfies the inequality of Proposition 3.6 for all m ≤ n. Then, we define
an explicit sequence h̃n := s̃nh̃n−1 for n > 0 and h̃0 = s̃0. From this, we show by induction
that e(d)

n,m ≥ C0h̃nXn,m for some constant C0 > 0 and all n ≥ ñ0 and all 0 ≤ m ≤ n. Hence,

e
(d)
2n,0 ≥ C0h̃2nX2n,0

≥ C0

2n∏
i=1

(
2 +

a1B
2/3

i2/3
− 3d2 − 5d+ 4

3(d+ 1)i
− 1

i7/6

)
Ai
(
a1 +

B1/3

n1/3

)
≥ C1(n!)d−14ne3a1B2/3n1/3

n
d2+d−2
2(d+1) .

Finally, combining this with (8) we get the lower bound.
The upper bound is similar, yet more technical. The starting point is Proposition 3.7 and a

function Xn,m that is valid for all 0 ≤ m ≤ n. For this purpose we define a sequence ê(d)
n,m such

that ê(d)
n,m := e

(d)
n,m for 0 ≤ m ≤ n1−ε and ê(d)

n,m := 0 otherwise; compare with [2,3]. Then, using
tools from lattice path theory and computer algebra, we show that e(d)

2n,0 = O(ê
(d)
2n,0) and that

ê
(d)
2n,0 ≤ Ĉ1(n!)d−14ne3a1B2/3n1/3

n
d2+d−2
2(d+1) .

For more details, see the journal version of this work.
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4 Conjectures and Remarks
The main purpose of this paper was to extend recent results on bicombining tree-child networks
to d-combining tree-child networks. We did this for both one-component tree-child networks
as well as general tree-child networks. For one-component d-combining tree-child networks,
we proved an exact counting formula for their number with n leaves and k reticulation nodes.
As a consequence of this formula, we obtained limit laws for the number of reticulation nodes
of a random network and (asymptotic) counting results for their total number. For general d-
combining tree-child networks, our knowledge of their counts is less complete. We derived
(asymptotic) results for a fixed number of reticulation nodes and the maximal number of retic-
ulation nodes. The latter implied also an (asymptotic) counting results for their total number.

How about limit laws for the number of reticulation nodes of general d-combining tree-
child networks? We think that the upper bound (3) is sharp for d = 2 and far away from being
sharp for d ≥ 3. More precisely, we believe that the following conjecture holds.

Conjecture 4.1. Let T (d)
n be the number of reticulation nodes of a d-combining tree-child net-

work picked uniformly at random from the set of all d-combining tree-child networks with n
leaves. Then, we have the following limit behavior of T (d)

n .

(i) For d = 2 (bicombining case), we have the weak convergence result:

n− 1− T (2)
n

w−→ Poisson(1/2),

where Poisson(α) denotes the Poisson distribution.

(ii) For d ≥ 3, the limit distribution of n− 1− T (d)
n is degenerate.

Moreover, the proof of this conjecture should also give the following result.

Corollary 4.2. (i) For d = 2 (bicombining case), we have TC(2)
n ∼

√
e · TC

(2)
n,n−1.

(ii) For d ≥ 3, we have TC(d)
n ∼ TC

(d)
n,n−1.

Remark 4.3. Note that even with the above result, it is still not possible to give the first-order
asymptotics of TC(d)

n since the approach of [3] is only capable of giving a Theta-result.

In fact, we recently found a method which should allow us to prove these results; details are
currently checked. The proofs (if correct) will be presented in the journal version of this paper.

The above limit distribution result would clarify the behavior of the number of general d-
combining tree-child networks for a large number, i.e., a number close to n, of reticulation
nodes. So, how about the remaining range? (Recall that the number of networks for a small
number of reticulation nodes is covered by Theorem 1.8.)

In this regard, there is a recent interesting conjecture for the bicombining case; see [11]. To
give details, denote by C(2)

n,k a class of words which is similar defined as in Definition 3.2 but
with the difference that only k letters appear 3 times while the remaining n − k letters appear
2 times. Let c(2)

n,k be their number. Then, it was conjectured in [11], together with some striking
consequences, that

TC
(2)
n,k =

n!

(n− k)!
c

(2)
n,k.
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Can this be extended to d-combining networks? (The obvious generalization by replacing 2
by d does not work.) We do not know the answer to this question yet. However, we recently
managed to define a modification of C(d)

n,k which can be used to encode d-combining tree-child
networks. This encoding seems to be useful for the proof of Conjecture 4.1 and might also shed
further light on [11]. Details will be again discussed in the journal version.

Finally, how about extension of our results to multicombining tree-child networks, i.e., tree-
child networks where different reticulation nodes may have different number of parents? We
think that many of the results of this extended abstract can be generalized to this case, however,
notation becomes more cumbersome. We might also include a discussion on this in the journal
version of the current paper.
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